1
|
Zheng Z, Liu L, Ouyang S, Chen Y, Lin P, Chen H, You Y, Zhao P, Huang K, Tao J. In Situ Ratiometric Determination of Cerebral Ascorbic Acid after Ischemia Reperfusion. ACS Sens 2023; 8:4587-4596. [PMID: 38038440 DOI: 10.1021/acssensors.3c01515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Ascorbic acid (AA) is significant in protecting the brain from further damage and maintaining brain homeostasis after ischemia stroke (IS); however, the dynamic change of cerebral AA content after different degrees of ischemic stroke is still unclear. Herein, carboxylated single-walled carbon nanotube (CNT-COOH)- and polyethylenedioxythiophene (PEDOT)-modified carbon fiber microelectrodes (CFEs) were proposed to detect in situ cerebral AA with sensitivity, selectivity, and stability. Under differential pulse voltammetry scanning, the CFE/CNT-COOH/PEDOT gave a ratiometric, electrochemically responsive signal. The internal standard peak at -310 mV was from the reversible peak of O2 reduction and the deprotonation and protonation of quinone groups, while AA was oxidized at -70 mV. In vivo experimental results indicated that the cerebral AA level gradually increased with the ischemic time increasing in different middle cerebral artery occlusion (MCAO) model mice. This work implies that the increasing cerebral AA level may be highly related to the glutamate excitotoxicity and ROS-led cell apoptosis and paves a new way for further understanding the release and metabolic mechanisms of AA during ischemia reperfusion and IS.
Collapse
Affiliation(s)
- Zhiyuan Zheng
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Lina Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Sixue Ouyang
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Yuying Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Peiru Lin
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Huiting Chen
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Yuanyuan You
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Peng Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, 510515 Guangzhou, China
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, 510640 Guangzhou, China
| |
Collapse
|
2
|
Cho J, Kim B, Venkateshalu S, Chung DY, Lee K, Choi SI. Electrochemically Activatable Liquid Organic Hydrogen Carriers and Their Applications. J Am Chem Soc 2023; 145:16951-16965. [PMID: 37439128 DOI: 10.1021/jacs.2c13324] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Hydrogen has been chosen as an environmentally benign energy source to replace fossil-fuel-based energy systems. Since hydrogen is difficult to store and transport in its gaseous phase, thermochemical liquid organic hydrogen carriers (LOHCs) have been developed as one of the alternative technologies. However, the high temperature and pressure requirements of thermochemical LOHC systems result in huge energy waste and impracticality. This Perspective proposes electrochemical (EC)-LOHCs capable of more efficient, safer, and lower temperature and pressure hydrogen storage/utilization. To enable this technology, several EC-LOHC candidates such as isopropanol, phenolic compounds, and organic acids are described, and the latest research trends and design concepts of related homo/hetero-based electrocatalysts are discussed. In addition, we propose efficient fuel-cell-based systems that implement electrochemical (de)hydrogenation of EC-LOHCs and present prospects for relevant technologies.
Collapse
Affiliation(s)
- Juhyun Cho
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byeongyoon Kim
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sandhya Venkateshalu
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Dong Young Chung
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
3
|
Environment-Friendly Ascorbic Acid Fuel Cell. ELECTROCHEM 2023. [DOI: 10.3390/electrochem4010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Recently, ascorbic acid (AA) has been studied as an environment-friendly fuel for energy conversion devices. This review article has deliberated an overview of ascorbic acid electrooxidation and diverse ion exchange types of AA-based fuel cells for the first time. Metal and carbon-based catalysts generated remarkable energy from environment-friendly AA fuel. The possibility of using AA in a direct liquid fuel cell (DLFC) without emitting any hazardous pollutants is discussed. AA fuel cells have been reviewed based on carbon nanomaterials, alloys/bimetallic nanoparticles, and precious and nonprecious metal nanoparticles. Finally, the obstacles and opportunities for using AA-based fuel cells in practical applications have also been incorporated.
Collapse
|
4
|
Beitollahi H, Shahsavari M, Sheikhshoaie I, Tajik S, Jahani PM, Mohammadi SZ, Afshar AA. Amplified electrochemical sensor employing screen-printed electrode modified with Ni-ZIF-67 nanocomposite for high sensitive analysis of Sudan I in present bisphenol A. Food Chem Toxicol 2022; 161:112824. [DOI: 10.1016/j.fct.2022.112824] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023]
|
5
|
Dutta A, Hasan MM, Miah MR, Nagao Y, Hasnat MA. Efficient sensing of hydrogen peroxide via electrocatalytic oxidation reactions using polycrystalline Au electrode modified with controlled thiol group immobilization. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Hasnat MA, Siddika M, Uddin SN, Alamry KA, Rahman MM. Fabrication of IrOx immobilized glassy carbon surface for attaining electrocatalytic ascorbic acid oxidation reactions. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Microelectrode Sensor for Real-Time Measurements of Nitrite in the Living Brain, in the Presence of Ascorbate. BIOSENSORS-BASEL 2021; 11:bios11080277. [PMID: 34436079 PMCID: PMC8394717 DOI: 10.3390/bios11080277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/02/2021] [Accepted: 08/09/2021] [Indexed: 12/16/2022]
Abstract
The impaired blood flow to the brain causes a decrease in the supply of oxygen that can result in cerebral ischemia; if the blood flow is not restored quickly, neuronal injury or death will occur. Under hypoxic conditions, the production of nitric oxide (●NO), via the classical L-arginine–●NO synthase pathway, is reduced, which can compromise ●NO-dependent vasodilation. However, the alternative nitrite (NO2−) reduction to ●NO, under neuronal hypoxia and ischemia conditions, has been viewed as an in vivo storage pool of ●NO, complementing its enzymatic synthesis. Brain research is thus demanding suitable tools to probe nitrite’s temporal and spatial dynamics in vivo. In this work, we propose a new method for the real-time measurement of nitrite concentration in the brain extracellular space, using fast-scan cyclic voltammetry (FSCV) and carbon microfiber electrodes as sensing probes. In this way, nitrite was detected anodically and in vitro, in the 5–500 µM range, in the presence of increasing physiological concentrations of ascorbate (100–500 µM). These sensors were then tested for real-time and in vivo recordings in the anesthetized rat hippocampus; using fast electrochemical techniques, local and reproducible transients of nitrite oxidation signals were observed, upon pressure ejection of an exogenous nitrite solution into the brain tissue. Nitrite microsensors are thus a valuable tool for investigating the role of this inorganic anion in brain redox signaling.
Collapse
|
8
|
Fabrication of bisferrocenyl derivative grafted HTPB with high iron content and its application in dopamine detection. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Rahimpour K, Teimuri-Mofrad R. Electrocatalytic oxidation of dopamine on the surface of ferrocene grafted hydroxyl terminated polybutadiene modified electrode. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
|
11
|
Ashoka N, Swamy BK, Jayadevappa H, Sharma S. Simultaneous electroanalysis of dopamine, paracetamol and folic acid using TiO2-WO3 nanoparticle modified carbon paste electrode. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113819] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Skaria E, Patel BA, Flint MS, Ng KW. Poly(lactic acid)/Carbon Nanotube Composite Microneedle Arrays for Dermal Biosensing. Anal Chem 2019; 91:4436-4443. [PMID: 30869876 DOI: 10.1021/acs.analchem.8b04980] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Minimally invasive, reliable and low-cost in vivo biosensors that enable real-time detection and monitoring of clinically relevant molecules and biomarkers can significantly improve patient health care. Microneedle array (MNA)-based electrochemical sensors offer exciting prospects in this respect, as they can sample directly from the skin. However, their acceptability is dependent on developing a highly scalable and cost-effective fabrication strategy. In this work, we evaluated the potential for poly(lactic acid)/carboxyl-multiwalled carbon nanotube (PLA/ f-MWCNT) composites to be developed into MNAs and their effectiveness for dermal biosensing. Our results show that MNAs are easily made from solvent-cast nanocomposite films by micromolding. A maximum carbon nanotube (CNT) loading of 6 wt % was attained with the current fabrication method. The MNAs were mechanically robust, being able to withstand axial forces up to 4 times higher than necessary for skin insertion. Electrochemical characterization of these MNAs by differential pulse voltammetry (DPV) produced a linear current response toward ascorbic acid, with a limit of detection of 180 μM. In situ electrochemical performance was assessed by DPV measurements in ex vivo porcine skin. This showed active changes characterized by two oxidative peaks at 0.23 and 0.69 V, as a result of the diffusion of phosphate-buffered saline. The diagnostic potential of this waveform was further evaluated through a burn wound model. This showed an attenuated oxidative response at 0.69 V. Importantly, the impact of the burn could be measured at progressive distances from the burn site. Overall, alongside the scalable fabrication strategy, the DPV results promise efficient electrochemical biosensors based on CNT nanocomposite MNAs.
Collapse
Affiliation(s)
| | | | | | - Keng Wooi Ng
- School of Pharmacy , Faculty of Medical Sciences, Newcastle University , King George VI Building, Queen Victoria Road , Newcastle upon Tyne , NE1 7RU , United Kingdom
| |
Collapse
|
13
|
|
14
|
Hei Y, Li X, Zhou X, Liu J, Hassan M, Zhang S, Yang Y, Bo X, Wang HL, Zhou M. Cost-effective synthesis of three-dimensional nitrogen-doped nanostructured carbons with hierarchical architectures from the biomass of sea-tangle for the amperometric determination of ascorbic acid. Anal Chim Acta 2018; 1029:15-23. [PMID: 29907285 DOI: 10.1016/j.aca.2018.05.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/09/2018] [Accepted: 05/12/2018] [Indexed: 12/13/2022]
Abstract
In this work, the three-dimensional nitrogen-doped nanostructured carbons with hierarchical architectures (3D-NNCsHAs) with high density of defective sites, high surface area and pluralities of pore size distributions was prepared through the pyrolysis of sea-tangle (Laminaria japonica), an inexpensive, eco-friendly and abundant precursor. Benefitting from their structural uniqueness, a selective and sensitive ascorbic acid (AA) sensor based on 3D-NNCsHAs was developed. Compared to the glassy carbon electrode (GCE) and the carbon nanotubes modified GCE (CNTs/GCE), the 3D-NNCsHAs modified GCE (3D-NNCsHAs/GCE) presents higher performance towards the electrocatalysis and detection of AA, such as lower detection limit (1 μM), wider linear range (10-4410 μM) and lower electrooxidation peak potential (-0.02 V vs. Ag/AgCl). In addition, 3D-NNCsHAs/GCE also exhibits high anti-interference and anti-fouling abilities for AA detection. Particularly, the fabricated 3D-NNCsHAs/GCE is able to determine AA in real samples and the results acquired are satisfactory. Therefore, the 3D-NNCsHAs can be considered as a kind of novel electrode nanomaterial for the fabrication of selective and sensitive AA sensor for the extensive practical applications ranging from food analysis, to pharmaceutical industry and clinical test.
Collapse
Affiliation(s)
- Yashuang Hei
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| | - Xiqian Li
- Obstetrics & Gynecology, China-Japan Union Hospital, Jilin University, Changchun, 130033, PR China
| | - Xiao Zhou
- Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun, 130062, PR China
| | - Jingju Liu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| | - Mehboob Hassan
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| | - Siyi Zhang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| | - Yu Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, 130024, PR China
| | - Xiangjie Bo
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, 130024, PR China.
| | - Hsing-Lin Wang
- Department of Materials Science & Engineering, Southern University of Science & Technology, Shenzhen, Guangdong Province 518055, PR China.
| | - Ming Zhou
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Key Laboratory of Polyoxometalate Science of Ministry of Education, National & Local United Engineering Laboratory for Power Batteries, Department of Chemistry, Northeast Normal University, Changchun, 130024, PR China.
| |
Collapse
|
15
|
Wang Q, Liu S, Fu L, Cao Z, Ye W, Li H, Guo P, Zhao XS. Electrospun γ-Fe 2O 3 nanofibers as bioelectrochemical sensors for simultaneous determination of small biomolecules. Anal Chim Acta 2018; 1026:125-132. [PMID: 29852988 DOI: 10.1016/j.aca.2018.04.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 03/20/2018] [Accepted: 04/02/2018] [Indexed: 12/17/2022]
Abstract
Nanofibers of α-Fe2O3 and γ-Fe2O3 have been obtained after the controlled calcination of precursor nanofibers synthesized by electrospinning. α-Fe2O3 nanofibers showed an irregular toruloid structure due to the decomposition of poly (4-vinyl) pyridine in air while γ-Fe2O3 nanoparticles decorated nanofibers were observed after the calcination under N2 atmosphere. Electrochemical measurements showed that different electrochemical behaviors were observed on the glassy carbon electrodes modified by α-Fe2O3 and γ-Fe2O3 nanofibers. The electrode modified by γ-Fe2O3 nanofibers exhibited high electrocatalytic activities toward oxidation of dopamine, uric acid and ascorbic acid while α-Fe2O3 nanofibers cannot. Furthermore, the γ-Fe2O3 modified electrode can realize the selective detection of biomolecules in ternary electrolyte solutions. The synthesis of nanofibers of α-Fe2O3 and γ-Fe2O3 and their electrochemical sensing properties relationship have been discussed and analyzed based on the experimental results.
Collapse
Affiliation(s)
- Qianbin Wang
- Institute of Materials for Energy and Environment, State Key Laboratory Breeding Based of New Fiber Materials and Modern Textile, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Shuibo Liu
- Institute of Materials for Energy and Environment, State Key Laboratory Breeding Based of New Fiber Materials and Modern Textile, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Liyun Fu
- Institute of Materials for Energy and Environment, State Key Laboratory Breeding Based of New Fiber Materials and Modern Textile, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Zhengshuai Cao
- Institute of Materials for Energy and Environment, State Key Laboratory Breeding Based of New Fiber Materials and Modern Textile, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Wanneng Ye
- Institute of Materials for Energy and Environment, State Key Laboratory Breeding Based of New Fiber Materials and Modern Textile, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, PR China.
| | - Hongliang Li
- Institute of Materials for Energy and Environment, State Key Laboratory Breeding Based of New Fiber Materials and Modern Textile, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, State Key Laboratory Breeding Based of New Fiber Materials and Modern Textile, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, PR China.
| | - X S Zhao
- Institute of Materials for Energy and Environment, State Key Laboratory Breeding Based of New Fiber Materials and Modern Textile, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, PR China
| |
Collapse
|
16
|
Ionic self-assembly of bundles of ultralong SC/MB nanobelts with enhanced electrocatalytic activity for detection of ascorbic acid. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.01.134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
$$\mathrm{NiFe}_{2}\mathrm{O}_{4 }$$ NiFe 2 O 4 nanoparticles-decorated activated carbon nanocomposite based electrochemical sensor for selective detection of dopamine in presence of uric acid and ascorbic acid. J CHEM SCI 2018. [DOI: 10.1007/s12039-017-1413-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Ferreira NR, Ledo A, Laranjinha J, Gerhardt GA, Barbosa RM. Simultaneous measurements of ascorbate and glutamate in vivo in the rat brain using carbon fiber nanocomposite sensors and microbiosensor arrays. Bioelectrochemistry 2018; 121:142-150. [PMID: 29413864 DOI: 10.1016/j.bioelechem.2018.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 11/18/2022]
Abstract
Nanocomposite sensors consisting of carbon fiber microelectrodes modified with Nafion® and carbon nanotubes, and ceramic-based microelectrode biosensor arrays were used to measure ascorbate and glutamate in the brain with high spatial, temporal and chemical resolution. Nanocomposite sensors displayed electrocatalytic properties towards ascorbate oxidation, translated into a negative shift from +0.20V to -0.05V vs. Ag/AgCl, as well as a significant increase (10-fold) of electroactive surface area. The estimated average basal concentration of ascorbate in vivo in the CA1, CA3 and dentate gyrus (DG) sub regions of the hippocampus were 276±60μM (n=10), 183±30μM (n=10) and 133±42μM (n=10), respectively. The glutamate microbiosensor arrays showed a high sensitivity of 5.3±0.8pAμM-1 (n=18), and LOD of 204±32nM (n=10), and t50% response time of 0.9±0.02s (n=6) and high selectivity against major interferents. The simultaneous and real-time measurements of glutamate and ascorbate in the hippocampus of anesthetized rats following local stimulus with KCl or glutamate revealed a dynamic interaction between the two neurochemicals.
Collapse
Affiliation(s)
- Nuno R Ferreira
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Ledo
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - João Laranjinha
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Greg A Gerhardt
- Department of Neuroscience, Center for Microelectrode Technology, University of Kentucky, Lexington, USA
| | - Rui M Barbosa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal.
| |
Collapse
|
19
|
Liyarita BR, Ambrosi A, Pumera M. 3D-printed Electrodes for Sensing of Biologically Active Molecules. ELECTROANAL 2018. [DOI: 10.1002/elan.201700828] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bella Rosa Liyarita
- Division of Chemistry & Biological Chemistry, School of Physical Mathematical Science; Nanyang Technological University; Singapore 637371 Singapore
| | - Adriano Ambrosi
- Division of Chemistry & Biological Chemistry, School of Physical Mathematical Science; Nanyang Technological University; Singapore 637371 Singapore
| | - Martin Pumera
- Division of Chemistry & Biological Chemistry, School of Physical Mathematical Science; Nanyang Technological University; Singapore 637371 Singapore
| |
Collapse
|
20
|
Zhang K, Zhang N, Zhang L, Wang H, Shi H, Liu Q. Simultaneous voltammetric detection of dopamine, ascorbic acid and uric acid using a poly(2-( N-morpholine)ethane sulfonic acid)/RGO modified electrode. RSC Adv 2018; 8:5280-5285. [PMID: 35542407 PMCID: PMC9078131 DOI: 10.1039/c7ra13267k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 01/23/2018] [Indexed: 11/23/2022] Open
Abstract
A poly(2-(N-morpholine) ethane sulfonic acid)/reduced graphene oxide (RGO) modified glassy carbon electrode (GCE) was prepared using an electropolymerization method, and was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). The electrochemical behaviors and simultaneous detection of ascorbic acid (AA), dopamine (DA) and uric acid (UA) at this electrode were studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). Tests showed that this electrode exhibited excellent electrocatalytic activity towards the oxidation of AA, DA and UA. The oxidation peak currents of AA, DA and UA were proportional with their concentrations in the ranges 1.0 μM-30 μM (30 μM-100 μM), 0.05 μM-100 μM and 0.1 μM-100 μM, with detection limits of 0.43 μM, 0.0062 μM and 0.056 μM, respectively. In addition, this electrode exhibited an excellent selectivity, reproducibility and stability, and has been successfully used to determine real samples with satisfactory results.
Collapse
Affiliation(s)
- Keying Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical-Engineering, Suzhou University Suzhou Anhui 234000 People's Republic of China
| | - Na Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical-Engineering, Suzhou University Suzhou Anhui 234000 People's Republic of China
| | - Li Zhang
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical-Engineering, Suzhou University Suzhou Anhui 234000 People's Republic of China
| | - Hongyan Wang
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical-Engineering, Suzhou University Suzhou Anhui 234000 People's Republic of China
| | - Hongwei Shi
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical-Engineering, Suzhou University Suzhou Anhui 234000 People's Republic of China
| | - Qiao Liu
- Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical-Engineering, Suzhou University Suzhou Anhui 234000 People's Republic of China
| |
Collapse
|
21
|
Maza E, Fernández H, Zon MA, Moressi MB. Electrochemical determination of fisetin using gold electrodes modified with thiol self-assembled monolayers. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.02.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Ribeiro JA, Fernandes PM, Pereira CM, Silva F. Electrochemical sensors and biosensors for determination of catecholamine neurotransmitters: A review. Talanta 2016; 160:653-679. [DOI: 10.1016/j.talanta.2016.06.066] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 01/03/2023]
|
23
|
Omar MN, Salleh AB, Lim HN, Ahmad Tajudin A. Electrochemical detection of uric acid via uricase-immobilized graphene oxide. Anal Biochem 2016; 509:135-141. [DOI: 10.1016/j.ab.2016.06.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
|
24
|
Karimi Shervedani R, Bahrani S, Samiei Foroushani M, Momenbeik F. Selective Detection of Dopamine in the Presence of Ascorbic and Uric Acids through its Covalent Immobilization on Gold Mercaptopropionic Acid Self-assembled Monolayer. ELECTROANAL 2016. [DOI: 10.1002/elan.201600220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Sonia Bahrani
- Department of Chemistry; University of Isfahan; Isfahan 81746-73441 I.R. IRAN
| | | | - Fariborz Momenbeik
- Department of Chemistry; University of Isfahan; Isfahan 81746-73441 I.R. IRAN
| |
Collapse
|
25
|
Li Y, Jiang Y, Mo T, Zhou H, Li Y, Li S. Highly selective dopamine sensor based on graphene quantum dots self-assembled monolayers modified electrode. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.02.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
26
|
Electrochemical deposition of the new manganese(II) Schiff-base complex on a gold template and its application for dopamine sensing in the presence of interfering biogenic compounds. Talanta 2016; 149:347-355. [DOI: 10.1016/j.talanta.2015.11.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/15/2015] [Accepted: 11/20/2015] [Indexed: 11/21/2022]
|
27
|
Biswas S, Das R, Basu M, Bandyopadhyay R, Pramanik P. Synthesis of carbon nanoparticle embedded graphene for sensitive and selective determination of dopamine and ascorbic acid in biological fluids. RSC Adv 2016. [DOI: 10.1039/c6ra16774h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have prepared carbon nanoparticle embedded graphene (CNEG) by carbonizing a ternary composite of GO/melamine-formaldehyde resin/Zn(OAc)2.
Collapse
Affiliation(s)
- Sudip Biswas
- Department of Instrumentation and Electronics Engineering
- Jadavpur University
- Kolkata – 700098
- India
| | - Rashmita Das
- Department of Instrumentation and Electronics Engineering
- Jadavpur University
- Kolkata – 700098
- India
| | - Malini Basu
- Department of Instrumentation and Electronics Engineering
- Jadavpur University
- Kolkata – 700098
- India
| | - Rajib Bandyopadhyay
- Department of Instrumentation and Electronics Engineering
- Jadavpur University
- Kolkata – 700098
- India
| | - Panchanan Pramanik
- Department of Chemistry and Nanoscience
- GLA University
- Mathura – 281 406
- India
| |
Collapse
|
28
|
Saha S, Sarkar P, Turner APF. Interference-Free Electrochemical Detection of Nanomolar Dopamine Using Doped Polypyrrole and Silver Nanoparticles. ELECTROANAL 2014. [DOI: 10.1002/elan.201400332] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Palanisamy S. Polydopamine supported gold nanoclusters for sensitive and simultaneous detection of dopamine in the presence of excess ascorbic acid and uric acid. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.06.131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
JIANG TJ, LIU CX, SONG YL, XU SW, WEI WJ, CAI XX. Application of Planar Microelectrode Array Modified by Nano-structure Titanium Nitride on Dual Mode Neural Information Recording. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1016/s1872-2040(14)60754-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Xiang L, Yu P, Hao J, Zhang M, Zhu L, Dai L, Mao L. Vertically Aligned Carbon Nanotube-Sheathed Carbon Fibers as Pristine Microelectrodes for Selective Monitoring of Ascorbate in Vivo. Anal Chem 2014; 86:3909-14. [DOI: 10.1021/ac404232h] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ling Xiang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ping Yu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Hao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Meining Zhang
- Department
of Chemistry, Renmin University of China, Beijing 100872, China
| | - Lin Zhu
- Department
of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Liming Dai
- Department
of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Lanqun Mao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Analytical
Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
32
|
|
33
|
A sensitive and reliable dopamine biosensor was developed based on the Au@carbon dots–chitosan composite film. Biosens Bioelectron 2014; 52:277-80. [DOI: 10.1016/j.bios.2013.09.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/02/2013] [Indexed: 11/19/2022]
|
34
|
Chumillas S, Figueiredo MC, Climent V, Feliu JM. Study of dopamine reactivity on platinum single crystal electrode surfaces. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2013.07.107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
35
|
Sabzi RE, Zare S, Farhadi K, Tabrizivand G. Electrocatalytic Oxidation of Dopamine at Sol-Gel Carbon Composite Electrode Chemically Modified with Copper Hexacyanoferrate. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200500153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Łuczak T. 1,4-Michael Addition - The Analytical Way for Quantitative Sensing of Neurotransmitter at Bare Gold Electrode in Physiological Solution in the Presence of Interfering Biogenic Compounds. ELECTROANAL 2013. [DOI: 10.1002/elan.201300264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
37
|
Ferreira NR, Santos RM, Laranjinha J, Barbosa RM. Real Time In Vivo Measurement of Ascorbate in the Brain Using Carbon Nanotube-Modified Microelectrodes. ELECTROANAL 2013. [DOI: 10.1002/elan.201300053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Biji P, Patnaik A. Interfacial Janus gold nanoclusters as excellent phase- and orientation-specific dopamine sensors. Analyst 2013; 137:4795-801. [PMID: 22937530 DOI: 10.1039/c2an35964b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This investigation, following our recent report on the one-pot hemi-micellar interfacial synthesis of Janus gold nanoclusters and the inter-cluster electron coupling establishing insulator-metal transition in the oriented Janus monolayers [Langmuir, 2010, 26(17), 14047], was to fabricate modified electrodes for sensing dopamine, the neurotransmitter. With a detection limit in the sub-nanomolar range, the apparent electron transfer rate constants for dopamine detection signified an intricate Janus cluster 2D phase dependency. Surface pressure as a thermodynamic variable controlled the electronic communication between the clusters as a result of varied inter-cluster distance and size, ultimately reflecting on the sensitivity and detection limit for dopamine sensing. The non-covalent nature of the ligands on the core metal clusters facilitated the overall electro-catalytic oxidation of dopamine. The notable feature of this precise work was that it established a more effective phase- and orientation-specific Janus cluster sensing than those reported through patterned gold nanowire based sensors.
Collapse
Affiliation(s)
- P Biji
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| | | |
Collapse
|
39
|
Gai P, Zhang H, Zhang Y, Liu W, Zhu G, Zhang X, Chen J. Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on nitrogen doped porous carbon nanopolyhedra. J Mater Chem B 2013; 1:2742-2749. [DOI: 10.1039/c3tb20215a] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
40
|
Wabaidur SM, Alothman ZA, Naushad M. Determination of dopamine in pharmaceutical formulation using enhanced luminescence from europium complex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 93:331-334. [PMID: 22484841 DOI: 10.1016/j.saa.2012.03.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/04/2012] [Accepted: 03/10/2012] [Indexed: 05/31/2023]
Abstract
Biologically important compound dopamine plays an important role in the central and peripheral nervous systems. Insufficient dopamine level due to the loss of dopamine producing cells may lead to disease called Schizophrenia and Parkinson's disease. Hence, a simple and fast detection of dopamine is necessary to study in the fields of neurophysiology and clinical medicine. An enhanced fluorimetric determination of dopamine in the presence of ascorbic acid is achieved using photoluminescence of europium complex, Eu(III)-dipicolinic acid. In order to obtain better responses, several operational parameters have been investigated. Under the optimum conditions, the method showed good stability and reproducibility. The application of this method for the determination of dopamine neurotransmitters was satisfactory. Linear response was found down to 3.0 × 10(-7)M with limit of detection 1.0 × 10(-8)M. The relative standard deviation was found to be 3.33% from 20 independent measurements for 1.0 × 10(-5)M of dopamine.
Collapse
Affiliation(s)
- Saikh Mohammad Wabaidur
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | | | | |
Collapse
|
41
|
Shahrokhian S, Mahdavi-Shakib A, Ghalkhani M, Saberi RS. Gold Electrode Modified with Self-Assembled Monolayer of Cysteamine-Functionalized MWCNT and Its Application in Simultaneous Determination of Dopamine and Uric Acid. ELECTROANAL 2012. [DOI: 10.1002/elan.201100545] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Gao Y, Cao Y, Yang D, Luo X, Tang Y, Li H. Sensitivity and selectivity determination of bisphenol A using SWCNT-CD conjugate modified glassy carbon electrode. JOURNAL OF HAZARDOUS MATERIALS 2012; 199-200:111-118. [PMID: 22100222 DOI: 10.1016/j.jhazmat.2011.10.066] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/18/2011] [Accepted: 10/22/2011] [Indexed: 05/31/2023]
Abstract
In this study, we demonstrated a highly sensitive electrochemical sensor for the determination of bisphenol A (BPA) in aqueous solution by using single-walled carbon nanotubes (SWCNTs)/β-cyclodextrin (β-CD) conjugate (SWCNT-CD) modified glassy carbon electrode (GCE). The cyclic voltammetry results show that the modified GCE exhibits strong catalytic activity toward the oxidation of BPA with a well-defined cyclic voltammetric peak at 0.543 V. The response current exhibits a linear range between 10.8 nM and 18.5 μM with a high sensitivity (1256 μA mM(-1)). The detection limit of BPA is 1.0 nM (S/N=3). The enhanced performance of the fabricated sensor can be attributed to the combination of the excellent electrocatalytic properties of SWCNTs and the molecular recognition ability of β-CD. The sensor was successfully applied to determine BPA leached from real plastic samples with good recovery, ranging from 95% to 103%.
Collapse
Affiliation(s)
- Yong Gao
- College of Chemistry, Xiangtan University, Xiangtan 411105, Hunan Province, PR China
| | | | | | | | | | | |
Collapse
|
43
|
Rahim A, Barros SB, Kubota LT, Gushikem Y. SiO2/C/Cu(II)phthalocyanine as a biomimetic catalyst for dopamine monooxygenase in the development of an amperometric sensor. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.08.111] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Application of multi-walled carbon nanotubes modified carbon ionic liquid electrode for electrocatalytic oxidation of dopamine. Colloids Surf B Biointerfaces 2011; 88:402-6. [DOI: 10.1016/j.colsurfb.2011.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/06/2011] [Accepted: 07/06/2011] [Indexed: 11/20/2022]
|
45
|
Electrochemical determination of dopamine in the presence of ascorbic acid based on the gold nanorods/carbon nanotubes composite film. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.07.075] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Multi-walled carbon nanotube-chitosan/poly(amidoamine)/DNA nanocomposite modified gold electrode for determination of dopamine and uric acid under coexistence of ascorbic acid. J Electroanal Chem (Lausanne) 2011. [DOI: 10.1016/j.jelechem.2011.01.024] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
A novel N,N′-[1,1′-Dithiobis(phenyl)] bis(salicylaldimine) self-assembled gold electrode for determination of dopamine in the presence of high concentration of ascorbic acid. J Electroanal Chem (Lausanne) 2011. [DOI: 10.1016/j.jelechem.2010.12.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens Bioelectron 2011; 26:3450-5. [PMID: 21324669 DOI: 10.1016/j.bios.2011.01.023] [Citation(s) in RCA: 436] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 01/10/2011] [Accepted: 01/18/2011] [Indexed: 11/23/2022]
Abstract
In this study, a graphene/Pt-modified glassy carbon (GC) electrode was created to simultaneously characterize ascorbic acid (AA), dopamine (DA), and uric acid (UA) levels via cyclic voltammetry (CV) and differential pulse voltammetry (DPV). During the preparation of the nanocomposite, size-selected Pt nanoparticles with a mean diameter of 1.7 nm were self-assembled onto the graphene surface. In the simultaneous detection of the three aforementioned analytes using CV, the electrochemical potential differences among the three detected peaks were 185 mV (AA to DA), 144 mV (DA to UA), and 329 mV (AA and UA), respectively. In comparison to the CV results of bare GC and graphene-modified GC electrodes, the large electrochemical potential difference that is achieved via the use of the graphene/Pt nanocomposites is essential to the distinguishing of these three analytes. An optimized adsorption of size-selected Pt colloidal nanoparticles onto the graphene surface results in a graphene/Pt nanocomposite that can provide a good platform for the routine analysis of AA, DA, and UA.
Collapse
|
49
|
Farzin L, Hosseini MRM. Simultaneous Determination of Dopamine and L-Ascorbic Acid by Modified Carbon Paste Electrode with Ni (II) Cyclam Complex. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/ajac.2011.22036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Samanta D, Sarkar A. Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications. Chem Soc Rev 2011; 40:2567-92. [DOI: 10.1039/c0cs00056f] [Citation(s) in RCA: 313] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|