1
|
Nyasembe VO, Schregardus CE, Bascunan P, Steele CM, Benedict MQ, Dotson EM. Bicarbonate, calcium ions, hydrogen peroxide and trypsin modulate activation of Anopheles gambiae sperm motility and protein tyrosine phosphorylation. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2025; 178:104265. [PMID: 39884471 DOI: 10.1016/j.ibmb.2025.104265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/17/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
With the increasing concern of potential loss of transgenic mosquitoes which are candidates as new tools for mosquito-borne disease control, methods for cryopreservation are actively under investigation. Methods to cryopreserve Anopheles gambiae sperm have recently been developed, but there are no artificial insemination or in vitro fertilization tools available. As a step to achieve this, we sought to identify a suitable medium for in vitro incubation of An. gambiae sperm and to tease out critical components that are involved in the sperm motility activation process. Using two cell viability assays, we identified the Biggers-Whitten-Whittingham (BWW) medium as suitable for in vitro incubation of An. gambiae sperm isolated from testes. We then modified the medium for motility assays by testing different HCO3- and Ca2+ concentrations. Our results show that there is an HCO3- and Ca2+ concentration-dependent activation of An. gambiae sperm motility. We further demonstrated that H2O2 can be produced by the testes in vitro and that the addition of 5.3 μM of H2O2 to the medium improves sperm motility and increases protein tyrosine phosphorylation in An. gambiae. Finally, we show a dose-dependent activation of sperm motility by the addition of trypsin to the medium and more than a 2-fold increase in sperm motility when modified BWW (mBWW) medium is supplemented with H2O2 and trypsin. Our in vitro results suggest that protein tyrosine phosphorylation, intracellular ionic influx, intrinsic production of H2O2 and trypsin-like proteases play a vital role in signal transduction that leads to the activation of An. gambiae sperm motility.
Collapse
Affiliation(s)
- Vincent O Nyasembe
- Infectious Disease Programs, CDC Foundation Assigned to Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention (CDC), 600 Peachtree St. NE, Atlanta, GA, 30308, USA.
| | - Claire E Schregardus
- Infectious Disease Programs, CDC Foundation Assigned to Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention (CDC), 600 Peachtree St. NE, Atlanta, GA, 30308, USA
| | - Priscila Bascunan
- Infectious Disease Programs, CDC Foundation Assigned to Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention (CDC), 600 Peachtree St. NE, Atlanta, GA, 30308, USA
| | - Catherine M Steele
- Infectious Disease Programs, CDC Foundation Assigned to Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention (CDC), 600 Peachtree St. NE, Atlanta, GA, 30308, USA
| | - Mark Q Benedict
- Infectious Disease Programs, CDC Foundation Assigned to Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention (CDC), 600 Peachtree St. NE, Atlanta, GA, 30308, USA
| | - Ellen M Dotson
- Division of Parasitic Diseases and Malaria, Entomology Branch, Centers for Disease Control and Prevention (CDC), 1600 Clifton Road, NE, Atlanta, GA, 30329, USA
| |
Collapse
|
2
|
Moth E, Messer F, Chaudhary S, White-Cooper H. Differential gene expression underpinning the production of distinct sperm morphs in the wax moth Galleria mellonella. Open Biol 2024; 14:240002. [PMID: 39079672 PMCID: PMC11288676 DOI: 10.1098/rsob.240002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/02/2024] [Accepted: 05/07/2024] [Indexed: 08/03/2024] Open
Abstract
Male Lepidoptera produce two distinct sperm types; each ejaculate contains both eupyrene sperm, which can fertilize the egg, and apyrene sperm, which are not fertilization competent. These sperm have distinct morphologies, unique functions and different proteomes. Their production is highly regulated, however, very few genes with specific roles in the production of one or other morph have been described. We present the first comparative transcriptomics study of precursors of eupyrene and apyrene sperm to identify genes potentially implicated in regulating or enacting the distinct differentiation programmes. Differentially expressed genes included genes with potential roles in transcriptional regulation, cell cycle and sperm morphology. We identified gene duplications generating paralogues with functions restricted to one or other morph. However, phylogenetic analysis also revealed evolutionary flexibility in expression patterns of duplicated genes between different lepidopteran species. An improved understanding of lepidopteran reproduction will be vital in targeting prevalent pests in agriculture, and on the flip side, ensuring the fertility and thus survival of pollinator populations in response to environmental stress.
Collapse
Affiliation(s)
- Emma Moth
- School of Biosciences, Cardiff University, Museum Avenue, CardiffCF10 3AT, UK
| | - Fiona Messer
- School of Biosciences, Cardiff University, Museum Avenue, CardiffCF10 3AT, UK
| | - Saurabh Chaudhary
- School of Biosciences, Cardiff University, Museum Avenue, CardiffCF10 3AT, UK
- School of Biosciences, University of Sheffield, SheffieldS10 2TN, UK
| | - Helen White-Cooper
- School of Biosciences, Cardiff University, Museum Avenue, CardiffCF10 3AT, UK
| |
Collapse
|
3
|
Yadav P, Seth RK, Reynolds SE. A sperm-activating trypsin-like protease from the male reproductive tract of Spodoptera litura: Proteomic identification, sequence characterization, gene expression profile, RNAi and the effects of ionizing radiation. JOURNAL OF INSECT PHYSIOLOGY 2024; 156:104664. [PMID: 38897288 DOI: 10.1016/j.jinsphys.2024.104664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Like other lepidopteran insects, males of the tobacco cutworm moth, Spodoptera litura produce two kinds of spermatozoa, eupyrene (nucleate) and apyrene (anucleate) sperm. Formed in the testis, both kinds of sperm are released into the male reproductive tract in an immature form and are stored in the duplex region of the tract. Neither type of sperm is motile at this stage. When stored apyrene sperm from the duplex are treated in vitro with an extract of the prostatic region of the male tract, or with mammalian trypsin, they become motile; activation is greater and achieved more rapidly with increasing concentration of extract or enzyme. The activating effect of prostatic extract is blocked by soybean trypsin inhibitor (SBTI), also in a dose-dependent way. These results suggest that the normal sperm-activating process is due to an endogenous trypsin-like protease produced in the prostatic region. Proteomic analysis of S. litura prostatic extracts revealed a Trypsin-Like Serine Protease, TLSP, molecular weight 27 kDa, whose 199-residue amino acid sequence is identical to that of a predicted protein from the S. litura genome and is highly similar to predicted proteins encoded by genes in the genomes of several other noctuid moth species. Surprisingly, TLSP is only distantly related to Serine Protease 2 (initiatorin) of the silkmoth, Bombyx mori, the only identified lepidopteran protein so far shown to activate sperm. TLSP has features typical of secreted proteins, probably being synthesized as an inactive precursor zymogen, which is later activated by proteolytic cleavage. cDNA was synthesized from total RNA extracted from the prostatic region and was used to examine TLSP expression using qPCR. tlsp mRNA was expressed in both the prostatic region and the accessory glands of the male tract. Injection of TLSP-specific dsRNA into adult males caused a significant reduction after 24 h in tlsp mRNA levels in both locations. The number of eggs laid by females mated to adult males that were given TLSP dsRNA in 10 % honey solution, and the fertility (% hatched) of the eggs were reduced. Injecting pupae with TLSP dsRNA caused the later activation of apyrene sperm motility by adult male prostatic extracts to be significantly reduced compared to controls. Exposure of S. litura pupae to ionizing radiation significantly reduced expression of tlsp mRNA in the prostatic part and accessory gland of irradiated males in both the irradiated generation and also in their (unirradiated) F1 progeny. The implications of these findings for the use of the inherited sterility technique for the control of S. litura and other pest Lepidoptera are discussed.
Collapse
Affiliation(s)
- Priya Yadav
- Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Rakesh K Seth
- Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Stuart E Reynolds
- Department of Life Sciences, University of Bath, Bath BA2 7AY, UK; Milner Centre for Evolution, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
4
|
Ashraf MZ, Mogilicherla K, Sellamuthu G, Siino V, Levander F, Roy A. Comparative gut proteomics study revealing adaptive physiology of Eurasian spruce bark beetle, Ips typographus (Coleoptera: Scolytinae). FRONTIERS IN PLANT SCIENCE 2023; 14:1157455. [PMID: 38078109 PMCID: PMC10703158 DOI: 10.3389/fpls.2023.1157455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/01/2023] [Indexed: 01/23/2024]
Abstract
The bark beetle, Ips typographus (L.), is a major pest of Norway spruce, Picea abies (L.), causing enormous economic losses globally. The adult stage of the I. typographus has a complex life cycle (callow and sclerotized); the callow beetles feed ferociously, whereas sclerotized male beetles are more aggressive and pioneers in establishing new colonies. We conducted a comparative proteomics study to understand male and female digestion and detoxification processes in callow and sclerotized beetles. Proteome profiling was performed using high-throughput liquid chromatography-mass spectrometry. A total of >3000 proteins were identified from the bark beetle gut, and among them, 539 were differentially abundant (fold change ±2, FDR <0.05) between callow and sclerotized beetles. The differentially abundant proteins (DAPs) mainly engage with binding, catalytic activity, anatomical activity, hydrolase activity, metabolic process, and carbohydrate metabolism, and hence may be crucial for growth, digestion, detoxification, and signalling. We validated selected DAPs with RT-qPCR. Gut enzymes such as NADPH-cytochrome P450 reductase (CYC), glutathione S-transferase (GST), and esterase (EST) play a crucial role in the I. typographus for detoxification and digesting of host allelochemicals. We conducted enzyme activity assays with them and observed a positive correlation of CYC and GST activities with the proteomic results, whereas EST activity was not fully correlated. Furthermore, our investigation revealed that callow beetles had an upregulation of proteins associated with juvenile hormone (JH) biosynthesis and chitin metabolism, whereas sclerotized beetles exhibited an upregulation of proteins linked to fatty acid metabolism and the TCA cycle. These distinctive patterns of protein regulation in metabolic and functional processes are specific to each developmental stage, underscoring the adaptive responses of I. typographicus in overcoming conifer defences and facilitating their survival. Taken together, it is the first gut proteomic study comparing males and females of callow and sclerotized I. typographus, shedding light on the adaptive ecology at the molecular level. Furthermore, the information about bark beetle handling of nutritionally limiting and defence-rich spruce phloem diet can be utilized to formulate RNAi-mediated beetle management.
Collapse
Affiliation(s)
- Muhammad Zubair Ashraf
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Kanakachari Mogilicherla
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Gothandapani Sellamuthu
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Valentina Siino
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Fredrik Levander
- Department of Immunotechnology, Lund University, Lund, Sweden
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Lund University, Lund, Sweden
| | - Amit Roy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
5
|
Seth RK, Yadav P, Reynolds SE. Dichotomous sperm in Lepidopteran insects: a biorational target for pest management. FRONTIERS IN INSECT SCIENCE 2023; 3:1198252. [PMID: 38469506 PMCID: PMC10926456 DOI: 10.3389/finsc.2023.1198252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/31/2023] [Indexed: 03/13/2024]
Abstract
Lepidoptera are unusual in possessing two distinct kinds of sperm, regular nucleated (eupyrene) sperm and anucleate (apyrene) sperm ('parasperm'). Sperm of both types are transferred to the female and are required for male fertility. Apyrene sperm play 'helper' roles, assisting eupyrene sperm to gain access to unfertilized eggs and influencing the reproductive behavior of mated female moths. Sperm development and behavior are promising targets for environmentally safer, target-specific biorational control strategies in lepidopteran pest insects. Sperm dimorphism provides a wide window in which to manipulate sperm functionality and dynamics, thereby impairing the reproductive fitness of pest species. Opportunities to interfere with spermatozoa are available not only while sperm are still in the male (before copulation), but also in the female (after copulation, when sperm are still in the male-provided spermatophore, or during storage in the female's spermatheca). Biomolecular technologies like RNAi, miRNAs and CRISPR-Cas9 are promising strategies to achieve lepidopteran pest control by targeting genes directly or indirectly involved in dichotomous sperm production, function, or persistence.
Collapse
Affiliation(s)
- Rakesh K. Seth
- Department of Zoology, University of Delhi, Delhi, India
| | - Priya Yadav
- Department of Zoology, University of Delhi, Delhi, India
| | - Stuart E. Reynolds
- Department of Life Sciences, University of Bath, Bath, United Kingdom
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|
6
|
Krueger S, Martins de S. e Silva J, Santos de Oliveira C, Moritz G. Investigation of the spermathecal morphology, reproductive strategy and fate of stored spermatozoa in three important thysanopteran species. Sci Rep 2022; 12:18517. [PMID: 36323867 PMCID: PMC9630458 DOI: 10.1038/s41598-022-23104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
In insects, females can keep sperm capable of fertilisation over a long period with the help of the spermatheca. The effectiveness of storing fertile sperm is expected to reflect in the reproductive strategy and, thus, the morphology of the involved organs. In this work, we focused on the relationship between reproduction and morphology in the haplodiploid Thysanoptera, especially if a loss of these traits occurs under thelytoky. The spermathecal morphology and the fate of stored spermatozoa were studied by microscopic techniques (high-resolution x-ray computed tomography and transmission electron microscopy) in three species with different reproductive modes and lifestyles (Suocerathrips linguis, Echinothrips americanus, Hercinothrips femoralis). Mating experiments were conducted to analyse the use of the transferred sperm in the thelytokous H. femoralis. Results show that the spermathecae are relatively simple, which can be explained by the availability of sperm and the short lifespan of the females. However, the spermatheca in H. femoralis seems to be vestigial compared to the arrhenotokous species and females do not use sperm for fertilisation. No substantial change was observed in the structure of spermatozoa, despite an enlargement of the sperm organelles being measured during storage in all three species. The results of this work demonstrate differences in the morphology of the spermatheca, especially concerning the reproduction mode, promoting the understanding of the complex interaction between morphology and behaviour.
Collapse
Affiliation(s)
- Stephanie Krueger
- grid.9018.00000 0001 0679 2801Institute of Biology, Department Zoology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Juliana Martins de S. e Silva
- grid.9018.00000 0001 0679 2801Institute of Physics, Martin-Luther University Halle-Wittenberg, Halle, Germany ,grid.469857.10000 0004 5929 2706Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle, Germany
| | - Cristine Santos de Oliveira
- grid.9018.00000 0001 0679 2801Institute of Physics, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Gerald Moritz
- grid.9018.00000 0001 0679 2801Institute of Biology, Department Zoology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
7
|
Sakakura M, Takata Y, Kimura C, Matsuda S, Takamura T, Nagaoka S. Limited proteolysis by a prostatic endopeptidase, the sperm-activating factor initiatorin, regulates the activation of pro-carboxypeptidase B in the seminal fluid of the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 148:103819. [PMID: 35963292 DOI: 10.1016/j.ibmb.2022.103819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 07/31/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
A prostate trypsin-like serine endopeptidase called initiatorin (BmIni) is an essential factor in triggering the sperm maturation response of the silkworm, Bombyx mori. BmIni has been predicted to specifically cleave the carboxyl side of two consecutive arginine residues present in certain seminal plasma and sperm proteins, but the actual substrates are still unknown. In an attempt to elucidate the molecular mechanism underlying the sperm maturation signaling pathway, in this study, we examined whether BmIni activates the seminal carboxypeptidase B (BmCPB) protein through specific degradation. First, we confirmed in vitro that the inactive BmCPB present in unmated male vesicula (v.) seminalis is activated by treatment with BmIni or trypsin. Molecular cloning of the gene encoding the seminal BmCPB protein has shown that BmCPB is produced as a secreted proenzyme and may be activated after a trypsin-like protease cleaves the boundary between the prodomain and the enzyme site. In support of these findings, both trypsin and BmIni significantly activated recombinant Pro-BmCPB, which was successfully expressed and purified as a proenzyme in Escherichia coli; moreover, two specific cleavage forms appeared in the activation by BmIni that did not appear in that by trypsin. Therefore, a recombinant protein with a mutated diarginine motif (Arg109-Arg110), which is presumed to be a pre-cleavage site of BmCPB based on its high homology with bovine CPB, was prepared and treated with BmIni. As a result, the two specific degraded peptides were no longer observed, and simultaneously the activation was suppressed. Taken together, these findings lead to the conclusion that zymogen BmCPB, which is synthesized and secreted in male reproductive organs, is activated by sequence-dependent proteolysis by BmIni during ejaculation and in the female reproductive organs, providing a clue to the mechanism underlying seminal plasma and/or sperm protein degradation by BmIni in the sperm maturation cascade of B. mori.
Collapse
Affiliation(s)
- Miki Sakakura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Yuki Takata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Chikayo Kimura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Saki Matsuda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Tomoko Takamura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Sumiharu Nagaoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Center for Bioresource Field Sciences, Kyoto Institute of Technology, 1 Saga-ippongi-cho, Ukyo-ku, Kyoto, 616-8354, Japan.
| |
Collapse
|
8
|
Li X, Liu Q, Bi H, Wang Y, Xu X, Sun W, Zhang Z, Huang Y. piggyBac-based transgenic RNAi of serine protease 2 results in male sterility in Hyphantria cunea. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 143:103726. [PMID: 35131470 DOI: 10.1016/j.ibmb.2022.103726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/25/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Fall webworm, Hyphantria cunea, is a global invasive forest pest that causes serious damage to the economy and ecosystem of agriculture and forestry. Due to the extent of the problem and the difficulty of conventional chemical control, new technologies must be pursued, such as genetic-based inheritable insect sterile technology (gSIT), which exhibits promise for pest control. In the present study, we established a piggyBac-based transgenic system in fall webworm and generated a dominant male-sterile strain by targeting the seminal fluid protein serine protease 2 (Hcser2), displaying an outstanding trait of gSIT. First, an RNA polymerase type III (Pol III) promoter, the HcU62 small nuclear RNA (snRNA) gene promoter, was identified and characterized through direct injection of RNAi plasmids in vivo. Quantitative real-time PCR revealed that HcU62 had the greatest knockdown efficiency of the Hcyellow gene among five short hairpin RNA (shRNA) plasmids tested, designated HcU61-HcU65. Second, subsequent application of piggyBac-based transgenic RNAi (HcU62: shHcyellow, Ysh2) significantly reduced the expression level of the Hcyellow gene, resulting in a stable yellow observable phenotype from the larval to pupal stages in Ysh2 transgenic mutants. Finally, an HcU62-driven transgenic RNAi strain targeting the Hcser2 gene was obtained, resulting in a dominant male-sterile phenotype. Significantly, this process did not affect the growth, development, mating behavior or egg laying of the mutants, and the dominant sterile trait could be inherited in the next generation through female Hcser2 mutants. Furthermore, CRISPR/Cas9-mediated disruption of the Hcser2 gene further confirmed the dominant sterile phenotype, supporting it as a generalized target for genetic control of H. cunea. This study reports the first piggyBac-mediated transgenic system in H. cunea, providing a promising genetic method for controlling this pest by targeting Hcser2 gene.
Collapse
Affiliation(s)
- Xiaowei Li
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, 401331, China; CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, 200030, China
| | - Qun Liu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, 200030, China
| | - Honglun Bi
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, 200030, China
| | - Yaohui Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, 200030, China
| | - Xia Xu
- Institute of Sericulture and Tea Research, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Wei Sun
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| | - Yongping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai, 200030, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Go AC, Civetta A. Divergence of X-linked trans regulatory proteins and the misexpression of gene targets in sterile Drosophila pseudoobscura hybrids. BMC Genomics 2022; 23:30. [PMID: 34991488 PMCID: PMC8740060 DOI: 10.1186/s12864-021-08267-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The genetic basis of hybrid incompatibilities is characterized by pervasive cases of gene interactions. Sex chromosomes play a major role in speciation and X-linked hybrid male sterility (HMS) genes have been identified. Interestingly, some of these genes code for proteins with DNA binding domains, suggesting a capability to act as trans-regulatory elements and disturb the expression of a large number of gene targets. To understand how interactions between trans- and cis-regulatory elements contribute to speciation, we aimed to map putative X-linked trans-regulatory elements and to identify gene targets with disrupted gene expression in sterile hybrids between the subspecies Drosophila pseudoobscura pseudoobscura and D. p. bogotana. RESULTS We find six putative trans-regulatory proteins within previously mapped X chromosome HMS loci with sequence changes that differentiate the two subspecies. Among them, the previously characterized HMS gene Overdrive (Ovd) had the largest number of amino acid changes between subspecies, with some substitutions localized within the protein's DNA binding domain. Using an introgression approach, we detected transcriptional responses associated with a sterility/fertility Ovd allele swap. We found a network of 52 targets of Ovd and identified cis-regulatory effects among target genes with disrupted expression in sterile hybrids. However, a combined analysis of polymorphism and divergence in non-coding sequences immediately upstream of target genes found no evidence of changes in candidate regulatory proximal cis-elements. Finally, peptidases were over-represented among target genes. CONCLUSIONS We provide evidence of divergence between subspecies within the DNA binding domain of the HMS protein Ovd and identify trans effects on the expression of 52 gene targets. Our results identify a network of trans-cis interactions with possible effects on HMS. This network provides molecular evidence of gene × gene incompatibilities as contributors to hybrid dysfunction.
Collapse
Affiliation(s)
- Alwyn C Go
- Department of Biology, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, R3B 2E9, Canada
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, 515 Portage Ave, Winnipeg, MB, R3B 2E9, Canada.
| |
Collapse
|
10
|
Patlar B, Jayaswal V, Ranz JM, Civetta A. Nonadaptive molecular evolution of seminal fluid proteins in Drosophila. Evolution 2021; 75:2102-2113. [PMID: 34184267 PMCID: PMC8457112 DOI: 10.1111/evo.14297] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022]
Abstract
Seminal fluid proteins (SFPs) are a group of reproductive proteins that are among the most evolutionarily divergent known. As SFPs can impact male and female fitness, these proteins have been proposed to evolve under postcopulatory sexual selection (PCSS). However, the fast change of the SFPs can also result from nonadaptive evolution, and the extent to which selective constraints prevent SFPs rapid evolution remains unknown. Using intra‐ and interspecific sequence information, along with genomics and functional data, we examine the molecular evolution of approximately 300 SFPs in Drosophila. We found that 50–57% of the SFP genes, depending on the population examined, are evolving under relaxed selection. Only 7–12% showed evidence of positive selection, with no evidence supporting other forms of PCSS, and 35–37% of the SFP genes were selectively constrained. Further, despite associations of positive selection with gene location on the X chromosome and protease activity, the analysis of additional genomic and functional features revealed their lack of influence on SFPs evolving under positive selection. Our results highlight a lack of sufficient evidence to claim that most SFPs are driven to evolve rapidly by PCSS while identifying genomic and functional attributes that influence different modes of SFPs evolution.
Collapse
Affiliation(s)
- Bahar Patlar
- Department of Biology, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Vivek Jayaswal
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - José M Ranz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, 92697
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| |
Collapse
|
11
|
Shepherd JG, Sartoris Bonk K. Activation of parasperm and eusperm upon ejaculation in Lepidoptera. JOURNAL OF INSECT PHYSIOLOGY 2021; 130:104201. [PMID: 33582103 DOI: 10.1016/j.jinsphys.2021.104201] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Almost all Lepidoptera produce two kinds of spermatozoa, a typical nucleated spermatozoön and an anucleate one. Inactive in the male prior to ejaculation, both of these spermatozoa become motile upon ejaculation and move to the female's sperm storage organ. This study shows that in several phylogenetically and morphologically diverse species of Lepidoptera, the anucleate spermatozoa, or parasperm (also known as apyrene spermatozoa), and the nucleated spermatozoa, or eusperm (also known as eupyrene spermatozoa), are activated by a protein of approximately 37.7 kDa added by a secretion from the male. Although proteases have been shown to activate these parasperm, inhibitors of proteases did not prevent activation of the tobacco hornworm moth, Manduca sexta, parasperm, even at well over normal working concentrations of the inhibitors. Parasperm could also be activated by an ionophore, indicating that a trans-membrane ionic event is involved. In contrast to parasperm, eusperm are first ejaculated as bundles of 256 spermatozoa. This study identified a male protein of similar molecular weight that dissociates the eusperm from the bundles, but that is sensitive to proteases. Based on these characteristics, the activators of both types of spermatozoa appear to be different from the initiatorin imputed to be the activator of commercial silkmoth, Bombyx mori, spermatozoa. The role of these proteins in these unique modes of lepidopterous sperm activation may have been adapted from other roles in other kinds of insects, and indicates especially an important function of parasperm in the reproductive physiology and/or behavior of female lepidopterans.
Collapse
Affiliation(s)
- Julian G Shepherd
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 13902-2000, USA.
| | - Karen Sartoris Bonk
- Department of Biological Sciences, Binghamton University, Binghamton, NY, 13902-2000, USA
| |
Collapse
|
12
|
PCE3 Plays a Role in the Reproduction of Male Nilaparvata lugens. INSECTS 2021; 12:insects12020114. [PMID: 33525429 PMCID: PMC7911326 DOI: 10.3390/insects12020114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 11/21/2022]
Abstract
Simple Summary The brown planthopper (BPH), Nilaparvata lugens, is one of the most harmful rice crop pest insects. The use of RNAi is a feasible strategy for controlling this pest. In this study, we evaluated the importance of PCE3 in the development and reproduction of male BPH. We found that PCE3 could regulate the development of the male internal genitalia and reduce the oviposition level of the females that mated with males treated with dsRNA targeting the N. lugens PCE3 gene, causing eggs not to hatch. Our findings indicate that PCE3 is an important gene in regulating male fecundity and a promising target for controlling BPH. Abstract Nilaparvata lugens proclotting enzymes (NlPCEs) belong to the clip domain serine protease (clip-SP) family, which is a characteristic protease family in arthropods. NlPCE3 was previously reported to regulate egg production and development in female N. lugens, but its role in male N. lugens is unclear. In the present study, qPCR analysis showed that NlPCE3 was expressed in three different tissues (gut, testis and fat body). RNAi revealed that dsNlPCE3 injection made the male vas deferens thinner and reduced the oviposition level of the females that mated with dsNlPCE3-treated males, causing eggs not to hatch. Furthermore, immunofluorescence staining showed that NlPCE3 was widely expressed in the male internal genitalia. However, after dsNlPCE3 injection, expression of NlPCE3 was diffuse in the male internal genitalia, whose peripheral cells seemed degraded. Overall, these results indicate that NlPCE3 is important for reproduction in male N. lugens.
Collapse
|
13
|
Pitnick S, Wolfner MF, Dorus S. Post-ejaculatory modifications to sperm (PEMS). Biol Rev Camb Philos Soc 2020; 95:365-392. [PMID: 31737992 PMCID: PMC7643048 DOI: 10.1111/brv.12569] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 10/12/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Abstract
Mammalian sperm must spend a minimum period of time within a female reproductive tract to achieve the capacity to fertilize oocytes. This phenomenon, termed sperm 'capacitation', was discovered nearly seven decades ago and opened a window into the complexities of sperm-female interaction. Capacitation is most commonly used to refer to a specific combination of processes that are believed to be widespread in mammals and includes modifications to the sperm plasma membrane, elevation of intracellular cyclic AMP levels, induction of protein tyrosine phosphorylation, increased intracellular Ca2+ levels, hyperactivation of motility, and, eventually, the acrosome reaction. Capacitation is only one example of post-ejaculatory modifications to sperm (PEMS) that are widespread throughout the animal kingdom. Although PEMS are less well studied in non-mammalian taxa, they likely represent the rule rather than the exception in species with internal fertilization. These PEMS are diverse in form and collectively represent the outcome of selection fashioning complex maturational trajectories of sperm that include multiple, sequential phenotypes that are specialized for stage-specific functionality within the female. In many cases, PEMS are critical for sperm to migrate successfully through the female reproductive tract, survive a protracted period of storage, reach the site of fertilization and/or achieve the capacity to fertilize eggs. We predict that PEMS will exhibit widespread phenotypic plasticity mediated by sperm-female interactions. The successful execution of PEMS thus has important implications for variation in fitness and the operation of post-copulatory sexual selection. Furthermore, it may provide a widespread mechanism of reproductive isolation and the maintenance of species boundaries. Despite their possible ubiquity and importance, the investigation of PEMS has been largely descriptive, lacking any phylogenetic consideration with regard to divergence, and there have been no theoretical or empirical investigations of their evolutionary significance. Here, we (i) clarify PEMS-related nomenclature; (ii) address the evolutionary origin, maintenance and divergence in PEMS in the context of the protracted life history of sperm and the complex, selective environment of the female reproductive tract; (iii) describe taxonomically widespread types of PEMS: sperm activation, chemotaxis and the dissociation of sperm conjugates; (iv) review the occurence of PEMS throughout the animal kingdom; (v) consider alternative hypotheses for the adaptive value of PEMS; (vi) speculate on the evolutionary implications of PEMS for genomic architecture, sexual selection, and reproductive isolation; and (vii) suggest fruitful directions for future functional and evolutionary analyses of PEMS.
Collapse
Affiliation(s)
- Scott Pitnick
- Department of Biology, Center for Reproductive Evolution, Syacuse University, Syracuse, NY 13244, USA
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Steve Dorus
- Department of Biology, Center for Reproductive Evolution, Syacuse University, Syracuse, NY 13244, USA
| |
Collapse
|
14
|
Go A, Alhazmi D, Civetta A. Altered expression of cell adhesion genes and hybrid male sterility between subspecies ofDrosophila pseudoobscura. Genome 2019; 62:657-663. [DOI: 10.1139/gen-2019-0066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Drosophila pseudoobscura pseudoobscura and Drosophila pseudoobscura bogotana are two closely related subspecies with incomplete reproductive isolation. A genome-wide comparison of expression in hybrids relative to parental subspecies has been previously used to identify genes with significant changes in expression uniquely associated with the sterile condition. The misexpression (i.e., gene expression beyond levels found in parentals) of such genes could be directly linked to the onset of sterility or could alternatively be caused by incompatibilities in a hybrid genome without a direct link to sterility. Cell adhesion was previously found to be one of the largest gene ontologies with changes in expression linked to sterility. Here we used gene expression assays in fertile backcross male progeny, along with introgression progeny in which we swap a major hybrid male sterility (HMS) allele, to generate fertile and sterile males genotypically similar to F1sterile hybrids. We identify a cell adhesion gene (GA10921) whose change in expression is directly linked to sterility and modulated by a previously characterized HMS protein. GA10921 adds to our rather limited knowledge of changes in gene expression associated with HMS, and to the identification of gene interacting partners linked to HMS.
Collapse
Affiliation(s)
- Alwyn Go
- Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
- Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - Doaa Alhazmi
- Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
- Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - Alberto Civetta
- Department of Biology, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| |
Collapse
|
15
|
Garcia ASG, Scudeler EL, Pinheiro PFF, Dos Santos DC. Can exposure to neem oil affect the spermatogenesis of predator Ceraeochrysa claveri? PROTOPLASMA 2019; 256:693-701. [PMID: 30460415 DOI: 10.1007/s00709-018-1329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Novel biological control methods and integrated pest management strategies are basic requirements for the development of sustainable agriculture. As a result, there is a growing demand for research on the use of plant extracts and natural enemies such as the green lacewing, Ceraeochrysa claveri, as natural pest control methods. Studies have shown that although natural compounds such as neem oil (Azadirachta indica) are effective as pest control strategies, they also cause sublethal effects on nontarget insects, such as C. claveri. The aim of this study was to examine the effects of neem oil on C. claveri testes. C. claveri larvae were fed Diatraea saccharalis eggs, which were pretreated with 0.5%, 1%, and 2% neem oil. Testes were collected from larvae, pupae, and adults and analyzed using light and electron (transmission and scanning) microscopy. Changes in cellular stress and possible cell death were also determined by TUNEL assay and the marker HSP-70. The results showed that neem oil affects the organization and distribution of cysts in the testes and the normal sequence of cyst development, causing a delay in spermatogenesis in the testes of treated insects. Tests for cellular stress and DNA fragmentation indicated there was no cellular alteration in the treated groups. Although neem oil does not induce cell death or changes in HSP-70 expression, this biopesticide negatively impacts the process of spermatogenesis and could decrease the perpetuation of this species in the agroecosystem, indicating that the use of neem oil in association with green lacewings as a biological control should be carefully evaluated.
Collapse
Affiliation(s)
- Ana Silvia Gimenes Garcia
- Laboratory of Insects, Department of Morphology, Institute of Biosciences of Botucatu, UNESP - São Paulo State University, Botucatu, SP, 18618-689, Brazil
| | - Elton Luiz Scudeler
- Laboratory of Insects, Department of Morphology, Institute of Biosciences of Botucatu, UNESP - São Paulo State University, Botucatu, SP, 18618-689, Brazil
| | | | - Daniela Carvalho Dos Santos
- Laboratory of Insects, Department of Morphology, Institute of Biosciences of Botucatu, UNESP - São Paulo State University, Botucatu, SP, 18618-689, Brazil.
- Electron Microscopy Center, Institute of Biosciences of Botucatu, UNESP - São Paulo State University, Botucatu, SP, Brazil.
| |
Collapse
|
16
|
Testes Proteases Expression and Hybrid Male Sterility Between Subspecies of Drosophila pseudoobscura. G3-GENES GENOMES GENETICS 2019; 9:1065-1074. [PMID: 30723102 PMCID: PMC6469408 DOI: 10.1534/g3.119.300580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hybrid male sterility (HMS) is a form of postmating postzygotic isolation among closely related species that can act as an effective barrier to gene flow. The Dobzhansky-Muller model provides a framework to explain how gene interactions can cause HMS between species. Genomics highlights the preponderance of non-coding DNA targets that could be involved in gene interactions resulting in gene expression changes and the establishment of isolating barriers. However, we have limited knowledge of changes in gene expression associated with HMS, gene interacting partners linked to HMS, and whether substitutions in DNA regulatory regions (cis) causes misexpression (i.e., expression of genes beyond levels found in parental species) of HMS genes in sterile hybrids. A previous transcriptome survey in a pair of D. pseudoobscura species found male reproductive tract (MRT) proteases as the largest class of genes misregulated in sterile hybrids. Here we assay gene expression in backcross (BC) and introgression (IG) progeny, along with site of expression within the MRT, to identify misexpression of proteases that might directly contribute to HMS. We find limited evidence of an accumulation of cis-regulatory changes upstream of such candidate HMS genes. The expression of four genes was differentially modulated by alleles of the previously characterized HMS gene Ovd.
Collapse
|
17
|
Stephens K, Cardullo RA, Thaler CD. Culex pipiens sperm motility is initiated by a trypsin-like protease from male accessory glands. Mol Reprod Dev 2018; 85:440-448. [PMID: 29575187 DOI: 10.1002/mrd.22980] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/14/2018] [Indexed: 11/07/2022]
Abstract
In most animals, sperm are stored in a quiescent state in the male reproductive tract and only initiate motility when released into either the female reproductive tract, or, in the case of broadcast spawners, the external environment. Male accessory gland secretions transferred into the female reproductive tract may provide factors that modulate sperm viability and storage, or aid in sperm competition, as well as activate sperm motility. In several insects, serine proteases have been implicated in activating sperm motility. Our previous studies have shown that, in Culex quinquefasciatus, either a male accessory gland extract or purified trypsin is sufficient to initiate sperm motility in vitro. The objective of this study was to identify and characterize trypsin-like enzymes produced in the Culex male accessory glands. Mass spectrometry was used to analyze accessory gland proteins and this preliminary proteomic analysis identified 4 trypsin-like proteases (trypsin, trypsin4, and two trypsin7 isoforms). When measured with the chromogenic trypsin substrate Na -benzoyl-L-arginine-ethyl-ester-hydrochloride (BAEE), trypsin-like protease activity in the accessory glands was robust, with a pH optimum of 8. The pH range for the Culex trypsin activity was substantially narrower than a mammalian homologue (porcine pancreatic trypsin). A soybean trypsin inhibitor (SBTI) -agarose affinity column was used to independently identify trypsin-like accessory gland proteins. Several proteins were enriched in the eluate, as detected by silver staining of SDS-PAGE gels. Taken together, these data demonstrate the presence of trypsin-like activity and several trypsin-like proteins in the Culex male accessory glands.
Collapse
Affiliation(s)
- Kimberly Stephens
- Department of Entomology, University of California, Riverside, California
| | - Richard A Cardullo
- Department of Entomology, University of California, Riverside, California.,Department of Biology, University of California, Riverside, California
| | | |
Collapse
|
18
|
Gotoh A, Shigenobu S, Yamaguchi K, Kobayashi S, Ito F, Tsuji K. Transcriptome characterization of male accessory glands in ants to identify molecules involved in their reproductive success. INSECT MOLECULAR BIOLOGY 2018; 27:212-220. [PMID: 29226989 DOI: 10.1111/imb.12364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In insects, seminal fluid proteins that are produced by male accessory glands and transferred to females during mating have key functions in sperm competition and sperm physiology that lead to male reproductive success. In ants, male reproductive success also depends on the longevity of sperm stored in the queen's spermatheca because their sexual offspring are usually produced only after a prolonged storage period. We identified genes that were up-regulated in the male accessory glands relative to the bodies of Crematogaster osakensis to characterize the reproductive molecules associated with male reproductive success in ants. We found novel genes that had no hits in a homology search and that were predominantly expressed in the accessory glands. These reproductive proteins may have evolved under rapid positive selection for reproductive success in the species. Furthermore, we discovered that three spermatheca-specific genes of C. osakensis queens were also enriched in the accessory glands relative to the bodies of males. These genes may be important for maintaining the sperm quality continuously from ejaculation by males to prolonged storage by queens. This research provides crucial information about the molecular mechanisms of sperm maintenance and sexual selection in ants, and also insight into the evolution of reproductive strategies in insects.
Collapse
Affiliation(s)
- A Gotoh
- Department of Biology, Faculty of Science and Engineering and Institute for Integrative Neurobiology, Konan University, Kobe, Japan
| | - S Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - K Yamaguchi
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Japan
| | - S Kobayashi
- Life Science Center of Tsukuba Advanced Research Alliance (TARA Center), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - F Ito
- Faculty of Agriculture, Kagawa University, Ikenobe, Miki, Japan
| | - K Tsuji
- Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Okinawa, Nishihara, Japan
| |
Collapse
|
19
|
Whittington E, Forsythe D, Borziak K, Karr TL, Walters JR, Dorus S. Contrasting patterns of evolutionary constraint and novelty revealed by comparative sperm proteomic analysis in Lepidoptera. BMC Genomics 2017; 18:931. [PMID: 29197336 PMCID: PMC5712127 DOI: 10.1186/s12864-017-4293-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/13/2017] [Indexed: 12/25/2022] Open
Abstract
Background Rapid evolution is a hallmark of reproductive genetic systems and arises through the combined processes of sequence divergence, gene gain and loss, and changes in gene and protein expression. While studies aiming to disentangle the molecular ramifications of these processes are progressing, we still know little about the genetic basis of evolutionary transitions in reproductive systems. Here we conduct the first comparative analysis of sperm proteomes in Lepidoptera, a group that exhibits dichotomous spermatogenesis, in which males produce a functional fertilization-competent sperm (eupyrene) and an incompetent sperm morph lacking nuclear DNA (apyrene). Through the integrated application of evolutionary proteomics and genomics, we characterize the genomic patterns potentially associated with the origination and evolution of this unique spermatogenic process and assess the importance of genetic novelty in Lepidopteran sperm biology. Results Comparison of the newly characterized Monarch butterfly (Danaus plexippus) sperm proteome to those of the Carolina sphinx moth (Manduca sexta) and the fruit fly (Drosophila melanogaster) demonstrated conservation at the level of protein abundance and post-translational modification within Lepidoptera. In contrast, comparative genomic analyses across insects reveals significant divergence at two levels that differentiate the genetic architecture of sperm in Lepidoptera from other insects. First, a significant reduction in orthology among Monarch sperm genes relative to the remainder of the genome in non-Lepidopteran insect species was observed. Second, a substantial number of sperm proteins were found to be specific to Lepidoptera, in that they lack detectable homology to the genomes of more distantly related insects. Lastly, the functional importance of Lepidoptera specific sperm proteins is broadly supported by their increased abundance relative to proteins conserved across insects. Conclusions Our results identify a burst of genetic novelty amongst sperm proteins that may be associated with the origin of heteromorphic spermatogenesis in ancestral Lepidoptera and/or the subsequent evolution of this system. This pattern of genomic diversification is distinct from the remainder of the genome and thus suggests that this transition has had a marked impact on lepidopteran genome evolution. The identification of abundant sperm proteins unique to Lepidoptera, including proteins distinct between specific lineages, will accelerate future functional studies aiming to understand the developmental origin of dichotomous spermatogenesis and the functional diversification of the fertilization incompetent apyrene sperm morph. Electronic supplementary material The online version of this article (10.1186/s12864-017-4293-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emma Whittington
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Desiree Forsythe
- Science Education and Society, University of Rhode Island, Kingston, RI, USA
| | - Kirill Borziak
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Timothy L Karr
- Ecology and Evolutionary Biology, Kansas University, Lawrence, KS, USA
| | - James R Walters
- Department of Genomics and Genetic Resources, Kyoto Institute of Technology. Saga Ippon-cho, Ukyo-ku, Kyoto, Japan
| | - Steve Dorus
- Center for Reproductive Evolution, Department of Biology, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
20
|
Gotoh A, Shigenobu S, Yamaguchi K, Kobayashi S, Ito F, Tsuji K. Transcriptome profiling of the spermatheca identifies genes potentially involved in the long-term sperm storage of ant queens. Sci Rep 2017; 7:5972. [PMID: 28729606 PMCID: PMC5519678 DOI: 10.1038/s41598-017-05818-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/02/2017] [Indexed: 12/15/2022] Open
Abstract
Females of social Hymenoptera only mate at the beginning of their adult lives and produce offspring until their death. In most ant species, queens live for over a decade, indicating that ant queens can store large numbers of spermatozoa throughout their long lives. To reveal the prolonged sperm storage mechanisms, we identified enriched genes in the sperm-storage organ (spermatheca) relative to those in body samples in Crematogaster osakensis queens using the RNA-sequencing method. The genes encoding antioxidant enzymes, proteases, and extracellular matrix-related genes, and novel genes that have no similar sequences in the public databases were identified. We also performed differential expression analyses between the virgin and mated spermathecae or between the spermathecae at 1-week and 1-year after mating, to identify genes altered by the mating status or by the sperm storage period, respectively. Gene Ontology enrichment analyses suggested that antioxidant function is enhanced in the spermatheca at 1-week after mating compared with the virgin spermatheca and the spermatheca at 1-year after mating. In situ hybridization analyses of 128 selected contigs revealed that 12 contigs were particular to the spermatheca. These genes have never been reported in the reproductive organs of insect females, suggesting specialized roles in ant spermatheca.
Collapse
Affiliation(s)
- Ayako Gotoh
- Department of Biology, Faculty of Science and Engineering and Institute for Integrative Neurobiology, Konan University, 8-9-1 Okamoto, Higashinada-ku, Kobe, 658-8501, Japan.
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, 444-8585, Japan
- Department of Basic Biology, Faculty of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, 444-8585, Japan
| | - Katsushi Yamaguchi
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, 444-8585, Japan
| | - Satoru Kobayashi
- Life Science Center of Tsukuba Advanced Research Alliance (TARA Center), University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Fuminori Ito
- Faculty of Agriculture, Kagawa University, Ikenobe, Miki, 761-0795, Japan
| | - Kazuki Tsuji
- Department of Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan
| |
Collapse
|
21
|
Nagaoka S, Asagoshi M, Kato K, Takata Y. Success in the acquisition of Bombyx mori sperm motility is influenced by the extracellular production of nitric oxide (NO) in the presence of seminal fluid nitric oxide synthase (NOS). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 84:40-47. [PMID: 28414175 DOI: 10.1016/j.ibmb.2017.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/10/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
A trypsin-like protease called initiatorin is known to initiate sperm motility in the silkworm, Bombyx mori, but little is known about the signaling events leading to sperm flagellar beating. The aim of this study was to investigate whether this mechanism of sperm motility activation involves the signaling transmitter nitric oxide (NO). NO is produced from the amino acid L-arginine by the enzyme action of nitric oxide synthase (NOS; EC 1.14.13.39). Simple treatment of quiescent sperm with an NO donor (SNAP or NOC7) in vitro did not lead to activation of motility. Nevertheless, initiatorin- or trypsin-induced motility was blocked by pretreatment of sperm with either the NOS inhibitor L-NAME or NO scavenger carboxy-PTIO. These observations suggested that NO may play important physiological roles in the acquisition of sperm motility under the in vitro condition used here. Then, we investigated whether NO synthesis would occur in the spermatophore, a capsule containing spermatozoa that is created by the contents of various male reproductive glands and is the site of sperm maturation. The amounts of NO2- and NO3-, stable metabolites of NO, reached maximum values after enclosure in the spermatophore, a time when apyrene spermatozoa acquire vigorous motility. Moreover, RT-PCR and Western blotting analyses of NOS indicated that it is abundantly expressed in glandula (g.) lacteola of the virgin male ejaculatory duct, from which it is secreted to the seminal fluid and transferred to the female during mating. Previous studies demonstrated that free L-arginine is supplied de novo by a specific proteolytic reaction in which initiatorin participates during spermatophore formation (Osanai et al., 1987c). Based on these results, it can be presumed that the mixing of seminal fluid contents from each male reproductive organ during ejaculation induced NO production outside of the spermatid, and exogenous NO stimulated a signaling pathway involved in the activation of silkworm apyrene sperm.
Collapse
Affiliation(s)
- Sumiharu Nagaoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research Promotion (CAIRP), Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Maiko Asagoshi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Keita Kato
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yuki Takata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
22
|
Dzyuba V, Słowińska M, Cosson J, Ciereszko A, Boryshpolets S, Štĕrba J, Rodina M, Linhart O, Dzyuba B. Characterization of proteolytic and anti-proteolytic activity involvement in sterlet spermatozoon maturation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1755-1766. [PMID: 27401784 DOI: 10.1007/s10695-016-0255-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/16/2016] [Indexed: 06/06/2023]
Abstract
In sturgeon, the acquisition of the potential for motility activation called spermatozoon maturation takes place outside testes. This process can be accomplished in vitro by pre-incubation of immature testicular spermatozoa in seminal fluid collected from fully mature Wolffian duct sperm. Addition of trypsin inhibitor to the pre-incubation medium disrupts spermatozoon maturation. There are no available data for the role of proteolysis regulators in fish spermatozoon maturation, while their role is recognized in mammalian sperm maturation. The present study evaluated the involvement of seminal fluid proteases and anti-proteolytic activity in the sterlet spermatozoon maturation process. Casein and gelatin zymography and quantification of amidase and anti-proteolytic activity were conducted in sturgeon seminal fluid from Wolffian duct sperm and seminal fluid from testicular sperm, along with spermatozoon extracts from Wolffian duct spermatozoa, testicular spermatozoa, and testicular spermatozoa after in vitro maturation. We did not find significant differences in proteolytic profiles of seminal fluids from Wolffian duct sperm and ones from testicular sperm. Zymography revealed differences in spermatozoon extracts: Wolffian duct spermatozoon extracts were characterized by the presence of a broad proteolytic band ranging from 48 to 41 kDa, while testicular spermatozoon extracts did not show such activity until after in vitro maturation. The differences in amidase activity coincided with these results. It may not be the levels of proteolytic and anti-proteolytic activity per se, but the alterations in their interactions triggering a cascade of signaling events, that is crucial to the maturation process.
Collapse
Affiliation(s)
- Viktoriya Dzyuba
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25, Vodnany, Czech Republic.
| | - Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748, Olsztyn, Poland
| | - Jacky Cosson
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748, Olsztyn, Poland
| | - Sergii Boryshpolets
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Ján Štĕrba
- Institute of Chemistry and Biochemistry, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic
- Institute of Parasitology, Biology Centre of ASCR, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Marek Rodina
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Otomar Linhart
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| | - Borys Dzyuba
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| |
Collapse
|
23
|
Subala SP, Shivakumar MS. Circadian variation affects the biology and digestive profiles of a nocturnal insectSpodoptera litura(Insecta: Lepidoptera). BIOL RHYTHM RES 2016. [DOI: 10.1080/09291016.2016.1251928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
Noh S, Marshall JL. Sorted gene genealogies and species-specific nonsynonymous substitutions point to putative postmating prezygotic isolation genes in Allonemobius crickets. PeerJ 2016; 4:e1678. [PMID: 26893965 PMCID: PMC4756749 DOI: 10.7717/peerj.1678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/14/2016] [Indexed: 12/19/2022] Open
Abstract
In the Allonemobius socius complex of crickets, reproductive isolation is primarily accomplished via postmating prezygotic barriers. We tested seven protein-coding genes expressed in the male ejaculate for patterns of evolution consistent with a putative role as postmating prezygotic isolation genes. Our recently diverged species generally lacked sequence variation. As a result, ω-based tests were only mildly successful. Some of our genes showed evidence of elevated ω values on the internal branches of gene trees. In a couple of genes, these internal branches coincided with both species branching events of the species tree, between A. fasciatus and the other two species, and between A. socius and A. sp. nov. Tex. In comparison, more successful approaches were those that took advantage of the varying degrees of lineage sorting and allele sharing among our young species. These approaches were particularly powerful within the contact zone. Among the genes we tested we found genes with genealogies that indicated relatively advanced degrees of lineage sorting across both allopatric and contact zone alleles. Within a contact zone between two members of the species complex, only a subset of genes maintained allelic segregation despite evidence of ongoing gene flow in other genes. The overlap in these analyses was arginine kinase (AK) and apolipoprotein A-1 binding protein (APBP). These genes represent two of the first examples of sperm maturation, capacitation, and motility proteins with fixed non-synonymous substitutions between species-specific alleles that may lead to postmating prezygotic isolation. Both genes express ejaculate proteins transferred to females during copulation and were previously identified through comparative proteomics. We discuss the potential function of these genes in the context of the specific postmating prezygotic isolation phenotype among our species, namely conspecific sperm precedence and the superior ability of conspecific males to induce oviposition in females.
Collapse
Affiliation(s)
- Suegene Noh
- Department of Biology, Washington University in St. Louis , St. Louis, MO , United States
| | - Jeremy L Marshall
- Department of Entomology, Kansas State University , Manhattan, KS , United States
| |
Collapse
|
25
|
Hybrid male sterility and genome-wide misexpression of male reproductive proteases. Sci Rep 2015; 5:11976. [PMID: 26146165 PMCID: PMC4491705 DOI: 10.1038/srep11976] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/12/2015] [Indexed: 11/16/2022] Open
Abstract
Hybrid male sterility is a common barrier to gene flow between species. Previous studies have posited a link between misregulation of spermatogenesis genes in interspecies hybrids and sterility. However, in the absence of fully fertile control hybrids, it is impossible to differentiate between misregulation associated with sterility vs. fast male gene regulatory evolution. Here, we differentiate between these two possibilities using a D. pseudoobscura species pair that experiences unidirectional hybrid sterility. We identify genes uniquely misexpressed in sterile hybrid male reproductive tracts via RNA-seq. The sterile male hybrids had more misregulated and more over or under expressed genes relative to parental species than the fertile male hybrids. Proteases were the only gene ontology class overrepresented among uniquely misexpressed genes, with four located within a previously identified hybrid male sterility locus. This result highlights the potential role of a previously unexplored class of genes in interspecific hybrid male sterility and speciation.
Collapse
|
26
|
Whittington E, Zhao Q, Borziak K, Walters JR, Dorus S. Characterisation of the Manduca sexta sperm proteome: Genetic novelty underlying sperm composition in Lepidoptera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 62:183-193. [PMID: 25731083 DOI: 10.1016/j.ibmb.2015.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 06/04/2023]
Abstract
The application of mass spectrometry based proteomics to sperm biology has greatly accelerated progress in understanding the molecular composition and function of spermatozoa. To date, these approaches have been largely restricted to model organisms, all of which produce a single sperm morph capable of oocyte fertilisation. Here we apply high-throughput mass spectrometry proteomic analysis to characterise sperm composition in Manduca sexta, the tobacco hornworm moth, which produce heteromorphic sperm, including one fertilisation competent (eupyrene) and one incompetent (apyrene) sperm type. This resulted in the high confidence identification of 896 proteins from a co-mixed sample of both sperm types, of which 167 are encoded by genes with strict one-to-one orthology in Drosophila melanogaster. Importantly, over half (55.1%) of these orthologous proteins have previously been identified in the D. melanogaster sperm proteome and exhibit significant conservation in quantitative protein abundance in sperm between the two species. Despite the complex nature of gene expression across spermatogenic stages, a significant correlation was also observed between sperm protein abundance and testis gene expression. Lepidopteran-specific sperm proteins (e.g., proteins with no homology to proteins in non-Lepidopteran taxa) were present in significantly greater abundance on average than those with homology outside the Lepidoptera. Given the disproportionate production of apyrene sperm (96% of all mature sperm in Manduca) relative to eupyrene sperm, these evolutionarily novel and highly abundant proteins are candidates for possessing apyrene-specific functions. Lastly, comparative genomic analyses of testis-expressed, ovary-expressed and sperm genes identified a concentration of novel sperm proteins shared amongst Lepidoptera of potential relevance to the evolutionary origin of heteromorphic spermatogenesis. As the first published Lepidopteran sperm proteome, this whole-cell proteomic characterisation will facilitate future evolutionary genetic and developmental studies of heteromorphic sperm production and parasperm function. Furthermore, the analyses presented here provide useful annotation information regarding sex-biased gene expression, novel Lepidopteran genes and gene function in the male gamete to complement the newly sequenced and annotated Manduca genome.
Collapse
Affiliation(s)
| | - Qian Zhao
- Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Kirill Borziak
- Department of Biology, Syracuse University, Syracuse, NY, USA
| | - James R Walters
- Ecology and Evolutionary Biology, Kansas University, Lawrence, KS, USA
| | - Steve Dorus
- Department of Biology, Syracuse University, Syracuse, NY, USA.
| |
Collapse
|
27
|
Thaler CD, Miyata H, Haimo LT, Cardullo RA. Waveform generation is controlled by phosphorylation and swimming direction is controlled by Ca2+ in sperm from the mosquito Culex quinquefasciatus. Biol Reprod 2013; 89:135. [PMID: 24108305 DOI: 10.1095/biolreprod.113.109488] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Most animal sperm are quiescent in the male reproductive tract and become activated after mixing with accessory secretions from the male and/or female reproductive tract. Sperm from the mosquito Culex quinquefasciatus initiate flagellar motility after mixing with male accessory gland components, and the sperm flagellum displays three distinct motility patterns over time: a low amplitude, a long wavelength form (Wave A), a double waveform consisting of two superimposed waveforms over the length of the flagellum (Wave B), and finally, a single helical waveform that propels the sperm at high velocity (Wave C). This flagellar behavior is replicated by treating quiescent sperm with trypsin. When exposed to either broad spectrum or tyrosine kinase inhibitors, sperm activated by accessory gland secretions exhibited motility through Wave B but were unable to progress to Wave C. The MEK1/2 inhibitor UO126 and the ERK1/2 inhibitor FR180204 each blocked the transition from Wave B to Wave C, indicating a role for MAPK activity in the control of waveform and, accordingly, progressive movement. Furthermore, a MAPK substrate antibody stained the flagellum of activated sperm. In the absence of extracellular Ca(2+), a small fraction of sperm swam backwards, whereas most could not be activated by either accessory glands or trypsin and were immotile. However, the phosphatase inhibitor okadaic acid in the absence of extracellular Ca(2+) induced all sperm to swim backwards with a flagellar waveform similar to Wave A. These results indicate that flagellar waveform generation and direction of motility are controlled by protein phosphorylation and Ca(2+) levels, respectively.
Collapse
Affiliation(s)
- Catherine D Thaler
- Department of Biology, University of California, Riverside, Riverside, California
| | | | | | | |
Collapse
|
28
|
Simmons LW, Tan YF, Millar AH. Sperm and seminal fluid proteomes of the field cricket Teleogryllus oceanicus: identification of novel proteins transferred to females at mating. INSECT MOLECULAR BIOLOGY 2013; 22:115-130. [PMID: 23211034 DOI: 10.1111/imb.12007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Reproductive proteins are amongst the most evolutionarily divergent proteins known, and research on genetically well-characterized species suggests that postcopulatory sexual selection might be important in their evolution; however, we lack the taxonomic breadth of information on reproductive proteins that is required to determine the general importance of sexual selection for their evolution. We used transcriptome sequencing and proteomics to characterize the sperm and seminal fluid proteins of a cricket, Teleogryllus oceanicus, that has been widely used in the study of postcopulatory sexual selection. We identified 57 proteins from the sperm of these crickets. Many of these had predicted function in glycolysis and metabolism, or were structural, and had sequence similarity to sperm proteins found across taxa ranging from flies to humans. We identified 21 seminal fluid proteins, some of which resemble those found to be involved in postmating changes to female reproduction in other species. Some 27% of sperm proteins and 48% of seminal fluid proteins were of unknown function. The characterization of seminal fluid proteins in this species will allow us to explore their adaptive significance, and to contribute comparative data that will facilitate a general appreciation of the evolution of reproductive proteins within and among animal taxa.
Collapse
Affiliation(s)
- L W Simmons
- Centre for Evolutionary Biology, The University of Western Australia, Crawley, WA, Australia.
| | | | | |
Collapse
|
29
|
Laflamme BA, Wolfner MF. Identification and function of proteolysis regulators in seminal fluid. Mol Reprod Dev 2012; 80:80-101. [PMID: 23109270 DOI: 10.1002/mrd.22130] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/20/2012] [Indexed: 01/17/2023]
Abstract
Proteins in the seminal fluid of animals with internal fertilization effect numerous responses in mated females that impact both male and female fertility. Among these proteins is the highly represented class of proteolysis regulators (proteases and their inhibitors). Though proteolysis regulators have now been identified in the seminal fluid of all animals in which proteomic studies of the seminal fluid have been conducted (as well as several other species in which they have not), a unified understanding of the importance of proteolysis to male fertilization success and other reproductive processes has not yet been achieved. In this review, we provide an overview of the identification of proteolysis regulators in the seminal fluid of humans and Drosophila melanogaster, the two species with the most comprehensively known seminal fluid proteomes. We also highlight reports demonstrating the functional significance of specific proteolysis regulators in reproductive and post-mating processes. Finally, we make broad suggestions for the direction of future research into the roles of both active seminal fluid proteolysis regulators and their inactive homologs, another significant class of seminal fluid proteins. We hope that this review aids researchers in pursuing a coordinated study of the functional significance of proteolysis regulators in semen.
Collapse
Affiliation(s)
- Brooke A Laflamme
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
30
|
Nagaoka S, Kato K, Takata Y, Kamei K. Identification of the sperm-activating factor initiatorin, a prostatic endopeptidase of the silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:571-582. [PMID: 22575161 DOI: 10.1016/j.ibmb.2012.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 03/16/2012] [Accepted: 04/07/2012] [Indexed: 05/31/2023]
Abstract
Male Bombyx mori has a trypsin-type protease, called initiatorin, in the secretion from the posterior segment of the ejaculatory duct that is thought to be involved in the acquisition of sperm motility, although this inference remains to be demonstrated. Here, we revised the experimental procedures including that for purification and definitely identified the purified initiatorin protein as an activation factor of B. mori sperm by an in vitro study in which we treated isolated spermatozoa with this enzyme. Analysis of cDNA revealed that initiatorin consists of 281 amino acids with sequence similarity to bovine trypsin, and is highly homologous to the ejaculated accessory gland proteins not only of other Lepidoptera but also of Orthoptera. Recombinant initiatorin, expressed in Escherichia coli and purified, also showed proteolytic and sperm-activating activities. RT-PCR and Western blot analyses indicated that initiatorin is abundantly expressed in the glandula (g.) prostatica. It was also shown that pro-initiatorin is synthesized and stored in g. prostatica, and then converted to the mature form upon ejaculation. Fluorogenic peptides with a dibasic sequence were efficiently cleaved by initiatorin, and one such substrate, BOC-Gly-Arg-Arg-MCA, inhibited sperm activation by the extract of g. prostatica. These results delineate the idea that initiatorin has the most suitable protease property as an initiator of the protein degradation cascade in that it releases free arginines, which in turn become an energy resource for sperm motility.
Collapse
Affiliation(s)
- Sumiharu Nagaoka
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto 606-8585, Japan.
| | | | | | | |
Collapse
|
31
|
Miyata H, Thaler CD, Haimo LT, Cardullo RA. Protease activation and the signal transduction pathway regulating motility in sperm from the water strider Aquarius remigis. Cytoskeleton (Hoboken) 2012; 69:207-20. [DOI: 10.1002/cm.21012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 11/12/2022]
|
32
|
Nematode sperm maturation triggered by protease involves sperm-secreted serine protease inhibitor (Serpin). Proc Natl Acad Sci U S A 2012; 109:1542-7. [PMID: 22307610 DOI: 10.1073/pnas.1109912109] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Spermiogenesis is a series of poorly understood morphological, physiological and biochemical processes that occur during the transition of immotile spermatids into motile, fertilization-competent spermatozoa. Here, we identified a Serpin (serine protease inhibitor) family protein (As_SRP-1) that is secreted from spermatids during nematode Ascaris suum spermiogenesis (also called sperm activation) and we showed that As_SRP-1 has two major functions. First, As_SRP-1 functions in cis to support major sperm protein (MSP)-based cytoskeletal assembly in the spermatid that releases it, thereby facilitating sperm motility acquisition. Second, As_SRP-1 released from an activated sperm inhibits, in trans, the activation of surrounding spermatids by inhibiting vas deferens-derived As_TRY-5, a trypsin-like serine protease necessary for sperm activation. Because vesicular exocytosis is necessary to create fertilization-competent sperm in many animal species, components released during this process might be more important modulators of the physiology and behavior of surrounding sperm than was previously appreciated.
Collapse
|
33
|
Nagaoka S, Takata Y, Kato K. Identification of two arginases generated by alternative splicing in the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2011; 76:97-113. [PMID: 21136528 DOI: 10.1002/arch.20407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Arginase (EC 3.5.3.1) catalyzes the hydrolysis of arginine to ornithine and urea. Here, we have cloned two arginase cDNAs from the silkworm, Bombyx mori. The analysis of exon/intron structures showed that the two mRNAs named bmarg-r and bmarg-f were generated from a single gene by alternative usage of exons. The bmarg-r and bmarg-f were predicted to encode almost the same amino acid sequences, except that the latter had additional ten N-terminal residues. Recombinant bmARG-r and bmARG-f in Escherichia coli cell lysates were roughly similar to each other in enzymatic characteristics, which did not show large difference from those of arginases assayed by using tissue extracts. Differential RT-PCR experiments and tissue distribution analyses of arginase activity indicated that the bmarg-r gene is expressed in the male reproductive organs, especially in the glandula lacteola and vesicular seminalis, from which it is secreted to the seminal fluid and transferred to the female during copulation, whereas the bmarg-f gene is expressed in the larval and adult nonreproductive organs including the fat body and muscle, where the produced arginase proteins are considered to stay in the cells. Thus, the two silkworm arginase isoforms may have a difference in whether or not the product is excreted out of the cells in which it is synthesized.
Collapse
Affiliation(s)
- Sumiharu Nagaoka
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan.
| | | | | |
Collapse
|
34
|
White-Cooper H, Bausek N. Evolution and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365:1465-80. [PMID: 20403864 DOI: 10.1098/rstb.2009.0323] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sexual reproduction depends on the production of haploid gametes, and their fusion to form diploid zygotes. Here, we discuss sperm production and function in a molecular and functional evolutionary context, drawing predominantly from studies in model organisms (mice, Drosophila, Caenorhabditis elegans). We consider the mechanisms involved in establishing and maintaining a germline stem cell population in testes, as well as the factors that regulate their contribution to the pool of differentiating cells. These processes involve considerable interaction between the germline and the soma, and we focus on regulatory signalling events in a variety of organisms. The male germline has a unique transcriptional profile, including expression of many testis-specific genes. The evolutionary pressures associated with gene duplication and acquisition of testis function are discussed in the context of genome organization and transcriptional regulation. Post-meiotic differentiation of spermatids involves very dramatic changes in cell shape and acquisition of highly specialized features. We discuss the variety of sperm motility mechanisms and how various reproductive strategies are associated with the diversity of sperm forms found in animals.
Collapse
Affiliation(s)
- Helen White-Cooper
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AT, UK.
| | | |
Collapse
|
35
|
Abstract
The flagellosperm of insects, although following a general ground plan, exhibit considerable variation in morphology and ultrastructure across taxa, consistent with a history of rapid and divergent evolution. Sperm competition, which occurs when sperm of two or more males compete for the fertilization of a female's ova, has been recognized as a significant driving force in the evolution of insect sperm structure. Despite a considerable volume of data on sperm morphology, little is known about the motility of insect sperm. Understanding insect sperm motility would help to refine models of sexual selection on insect sperm, and would throw light on the selective mechanisms that shape insect sperm structure and function. This review updates our present knowledge of the proximate and ultimate aspects of insect sperm motility.
Collapse
Affiliation(s)
- Michael Werner
- Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, Crawley, WA 6009, Australia.
| | | |
Collapse
|
36
|
Allen AK, Spradling AC. The Sf1-related nuclear hormone receptor Hr39 regulates Drosophila female reproductive tract development and function. Development 2007; 135:311-21. [PMID: 18077584 DOI: 10.1242/dev.015156] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vertebrate nuclear hormone receptor steroidogenic factor 1 (SF1; NR5A1) controls reproductive development and regulates the transcription of steroid-modifying cytochrome P450 genes. We find that the SF1-related Drosophila nuclear hormone receptor HR39 is also essential for sexual development. In Hr39 mutant females, the sperm-storing spermathecae and glandular parovaria are absent or defective, causing sterility. Our results indicate that spermathecae and parovaria secrete reproductive tract proteins required for sperm maturation and function, like the mammalian epididymis and female reproductive tract. Hr39 controls the expression of specific cytochrome P450 genes and is required in females both to activate spermathecal secretion and repress male-specific courtship genes such as takeout. Thus, a pathway that, in vertebrates, controls sex-specific steroid hormone production, also mediates reproductive functions in an invertebrate. Our findings suggest that Drosophila can be used to model more aspects of mammalian reproductive biology than previously believed.
Collapse
Affiliation(s)
- Anna K Allen
- Howard Hughes Medical Institute, Department of Embryology, Carnegie Institution, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | | |
Collapse
|
37
|
Panhuis TM, Swanson WJ. Molecular evolution and population genetic analysis of candidate female reproductive genes in Drosophila. Genetics 2006; 173:2039-47. [PMID: 16783023 PMCID: PMC1569687 DOI: 10.1534/genetics.105.053611] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Molecular analyses in several taxa have consistently shown that genes involved in reproduction are rapidly evolving and subjected to positive selection. The mechanism behind this evolution is not clear, but several proposed hypotheses involve the coevolution between males and females. In Drosophila, several male reproductive proteins (Acps) involved in male-male and male-female interactions show evidence of rapid adaptive evolution. What has been missing from the Drosophila literature is the identification and analysis of female reproductive genes. Recently, an evolutionary expressed sequence tag analysis of Drosophila female reproductive tract genes identified 169 candidate female reproductive genes. Many of these candidate genes still await further molecular analysis and independent verification of positive selection. Our goal was to expand our understanding of the molecular evolution of Drosophila female reproductive genes with a detailed polymorphism and divergence study on seven additional candidate female reproductive genes and a reanalysis of two genes from the above study. We demonstrate that 6 candidate female genes of the 9 genes surveyed show evidence of positive selection using both polymorphism and divergence data. One of these proteins (CG17012) is modeled to reveal that the sites under selection fall around and within the active site of this protease, suggesting potential differences between species. We discuss our results in light of potential function as well as interaction with male reproductive proteins.
Collapse
Affiliation(s)
- Tami M Panhuis
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
38
|
Alves L, Mancini K, Lino-Neto J, Dolder H. Morphology of the male reproductive system and sperm ultrastructure of Leucoptera coffeella (Lepidoptera: Lyonetiidae). ACTA ZOOL-STOCKHOLM 2006. [DOI: 10.1111/j.1463-6395.2006.00226.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Arbeitman MN, Fleming AA, Siegal ML, Null BH, Baker BS. A genomic analysis of Drosophila somatic sexual differentiation and its regulation. Development 2004; 131:2007-21. [PMID: 15056610 DOI: 10.1242/dev.01077] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In virtually all animals, males and females are morphologically, physiologically and behaviorally distinct. Using cDNA microarrays representing one-third of Drosophila genes to identify genes expressed sex-differentially in somatic tissues, we performed an expression analysis on adult males and females that: (1) were wild type; (2) lacked a germline; or (3) were mutant for sex-determination regulatory genes. Statistical analysis identified 63 genes sex-differentially expressed in the soma, 20 of which have been confirmed by RNA blots thus far. In situ hybridization experiments with 11 of these genes showed they were sex-differentially expressed only in internal genital organs. The nature of the products these genes encode provides insight into the molecular physiology of these reproductive tissues. Analysis of the regulation of these genes revealed that their adult expression patterns are specified by the sex hierarchy during development, and that doublesex probably functions in diverse ways to set their activities.
Collapse
|
40
|
Ekbote UV, Weaver RJ, Isaac RE. Angiotensin I-converting enzyme (ACE) activity of the tomato moth, Lacanobia oleracea: changes in levels of activity during development and after copulation suggest roles during metamorphosis and reproduction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:989-998. [PMID: 14505692 DOI: 10.1016/s0965-1748(03)00105-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Angiotensin I-converting enzyme (ACE) is a dipeptidyl carboxypeptidase that removes C-terminal dipeptides from relatively short oligopeptides, usually smaller than 15 amino acids. In mammals, the enzyme has several important roles in the metabolism of vasoactive peptides, but its physiological role in insects is not fully understood. We now report the properties of an ACE in a lepidopteran species (the tomato moth, Lacanobia oleracea) and suggest new physiological roles for the enzyme in this insect. ACE activity increases four-fold during the last stadium and in early pupae, a rise which, in its timing, is similar to what has been observed previously in the transition of larva to pupa in Drosophila melanogaster. This suggests that the increase in ACE activity might be of general importance for peptide metabolism during metamorphosis in holometabolous insects. High levels of ACE activity were found in the haemolymph of sixth stadium larvae and adult insects, and in the reproductive tissues of both male and female adults. Almost all of the ACE activity in the reproductive tissues was found in the accessory glands of the male and the spermatheca and bursa copulatrix of the female. The decline in accessory gland ACE in mated males and the concomitant rise in ACE activity in the spermatheca and bursa copulatrix of the female suggested the transfer of ACE from the male to the female during copulation. Using several convenient peptides as substrates, we have shown that the spermatophore/bursa copulatrix taken from mated female insects possess an aminopeptidase, a carboxypeptidase and a dipeptidase, in addition to high levels of ACE. These peptidases might be involved in the breakdown of proteins to peptides and eventually to amino acids in the spermatophore. Evidence for such a proteolytic pathway and its role in providing substrates for the TCA cycle has been obtained previously in a study of reproduction in Bombyx mori.
Collapse
Affiliation(s)
- U V Ekbote
- Molecular and Cellular Biosciences, Faculty of Biological Sciences, University of Leeds, LC Miall Building, Clarendon Way, Leeds LS2 9JT, UK
| | | | | |
Collapse
|
41
|
MANCINI KARINA, DOLDER HEIDI. Sperm morphology and arrangement along the male reproductive tract of the butterflyEuptoieta hegesia(Insecta: Lepidoptera). INVERTEBR REPROD DEV 2003. [DOI: 10.1080/07924259.2003.9652561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|