1
|
Selemani MA, Martin RS. Use of 3D printing to integrate microchip electrophoresis with amperometric detection. Anal Bioanal Chem 2024; 416:4749-4758. [PMID: 38581532 DOI: 10.1007/s00216-024-05260-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 04/08/2024]
Abstract
This paper describes the use of PolyJet 3D printing to fabricate microchip electrophoresis devices with integrated microwire electrodes for amperometric detection. The fabrication process involves 3D printing of two separate pieces, a channel layer and an electrode layer. The channel layer is created by 3D printing on a pre-fabricated mold with a T-intersection. For the electrode layer, a stencil design is printed directly on the printing tray and covered with a piece of transparent glass. Microwire electrodes are adhered over the glass piece (guided by underlaying stencil) and a CAD design of the electrode layer is then printed on top of the microwire electrode. After delamination from the glass after printing, the microwire is embedded in the printed piece, with the stencil design ensuring that alignment and positioning of the electrode is reproducible for each print. After a thermal bonding step between the channel layer and electrode layer, a complete electrophoresis device with integrated microelectrodes for amperometric detection results. It is shown that this approach enables different microwire electrodes (gold or platinum) and sizes (100 or 50 µm) to be integrated in an end-channel configuration with no gap between the electrode and the separation channel. These devices were used to separate a mixture of catecholamines and the effect of separation voltage on the potential voltage applied on the working electrode was also investigated. In addition, the effect of electrode size on the number of theoretical plates and limit of detection was studied. Finally, a device that contains different channel heights and a detection electrode was 3D-printed to integrate continuous flow sampling with microchip electrophoresis and amperometric detection.
Collapse
Affiliation(s)
- Major A Selemani
- Department of Chemistry, Saint Louis University, Saint Louis, MO, USA
| | - R Scott Martin
- Department of Chemistry, Saint Louis University, Saint Louis, MO, USA.
- Center for Additive Manufacturing, Saint Louis University, Saint Louis, MO, USA.
| |
Collapse
|
2
|
Shen TW, Tsai MC, Chen TM, Chang CC. Photoacoustic method for measuring the elasticity of polydimethylsiloxane at various mixing ratios. Heliyon 2024; 10:e31726. [PMID: 38841497 PMCID: PMC11152934 DOI: 10.1016/j.heliyon.2024.e31726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/19/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024] Open
Abstract
Measuring elasticity without physical contact is challenging, as current methods often require deconstruction of the test sample. This study addresses this challenge by proposing and testing a photoacoustic effect-based method for measuring the elasticity of polydimethylsiloxane (PDMS) at various mixing ratios, which may be applied on the wide range of applications such as biomedical and optical fields. A dual-light laser source of the photoacoustic (PA) system is designed, employing cross-correlation signal processing techniques. The platform systems and a mathematical model for performing PDMS elasticity measurements are constructed. During elasticity detection, photoacoustic signal features, influenced by hardness and shapes, are analyzed using cross-correlation calculations and phase difference detection. Results from phantom tests demonstrate the potential of predicting Young's modulus using the cross-correlation method, aligning with the American Society for Testing and Materials (ASTM) standard samples. However, accuracy may be affected by mixed materials and short tubes. Normalization or calibration of signals is suggested for aligning with Young's coefficient.
Collapse
Affiliation(s)
- Tsu-Wang Shen
- Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan, ROC
- Master's Program Biomedical Informatics and Biomedical Engineering, Feng Chia University, Taichung, Taiwan, ROC
| | - Ming-Chun Tsai
- Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan, ROC
| | - Ting-Mao Chen
- Department of Automatic Control Engineering, Feng Chia University, Taichung, Taiwan, ROC
| | - Chi-Chang Chang
- School of Medical Informatics, Chung Shan Medical University & IT Office, Chung Shan Medical University Hospital, Taichung, Taiwan, ROC
- Department of Information Management, Ming Chuan University, Taoyuan, Taiwan, ROC
| |
Collapse
|
3
|
Selemani M, Castiaux AD, Martin RS. PolyJet-Based 3D Printing against Micromolds to Produce Channel Structures for Microchip Electrophoresis. ACS OMEGA 2022; 7:13362-13370. [PMID: 35474767 PMCID: PMC9026087 DOI: 10.1021/acsomega.2c01265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
In this work, we demonstrate the ability to use micromolds along with a stacked three-dimensional (3D) printing process on a commercially available PolyJet printer to fabricate microchip electrophoresis devices that have a T-intersection, with channel cross sections as small as 48 × 12 μm2 being possible. The fabrication process involves embedding removable materials or molds during the printing process, with various molds being possible (wires, brass molds, PDMS molds, or sacrificial materials). When the molds are delaminated/removed, recessed features complementary to the molds are left in the 3D prints. A thermal lab press is used to bond the microchannel layer that also contains printed reservoirs against another solid 3D-printed part to completely seal the microchannels. The devices exhibited cathodic electroosmotic flow (EOF), and mixtures of fluorescein isothiocyanate isomer I (FITC)-labeled amino acids were successfully separated on these 3D-printed devices using both gated and pinched electrokinetic injections. While this application is focused on microchip electrophoresis, the ability to 3D-print against molds that can subsequently be removed is a general methodology to decrease the channel size for other applications as well as to possibly integrate 3D printing with other production processes.
Collapse
Affiliation(s)
- Major
A. Selemani
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| | - Andre D. Castiaux
- Center
for Additive Manufacturing, Saint Louis
University, 240 N Grand
Blvd, Saint Louis, Missouri 63103, United States
| | - R. Scott Martin
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
- Center
for Additive Manufacturing, Saint Louis
University, 240 N Grand
Blvd, Saint Louis, Missouri 63103, United States
| |
Collapse
|
4
|
|
5
|
Ly J, Ha NS, Cheung S, van Dam RM. Toward miniaturized analysis of chemical identity and purity of radiopharmaceuticals via microchip electrophoresis. Anal Bioanal Chem 2018; 410:2423-2436. [PMID: 29470664 PMCID: PMC6482050 DOI: 10.1007/s00216-018-0924-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/19/2018] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
Miniaturized synthesis of positron emission tomography (PET) tracers is poised to offer numerous advantages including reduced tracer production costs and increased availability of diverse tracers. While many steps of the tracer production process have been miniaturized, there has been relatively little development of microscale systems for the quality control (QC) testing process that is required by regulatory agencies to ensure purity, identity, and biological safety of the radiotracer before use in human subjects. Every batch must be tested, and in contrast with ordinary pharmaceuticals, the whole set of tests of radiopharmaceuticals must be completed within a short-period of time to minimize losses due to radioactive decay. By replacing conventional techniques with microscale analytical ones, it may be possible to significantly reduce instrument cost, conserve lab space, shorten analysis times, and streamline this aspect of PET tracer production. We focus in this work on miniaturizing the subset of QC tests for chemical identity and purity. These tests generally require high-resolution chromatographic separation prior to detection to enable the approach to be applied to many different tracers (and their impurities), and have not yet, to the best of our knowledge, been tackled in microfluidic systems. Toward this end, we previously explored the feasibility of using the technique of capillary electrophoresis (CE) as a replacement for the "gold standard" approach of using high-performance liquid chromatography (HPLC) since CE offers similar separating power, flexibility, and sensitivity, but can readily be implemented in a microchip format. Using a conventional CE system, we previously demonstrated the successful separation of non-radioactive version of a clinical PET tracer, 3'-deoxy-3'-fluorothymidine (FLT), from its known by-products, and the separation of the PET tracer 1-(2'-deoxy-2'-fluoro-β-D-arabinofuranosyl)-cytosine (D-FAC) from its α-isomer, with sensitivity nearly as good as HPLC. Building on this feasibility study, in this paper, we describe the first effort to miniaturize the chemical identity and purity tests by using microchip electrophoresis (MCE). The fully automated proof-of-concept system comprises a chip for sample injection, a separation capillary, and an optical detection chip. Using the same model compound (FLT and its known by-products), we demonstrate that samples can be injected, separated, and detected, and show the potential to match the performance of HPLC. Addition of a radiation detector in the future would enable analysis of radiochemical identity and purity in the same device. We envision that eventually this MCE method could be combined with other miniaturized QC tests into a compact integrated system for automated routine QC testing of radiopharmaceuticals in the future. Graphical abstract Miniaturized quality control (QC) testing of batches of radiopharmaceuticals via microfluidic analysis. The proof-of-concept hybrid microchip electrophoresis (MCE) device demonstrated the feasibility of achieving comparable performance to conventional analytical instruments (HPLC or CE) for chemical purity testing.
Collapse
Affiliation(s)
- Jimmy Ly
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095-7227, USA
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, 650 Charles E Young Dr., Los Angeles, CA, 90095-8352, USA
- Bioengineering and Therapeutic Sciences, UCSF, San Francisco, CA, 94158, USA
| | - Noel S Ha
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095-7227, USA
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, 650 Charles E Young Dr., Los Angeles, CA, 90095-8352, USA
| | - Shilin Cheung
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, 650 Charles E Young Dr., Los Angeles, CA, 90095-8352, USA
- Trace-ability, Inc., 6160 Bristol Parkway Ste. 200, Culver City, CA, 90230, USA
| | - R Michael van Dam
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, 420 Westwood Plaza, Los Angeles, CA, 90095-7227, USA.
- Crump Institute for Molecular Imaging and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, 650 Charles E Young Dr., Los Angeles, CA, 90095-8352, USA.
| |
Collapse
|
6
|
Morbioli GG, Mazzu-Nascimento T, Aquino A, Cervantes C, Carrilho E. Recombinant drugs-on-a-chip: The usage of capillary electrophoresis and trends in miniaturized systems – A review. Anal Chim Acta 2016; 935:44-57. [DOI: 10.1016/j.aca.2016.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/07/2016] [Accepted: 06/10/2016] [Indexed: 01/09/2023]
|
7
|
Microfluidic chip-capillary electrophoresis device for the determination of urinary metabolites and proteins. Bioanalysis 2016; 7:907-22. [PMID: 25932524 DOI: 10.4155/bio.15.26] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Microfluidic chip-CE (MC-CE) devices have caught recent attention for diagnostic applications in urine. This is due to the successes reported in handling real urine samples by integrating microfluidic chips (MC) with analyte enrichment and sample cleanup to CE with high separation efficiency and sensitive analyte detection. Here, we review the determination of urinary metabolites and proteins by MC-CE devices within the past 7 years. The application scope for MC-CE integrated devices was found to exceed the use of either technique alone, showing comparable performance to laser-induced fluorescence detection using less sensitive UV detectors, offering the flexibility to handle difficult urine samples with on-chip dilution and online standard addition and delivering enhanced performance as compared with commercial microfluidic chip electrophoresis chips.
Collapse
|
8
|
Johnson AS, Mehl BT, Martin RS. Integrated hybrid polystyrene-polydimethylsiloxane device for monitoring cellular release with microchip electrophoresis and electrochemical detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2015; 7:884-893. [PMID: 25663849 PMCID: PMC4318258 DOI: 10.1039/c4ay02569e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In this work, a polystyrene (PS)-polydimethylsiloxane (PDMS) hybrid device was developed to enable the integration of cell culture with analysis by microchip electrophoresis and electrochemical detection. It is shown that this approach combines the fundamental advantages of PDMS devices (the ability to integrate pumps and valves) and PS devices (the ability to permanently embed fluidic tubing and electrodes). The embedded fused-silica capillary enables high temporal resolution measurements from off-chip cell culture dishes and the embedded electrodes provide close to real-time analysis of small molecule neurotransmitters. A novel surface treatment for improved (reversible) adhesion between PS and PDMS is described using a chlorotrimethylsilane stamping method. It is demonstrated that a Pd decoupler is efficient at handling the high current (and cathodic hydrogen production) resulting from use of high ionic strength buffers needed for cellular analysis; thus allowing an electrophoretic separation and in-channel detection. The separation of norepinephrine (NE) and dopamine (DA) in highly conductive biological buffers was optimized using a mixed surfactant system. This PS-PDMS hybrid device integrates multiple processes including continuous sampling from a cell culture dish, on-chip pump and valving technologies, microchip electrophoresis, and electrochemical detection to monitor neurotransmitter release from PC 12 cells.
Collapse
Affiliation(s)
- Alicia S Johnson
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - Benjamin T Mehl
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - R Scott Martin
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| |
Collapse
|
9
|
Nandi P, Scott DE, Desai D, Lunte SM. Development and optimization of an integrated PDMS based-microdialysis microchip electrophoresis device with on-chip derivatization for continuous monitoring of primary amines. Electrophoresis 2013; 34:895-902. [PMID: 23335091 PMCID: PMC3744098 DOI: 10.1002/elps.201200454] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/20/2012] [Accepted: 11/23/2012] [Indexed: 01/08/2023]
Abstract
An all-PDMS on-line microdialysis-microchip electrophoresis with on-chip derivatization and electrophoretic separation for near real-time monitoring of primary amine-containing analytes is described. Each part of the chip was optimized separately, and the effect of each of the components on temporal resolution, lag time, and separation efficiency of the device was determined. Aspartate and glutamate were employed as test analytes. Derivatization was accomplished with naphthalene-2,3,-dicarboxyaldehyde/cyanide (NDA/CN(-)), and the separation was performed using a 15-cm serpentine channel. The analytes were detected using LIF detection.
Collapse
Affiliation(s)
- Pradyot Nandi
- Department of Pharmaceutical, Chemistry, University of Kansas, Lawrence, KS, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | - David E. Scott
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Dhara Desai
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| | - Susan M. Lunte
- Department of Pharmaceutical, Chemistry, University of Kansas, Lawrence, KS, USA
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
- Department of Chemistry, University of Kansas, Lawrence, KS, USA
| |
Collapse
|
10
|
Johnson AS, Anderson KB, Halpin ST, Kirkpatrick DC, Spence DM, Martin RS. Integration of multiple components in polystyrene-based microfluidic devices part I: fabrication and characterization. Analyst 2012; 138:129-36. [PMID: 23120747 DOI: 10.1039/c2an36168j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In Part I of a two-part series, we describe a simple and inexpensive approach to fabricate polystyrene devices that is based upon melting polystyrene (from either a Petri dish or powder form) against PDMS molds or around electrode materials. The ability to incorporate microchannels in polystyrene and integrate the resulting device with standard laboratory equipment such as an optical plate reader for analyte readout and pipets for fluid propulsion is first described. A simple approach for sample and reagent delivery to the device channels using a standard, multi-channel micropipette and a PDMS-based injection block is detailed. Integration of the microfluidic device with these off-chip functions (sample delivery and readout) enables high-throughput screens and analyses. An approach to fabricate polystyrene-based devices with embedded electrodes is also demonstrated, thereby enabling the integration of microchip electrophoresis with electrochemical detection through the use of a palladium electrode (for a decoupler) and carbon-fiber bundle (for detection). The device was sealed against a PDMS-based microchannel and used for the electrophoretic separation and amperometric detection of dopamine, epinephrine, catechol, and 3,4-dihydroxyphenylacetic acid. Finally, these devices were compared against PDMS-based microchips in terms of their optical transparency and absorption of an anti-platelet drug, clopidogrel. Part I of this series lays the foundation for Part II, where these devices were utilized for various on-chip cellular analysis.
Collapse
Affiliation(s)
- Alicia S Johnson
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, USA
| | | | | | | | | | | |
Collapse
|
11
|
Simultaneous analysis of seven oligopeptides in microbial fuel cell by micro-fluidic chip with reflux injection mode. Talanta 2012; 100:338-43. [DOI: 10.1016/j.talanta.2012.07.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/26/2012] [Accepted: 07/30/2012] [Indexed: 01/25/2023]
|
12
|
Cao Z, Ren K, Wu H, Yobas L. Monolithic integration of fine cylindrical glass microcapillaries on silicon for electrophoretic separation of biomolecules. BIOMICROFLUIDICS 2012; 6:36501. [PMID: 23874369 PMCID: PMC3411555 DOI: 10.1063/1.4739075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/10/2012] [Indexed: 05/13/2023]
Abstract
We demonstrate monolithic integration of fine cylindrical glass microcapillaries (diameter ∼1 μm) on silicon and evaluate their performance for electrophoretic separation of biomolecules. Such microcapillaries are achieved through thermal reflow of a glass layer on microstructured silicon whereby slender voids are moulded into cylindrical tubes. The process allows self-enclosed microcapillaries with a uniform profile. A simplified method is also described to integrate the microcapillaries with a sample-injection cross without the requirement of glass etching. The 10-mm-long microcapillaries sustain field intensities up to 90 kV/m and limit the temperature excursions due to Joule heating to a few degrees Celsius only.
Collapse
Affiliation(s)
- Zhen Cao
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
13
|
Liang RP, Meng XY, Liu CM, Qiu JD. PDMS microchip coated with polydopamine/gold nanoparticles hybrid for efficient electrophoresis separation of amino acids. Electrophoresis 2011; 32:3331-40. [DOI: 10.1002/elps.201100403] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Johnson AS, Selimovic A, Martin RS. Integration of microchip electrophoresis with electrochemical detection using an epoxy-based molding method to embed multiple electrode materials. Electrophoresis 2011; 32:3121-8. [PMID: 22038707 PMCID: PMC3314886 DOI: 10.1002/elps.201100433] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 11/08/2022]
Abstract
This paper describes the use of epoxy-encapsulated electrodes to integrate microchip-based electrophoresis with electrochemical detection. Devices with various electrode combinations can easily be developed. This includes a palladium decoupler with a downstream working electrode material of either gold, mercury/gold, platinum, glassy carbon, or a carbon fiber bundle. Additional device components such as the platinum wires for the electrophoresis separation and the counter electrode for detection can also be integrated into the epoxy base. The effect of the decoupler configuration was studied in terms of the separation performance, detector noise, and the ability to analyze samples of a high ionic strength. The ability of both glassy carbon and carbon fiber bundle electrodes to analyze a complex mixture was demonstrated. It was also shown that a PDMS-based valving microchip can be used along with the epoxy-embedded electrodes to integrate microdialysis sampling with microchip electrophoresis and electrochemical detection, with the microdialysis tubing also being embedded in the epoxy substrate. This approach enables one to vary the detection electrode material as desired in a manner where the electrodes can be polished and modified as is done with electrochemical flow cells used in liquid chromatography.
Collapse
Affiliation(s)
- Alicia S. Johnson
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - Asmira Selimovic
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| | - R. Scott Martin
- Saint Louis University, Department of Chemistry, 3501 Laclede Avenue, St. Louis, MO 63103
| |
Collapse
|
15
|
Filla LA, Kirkpatrick DC, Martin RS. Use of a corona discharge to selectively pattern a hydrophilic/hydrophobic interface for integrating segmented flow with microchip electrophoresis and electrochemical detection. Anal Chem 2011; 83:5996-6003. [PMID: 21718004 DOI: 10.1021/ac201007s] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Segmented flow in microfluidic devices involves the use of droplets that are generated either on- or off-chip. When used with off-chip sampling methods, segmented flow has been shown to prevent analyte dispersion and improve temporal resolution by periodically surrounding an aqueous flow stream with an immiscible carrier phase as it is transferred to the microchip. To analyze the droplets by methods such as electrochemistry or electrophoresis, a method to "desegment" the flow into separate aqueous and immiscible carrier phase streams is needed. In this paper, a simple and straightforward approach for this desegmentation process was developed by first creating an air/water junction in natively hydrophobic and perpendicular PDMS channels. The air-filled channel was treated with a corona discharge electrode to create a hydrophilic/hydrophobic interface. When a segmented flow stream encounters this interface, only the aqueous sample phase enters the hydrophilic channel, where it can be subsequently analyzed by electrochemistry or microchip-based electrophoresis with electrochemical detection. It is shown that the desegmentation process does not significantly degrade the temporal resolution of the system, with rise times as low as 12 s reported after droplets are recombined into a continuous flow stream. This approach demonstrates significant advantages over previous studies in that the treatment process takes only a few minutes, fabrication is relatively simple, and reversible sealing of the microchip is possible. This work should enable future studies in which off-chip processes such as microdialysis can be integrated with segmented flow and electrochemical-based detection.
Collapse
Affiliation(s)
- Laura A Filla
- Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, United States
| | | | | |
Collapse
|
16
|
Wang Z, Wang W, Wang W, Xu L, Chen G, Fu F. Separation and determination of β-casomorphins by using glass microfluidic chip electrophoresis together with laser-induced fluorescence detection. J Sep Sci 2010; 34:196-201. [DOI: 10.1002/jssc.201000634] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 10/19/2010] [Accepted: 11/02/2010] [Indexed: 11/07/2022]
|
17
|
Segato TP, Coltro WKT, de Jesus Almeida AL, de Oliveira Piazetta MH, Gobbi AL, Mazo LH, Carrilho E. A rapid and reliable bonding process for microchip electrophoresis fabricated in glass substrates. Electrophoresis 2010; 31:2526-33. [DOI: 10.1002/elps.201000099] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Tandon V, Bhagavatula SK, Kirby BJ. Transient zeta-potential measurements in hydrophobic, TOPAS microfluidic substrates. Electrophoresis 2009; 30:2656-67. [PMID: 19637218 DOI: 10.1002/elps.200900028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We utilize time-resolved electrokinetic measurements in order to study the electrokinetic properties of silica and TOPAS microfluidic channels as a function of the time history of the fluid-solid interface. In pressure-driven flow through TOPAS microchannels, the zeta-potential as inferred from streaming potential measurements decays exponentially by a factor of 1.5 with a characteristic decay time of 3 h after the initial formation of the fluid-solid interface. A similar exponential decay is observed immediately after water is exchanged for ethanol as the solvent in the system. In electroosmotically driven flow through TOPAS microchannels, the zeta-potential as inferred through current monitoring experiments was constant in time. No electrokinetic transients were observed in silica microchannels under these flow conditions.
Collapse
Affiliation(s)
- Vishal Tandon
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
19
|
Feng JJ, Wang AJ, Fan J, Xu JJ, Chen HY. Hydrophilic biopolymer grafted on poly(dimethylsiloxane) surface for microchip electrophoresis. Anal Chim Acta 2009; 658:75-80. [PMID: 20082777 DOI: 10.1016/j.aca.2009.10.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 09/19/2009] [Accepted: 10/21/2009] [Indexed: 11/29/2022]
Abstract
A novel covalent strategy was developed to modify the poly(dimethylsiloxane) (PDMS) surface. Briefly, dextran was selectively oxidized to aldehyde groups with sodium periodate and subsequently grafted onto amine-functionalized PDMS surface via Schiff base reaction. As expected, the coated PDMS surface efficiently prevented the biomolecules from adsorption. Electro-osmotic flow (EOF) was successfully suppressed compared with that on the native PDMS microchip. Moreover, the stability of EOF was greatly enhanced and the hydrophilicity of PDMS surface was also improved. To apply thus-coated microchip, the separation of peptides, protein and neurotransmitters was investigated in detail. For comparison, these analytes were also measured on the native PDMS microchips. The results demonstrated that these analytes were efficiently separated and detected on the coated PDMS microchips. Furthermore, the relative standard deviations of their migration times for run-to-run, day-to-day, and chip-to-chip reproducibilities were in the range of 0.6-2.7%. In addition, the coated PDMS microchips showed good stability within 1 month.
Collapse
Affiliation(s)
- Jiu-Ju Feng
- School of Chemistry and Environmental Science, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Jianshe Road, Xinxiang, Henan 453007, China
| | | | | | | | | |
Collapse
|
20
|
Castaño-Álvarez M, Fernández-la-Villa A, Pozo-Ayuso DF, Fernández-Abedul MT, Costa-García A. Multiple-point electrochemical detection for a dual-channel hybrid PDMS-glass microchip electrophoresis device. Electrophoresis 2009; 30:3372-80. [DOI: 10.1002/elps.200900291] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Mogensen KB, Gangloff L, Boggild P, Teo KBK, Milne WI, Kutter JP. Carbon nanotubes integrated in electrically insulated channels for lab-on-a-chip applications. NANOTECHNOLOGY 2009; 20:095503. [PMID: 19417490 DOI: 10.1088/0957-4484/20/9/095503] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A fabrication process for monolithic integration of vertically aligned carbon nanotubes in electrically insulated microfluidic channels is presented. A 150 nm thick amorphous silicon layer could be used both for anodic bonding of a glass lid to hermetically seal the microfluidic glass channels and for de-charging of the wafer during plasma enhanced chemical vapor deposition of the carbon nanotubes. The possibility of operating the device with electroosmotic flow was shown by performing standard electrophoretic separations of 50 microM fluorescein and 50 microM 5-carboxyfluorescein in a 25 mm long column containing vertical aligned carbon nanotubes. This is the first demonstration of electroosmotic pumping and electrokinetic separations in microfluidic channels with a monolithically integrated carbon nanotube forest.
Collapse
Affiliation(s)
- K B Mogensen
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby, Denmark.
| | | | | | | | | | | |
Collapse
|
22
|
Phillips KS, Kottegoda S, Kang KM, Sims CE, Allbritton NL. Separations in poly(dimethylsiloxane) microchips coated with supported bilayer membranes. Anal Chem 2008; 80:9756-62. [PMID: 19006406 PMCID: PMC2735572 DOI: 10.1021/ac801850z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hybrid microchannels composed of poly(dimethylsiloxane) and glass were coated with supported bilayer membranes (SBMs) by the process of vesicle fusion. The electroosmotic mobility (mu(eo)) of zwitterionic, positively charged, and negatively charged phospholipid membranes was measured over a 4 h time to evaluate the stability of the coatings in an electric field. Coated microchips with a simple cross design were used to separate the fluorescent dyes fluorescein and Oregon Green. Migration time reproducibility was better than 5% RSD over 70 min of continuous separations. Separation of Oregon Green and fluorescein in channels coated with zwitterionic phosphatidylcholine (PC) membranes yielded efficiencies of 611,000 and 499,000 plates/m and a resolution of 2.4 within 2 s. Both zwitterionic and negatively charged membranes were used to separate peptide substrates from their phosphorylated analogues with efficiencies of 200,000-400,000 plates/m. Notably, separations of fluorescently labeled ABL substrate peptide from its phosphorylated counterpart were achieved using a high-salt physiological buffer with near-baseline resolution in 10 s. PC-coated devices were used to successfully separate enhanced green fluorescent protein (eGFP) from a fusion protein (eGFP-Crakl) with an efficiency of 358,000 and 278,000 plates/m respectively in less than 12 s. These SBM-based coatings may enable the separation of a broad range of analytes and may be ideal in biological applications for microfluidics.
Collapse
Affiliation(s)
- K Scott Phillips
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | |
Collapse
|
23
|
Coltro WKT, Lunte SM, Carrilho E. Comparison of the analytical performance of electrophoresis microchannels fabricated in PDMS, glass, and polyester-toner. Electrophoresis 2008; 29:4928-37. [PMID: 19025869 PMCID: PMC2672913 DOI: 10.1002/elps.200700897] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper compares the analytical performance of microchannels fabricated in PDMS, glass, and polyester-toner for electrophoretic separations. Glass and PDMS chips were fabricated using well-established photolithographic and replica-molding procedures, respectively. PDMS channels were sealed against three different types of materials: native PDMS, plasma-oxidized PDMS, and glass. Polyester-toner chips were micromachined by a direct-printing process using an office laser printer. All microchannels were fabricated with similar dimensions according to the limitations of the direct-printing process (width/depth 150 microm/12 microm). LIF was employed for detection to rule out any losses in separation efficiency due to the detector configuration. Two fluorescent dyes, coumarin and fluorescein, were used as model analytes. Devices were evaluated for the following parameters related to electrophoretic separations: EOF, heat dissipation, injection reproducibility, separation efficiency, and adsorption to channel wall.
Collapse
Affiliation(s)
- Wendell Karlos Tomazelli Coltro
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
- Ralph N. Adams Institute for Bioanalytical Chemistry, The University of Kansas, Lawrence, Kansas, USA
| | - Susan M. Lunte
- Ralph N. Adams Institute for Bioanalytical Chemistry, The University of Kansas, Lawrence, Kansas, USA
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
24
|
Liang RP, Gan GH, Qiu JD. Surface modification of poly(dimethylsiloxane) microfluidic devices and its application in simultaneous analysis of uric acid and ascorbic acid in human urine. J Sep Sci 2008; 31:2860-7. [PMID: 18655017 DOI: 10.1002/jssc.200800149] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ru-Ping Liang
- Department of Chemistry and Institute for Advanced Study, Nanchang University, Nanchang, PR China
| | | | | |
Collapse
|
25
|
Wang AJ, Feng JJ, Fan J. Covalent modified hydrophilic polymer brushes onto poly(dimethylsiloxane) microchannel surface for electrophoresis separation of amino acids. J Chromatogr A 2008; 1192:173-9. [PMID: 18384795 DOI: 10.1016/j.chroma.2008.03.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 03/08/2008] [Accepted: 03/12/2008] [Indexed: 11/24/2022]
Abstract
A new environmentally friendly method is developed for preventing nonspecific biomolecules from adsorption on poly(dimethylsiloxane) (PDMS) surface via in situ covalent modification. o-[(N-Succinimdyl)succiny]-o'-methyl-poly(ethylene glycol) (NSS-mPEG) was covalently grafted onto PDMS microchannel surface that was pretreated by air-plasma and silanized with 3-aminopropyl-triethoxysilanes (APTES). The modification processes were carried out in aqueous solution without any organic solvent. The mPEG side chains displayed extended structure and created a nonionic hydrophilic polymer brushes layer on PDMS surface, which can effectively prevent the adsorption of biomolecules. The developed method had improved reproducibility of separation and stability of electroosmotic flow (EOF), enhanced hydrophilicity of surface and peak resolution, and decreased adsorption of biomolecules. EOF in the modified microchannel was strongly suppressed, compared with those in the native and silanized PDMS microchips. Seven amino acids have been efficiently separated and successfully detected on the coated PDMS microchip coupled with end-channel amperometric detection. Relative standard deviations (RSDs) of their migration time for run-to-run, day-to-day and chip-to-chip, were all below 2.3%. Moreover, the covalent-modified PDMS channels displayed long-term stability for 4 weeks. This novel coating strategy showed promising application in biomolecules separation.
Collapse
Affiliation(s)
- Ai-Jun Wang
- School of Chemistry and Environmental Science, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, Henan 453007, China.
| | | | | |
Collapse
|
26
|
Xu Y, Jiang H, Wang E. Ionic liquid-assisted PDMS microchannel modification for efficiently resolving fluorescent dye and protein adsorption. Electrophoresis 2007; 28:4597-605. [DOI: 10.1002/elps.200700261] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
27
|
Sikanen T, Heikkilä L, Tuomikoski S, Ketola RA, Kostiainen R, Franssila S, Kotiaho T. Performance of SU-8 Microchips as Separation Devices and Comparison with Glass Microchips. Anal Chem 2007; 79:6255-63. [PMID: 17636877 DOI: 10.1021/ac0703956] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Effective analytical performance of native, all-SU-8 separation microdevices is addressed by comparing their performance to commercial glass microdevices in microchip zone electrophoresis accompanied by fluorescence detection. Surface chemistry and optical properties of SU-8 microdevices are also examined. SU-8 was shown to exhibit repeatable electroosmotic properties in a wide variety of buffers, and SU-8 microchannels were successfully utilized in peptide and protein analyses without any modification of the native polymer surface. Selected, fluorescent labeled, biologically active peptides were baseline resolved with migration time repeatability of 2.3-3.6% and plate numbers of 112,900-179,800 m(-1). Addition of SDS (0.1%) or SU-8 developer (1.0%) to the separation buffer also enabled protein analysis by capillary zone electrophoresis. Plate heights of 2.4-5.9 microm were obtained for fluorescent labeled bovine serum albumin. In addition, detection sensitivity through SU-8 microchannels was similar to that through BoroFloat glass, when fluorescence illumination was provided at visible wavelengths higher than 500 nm. On the whole, the analytical performance of SU-8 microchips was very good and fairly comparable to that of commercial glass chips as well as that of traditional capillary electrophoresis and chromatographic methods. Moreover, lithography-based patterning of SU-8 enables straightforward integration of multiple functions on a single chip and favors fully microfabricated lab-on-a-chip systems.
Collapse
Affiliation(s)
- Tiina Sikanen
- Laboratory of Analytical Chemistry, Department of Chemistry, Division of Pharmaceutical Chemistry, Faculty of Pharmacy, and Drug Discovery and Development Technology Center, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Microfluidic devices have been widely used to derivatize, separate, and detect amino acids employing many different strategies. Virtually zero-dead volume interconnections and fast mass transfer in small volume microchannels enable dramatic increases in on-chip derivatization reaction speed, while only minute amounts of sample and reagent are needed. Due to short channel path, fast subsecond separations can be carried out. With sophisticated miniaturized detectors, the whole analytical process can be integrated on one platform. This article reviews developments of lab-on-chip technology in amino acid analysis, it shows important design features such as sample preconcentration, precolumn and postcolumn amino acid derivatization, and unlabeled and labeled amino acid detection with focus on advanced designs. The review also describes important biomedical and space exploration applications of amino acid analysis on microfluidic devices.
Collapse
Affiliation(s)
- Martin Pumera
- ICYS, National Institute for Materials Science, Tsukuba, Japan.
| |
Collapse
|
29
|
Abstract
Here we introduce a method for accurate and sensitive quantitative analysis of mRNA, which does not require calibration with mRNA. The method uses a fluorescently labeled hybridization probe as a reference standard. It involves the following: (i) annealing mRNA to the excess of the fluorescently labeled ssDNA hybridization probe, (ii) separation of the mRNA-probe hybrid from the excess of the probe by gel-free capillary electrophoresis mediated by ssDNA-binding protein, (iii) fluorescence detection of the hybrid and the excess probe, and (iv) quantification of mRNA using a simple algebraic formula. The method also overcomes a number of other limitations of conventional methods: the entire procedure currently takes only 2 h and accurately quantifies 10(5) copies of mRNA. With further improvements to the method, the procedure can be potentially shortened to 10 min, and the limit of quantification can be decreased to as few as 100 copies of mRNA. In this work, we prove the principle of the method by quantifying mRNA of green fluorescent protein in the matrix of total cellular RNA. The developed method is quantitative, simple, fast, and highly sensitive. It requires commercially available instrumentation only. The method will be an indispensable tool for molecular and cell biology studies.
Collapse
Affiliation(s)
- Azza A Al-Mahrouki
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | | |
Collapse
|
30
|
Xie J, Miao Y, Shih J, Tai YC, Lee TD. Microfluidic platform for liquid chromatography-tandem mass spectrometry analyses of complex peptide mixtures. Anal Chem 2007; 77:6947-53. [PMID: 16255594 DOI: 10.1021/ac0510888] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A microfluidic chip that integrates all the fluidic components of a gradient liquid chromatography (LC) system is described. These chips were batch-fabricated on a silicon wafer using photolithographic processes and with Parylene as the main structural material. The fabricated chip includes three electrolysis-based electrochemical pumps, one for loading the sample and the other two for delivering the solvent gradient; platinum electrodes for delivering current to the pumps and establishing the electrospray potential; a low-volume static mixer; a column packed with silica-based reversed-phase support; integrated frits for bead capture; and an electrospray nozzle. The fabricated structures were able to withstand pressures in excess of 250 psi. The device was used to perform a liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of a mixture of peptides from the trypsin digestion of bovine serum albumen (BSA). Gradient elution through the 1.2-cm column was performed at a flow rate of 80 nL/min. Compared to the analysis of the same sample using a commercial nanoflow LC system, the chromatographic resolution was nearly as good, and the total cycle time was significantly reduced because of the minimal volume between the pumps and the column. Results demonstrate the potential of mass-produced, low-cost microfluidic systems capable of performing LC separations for proteomics applications.
Collapse
Affiliation(s)
- Jun Xie
- Department of Electrical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
31
|
Vickers JA, Caulum MM, Henry CS. Generation of hydrophilic poly(dimethylsiloxane) for high-performance microchip electrophoresis. Anal Chem 2007; 78:7446-52. [PMID: 17073411 DOI: 10.1021/ac0609632] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(dimethylsiloxane) (PDMS) has become one of the most widely used materials for microchip capillary electrophoresis and microfluidics. The popularity of this material is the result of its low cost, simple fabrication, and rugged elastomeric properties. The hydrophobic nature of PDMS, however, limits its applicability for microchip CE, microfluidic patterning, and other nonelectrophoresis applications. The surface of PDMS can be made hydrophilic using a simple air plasma treatment; however, this property is quickly lost through hydrophobic recovery caused by diffusion of unreacted oligomer to the surface. Here, a simple approach for the generation of hydrophilic PDMS with long-term stability in air is presented. PDMS is rendered hydrophilic through a simple two-step extraction/oxidation process. First, PDMS is extracted in a series of solvents designed to remove unreacted oligomers from the bulk phase. Second, the oligomer-free PDMS is oxidized in a simple air plasma, generating a stable layer of hydrophilic SiO2. The conversion of surface-bound siloxane to SiO2 was followed with X-ray photoelectron spectroscopy. SiO2 on extracted-oxidized PDMS was stable for 7 days in air as compared to less than 3 h for native PDMS. Furthermore, the contact angle for modified PDMS was reduced to <40 degrees and remained low throughout the experiments. As a result of the decreased contact angle, capillary channels self-wet through capillary action, making the microchannels much easier to fill. Finally, the modification significantly improved the performance of the devices for microchip electrophoresis. The electroosmotic flow increased from 4.1 x 10(-4) to 6.8 x 10(-4) cm(2)/V.s for native compared to oxidized PDMS. Separation efficiencies for electrochemical detection also increased from 50 000 to 400 000 N/m for a 1.1-nL injection volume. The result of this modification is a significant improvement in the performance of PDMS for microchip electrophoresis and microfluidic applications.
Collapse
Affiliation(s)
- Jonathan A Vickers
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA
| | | | | |
Collapse
|
32
|
Wang AJ, Xu JJ, Chen HY. In-situ grafting hydrophilic polymer on chitosan modified poly(dimethylsiloxane) microchip for separation of biomolecules. J Chromatogr A 2007; 1147:120-6. [PMID: 17320888 DOI: 10.1016/j.chroma.2007.02.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 02/03/2007] [Accepted: 02/07/2007] [Indexed: 11/27/2022]
Abstract
In this paper, a simple and green modification method is developed for biomolecules analysis on poly(dimethylsiloxane) (PDMS) microchip with successful depression of nonspecific biomolecules adsorption. O-[(N-succinimdyl)succiny]-o'-methyl-poly(ethylene glycol) was explored to form hydrophilic surface via in-situ grafting onto pre-coated chitosan (Chit) from aqueous solution in the PDMS microchannel. The polysaccharide chains backbone of Chit was strongly attracted onto the surface of PDMS via hydrophobic interaction combined with hydrogen bonding in an alkaline medium. The methyl-poly(ethylene glycol) (mPEG) could produce hydrophilic domains on the mPEG/aqueous interface, which generated brush-like coating in this way and revealed perfect resistance to nonspecific adsorption of biomolecules. This strategy could greatly improve separation efficiency and reproducibility of biomolecules. Amino acids and proteins could be efficiently separated and successfully detected on the coated microchip coupled with end-channel amperometric detection at a copper electrode. In addition, it offered an effective means for preparing biocompatible and hydrophilic surface on microfluidic devices, which may have potential use in the biological analysis.
Collapse
Affiliation(s)
- Ai-Jun Wang
- Key Lab of Analytical Chemistry for Life Science (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | | |
Collapse
|
33
|
Jiang L, Jiang X, Lu Y, Dai Z, Xie M, Qin J, Lin B. Development of a universal serial bus-powered mini-high-voltage power supply for microchip electrophoresis. Electrophoresis 2007; 28:1259-64. [PMID: 17377944 DOI: 10.1002/elps.200600550] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We describe a miniature high-voltage power supply (HVPS) with dimensions of 4.7 x 5.6 x 2.5 cm (W x L x H) powered by universal serial bus (USB) ports. Two strategies were adopted to ensure its efficient power usage. (i) Only two high-voltage converters (one positive and one negative) and two relays were used for power saving, while keeping the sample plug stable and well-defined and avoiding sample leakage for microchip electrophoresis. (ii) The components and their running modes were specially designed to decrease power waste according to the feature of different periods of the microchip electrophoresis process. Performance of this USB-based mini-HVPS was demonstrated using sodium fluorescein analyte with microchip electrophoresis/LIF detection.
Collapse
Affiliation(s)
- Lei Jiang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, PR China
| | | | | | | | | | | | | |
Collapse
|
34
|
Wang AJ, Xu JJ, Chen HY. Enhanced Microchip Electrophoresis of Neurotransmitters on Glucose Oxidase Modified Poly(dimethylsiloxane) Microfluidic Devices. ELECTROANAL 2007. [DOI: 10.1002/elan.200603797] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
35
|
A capillary electrophoresis microsystem for the rapid in-channel amperometric detection of synthetic dyes in food. J Electroanal Chem (Lausanne) 2007. [DOI: 10.1016/j.jelechem.2006.10.019] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Götz S, Karst U. Recent developments in optical detection methods for microchip separations. Anal Bioanal Chem 2007; 387:183-92. [PMID: 17031620 PMCID: PMC7080113 DOI: 10.1007/s00216-006-0820-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 08/18/2006] [Accepted: 08/31/2006] [Indexed: 10/26/2022]
Abstract
This paper summarizes the features and performances of optical detection systems currently applied in order to monitor separations on microchip devices. Fluorescence detection, which delivers very high sensitivity and selectivity, is still the most widely applied method of detection. Instruments utilizing laser-induced fluorescence (LIF) and lamp-based fluorescence along with recent applications of light-emitting diodes (LED) as excitation sources are also covered in this paper. Since chemiluminescence detection can be achieved using extremely simple devices which no longer require light sources and optical components for focusing and collimation, interesting approaches based on this technique are presented, too. Although UV/vis absorbance is a detection method that is commonly used in standard desktop electrophoresis and liquid chromatography instruments, it has not yet reached the same level of popularity for microchip applications. Current applications of UV/vis absorbance detection to microchip separations and innovative approaches that increase sensitivity are described. This article, which contains 85 references, focuses on developments and applications published within the last three years, points out exciting new approaches, and provides future perspectives on this field.
Collapse
Affiliation(s)
- Sebastian Götz
- Chemical Analysis Group and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Uwe Karst
- Chemical Analysis Group and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Present Address: Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstr. 30, 48149 Münster, Germany
| |
Collapse
|
37
|
Duffy CF, MacCraith B, Diamond D, O'Kennedy R, Arriaga EA. Fast electrophoretic analysis of individual mitochondria using microchip capillary electrophoresis with laser induced fluorescence detection. LAB ON A CHIP 2006; 6:1007-11. [PMID: 16874370 DOI: 10.1039/b601896c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The analysis of mitochondria by capillary electrophoresis usually takes longer than 20 min per replicate which may compromise the quality of the mitochondria due to degradation. In addition, low sample consumption may be beneficial in the analysis of rare or difficult samples. In this report, we demonstrate the ability to analyze individual mitochondrial events in picoliter-volume samples (approximately 80 pL) taken from a bovine liver preparation using microchip capillary electrophoresis with laser-induced fluorescence detection (micro-chip CE-LIF). Using a commercial "double-T" glass microchip, the sample was electrokinetically loaded in the "double-T" intersection and then subjected to electrophoretic separation along the main separation channel. In order to decrease interactions of mitochondria with channel walls during the analysis, poly(vinyl alcohol) was used as a dynamic coating. This procedure eliminates the need for complicated covalent surface modifications within the channels that were previously used in capillary electrophoresis methods. For analysis, mitochondria, isolated from bovine liver tissue, were selectively labelled using 10-nonyl acridine orange (NAO). The results consist of electropherograms where each mitochondrial event is a narrow spike (240 +/- 44 ms). While the spike intensity is representative of its NAO content, its migration time is used to calculate and describe its electrophoretic mobility, which is a property still largely unexplored for intracellular organelles. The five-fold decrease in separation time (4 min for microchip versus 20 min for capillary electrophoresis) makes microchip electrophoretic separations of organelles a faster, sensitive, low-sample volume alternative for the characterization of individual organelle properties and for investigations of subcellular heterogeneity.
Collapse
Affiliation(s)
- Ciarán F Duffy
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | | | | | | | | |
Collapse
|
38
|
Shin KS, Kim YH, Min JA, Kwak SM, Kim SK, Yang EG, Park JH, Ju BK, Kim TS, Kang JY. Miniaturized fluorescence detection chip for capillary electrophoresis immunoassay of agricultural herbicide atrazine. Anal Chim Acta 2006; 573-574:164-71. [PMID: 17723520 DOI: 10.1016/j.aca.2006.05.099] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 05/27/2006] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
This paper reports a miniaturized fluorescence detection chip for capillary electrophoresis immunoassay of atrazine, which effectively reduces the size of fluorescence detection system. The photodiode with fluorescence filter was embedded in PDMS (polydimethylsiloxane) microfluidic chip and was placed just below the microfluidic channel. This detection chip is only few mm thick without loss of fluorescence due to the proximity of photodiode and channel. To investigate the feasibility of in situ detection of agricultural herbicide, atrazine was detected using capillary electrophoresis immunoassay in microfluidic chip. Mixture of 570 nM fluorescence-labeled atrazine (Ag*) and 700 nM anti-atrazine antibody (Ab) was injected and separated in 25 mm long microfluidic channel. The separated peaks of Ab-Ag* immunocomplex and Ag* were detected by the miniaturized detector and the change of peak magnitude was also observed with the variation of Ab concentration. The result was verified with those of external PMT (photomultiplier tube) and commercial capillary electrophoresis system. Hence, we have demonstrated the feasibility of portable CE immunoassay of atrazine with on-chip fluorescence detector.
Collapse
Affiliation(s)
- Kyeong-Sik Shin
- Microsystem Research Center, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Roman GT, Carroll S, McDaniel K, Culbertson CT. Micellar electrokinetic chromatography of fluorescently labeled proteins on poly(dimethylsiloxane)-based microchips. Electrophoresis 2006; 27:2933-9. [PMID: 16721904 DOI: 10.1002/elps.200500795] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
MEKC of standard proteins was investigated on PDMS microfluidic devices. Standard proteins were labeled with AlexaFluor(R) 488 carboxylic acid tetrafluorophenyl ester and filtered through a size-exclusion column to remove any small peptides and unreacted label. High-efficiency MEKC separations of these standard proteins were performed using a buffer consisting of 10 mM sodium tetraborate, 25 mM SDS, and 20% v/v ACN. A separation of BSA using this buffer in a 3.0 cm long channel generated a peak with a plate height of 0.38 microm in <20 s. Additional fast separations of myoglobin, alpha-lactalbumin, lysozyme, and cytochrome c also yielded peaks with plate heights ranging from 0.54 to 0.72 microm. All proteins migrated with respect to their individual pIs. To improve the separations, we used a PDMS serpentine chip with tapered turns and a separation distance of 25 cm. The number of plates generated increased linearly with increasing separation distance on the extended separation channel chips; however, the resolution reached an asymptotic value after about 7 cm. This limited the peak capacity of the separation technique to 10-12.
Collapse
Affiliation(s)
- Gregory T Roman
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | |
Collapse
|
40
|
Wang AJ, Xu JJ, Chen HY. Nonionic surfactant dynamic coating of poly(dimethylsiloxane) channel surface for microchip electrophoresis of amino acids. Anal Chim Acta 2006. [DOI: 10.1016/j.aca.2006.03.104] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
41
|
Kasicka V. Recent developments in capillary electrophoresis and capillary electrochromatography of peptides. Electrophoresis 2006; 27:142-75. [PMID: 16307429 DOI: 10.1002/elps.200500527] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The article gives a comprehensive review on the recent developments in the applications of high-performance capillary electromigration methods, zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography, to analysis, preparation, and physicochemical characterization of peptides. The article presents new approaches to the theoretical description and experimental verification of electromigration behavior of peptides, covers the methodological aspects of capillary electroseparations of peptides, such as rational selection of separation conditions, sample preparation, suppression of peptide adsorption, new developments in individual separation modes, and new designs of detection systems. Several types of applications of capillary electromigration methods to peptide analysis are presented: conventional qualitative and quantitative analysis, purity control, determination in biomatrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid and sequence analysis, and peptide mapping of proteins. Some examples of micropreparative peptide separations are given and capabilities of capillary electromigration techniques to provide important physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kasicka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
42
|
Wang AJ, Xu JJ, Chen HY. Proteins modification of poly(dimethylsiloxane) microfluidic channels for the enhanced microchip electrophoresis. J Chromatogr A 2006; 1107:257-64. [PMID: 16387312 DOI: 10.1016/j.chroma.2005.12.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2005] [Revised: 12/02/2005] [Accepted: 12/06/2005] [Indexed: 12/18/2022]
Abstract
This report described proteins modification of poly(dimethylsiloxane) (PDMS) microfluidic chip based on layer-by-layer (LBL) assembly technique for enhancing separation efficiency. Two kinds of protein-coated films were prepared. One was obtained by successively immobilizing the cationic polyelectrolyte (chitosan, Chit), gold nanoparticles (GNPs), and protein (albumin, Albu) to the PDMS microfluidic channels surface. The other was achieved by sequentially coating lysozyme (Lys) and Albu. Neurotransmitters (dopamine, DA; epinephrine, EP) and environmental pollutants (p-phenylenediamine, p-PDA; 4-aminophenol, 4-AP; hydroquinone, HQ) as two groups of separation models were studied to evaluate the effect of the functional PDMS microfluidic chips. The results clearly showed these analytes were efficiently separated within 140 s in a 3.7 cm long separation channel and successfully detected with in-channel amperometric detection mode. Experimental parameters in two protocols were optimized in detail. The detection limits of DA, EP, p-PDA, 4-AP, and HQ were 2.0, 4.7, 8.1, 12.3, and 14.8 microM (S/N=3) on the Chit-GNPs-Albu coated PDMS/PDMS microchip, and 1.2, 2.7, 7.2, 9.8, and 12.2 microM (S/N=3) on the Lys-Albu coated one, respectively. In addition, through modification, the more homogenous channel surface displayed higher reproducibility and better stability.
Collapse
Affiliation(s)
- Ai-Jun Wang
- Key Lab of Analytical Chemistry for Life science, Department of Chemistry, Nanjing University, Nanjing 210093, China
| | | | | |
Collapse
|
43
|
Mecomber JS, Stalcup AM, Hurd D, Halsall HB, Heineman WR, Seliskar CJ, Wehmeyer KR, Limbach PA. Analytical Performance of Polymer-Based Microfluidic Devices Fabricated By Computer Numerical Controlled Machining. Anal Chem 2005; 78:936-41. [PMID: 16448071 DOI: 10.1021/ac051523y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A study comparing the electrophoretic separation performance attainable from microchips molded by masters fabricated using conventional CNC machining techniques with commercial microchips, wire imprinted microchips, and microchips from LIGA molding devices is presented. An electrophoresis-based detection system using fluorescence microscopy was used to determine the analytical utility of these microchips. The separation performance of CNC microchips was comparable to commercially available microchips as well as those fabricated from LIGA masters. The important feature of the CNC machined masters is that they have rapid design-to-device times using routinely available machining tools. This low-cost prototyping approach provides a new entry point for researchers interested in thermoplastic microchips and can accelerate the development of polymer-based lab-on-a-chip devices.
Collapse
Affiliation(s)
- Justin S Mecomber
- Department of Chemistry, University of Cincinnati, Ohio 45221-0072, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Thorslund S, Lindberg P, Andrén PE, Nikolajeff F, Bergquist J. Electrokinetic-driven microfluidic system in poly(dimethylsiloxane) for mass spectrometry detection integrating sample injection, capillary electrophoresis, and electrospray emitter on-chip. Electrophoresis 2005; 26:4674-83. [PMID: 16273585 DOI: 10.1002/elps.200500338] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A novel microsystem device in poly(dimethylsiloxane) (PDMS) for MS detection is presented. The microchip integrates sample injection, capillary electrophoretic separation, and electrospray emitter in a single substrate, and all modules are fabricated in the PDMS bulk material. The injection and separation flow is driven electrokinetically and the total amount of external equipment needed consists of a three-channel high-voltage power supply. The instant switching between sample injection and separation is performed through a series of low-cost relays, limiting the separation field strength to a maximum of 270 V/cm. We show that this set-up is sufficient to accomplish electrospray MS analysis and, to a moderate extent, microchip separation of standard peptides. A new method of instant in-channel oxidation makes it possible to overcome the problem of irreversibly bonded PDMS channels that have recovered their hydrophobic properties over time. The fast method turns the channel surfaces hydrophilic and less prone to nonspecific analyte adsorption, yielding better separation efficiencies and higher apparent peptide mobilities.
Collapse
Affiliation(s)
- Sara Thorslund
- Department of Engineering Sciences, Angström Laboratory, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
45
|
Hellmich W, Pelargus C, Leffhalm K, Ros A, Anselmetti D. Single cell manipulation, analytics, and label-free protein detection in microfluidic devices for systems nanobiology. Electrophoresis 2005; 26:3689-96. [PMID: 16152668 DOI: 10.1002/elps.200500185] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Single cell analytics for proteomic analysis is considered a key method in the framework of systems nanobiology which allows a novel proteomics without being subjected to ensemble-averaging, cell-cycle, or cell-population effects. We are currently developing a single cell analytical method for protein fingerprinting combining a structured microfluidic device with latest optical laser technology for single cell manipulation (trapping and steering), free-solution electrophoretical protein separation, and (label-free) protein detection. In this paper we report on first results of this novel analytical device focusing on three main issues. First, single biological cells were trapped, injected, steered, and deposited by means of optical tweezers in a poly(dimethylsiloxane) microfluidic device and consecutively lysed with SDS at a predefined position. Second, separation and detection of fluorescent dyes, amino acids, and proteins were achieved with LIF detection in the visible (VIS) (488 nm) as well as in the deep UV (266 nm) spectral range for label-free, native protein detection. Minute concentrations of 100 fM injected fluorescein could be detected in the VIS and a first protein separation and label-free detection could be achieved in the UV spectral range. Third, first analytical experiments with single Sf9 insect cells (Spodoptera frugiperda) in a tailored microfluidic device exhibiting distinct electropherograms of a green fluorescent protein-construct proved the validity of the concept. Thus, the presented microfluidic concept allows novel and fascinating single cell experiments for systems nanobiology in the future.
Collapse
Affiliation(s)
- Wibke Hellmich
- Experimental Biophysics and Applied Nanosciences, Physics Department, Bielefeld University, Bielefeld, Germany
| | | | | | | | | |
Collapse
|
46
|
Sikanen T, Tuomikoski S, Ketola RA, Kostiainen R, Franssila S, Kotiaho T. Characterization of SU-8 for electrokinetic microfluidic applications. LAB ON A CHIP 2005; 5:888-96. [PMID: 16027941 DOI: 10.1039/b503016a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The characterization of SU-8 microchannels for electrokinetic microfluidic applications is reported. The electroosmotic (EO) mobility in SU-8 microchannels was determined with respect to pH and ionic strength by the current monitoring method. Extensive electroosmotic flow (EOF), equal to that for glass microchannels, was observed at pH > or =4. The highest EO mobility was detected at pH > or =7 and was of the order of 5.8 x 10(-4) cm(2) V(-1) s(-1) in 10 mM phosphate buffer. At pH < or =3 the electroosmotic flow was shown to reverse towards the anode and to reach a magnitude of 1.8 x 10(-4) cm(2) V(-1) s(-1) in 10 mM phosphate buffer (pH 2). Also the zeta-potential on the SU-8 surface was determined, employing lithographically defined SU-8 microparticles for which a similar pH dependence was observed. SU-8 microchannels were shown to perform repeateably from day to day and no aging effects were observed in long-term use.
Collapse
Affiliation(s)
- Tiina Sikanen
- Viikki Drug Discovery Technology Center, Faculty of Pharmacy, P.O. Box 56, FI-00014 University of Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
47
|
Fiorini GS, Chiu DT. Disposable microfluidic devices: fabrication, function, and application. Biotechniques 2005; 38:429-46. [PMID: 15786809 DOI: 10.2144/05383rv02] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This review article describes recent developments in microfluidics, with special emphasis on disposable plastic devices. Included is an overview of the common methods used in the fabrication of polymer microfluidic systems, including replica and injection molding, embossing, and laser ablation. Also described are the different methods by which on-chip operations--such as the pumping and valving of fluid flow, the mixing of different reagents, and the separation and detection of different chemical species--have been implemented in a microfluidic format. Finally, a few select biotechnological applications of microfluidics are presented to illustrate both the utility of this technology and its potential for development in the future.
Collapse
|
48
|
Büttgenbach S, Wilke R. A capillary electrophoresis chip with hydrodynamic sample injection for measurements from a continuous sample flow. Anal Bioanal Chem 2005; 383:733-7. [PMID: 15965683 DOI: 10.1007/s00216-005-3346-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Accepted: 05/18/2005] [Indexed: 10/25/2022]
Abstract
A microchip-based capillary electrophoresis device supported by a microfluidic network made of poly(dimethylsiloxane), used for measuring target analytes from a continuous sample flow, is presented. The microsystem was fabricated by means of replica molding in combination with standard microfabrication technologies, resulting in microfluidic components and an electrochemical detector. A new hydrodynamic sample injection procedure is introduced, and the maximum number of consecutive measurements that can be made with a poly(dimethylsiloxane) capillary electrophoresis chip with amperometric detection is investigated with respect to reproducibility. The device features a high degree of functional integration, so the benefits associated with miniaturized analysis systems apply to it.
Collapse
Affiliation(s)
- S Büttgenbach
- Technical University of Braunschweig, Institute for Microtechnology, Langer Kamp 8, 38106 Braunschweig, Germany.
| | | |
Collapse
|
49
|
García CD, Dressen BM, Henderson A, Henry CS. Comparison of surfactants for dynamic surface modification of poly(dimethylsiloxane) microchips. Electrophoresis 2005; 26:703-9. [PMID: 15690423 DOI: 10.1002/elps.200410290] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the present report, the use of negatively charged surfactants as modifiers of the background electrolyte is reported using poly(dimethylsiloxane) (PDMS) microchips. In particular, the use of anionic surfactants, such as sodium dodecyl sulfate, phosphatidic acid, and deoxycholate, was studied. When surfactants were present in the run buffer, an increase in the electroosmotic flow (EOF) was observed. Two additional effects were also observed: (i) stabilization of the run-to-run EOF, (ii) an improvement in the electrochemical response for several biomolecules. In order to characterize the analysis conditions, the effects of different surfactant, electrolyte, and pH were studied. EOF measurements were performed using either the current monitoring method or by detection of a neutral molecule. The first adsorption/desorption kinetics studies are also reported for different surfactants onto PDMS. The separation of biologically important analytes (glucose, penicillin, phenol, and homovanillic acid) was improved decreasing the analysis time from 200 to 125 s. However, no significant changes in the number of theoretical plates were observed.
Collapse
Affiliation(s)
- Carlos D García
- Chemistry Department, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | |
Collapse
|
50
|
Llobera A, Wilke R, Büttgenbach S. Optimization of poly(dimethylsiloxane) hollow prisms for optical sensing. LAB ON A CHIP 2005; 5:506-11. [PMID: 15856086 DOI: 10.1039/b416633g] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A new generation of simple, robust and compact microfluidic systems with optical readout is presented. The devices consist of hollow prisms fabricated by soft-lithography, together with microlenses and self-aligned channels for fibre optic positioning, conferring the system with a high degree of monolithic integration. Its working principle is based on the absorption of the working wavelength (lambda = 460 nm) by the different substances that can fill the hollow prisms. By modifying the volumes and geometries, optimization of the presented systems has been achieved. Results show how the limit of detection (LOD) for fluorescein and methylorange diluted in phosphate buffer can be significantly lowered, by increasing the size of the prism or increasing the total deviation angle. For our investigations we used concentrations for which the Beer-Lambert law is fulfilled and the measurements showed a LOD in the microM range for both species. Finally, since the change in the fractions of the methylorange as a function of the pH causes a variation of the total absorption of the solution, the hollow prisms have also been used for pH measurements.
Collapse
Affiliation(s)
- A Llobera
- Institut für Mikrotechnik, Technische Universität Braunschweig, Alte Salzdahlumer Strasse 203, 38124 Braunschweig, Germany.
| | | | | |
Collapse
|