1
|
Calhoun SE, Meunier CJ, Lee CA, McCarty GS, Sombers LA. Characterization of a Multiple-Scan-Rate Voltammetric Waveform for Real-Time Detection of Met-Enkephalin. ACS Chem Neurosci 2019; 10:2022-2032. [PMID: 30571911 PMCID: PMC6473485 DOI: 10.1021/acschemneuro.8b00351] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Opioid peptides are critically involved in a variety of physiological functions necessary for adaptation and survival, and as such, understanding the precise actions of endogenous opioid peptides will aid in identification of potential therapeutic strategies to treat a variety of disorders. However, few analytical tools are currently available that offer both the sensitivity and spatial resolution required to monitor peptidergic concentration fluctuations in situ on a time scale commensurate with that of neuronal communication. Our group has developed a multiple-scan-rate waveform to enable real-time voltammetric detection of tyrosine containing neuropeptides. Herein, we have evaluated the waveform parameters to increase sensitivity to methionine-enkephalin (M-ENK), an endogenous opioid neuropeptide implicated in pain, stress, and reward circuits. M-ENK dynamics were monitored in adrenal gland tissue, as well as in the dorsal striatum of anesthetized and freely behaving animals. The data reveal cofluctuations of catecholamine and M-ENK in both locations and provide measurements of M-ENK dynamics in the brain with subsecond temporal resolution. Importantly, this work also demonstrates how voltammetric waveforms can be customized to enhance detection of specific target analytes, broadly speaking.
Collapse
Affiliation(s)
- S. E. Calhoun
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - C. J. Meunier
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - C. A. Lee
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - G. S. McCarty
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - L. A. Sombers
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
2
|
Buchberger A, Yu Q, Li L. Advances in Mass Spectrometric Tools for Probing Neuropeptides. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2015; 8:485-509. [PMID: 26070718 PMCID: PMC6314846 DOI: 10.1146/annurev-anchem-071114-040210] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Neuropeptides are important mediators in the functionality of the brain and other neurological organs. Because neuropeptides exist in a wide range of concentrations, appropriate characterization methods are needed to provide dynamic, chemical, and spatial information. Mass spectrometry and compatible tools have been a popular choice in analyzing neuropeptides. There have been several advances and challenges, both of which are the focus of this review. Discussions range from sample collection to bioinformatic tools, although avenues such as quantitation and imaging are included. Further development of the presented methods for neuropeptidomic mass spectrometric analysis is inevitable, which will lead to a further understanding of the complex interplay of neuropeptides and other signaling molecules in the nervous system.
Collapse
Affiliation(s)
- Amanda Buchberger
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1322;
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222;
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1322;
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222;
| |
Collapse
|
3
|
Schmidt AC, Dunaway LE, Roberts JG, McCarty GS, Sombers LA. Multiple Scan Rate Voltammetry for Selective Quantification of Real-Time Enkephalin Dynamics. Anal Chem 2014; 86:7806-12. [DOI: 10.1021/ac501725u] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Andreas C. Schmidt
- Department of Chemistry, ‡Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Lars E. Dunaway
- Department of Chemistry, ‡Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - James G. Roberts
- Department of Chemistry, ‡Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Gregory S. McCarty
- Department of Chemistry, ‡Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Leslie A. Sombers
- Department of Chemistry, ‡Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
4
|
Zhou Y, Mabrouk OS, Kennedy RT. Rapid preconcentration for liquid chromatography-mass spectrometry assay of trace level neuropeptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1700-9. [PMID: 23592077 PMCID: PMC3769462 DOI: 10.1007/s13361-013-0605-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 05/23/2023]
Abstract
Measurement of neuropeptides in the brain through in vivo microdialysis sampling provides direct correlation between neuropeptide concentration and brain function. Capillary liquid chromatography-multistage mass spectrometry (CLC-MS(n)) has proven to be effective at measuring endogenous neuropeptides in microdialysis samples. In the method, microliter samples are concentrated onto nanoliter volume packed beds before ionization and mass spectrometry analysis. The long times required for extensive preconcentration present a barrier to routine use because of the many samples that must be analyzed and instability of neuropeptides. In this study, we evaluated the capacity of 75 μm inner diameter (i.d.) capillary column packed with 10 μm reversed phase particles for increasing the throughput in CLC-MS(n) based neuropeptide measurement. Coupling a high injection flow rate for fast sample loading/desalting with a low elution flow rate to maintain detection sensitivity, this column has reduced analysis time from ∼30 min to 3.8 min for 5 μL sample, with 3 pM limit of detection (LOD) for enkephalins and 10 pM LOD for dynorphin A1-8 in 5 μL sample. The use of isotope-labeled internal standard lowered peptide signal variation to less than 5 %. This method was validated for in vivo detection of Leu and Met enkephalin with microdialysate collected from rat globus pallidus. The improvement in speed and stability makes CLC-MS(n) measurement of neuropeptides in vivo more practical.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Omar S. Mabrouk
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
5
|
Fast, selective, and sensitive analysis of low-abundance peptides in human plasma by electromembrane extraction. Anal Chim Acta 2012; 716:16-23. [DOI: 10.1016/j.aca.2011.02.058] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 02/23/2011] [Accepted: 02/27/2011] [Indexed: 11/22/2022]
|
6
|
The absolute quantification of endogenous levels of brain neuropeptides in vivo using LC-MS/MS. Bioanalysis 2011; 3:1271-85. [PMID: 21649502 DOI: 10.4155/bio.11.91] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Neuropeptides seem to play an important role when the CNS is challenged. In order to obtain better insights into the central peptidergic effects, it is essential to monitor their concentration in the brain. Quantification of neuropeptides in dialysates is challenging due to their low extracellular concentrations (low pM range), their low microdialysis efficiencies, the need for acceptable temporal resolution, the small sample volumes, the complexity of the matrix and the tendency of peptides to stick to glass and polymeric materials. The quantification of neuropeptides in dialysates therefore necessitates the use of very sensitive nano-LC-MS/MS methods. A number of LC-MS/MS and microdialysis parameters need to be optimized to achieve maximal sensitivity. The optimized and validated methods can be used to investigate the in vivo neuropeptide release during pathological conditions, in this way initiating new and immense challenges for the development of new drugs.
Collapse
|
7
|
Liu X, Wen F, Yang J, Chen L, Wei YQ. A review of current applications of mass spectrometry for neuroproteomics in epilepsy. MASS SPECTROMETRY REVIEWS 2010; 29:197-246. [PMID: 19598206 DOI: 10.1002/mas.20243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The brain is unquestionably the most fascinating organ, and the hippocampus is crucial in memory storage and retrieval and plays an important role in stress response. In temporal lobe epilepsy (TLE), the seizure origin typically involves the hippocampal formation. Despite tremendous progress, current knowledge falls short of being able to explain its function. An emerging approach toward an improved understanding of the complex molecular mechanisms that underlie functions of the brain and hippocampus is neuroproteomics. Mass spectrometry has been widely used to analyze biological samples, and has evolved into an indispensable tool for proteomics research. In this review, we present a general overview of the application of mass spectrometry in proteomics, summarize neuroproteomics and systems biology-based discovery of protein biomarkers for epilepsy, discuss the methodology needed to explore the epileptic hippocampus proteome, and also focus on applications of ingenuity pathway analysis (IPA) in disease research. This neuroproteomics survey presents a framework for large-scale protein research in epilepsy that can be applied for immediate epileptic biomarker discovery and the far-reaching systems biology understanding of the protein regulatory networks. Ultimately, knowledge attained through neuroproteomics could lead to clinical diagnostics and therapeutics to lessen the burden of epilepsy on society.
Collapse
Affiliation(s)
- Xinyu Liu
- National Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041, China
| | | | | | | | | |
Collapse
|
8
|
Hegadoren KM, O'Donnell T, Lanius R, Coupland NJ, Lacaze-Masmonteil N. The role of beta-endorphin in the pathophysiology of major depression. Neuropeptides 2009; 43:341-53. [PMID: 19647870 DOI: 10.1016/j.npep.2009.06.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2009] [Revised: 06/04/2009] [Accepted: 06/25/2009] [Indexed: 12/19/2022]
Abstract
A role for beta-endorphin (beta-END) in the pathophysiology of major depressive disorder (MDD) is suggested by both animal research and studies examining clinical populations. The major etiological theories of depression include brain regions and neural systems that interact with opioid systems and beta-END. Recent preclinical data have demonstrated multiple roles for beta-END in the regulation of complex homeostatic and behavioural processes that are affected during a depressive episode. Additionally, beta-END inputs to regulatory pathways involving feeding behaviours, motivation, and specific types of motor activity have important implications in defining the biological foundations for specific depressive symptoms. Early research linking beta-END to MDD did so in the context of the hypothalamic-pituitary-adrenal (HPA) axis activity, where it was suggested that HPA axis dysregulation may account for depressive symptoms in some individuals. The primary aims of this paper are to use both preclinical and clinical research (a) to critically review data that explores potential roles for beta-END in the pathophysiology of MDD and (b) to highlight gaps in the literature that limit further development of etiological theories of depression and testable hypotheses. In addition to examining methodological and theoretical challenges of past clinical studies, we summarize studies that have investigated basal beta-END levels in MDD and that have used challenge tests to examine beta-END responses to a variety of experimental paradigms. A brief description of the synthesis, location in the CNS and behavioural pharmacology of this neuropeptide is also provided to frame this discussion. Given the lack of clinical improvement observed with currently available antidepressants in a significant proportion of depressed individuals, it is imperative that novel mechanisms be investigated for antidepressant potential. We conclude that the renewed interest in elucidating the role of beta-END in the pathophysiology of MDD must be paralleled by consensus building within the research community around the heterogeneity inherent in mood disorders, standardization of experimental protocols, improved discrimination of POMC products in analytical techniques and consistent attention paid to important confounds like age and gender.
Collapse
Affiliation(s)
- K M Hegadoren
- Faculty of Nursing, University of Alberta, Edmonton, AB, Canada T6G 2G3.
| | | | | | | | | |
Collapse
|
9
|
Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat Rev Genet 2009; 10:617-27. [PMID: 19687803 DOI: 10.1038/nrg2633] [Citation(s) in RCA: 314] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The systematic and quantitative molecular analysis of mutant organisms that has been pioneered by studies on mutant metabolomes and transcriptomes holds great promise for improving our understanding of how phenotypes emerge. Unfortunately, owing to the limitations of classical biochemical analysis, proteins have previously been excluded from such studies. Here we review how technical advances in mass spectrometry-based proteomics can be applied to measure changes in protein abundance, posttranslational modifications and protein-protein interactions in mutants at the scale of the proteome. We finally discuss examples that integrate proteomics data with genomic and phenomic information to build network-centred models, which provide a promising route for understanding how phenotypes emerge.
Collapse
|
10
|
Quantification of thyrotropin-releasing hormone by liquid chromatography–electrospray mass spectrometry. Amino Acids 2009; 38:1031-41. [DOI: 10.1007/s00726-009-0311-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Accepted: 05/27/2009] [Indexed: 12/20/2022]
|
11
|
Kline KG, Frewen B, Bristow MR, Maccoss MJ, Wu CC. High quality catalog of proteotypic peptides from human heart. J Proteome Res 2008; 7:5055-61. [PMID: 18803417 DOI: 10.1021/pr800239e] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proteomics research is beginning to expand beyond the more traditional shotgun analysis of protein mixtures to include targeted analyses of specific proteins using mass spectrometry. Integral to the development of a robust assay based on targeted mass spectrometry is prior knowledge of which peptides provide an accurate and sensitive proxy of the originating gene product (i.e., proteotypic peptides). To develop a catalog of "proteotypic peptides" in human heart, TRIzol extracts of left-ventricular tissue from nonfailing and failing human heart explants were optimized for shotgun proteomic analysis using Multidimensional Protein Identification Technology (MudPIT). Ten replicate MudPIT analyses were performed on each tissue sample and resulted in the identification of 30 605 unique peptides with a q-value < or = 0.01, corresponding to 7138 unique human heart proteins. Experimental observation frequencies were assessed and used to select over 4476 proteotypic peptides for 2558 heart proteins. This human cardiac data set can serve as a public reference to guide the selection of proteotypic peptides for future targeted mass spectrometry experiments monitoring potential protein biomarkers of human heart diseases.
Collapse
Affiliation(s)
- Kelli G Kline
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | | | | | |
Collapse
|
12
|
Rubakhin SS, Sweedler JV. Quantitative measurements of cell-cell signaling peptides with single-cell MALDI MS. Anal Chem 2008; 80:7128-36. [PMID: 18707135 PMCID: PMC2646760 DOI: 10.1021/ac8010389] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 07/14/2008] [Indexed: 11/28/2022]
Abstract
Cell-to-cell signaling peptides play important roles in neurotransmission, neuromodulation, and hormonal signaling. Significant progress has been achieved in qualitative investigations of signaling peptides in the nervous system using single cell matrix-assisted laser desorption/ionization mass spectrometry. However, quantitative information about signaling peptides is difficult to obtain with this approach because only small amounts of analytes are available for analysis. Here we describe several methods for quantitative microanalysis of peptides in individual Aplysia californica neurons and small pieces of tissue. Stable isotope labeling with d0- and d4-succinic anhydride and iTRAQ reagents has been successfully adopted for relative quantitation of nanoliter volume samples containing the Aplysia insulin C beta peptide. Comparative analysis of the C beta peptide release site, the upper labial nerve, and its synthesis location, the F- and C-clusters, shows that the release site possesses almost three times more of this compound. The method of standard addition permits absolute quantitation of the physiologically active neuropeptide cerebrin from small structures, including nerves and neuronal clusters, in the femtomole range with a limit of detection of 19 fmol. The simplicity of these methods and the commercial availability of the reagents allow quantitative measurements from a variety of small-volume biological samples.
Collapse
Affiliation(s)
- Stanislav S. Rubakhin
- Department of Chemistry and the Beckman Institute, University of Illinois, Urbana, Illinois 61801
| | - Jonathan V. Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
13
|
Hernández E, Benavente F, Sanz-Nebot V, Barbosa J. Evaluation of on-line solid phase extraction-capillary electrophoresis-electrospray-mass spectrometry for the analysis of neuropeptides in human plasma. Electrophoresis 2008; 29:3366-76. [DOI: 10.1002/elps.200700872] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
14
|
Li L, Sweedler JV. Peptides in the brain: mass spectrometry-based measurement approaches and challenges. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2008; 1:451-483. [PMID: 20636086 DOI: 10.1146/annurev.anchem.1.031207.113053] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The function and activity of almost every circuit in the human brain are modified by the signaling peptides (SPs) surrounding the neurons. As the complement of peptides can vary even in adjacent neurons and their physiological actions can occur over a broad range of concentrations, the required figures of merit for techniques to characterize SPs are surprisingly stringent. In this review, we describe the formation and catabolism of SPs and highlight a range of mass spectrometric techniques used to characterize SPs. Approaches that supply high chemical information content, direct tissue profiling, spatially resolved data, and temporal information on peptide release are also described. Because of advances in measurement technologies, our knowledge of SPs has greatly increased over the last decade, and SP discoveries will continue as the capabilities of modern measurement approaches improve.
Collapse
Affiliation(s)
- Lingjun Li
- Department of Chemistry, University of Wisconsin, Madison, 53705-2222, USA.
| | | |
Collapse
|
15
|
Hernández E, Benavente F, Sanz-Nebot V, Barbosa J. Analysis of opioid peptides by on-line SPE-CE-ESI-MS. Electrophoresis 2007; 28:3957-65. [DOI: 10.1002/elps.200700845] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Lacroix M, Garrigues JC, Couderc F. Reaction of naphthalene-2,3-dicarboxaldehyde with enkephalins for LC-fluorescence and LC-MS analysis: conformational studies by molecular modeling and H/D exchange mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2007; 18:1706-13. [PMID: 17689094 DOI: 10.1016/j.jasms.2007.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 07/04/2007] [Accepted: 07/04/2007] [Indexed: 05/16/2023]
Abstract
A new labeling method compatible with both laser-induced fluorescence (LIF) and MS detection for enkephalins, which uses naphthalene-2,3-dicarboxaldehyde (NDA) and a new nucleophilic agent (N,N-dimethylaminoethanethiol) is described. When the derivative is separated via reverse phase HPLC and detected via MS, two different peaks with similar exact mass but different fluorescence and fragmentation properties are obtained. To interpret these results, molecular modeling and H/D exchange mass spectrometry studies were investigated to test the hypothesis that the peak obtained by LC/LIF/MS analysis depends on the site of protonation of the labeled enkephalins. The peptides labeled with NDA and N,N-dimethylaminoethanethiol were separated on a reverse phase C18 column with a gradient of aqueous 0.1% formic acid and acetonitrile. In mass spectrometry, two peaks are observed with the same exact mass for each molecule while only one peak is detected using fluorescence. Tandem mass spectrometry experiments of ion m/z 809.5 were performed on each chromatographic peak; the first peak (which is not observed by LIF detection) gives a fragment corresponding to the loss of the aminothiol side chain while no fragmentation is observed on the second peak, which was detected by fluorescence. The hypothesis is that each peak represents the labeled enkephalin with different sites of protonation. According to this hypothesis, three fundamental conformations that were closed to the unlabeled leucine-enkephalin were obtained by molecular modeling: a beta-turn like conformation with two hydrogen bonds, a 3(10)-helix with an H bond, and finally, the extended form without any intramolecular interactions. H/D exchange mass spectrometry experiments with D(2)O and d(2-)formic acid as eluent was used to determine which conformation is involved in each peak.
Collapse
Affiliation(s)
- Marlène Lacroix
- Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique, Université Paul Sabatier, Toulouse, France
| | | | | |
Collapse
|
17
|
Sanz-Nebot V, Benavente F, Hernández E, Barbosa J. Evaluation of the electrophoretic behaviour of opioid peptides. Anal Chim Acta 2006; 577:68-76. [PMID: 17723655 DOI: 10.1016/j.aca.2006.06.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 06/12/2006] [Accepted: 06/13/2006] [Indexed: 11/26/2022]
Abstract
A general equation established in a previous study was used to model the electrophoretic mobility of a series of opioid peptides as a function of pH of the separation electrolyte. The concordance between the predicted and the experimental electrophoretic mobilities was excellent and the optimum pH for the separation of the modelled compounds could be predicted from a limited amount of experimental data. The equations were also useful for the accurate determination of the ionization constants of the polyprotic analytes. It was also demonstrated that if ionization constant values are known, the CE separations of the studied peptides can easily be predicted taking into account the classical semiempirical relationships between electrophoretic mobility and charge-to-mass ratio (m(e) versus q/M(alpha)). The separations simulated considering the accurate charge-to-mass ratios of each peptide at a certain pH value were in good agreement with the experimental results. Once an optimum separation pH value and a running buffer compatible with electrospray mass spectrometry (ESI) detection were selected, a method for the separation and characterization of this series of analytes by capillary electrophoresis-electrospray ionization mass spectrometry (CE-ESI-MS) was established using a commercial sheath-flow interface. Method validation was performed in order to prove the suitability of the proposed method for quantitative analysis. Thus, quality parameters, such as repeatability, reproducibility, limits of detection and linearity were determined.
Collapse
Affiliation(s)
- Victoria Sanz-Nebot
- Department of Analytical Chemistry, University of Barcelona, Diagonal 647, 08028 Barcelona, Spain.
| | | | | | | |
Collapse
|
18
|
Kutz KK, Schmidt JJ, Li L. In situ tissue analysis of neuropeptides by MALDI FTMS in-cell accumulation. Anal Chem 2006; 76:5630-40. [PMID: 15456280 DOI: 10.1021/ac049255b] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we report the first application of Fourier transform mass spectrometry for the analysis of neuropeptides directly from neuronal tissues. Sample preparation protocols and instrumentation conditions are developed to allow in situ neuropeptide analysis of the neuroendocrine organs freshly isolated from a marine organism Cancer borealis. The utility of a previously developed in-cell accumulation (ICA) technique is extended for peptide analysis in complex tissue samples. With the ICA procedure, ion signals from multiple laser shots are accumulated in the analyzer cell prior to detection. This procedure allows the accumulation of ion signals without accumulating noise, thus improving the signal-to-noise ratio and enhancing the sensitivity for the detection of trace-level endogenous neuropeptides. De novo sequencing of peptides directly from tissue samples becomes more feasible through this improvement. Additionally, an integrated pulse sequence is constructed to cover a wide mass range from m/z 215 to 9000 by centering quadrupole collection of ions at different masses for successive laser shots. Finally, improved mass measurement accuracy (2 ppm) for tissue peptide analysis is achieved using ICA by incorporating calibrants on a separate spot from the sample of interest without premixing calibration standards with the analytes.
Collapse
Affiliation(s)
- Kimberly K Kutz
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA
| | | | | |
Collapse
|
19
|
Appels NMGM, Rosing H, Stephens TC, Hughes A, Schellens JHM, Beijnen JH. Absolute quantification of farnesylated Ras levels in complex samples using liquid chromatography fractionation combined with tryptic digestion and electrospray tandem mass spectrometry. Anal Biochem 2006; 352:33-40. [PMID: 16564488 DOI: 10.1016/j.ab.2006.02.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 02/21/2006] [Accepted: 02/26/2006] [Indexed: 11/25/2022]
Abstract
Farnesylation is the first posttranslational modification of H-Ras proteins, which can be blocked by farnesyl transferase inhibitors. We developed a sensitive and quantitative bioanalytical assay to determine the absolute amounts of farnesylated H-Ras in tumor cell lysates before and after administration of these compounds. Farnesylated H-Ras was isolated with reversed-phase liquid chromatography. Subsequently, the isolated fraction was digested with trypsin and analyzed with electrospray-tandem mass spectrometry. The farnesylated peptide consisting of cysteine-valine-leucine-serine (f-CVLS) proved to be a suitable signature peptide. Its deuterated analogue was used as internal standard for absolute quantification. With this method, we obtained a lower limit of quantification of 8pmol farnesylated H-Ras in cell lysates. We demonstrate that this method can be used to determine IC(50) values of farnesyl transferase inhibitors through absolute quantification of the amount of f-CVLS present after incubation with different concentrations of a farnesyl transferase inhibitor. The signature peptide approach combined with prefractionation may be used as a pharmacodynamic assay to determine dose-effect relationships of farnesyl transferase inhibitors in (pre)clinical studies.
Collapse
Affiliation(s)
- Natalie M G M Appels
- Department of Pharmacy and Pharmacology, Slotervaart Hospital/The Netherlands Cancer Institute, 1066 EC Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
20
|
Ottens AK, Kobeissy FH, Golden EC, Zhang Z, Haskins WE, Chen SS, Hayes RL, Wang KKW, Denslow ND. Neuroproteomics in neurotrauma. MASS SPECTROMETRY REVIEWS 2006; 25:380-408. [PMID: 16498609 DOI: 10.1002/mas.20073] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Neurotrauma in the form of traumatic brain injury (TBI) afflicts more Americans annually than Alzheimer's and Parkinson's disease combined, yet few researchers have used neuroproteomics to investigate the underlying complex molecular events that exacerbate TBI. Discussed in this review is the methodology needed to explore the neurotrauma proteome-from the types of samples used to the mass spectrometry identification and quantification techniques available. This neuroproteomics survey presents a framework for large-scale protein research in neurotrauma, as applied for immediate TBI biomarker discovery and the far-reaching systems biology understanding of how the brain responds to trauma. Ultimately, knowledge attained through neuroproteomics could lead to clinical diagnostics and therapeutics to lessen the burden of neurotrauma on society.
Collapse
Affiliation(s)
- Andrew K Ottens
- Center of Neuroproteomics and Biomarkers Research, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Babu CVS, Chung BC, Lho DS, Yoo YS. Capillary electrophoretic competitive immunoassay with laser-induced fluorescence detection for methionine-enkephalin. J Chromatogr A 2006; 1111:133-8. [PMID: 16569571 DOI: 10.1016/j.chroma.2005.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2005] [Revised: 06/09/2005] [Accepted: 06/10/2005] [Indexed: 11/16/2022]
Abstract
Immunoassays are commonly used in bioresearch for the detection and quantification of small proteins and macromolecules in biological fluids and other complex matrices. In this report, a competitive immunoassay using capillary electrophoresis (CE) with laser-induced fluorescence was developed for methionine-enkephalin (ME). The method is based on the competitive reaction between the ME and fluorescein conjugated ME (ME-F) with anti-ME antibody, capillary electrophoresis separation of the ME-antibody bound and free ME-F, followed by the laser-induced fluorescence detection of the fluorescent species. With the optimized separation conditions, it was possible to separate the antibody bound and free fluorescien conjugated ME by a capillary electrophoresis-laser-induced fluorescence (CE-LIF) analysis using an uncoated fused-silica capillaries. The results concluded that the assay specificity, selectivity and accuracy were excellent.
Collapse
Affiliation(s)
- C V Suresh Babu
- Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul
| | | | | | | |
Collapse
|
22
|
Fricker LD, Lim J, Pan H, Che FY. Peptidomics: identification and quantification of endogenous peptides in neuroendocrine tissues. MASS SPECTROMETRY REVIEWS 2006; 25:327-44. [PMID: 16404746 DOI: 10.1002/mas.20079] [Citation(s) in RCA: 170] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Neuropeptides perform a large variety of functions as intercellular signaling molecules. While most proteomic studies involve digestion of the proteins with trypsin or other proteases, peptidomics studies usually analyze the native peptide forms. Neuropeptides can be studied by using mass spectrometry for identification and quantitation. In many cases, mass spectrometry provides an understanding of the precise molecular form of the native peptide, including post-translational cleavages and other modifications. Quantitative peptidomics studies generally use differential isotopic tags to label two sets of extracted peptides, as done with proteomic studies, except that the Cys-based reagents typically used for quantitation of proteins are not suitable because most peptides lack Cys residues. Instead, a number of amine-specific labels have been created and some of these are useful for peptide quantitation by mass spectrometry. In this review, peptidomics techniques are discussed along with the major findings of many recent studies and future directions for the field.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
Mass spectrometry has arguably become the core technology in proteomics. The application of mass spectrometry based techniques for the qualitative and quantitative analysis of global proteome samples derived from complex mixtures has had a big impact in the understanding of cellular function. Here, we give a brief introduction to principles of mass spectrometry and instrumentation currently used in proteomics experiments. In addition, recent developments in the application of mass spectrometry in proteomics are summarised. Strategies allowing high-throughput identification of proteins from highly complex mixtures include accurate mass measurement of peptides derived from total proteome digests and multidimensional peptide separations coupled with mass spectrometry. Mass spectrometric analysis of intact proteins permits the characterisation of protein isoforms. Recent developments in stable isotope labelling techniques and chemical tagging allow the mass spectrometry based differential display and quantitation of proteins, and newly established affinity procedures enable the targeted characterisation of post-translationally modified proteins. Finally, advances in mass spectrometric imaging allow the gathering of specific information on the local molecular composition, relative abundance and spatial distribution of peptides and proteins in thin tissue sections.
Collapse
Affiliation(s)
- Ida Chiara Guerrera
- Department of Medicine, Centre for Molecular Medicine, University College London, UK
| | | |
Collapse
|
24
|
Hoos JS, Sudergat H, Hoelck JP, Stahl M, de Vlieger JSB, Niessen WMA, Lingeman H, Irth H. Selective quantitative bioanalysis of proteins in biological fluids by on-line immunoaffinity chromatography–protein digestion–liquid chromatography–mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 830:262-9. [PMID: 16311081 DOI: 10.1016/j.jchromb.2005.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 10/27/2005] [Accepted: 11/01/2005] [Indexed: 11/25/2022]
Abstract
A quantitative method for the determination of proteins in complex biological matrices has been developed based on the selectivity of antibodies for sample purification followed by proteolytic digestion and quantitative mass spectrometry. An immunosorbent of polyclonal anti-bovine serum albumin (BSA) antibodies immobilized on CNBR agarose is used in the on-line mode for selective sample pretreatment. Next, the purified sample is trypsin digested to obtain protein specific peptide markers. Subsequent analysis of the peptide mixture using a desalination procedure and a separation step coupled, on-line to an ion-trap mass spectrometer, reveals that this method enables selective determination of proteins in biological matrices like diluted human plasma. This approach enhances substantially the selectivity compared to common quantitative analysis executed with immunoassays and colorimetry, fluorimetry or luminescence detection. Hyphenation of the immunoaffinity chromatography with on-line digestion and chromatography-mass spectrometry is performed and a completely on-line quantification of the model protein BSA in bovine and human urine was established. A detection limit of 170 nmol/l and a quantification limit of 280 nmol/l is obtained using 50 microl of either standard or spiked biological matrix. The model system allows fully automated absolute quantitative mass spectrometric analysis of intact proteins in biological matrices without time-consuming labeling procedures.
Collapse
Affiliation(s)
- Johannes S Hoos
- Vrije Universiteit Amsterdam, Faculty of Sciences, Section Analytical Chemistry & Applied Spectroscopy, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Fu Q, Li L. De Novo Sequencing of Neuropeptides Using Reductive Isotopic Methylation and Investigation of ESI QTOF MS/MS Fragmentation Pattern of Neuropeptides with N-Terminal Dimethylation. Anal Chem 2005; 77:7783-95. [PMID: 16316189 DOI: 10.1021/ac051324e] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A stable-isotope dimethyl labeling strategy was previously shown to be a useful tool for quantitative proteomics. More recently, N-terminal dimethyl labeling was also reported for peptide sequencing in combination with database searching. Here, we extend these previous studies by incorporating N-terminal isotopic dimethylation for de novo sequencing of neuropeptides directly from tissue extract without any genomic information. We demonstrated several new sequencing applications of this method in addition to the identification of the N-terminal residue using the enhanced a(1) ion. The isotopic labeling also provides easier and more confident de novo sequencing of peptides by comparing similar MS/MS fragmentation patterns of the isotopically labeled peptide pairs. The current study on neuropeptides shows several distinct fragmentation patterns after N-terminal dimethylation which have not been reported previously. The y((n-1)) ion is enhanced in multiply charged peptides and is weak or missing in singly charged peptides. The MS/MS spectra of singly charged peptides are simplified due to the enhanced N-terminal fragments and suppressed internal fragments. The neutral loss of dimethylamine is also observed. The mechanisms for the above fragmentations are proposed. Finally, the structures of the immonium ion and related ions of N(alpha), N(epsilon)-tetramethylated lysine and N(epsilon)-dimethylated lysine are explored.
Collapse
Affiliation(s)
- Qiang Fu
- School of Pharmacy and Department of Chemistry, University of Wisconsin at Madison, 53705-2222, USA
| | | |
Collapse
|
26
|
DeKeyser SS, Li L. Matrix-assisted laser desorption/ionization Fourier transform mass spectrometry quantitation via in cell combination. Analyst 2005; 131:281-90. [PMID: 16440095 DOI: 10.1039/b510831d] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we describe a novel method for quantitation using a Fourier transform mass spectrometer (FTMS) equipped with a MALDI ion source. The unique instrumental configuration of FTMS and its ion trapping and storing capabilities enable ion packets originating from two physically distinct samples to be combined in the ion cyclotron resonance (ICR) cell prior to detection. These features are exploited to combine analyte ions from two differentially labeled samples spotted separately and then combined in the ICR cell to generate a single mass spectrum containing isotopically paired peaks for quantitative comparison of relative ion abundances. The utility of this new quantitation via in cell combination (QUICC) approach is explored using peptide standards, a bovine serum albumin tryptic digest, and a crude neuronal tissue extract. We show that spectra acquired using the QUICC scheme are comparable to those obtained from premixing the isotopically labeled samples in solution. In addition, we show direct tissue in situ isotopic formaldehyde labeling of a crustacean neuroendocrine organ, thus demonstrating the potential application of the QUICC methodology for direct tissue quantitative analysis.
Collapse
Affiliation(s)
- Stephanie S DeKeyser
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | | |
Collapse
|
27
|
Zhan X, Desiderio DM. Comparative proteomics analysis of human pituitary adenomas: current status and future perspectives. MASS SPECTROMETRY REVIEWS 2005; 24:783-813. [PMID: 15495141 DOI: 10.1002/mas.20039] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This article will review the published research on the elucidation of the mechanisms of pituitary adenoma formation. Mass spectrometry (MS) plays a key role in those studies. Comparative proteomics has been used with the long-term goal to locate, detect, and characterize the differentially expressed proteins (DEPs) in human pituitary adenomas; to identify tumor-related and -specific biomarkers; and to clarify the basic molecular mechanisms of pituitary adenoma formation. The methodology used for comparative proteomics, the current status of human pituitary proteomics studies, and future perspectives are reviewed. The methodologies that are used in comparative proteomics studies of human pituitary adenomas are readily exportable to other different areas of cancer research.
Collapse
Affiliation(s)
- Xianquan Zhan
- Charles B. Stout Neuroscience Mass Spectrometry Laboratory, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
28
|
Ukena K, Tsutsui K. A new member of the hypothalamic RF-amide peptide family, LPXRF-amide peptides: structure, localization, and function. MASS SPECTROMETRY REVIEWS 2005; 24:469-486. [PMID: 15389843 DOI: 10.1002/mas.20031] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recently, we identified a novel hypothalamic neuropeptide with a C-terminal LPLRF-amide sequence in the quail brain. This avian neuropeptide was shown to inhibit gonadotropin release from the cultured anterior pituitary. This peptide is the first hypothalamic peptide that inhibited gonadotropin release reported in vertebrates. We, therefore, termed it gonadotropin-inhibitory hormone (GnIH). After this finding, we found that GnIH-related peptides were present in the brains of other vertebrates, such as mammals, amphibians, and fish. These GnIH-related peptides possessed a LPXRF-amide (X=L or Q) motif at their C-termini in all investigated animals. Mass spectrometric analyses combined with immunoaffinity chromatography were powerful techniques for the identification of mature endogenous LPXRF-amide peptides. The identified LPXRF-amide peptides were found to be localized in the hypothalamus and brainstem areas, and to regulate pituitary hormone release. Subsequently, cDNAs that encode LPXRF-amide peptides were characterized in vertebrate brains. In this review, we summarize the identification, localization, and function of a new member of the hypothalamic RF-amide peptide family, LPXRF-amide peptides in vertebrates. Recent studies on the receptors for LPXRF-amide peptides will also be reviewed.
Collapse
Affiliation(s)
- Kazuyoshi Ukena
- Laboratory of Brain Science, Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan.
| | | |
Collapse
|
29
|
Igarashi K, Murabayashi Y, Hotta K, Kitamura Y, Kasuya F, Shiotani K, Tingyou L, Miyazaki A, Tsuda Y, Okada Y, Fukushima S. Application of liquid chromatography-tandem mass spectrometry for the determination of opioidmimetics in the brain dialysates from rats treated with opioidmimetics intraperitoneally. J Chromatogr B Analyt Technol Biomed Life Sci 2005; 806:53-7. [PMID: 15149611 DOI: 10.1016/j.jchromb.2004.02.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have determined three opioidmimetics (compounds I-III) in the rat brain dialysates after intraperitoneal (i.p.) administration of compounds I-III using a liquid chromatography/mass spectrometry with tandem mass spectrometry (LC-MS/MS). The dialysate samples with methanol were directly analyzed by online column-switching liquid chromatography. Using multiple reaction monitoring (MRM, product ions m/z 421 of m/z 657 for compound I, m/z 421 of m/z 643 for compound II, and m/z 407 of m/z 629 for compound III) on LC-MS/MS with electrospray ionization (ESI), opioidmimetics in rat brain dialysates were determined. Calibration curves of the method showed a good linearity in the range of 10-100 ng/ml for each compound. The limit of determination was estimated to be ca. 1 ng/ml for compounds II and III, and ca. 5 ng/ml for compound I, respectively. The precision of analysis showed coefficients of variation ranging from 4.7 to 10.4% at compound III concentration (10-100 ng/ml) in Ringer's solution. As a result, the procedure proved to be very suitable for routine analysis. The method was applied to the analysis of three opioidmimetics in the brain dialysate samples from rats treated with these compounds.
Collapse
Affiliation(s)
- Kazuo Igarashi
- Department of Analytical Toxicology, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Ikawadani-cho, Nishi-ku, Kobe 651-2180, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Lill J. Proteomic tools for quantitation by mass spectrometry. MASS SPECTROMETRY REVIEWS 2003; 22:182-194. [PMID: 12838544 DOI: 10.1002/mas.10048] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Techniques for the quantitation of proteins and peptides by mass spectrometry (MS) are reviewed. A range of labeling processes is discussed, including metabolic, enzymatic, and chemical labeling, and techniques that can be employed for comparative and absolute quantitation are presented. Advantages and drawbacks of the techniques are discussed, and suggestions for the appropriate uses of the methodologies are explained. Overall, the metabolic incorporation of isotopic labels provides the most accurate labeling strategy, and is most useful when an internal standard for comparative quantitation is needed. However, that technique is limited to research that uses cultured cells.
Collapse
Affiliation(s)
- Jennie Lill
- ActivX Biosciences, 11025 North Torrey Pines Rd., La Jolla, California 92037, USA.
| |
Collapse
|
31
|
Michalet S, Favreau P, Stöcklin R. Profiling and in vivo Quantification of Proteins by High Resolution Mass Spectrometry: The Example of Goserelin, an Analogue of Luteinizing Hormone-Releasing Hormone. Clin Chem Lab Med 2003; 41:1589-98. [PMID: 14708883 DOI: 10.1515/cclm.2003.242] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Proteins are essential biomolecules which are frequently involved in major pathological syndromes and are widely used as diagnostic markers or therapeutic agents. The emergence of proteomics will doubtless further increase the significance of proteins both in the clinic and in the life sciences in general. Our main objective is to offer innovative solutions to what we like to call the "post-proteomics era". To achieve our goal, we intend to develop novel approaches and technologies for in vivo metabolic studies of proteins using mass spectrometry (MS), focusing on pharmacokinetics and pharmacodynamics. Using goserelin as a model, we have successfully developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the detection and quantification of an intact analogue of luteinizing hormone-releasing hormone (LHRH) in small volumes of rat plasma samples at concentrations ranging from 0.3 to 405.0 microg/l. To this end, a microbore reversed-phase-HPLC system was coupled on-line to a tandem high resolution quadrupole time-of-flight (Q-TOF) instrument fitted with an electrospray ion source and operated in LC-MS/MS mode. External calibration was used and the high resolution was crucial to discard contaminating signals, which would not have been possible with the more conventional triple quadrupole mass spectrometers operated in a static mode. For low sample amounts, calibration curves were constructed corresponding to rat plasma levels of 0.3 to 16.4 microg/l and found to be of third order with a coefficient of determination greater than 0.999. The relative standard deviation was found to be lower than 15%. A lower limit of detection (LLOD) of 0.17 microg/l and a lower limit of quantification (LLOQ) of 0.3 microg/l were determined.
Collapse
|
32
|
Affiliation(s)
- D J Anderson
- Department of Chemistry, Cleveland State University, Ohio 44115, USA
| |
Collapse
|
33
|
Lorenz SA, Moy MA, Dolan AR, Wood TD. Electrospray ionization fourier transform mass spectrometry quantification of enkephalin using an internal standard. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 1999; 13:2098-2102. [PMID: 10523766 DOI: 10.1002/(sici)1097-0231(19991115)13:21<2098::aid-rcm759>3.0.co;2-o] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Fourier transform mass spectrometry (FTMS), long-known for its capabilities in structural characterization of molecules, is an emerging tool in quantification, and quantification methods using external and internal standards with electrospray ionization (ESI) FTMS have recently been demonstrated. Here, commercial ESI-FTMS is used to quantify the opioid pentapeptide methionine enkephalin using an internal standard. Linear working curves over three orders of magnitude are obtained using the internal standard, an improvement of one order of magnitude over the previous external standard ESI-FTMS quantification method for enkephalins. Low coefficients of variation (generally <6%) are observed, and inter-day and intra-day assays are compared and found to possess similar linearity and precision. The high mass accuracy advantage of FTMS can be exploited to give molecular specificity. Efforts to improve mass accuracy using internal mass calibration generally provide mass accuracies within 2.5 ppm.
Collapse
Affiliation(s)
- S A Lorenz
- Department of Chemistry, Natural Sciences Complex, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA
| | | | | | | |
Collapse
|