1
|
Li D, Liu L, Liu ZL, Tian Y, Gao X, Cheng TY. What are the main proteins in the hemolymph of Haemaphysalis flava ticks? Front Vet Sci 2024; 11:1387719. [PMID: 39086760 PMCID: PMC11289883 DOI: 10.3389/fvets.2024.1387719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Background Haemaphysalis flava is a notorious parasite for humans and animals worldwide. The organs of H. flava are bathed in hemolymph, which is a freely circulating fluid. Nutrients, immune factors, and waste can be transported to any part of the body via hemolymph. The main soluble components in hemolymph are proteins. However, knowledge of the H. flava proteome is limited. Methods The hemolymph was collected from fully engorged H. flava ticks by leg amputation. Hemolymph proteins were examined by both blue native polyacrylamide gel electrophoresis (BN-PAGE) and sodium dodecyl sulfate PAGE (SDS-PAGE). Proteins extracted from the gels were further identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results Two bands (380 and 520 kDa) were separated from tick hemolymph by BN-PAGE and were further separated into four bands (105, 120, 130, and 360 kDa) by SDS-PAGE. LC-MS/MS revealed that seven tick proteins and 13 host proteins were present in the four bands. These tick proteins mainly belonged to the vitellogenin (Vg) family and the α-macroglobulin family members. In silico structural analysis showed that these Vg family members all had common conserved domains, including the N-terminus lipid binding domain (LPD-N), the C-terminus von Willebrand type D domain (vWD), and the domain of unknown function (DUF). Additionally, two of the Vg family proteins were determined to belong to the carrier protein (CP) by analyzing the unique N-terminal amino acid sequences and the cleaving sites. Conclusion These findings suggest that the Vg family proteins and α-macroglobulin are the primary constituents of the hemolymph in the form of protein complexes. Our results provide a valuable resource for further functional investigations of H. flava hemolymph effectors and may be useful in tick management.
Collapse
Affiliation(s)
| | | | | | | | | | - Tian-yin Cheng
- Research Center for Parasites and Vectors, College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
2
|
da Silva Vaz Junior I, Lu S, Pinto AFM, Diedrich JK, Yates JR, Mulenga A, Termignoni C, Ribeiro JM, Tirloni L. Changes in saliva protein profile throughout Rhipicephalus microplus blood feeding. Parasit Vectors 2024; 17:36. [PMID: 38281054 PMCID: PMC10821567 DOI: 10.1186/s13071-024-06136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/12/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND When feeding on a vertebrate host, ticks secrete saliva, which is a complex mixture of proteins, lipids, and other molecules. Tick saliva assists the vector in modulating host hemostasis, immunity, and tissue repair mechanisms. While helping the vector to feed, its saliva modifies the site where pathogens are inoculated and often facilitates the infection process. The objective of this study is to uncover the variation in protein composition of Rhipicephalus microplus saliva during blood feeding. METHODS Ticks were fed on calves, and adult females were collected, weighed, and divided in nine weight groups, representing the slow and rapid feeding phases of blood feeding. Tick saliva was collected, and mass spectrometry analyses were used to identify differentially secreted proteins. Bioinformatic tools were employed to predict the structural and functional features of the salivary proteins. Reciprocal best hit analyses were used to identify conserved families of salivary proteins secreted by other tick species. RESULTS Changes in the protein secretion profiles of R. microplus adult female saliva during the blood feeding were observed, characterizing the phenomenon known as "sialome switching." This observation validates the idea that the switch in protein expression may serve as a mechanism for evading host responses against tick feeding. Cattle tick saliva is predominantly rich in heme-binding proteins, secreted conserved proteins, lipocalins, and protease inhibitors, many of which are conserved and present in the saliva of other tick species. Additionally, another remarkable observation was the identification of host-derived proteins as a component of tick saliva. CONCLUSIONS Overall, this study brings new insights to understanding the dynamics of the proteomic profile of tick saliva, which is an important component of tick feeding biology. The results presented here, along with the disclosed sequences, contribute to our understanding of tick feeding biology and might aid in the identification of new targets for the development of novel anti-tick methods.
Collapse
Affiliation(s)
- Itabajara da Silva Vaz Junior
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Stephen Lu
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Antônio F M Pinto
- Clayton Foundation Peptide Biology Lab, Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Jolene K Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - José Marcos Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, USA
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Hamilton, MT, USA.
| |
Collapse
|
3
|
Trabalon M, Garcia CF. Transport pathways of hydrocarbon and free fatty acids to the cuticle in arthropods and hypothetical models in spiders. Comp Biochem Physiol B Biochem Mol Biol 2020; 252:110541. [PMID: 33285310 DOI: 10.1016/j.cbpb.2020.110541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/10/2020] [Accepted: 12/01/2020] [Indexed: 11/26/2022]
Abstract
Cuticular lipids in terrestrial arthropods are not only essential for desiccation resistance; they also play an important role as chemical signals for intra- and interspecific communication (pheromones and kairomones, respectively). Most of the studies on cuticular lipid research was dedicated to one class of arthropods, the insects. This type of research on the class arachnids is poorly developed, and the majority of studies has listed the compounds present in cuticular extracts, and, in some cases, compared the lipid profiles of different life stages (juveniles, adults). Consequently, we reviewed in relation to lipids description, biosynthesis, and transport of spiders. To illustrate a novel concept of lipid transportation, a scheme is now presented to show the hypothetical transport pathways of hydrocarbon and free fatty acids to cuticle in spiders. These concepts are taken from the knowledge of different arachnids to obtain a general illustration on the biosynthesis and transport of hemolymphatic lipids to the cuticle in spider.
Collapse
Affiliation(s)
- Marie Trabalon
- Universite Rennes 1, UMR 6552 CNRS EthoS, 35042 Rennes, France
| | - C Fernando Garcia
- Instituto de Investigaciones Bioquimicas de La Plata "Profesor Doctor Rodolfo R. Brenner", 60 y 120 s/n. La Plata, Buenos Aires, Argentina.
| |
Collapse
|
4
|
Laino A, Cunningham M, Garcia F, Trabalon M. Residual vitellus and energetic state of wolf spiderlings Pardosa saltans after emergence from egg-sac until first predation. J Comp Physiol B 2020; 190:261-274. [PMID: 32078039 DOI: 10.1007/s00360-020-01265-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/10/2020] [Accepted: 02/07/2020] [Indexed: 11/29/2022]
Abstract
The aim of this study was to evaluate energetic source used by juveniles of a terrestrial oviparous invertebrate during the earliest periods of their life. Growth, behavioural activities and energy contents of Pardosa saltans spiderlings' residual vitellus were monitored during 8 days after their emergence from their egg-sac until they disperse autonomously. The life-cycle of juvenile after emergence can be divided into three periods: a gregarious while juveniles are aggregated on their mother, dismounting off their mother's back and dispersion. We present the first biochemical study of residual vitellus and energy expenditure during these three periods. At emergence, the mean weight of juveniles was 0.59 mg and energy stock from residual vitellus averaged 51 cal/g wet mass. During gregarious period, the weight of the juveniles aggregated on their mother did not vary significantly and juveniles utilized only 1 cal/day from their residual vitellus. During the period from dismounting until their first exogenous feed, juveniles lost weight and used 30% of their residual vitellus stock. Proteins from the residual vitellus contributed principally to their energy expenditure during this period: 1.5 µg protein/day. Juveniles' first exogenous feeding was observed 7-8 days after emergence, when 70% of residual vitellus energy had been utilized. Juveniles dispersed after eating, reconstituting an energy stock comparable to that observed at emergence from egg-sac (50 cal/g wet mass). This new energy stock contains mainly lipids unlike the energy stock from the residual vitellus.
Collapse
Affiliation(s)
- A Laino
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner" (INIBIOLP), CCT-La Plata CONICET-UNLP, La Plata, Argentina
| | - M Cunningham
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner" (INIBIOLP), CCT-La Plata CONICET-UNLP, La Plata, Argentina
| | - F Garcia
- Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner" (INIBIOLP), CCT-La Plata CONICET-UNLP, La Plata, Argentina
| | - M Trabalon
- Université de Rennes 1, UMR-6552 CNRS EthoS, Campus de Beaulieu, 263 avenue du Général Leclerc, CS 74205, 35042, Rennes Cedex, France.
| |
Collapse
|
5
|
Feng LL, Liu L, Cheng TY. Proteomic analysis of saliva from partially and fully engorged adult female Rhipicephalus microplus (Acari: Ixodidae). EXPERIMENTAL & APPLIED ACAROLOGY 2019; 78:443-460. [PMID: 31175473 DOI: 10.1007/s10493-019-00390-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
Rhipicephalus microplus salivary gland secretes a number of complex bioactive proteins during feeding. These components are important in feeding and affect anti-coagulation, anti-inflammation and also have anti-microbial effects. In this study, tick saliva was collected from partially engorged female (PEF) and fully engorged female (FEF) ticks. Liquid chromatography tandem-mass spectrometry (LC-MS/MS) and isobaric tags for relative and absolute quantification (iTRAQ) were used to identify and quantify R. microplus salivary proteins. A total of 322 unique peptides were detected and 151 proteins were characterized in both PEF and FEF. Of these, 41 proteins are considered as high-confidence proteins. Fifteen high-confidence proteins were upregulated and six high-confidence proteins were downregulated (p < 0.05; PEF:FEF ratio ≥ 1.2 or PEF:FEF ratio ≤ 0.83); 17 high-confidence proteins are slightly changed (PEF:FEF ratio > 0.83 and < 1.2). These high-confidence proteins are involved in several physiological roles, including egg development, transportation of proteins, immunity and anti-microorganism, anti-coagulant, and adhesion. In comparison with PEF, the number of upregulated proteins exceeded the number of proteins downregulated. Salivary protein may be induced by the blood-meal and these proteins contribute to successful feeding.
Collapse
Affiliation(s)
- Li-Li Feng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
- Hunan Colaborative Innovation Center of Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
| | - Lei Liu
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
- Hunan Colaborative Innovation Center of Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
| | - Tian-Yin Cheng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China.
- Hunan Colaborative Innovation Center of Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China.
| |
Collapse
|
6
|
Antunes S, Couto J, Ferrolho J, Rodrigues F, Nobre J, Santos AS, Santos-Silva MM, de la Fuente J, Domingos A. Rhipicephalus bursa Sialotranscriptomic Response to Blood Feeding and Babesia ovis Infection: Identification of Candidate Protective Antigens. Front Cell Infect Microbiol 2018; 8:116. [PMID: 29780749 PMCID: PMC5945973 DOI: 10.3389/fcimb.2018.00116] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/23/2018] [Indexed: 02/03/2023] Open
Abstract
Ticks are among the most prevalent blood-feeding arthropods, and they act as vectors and reservoirs for numerous pathogens. Sialotranscriptomic characterizations of tick responses to blood feeding and pathogen infections can offer new insights into the molecular interplay occurring at the tick-host-pathogen interface. In the present study, we aimed to identify and characterize Rhipicephalus bursa salivary gland (SG) genes that were differentially expressed in response to blood feeding and Babesia ovis infection. Our experimental approach consisted of RNA sequencing of SG from three different tick samples, fed-infected, fed-uninfected, and unfed-uninfected, for characterization and inter-comparison. Overall, 7,272 expressed sequence tags (ESTs) were constructed from unfed-uninfected, 13,819 ESTs from fed-uninfected, and 15,292 ESTs from fed-infected ticks. Two catalogs of transcripts that were differentially expressed in response to blood feeding and B. ovis infection were produced. Four genes coding for a putative vitellogenin-3, lachesin, a glycine rich protein, and a secreted cement protein were selected for RNA interference functional studies. A reduction of 92, 65, and 51% was observed in vitellogenin-3, secreted cement, and lachesin mRNA levels in SG, respectively. The vitellogenin-3 knockdown led to increased tick mortality, with 77% of ticks dying post-infestation. The reduction of the secreted cement protein-mRNA levels resulted in 46% of ticks being incapable of correctly attaching to the host and significantly lower female weights post-feeding in comparison to the control group. The lachesin knockdown resulted in a 70% reduction of the levels associated with B. ovis infection in R. bursa SG and 70% mortality. These results improved our understanding of the role of tick SG genes in Babesia infection/proliferation and tick feeding. Moreover, lachesin, vitellogenin-3, and secreted cement proteins were validated as candidate protective antigens for the development of novel tick and tick-borne disease control measures.
Collapse
Affiliation(s)
- Sandra Antunes
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.,Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joana Couto
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.,Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Joana Ferrolho
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.,Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Fábio Rodrigues
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - João Nobre
- Instituto Nacional de Investigação Agrária e Veterinária, Pólo de Santarém, Vale de Santarém, Portugal
| | - Ana S Santos
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Centro de Estudos de Vectores e Doenças Infecciosas Dr. Francisco Cambournac (CEVDI/INSA), Águas de Moura, Portugal
| | - M Margarida Santos-Silva
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Centro de Estudos de Vectores e Doenças Infecciosas Dr. Francisco Cambournac (CEVDI/INSA), Águas de Moura, Portugal
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Ana Domingos
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal.,Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
7
|
Kluck GE, Silva Cardoso L, De Cicco NN, Lima MS, Folly E, Atella GC. A new lipid carrier protein in the cattle tick Rhipicephalus microplus. Ticks Tick Borne Dis 2018; 9:850-859. [DOI: 10.1016/j.ttbdis.2018.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/07/2018] [Accepted: 03/09/2018] [Indexed: 02/03/2023]
|
8
|
Seixas A, Alzugaray MF, Tirloni L, Parizi LF, Pinto AFM, Githaka NW, Konnai S, Ohashi K, Yates Iii JR, Termignoni C, da Silva Vaz I. Expression profile of Rhipicephalus microplus vitellogenin receptor during oogenesis. Ticks Tick Borne Dis 2017; 9:72-81. [PMID: 29054547 DOI: 10.1016/j.ttbdis.2017.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/06/2017] [Accepted: 10/06/2017] [Indexed: 12/31/2022]
Abstract
The vitellogenin receptor (VgR), which belongs to the low-density lipoprotein receptors (LDLR) family, regulates the absorption of yolk protein accumulated in developing oocytes during oogenesis. In the present study, the full sequence of Rhipicephalus microplus VgR (RmVgR) and the partial sequence of Rhipicephalus appendiculatus VgR (RaVgR) ORF were determined and cloned. The RmVgR amino acid sequence contains the five highly conserved structural motifs characteristic of LDLR superfamily members, the same overall structure as observed in other species. Phylogenetic analysis separated VgRs in two major groups, corresponding to receptors from acarines and insects. Consistent with observations from other arthropods, RmVgR was specifically expressed in the ovarian tissue and its peak of expression occurs in females that are detaching from the host. Silencing with RmVgR dsRNA reduced VgR expression, which resulted in reduced fertility, evidenced by a decrease in the number of larvae. The present study confirms RmVgR is a specific receptor involved in yolk protein uptake and oocyte maturation in R. microplus, playing an important role in tick reproduction.
Collapse
Affiliation(s)
- Adriana Seixas
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre, RS, 90050-170, Brazil.
| | - María Fernanda Alzugaray
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Prédio 43421, Campus do Vale, Caixa Postal 15005, Porto Alegre, RS, 91501-970, Brazil; Departamento de Microbiología, Facultad de Veterinaria, Universidad de la Republica, Alberto Lasplaces 1550 a 1620, Montevideo, Código Postal 11600, Uruguay.
| | - Lucas Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Prédio 43421, Campus do Vale, Caixa Postal 15005, Porto Alegre, RS, 91501-970, Brazil.
| | - Luis Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Prédio 43421, Campus do Vale, Caixa Postal 15005, Porto Alegre, RS, 91501-970, Brazil.
| | - Antonio Frederico Michel Pinto
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 90037 USA; Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, 90619-900, Brazil
| | - Naftaly Wang'ombe Githaka
- Tick Unit, Animal and Human Health Program, International Livestock Research Institute, P.O. Box 30709-00100, Nairobi, Kenya
| | - Satoru Konnai
- Department of Disease Control, Laboratory of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, 060-0818, Sapporo, Hokkaido, Japan.
| | - Kazuhiko Ohashi
- Department of Disease Control, Laboratory of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, 060-0818, Sapporo, Hokkaido, Japan.
| | - John R Yates Iii
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, 90037 USA.
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Prédio 43421, Campus do Vale, Caixa Postal 15005, Porto Alegre, RS, 91501-970, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Porto Alegre, RS, 90035-003, Brazil.
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Prédio 43421, Campus do Vale, Caixa Postal 15005, Porto Alegre, RS, 91501-970, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9090, Porto Alegre, RS, 91540-000, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Molecular characterization of two vitellogenin genes from the tick, Amblyomma hebraeum (Acari: Ixodidae). Ticks Tick Borne Dis 2014; 5:821-33. [DOI: 10.1016/j.ttbdis.2014.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/16/2014] [Accepted: 06/19/2014] [Indexed: 12/19/2022]
|
10
|
Tirloni L, Reck J, Terra RMS, Martins JR, Mulenga A, Sherman NE, Fox JW, Yates JR, Termignoni C, Pinto AFM, da Silva Vaz I. Proteomic analysis of cattle tick Rhipicephalus (Boophilus) microplus saliva: a comparison between partially and fully engorged females. PLoS One 2014; 9:e94831. [PMID: 24762651 PMCID: PMC3998978 DOI: 10.1371/journal.pone.0094831] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/19/2014] [Indexed: 01/10/2023] Open
Abstract
The cattle tick Rhipicephalus (Boophilus) microplus is one of the most harmful parasites affecting bovines. Similarly to other hematophagous ectoparasites, R. microplus saliva contains a collection of bioactive compounds that inhibit host defenses against tick feeding activity. Thus, the study of tick salivary components offers opportunities for the development of immunological based tick control methods and medicinal applications. So far, only a few proteins have been identified in cattle tick saliva. The aim of this work was to identify proteins present in R. microplus female tick saliva at different feeding stages. Proteomic analysis of R. microplus saliva allowed identifying peptides corresponding to 187 and 68 tick and bovine proteins, respectively. Our data confirm that (i) R. microplus saliva is complex, and (ii) that there are remarkable differences in saliva composition between partially engorged and fully engorged female ticks. R. microplus saliva is rich mainly in (i) hemelipoproteins and other transporter proteins, (ii) secreted cross-tick species conserved proteins, (iii) lipocalins, (iv) peptidase inhibitors, (v) antimicrobial peptides, (vii) glycine-rich proteins, (viii) housekeeping proteins and (ix) host proteins. This investigation represents the first proteomic study about R. microplus saliva, and reports the most comprehensive Ixodidae tick saliva proteome published to date. Our results improve the understanding of tick salivary modulators of host defense to tick feeding, and provide novel information on the tick-host relationship.
Collapse
Affiliation(s)
- Lucas Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - José Reck
- Instituto de Pesquisas Veterinárias Desidério Finamor, Fundação Estadual de Pesquisa Agropecuária, Eldorado do Sul, RS, Brazil
| | - Renata Maria Soares Terra
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
- CAPES, Ministério da Educação do Brasil, Brasília, DF, Brasil
| | - João Ricardo Martins
- Instituto de Pesquisas Veterinárias Desidério Finamor, Fundação Estadual de Pesquisa Agropecuária, Eldorado do Sul, RS, Brazil
| | - Albert Mulenga
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Nicholas E. Sherman
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jay W. Fox
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Antônio F. M. Pinto
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
- CAPES, Ministério da Educação do Brasil, Brasília, DF, Brasil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
11
|
Cabrera AR, Shirk PD, Duehl AJ, Donohue KV, Grozinger CM, Evans JD, Teal PEA. Genomic organization and reproductive regulation of a large lipid transfer protein in the varroa mite, Varroa destructor (Anderson & Trueman). INSECT MOLECULAR BIOLOGY 2013; 22:505-522. [PMID: 23834736 DOI: 10.1111/imb.12040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The complete genomic region and corresponding transcript of the most abundant protein in phoretic varroa mites, Varroa destructor (Anderson & Trueman), were sequenced and have homology with acarine hemelipoglycoproteins and the large lipid transfer protein (LLTP) super family. The genomic sequence of VdLLTP included 14 introns and the mature transcript coded for a predicted polypeptide of 1575 amino acid residues. VdLLTP shared a minimum of 25% sequence identity with acarine LLTPs. Phylogenetic assessment showed VdLLTP was most closely related to Metaseiulus occidentalis vitellogenin and LLTP proteins of ticks; however, no heme binding by VdLLTP was detected. Analysis of lipids associated with VdLLTP showed that it was a carrier for free and esterified C12 -C22 fatty acids from triglycerides, diacylglycerides and monoacylglycerides. Additionally, cholesterol and β-sitosterol were found as cholesterol esters linked to common fatty acids. Transcript levels of VdLLTP were 42 and 310 times higher in phoretic female mites when compared with males and quiescent deutonymphs, respectively. Coincident with initiation of the reproductive phase, VdLLTP transcript levels declined to a third of those in phoretic female mites. VdLLTP functions as an important lipid transporter and should provide a significant RNA interference target for assessing the control of varroa mites.
Collapse
|
12
|
Hamza I, Dailey HA. One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1617-32. [PMID: 22575458 DOI: 10.1016/j.bbamcr.2012.04.009] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/15/2012] [Accepted: 04/19/2012] [Indexed: 12/17/2022]
Abstract
The appearance of heme, an organic ring surrounding an iron atom, in evolution forever changed the efficiency with which organisms were able to generate energy, utilize gasses and catalyze numerous reactions. Because of this, heme has become a near ubiquitous compound among living organisms. In this review we have attempted to assess the current state of heme synthesis and trafficking with a goal of identifying crucial missing information, and propose hypotheses related to trafficking that may generate discussion and research. The possibilities of spatially organized supramolecular enzyme complexes and organelle structures that facilitate efficient heme synthesis and subsequent trafficking are discussed and evaluated. Recently identified players in heme transport and trafficking are reviewed and placed in an organismal context. Additionally, older, well established data are reexamined in light of more recent studies on cellular organization and data available from newer model organisms. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Iqbal Hamza
- Department of Animal & Avian Sciences, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
13
|
Khalil SMS, Donohue KV, Thompson DM, Jeffers LA, Ananthapadmanaban U, Sonenshine DE, Mitchell RD, Roe RM. Full-length sequence, regulation and developmental studies of a second vitellogenin gene from the American dog tick, Dermacentor variabilis. JOURNAL OF INSECT PHYSIOLOGY 2011; 57:400-408. [PMID: 21192946 DOI: 10.1016/j.jinsphys.2010.12.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 12/16/2010] [Accepted: 12/20/2010] [Indexed: 05/30/2023]
Abstract
Vitellogenin (Vg) is the precursor of vitellin (Vn) which is the major yolk protein in eggs. In a previous report, we isolated and characterized the first Vg message from the American dog tick Dermacentor variabilis. In the current study, we describe a second Vg gene from the same tick. The Vg2 cDNA is 5956 nucleotides with a 5775 nt open reading frame coding for 1925 amino acids. The conceptual amino acid translation contains a 16-residues putative signal peptide, N-terminal lipid binding domain and C-terminal von Willebrand factor type D domain present in all known Vgs. Moreover, the amino acid sequence shows a typical GLCG domain and several RXXR cleavage sites present in most isolated Vgs. Tryptic digest-mass fingerprinting of Vg and Vn recognized 11 fragments that exist in the amino acid translation of DvVg2 cDNA. Injection of virgin females with 20 hydroxyecdysone induced DvVg2 expression, vitellogenesis and oviposition. Using RT-PCR, DvVg2 expression was detected only in tick females after mating and feeding to repletion. Northern blot analysis showed that DvVg2 is expressed in fat body and gut cells of vitellogenic females but not in the ovary. DvVg2 expression was not detected in adult fed or unfed males. The characteristics that distinguish Vg from other similar tick storage proteins like the carrier protein, CP (another hemelipoglycoprotein) are discussed.
Collapse
Affiliation(s)
- Sayed M S Khalil
- Department of Entomology, North Carolina State University, Raleigh, NC 27695-7647, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Dupejova J, Sterba J, Vancova M, Grubhoffer L. Hemelipoglycoprotein from the ornate sheep tick, Dermacentor marginatus: structural and functional characterization. Parasit Vectors 2011; 4:4. [PMID: 21214898 PMCID: PMC3022847 DOI: 10.1186/1756-3305-4-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 01/07/2011] [Indexed: 11/25/2022] Open
Abstract
Background Tick carrier proteins are able to bind, transport, and store host-blood heme, and thus they function also as antioxidants. Nevertheless, the role of carrier proteins in ticks is not fully understood. Some of them are found also in tick males which do not feed on hosts to such an extent such as females (there are differences in male feeding in different tick species) and thus they are not dealing with such an excess of heme; some of the carrier proteins were found in salivary glands where the processing of blood and thus release of heme does not occur. Besides, the carrier proteins bind relatively low amounts of heme (in one case only two molecules of heme per protein) compared to their sizes (above 200 kDa). The main aim of this study is the biochemical characterization of a carrier protein from the ornate sheep tick Dermacentor marginatus, hemelipoglycoprotein, with emphasis on its size in native conditions, its glycosylation and identification of its modifying glycans, and examining its carbohydrate-binding specificity. Results Hemelipoglycoprotein from D. marginatus plasma was purified in native state by immunoprecipitation and denatured using electroelution from SDS-PAGE separated plasma. The protein (290 kDa) contains two subunits with molecular weights 100 and 95 kDa. It is glycosylated by high-mannose and complex N-glycans HexNAc2Hex9, HexNAc2Hex10, HexNAc4Hex7, and HexNAc4Hex8. The purified protein is able to agglutinate red blood cells and has galactose- and mannose-binding specificity. The protein is recognized by antibodies directed against plasma proteins with hemagglutination activity and against fibrinogen-related lectin Dorin M from the tick Ornithodoros moubata. It forms high-molecular weight complexes with putative fibrinogen-related proteins and other unknown proteins under native conditions in tick plasma. Feeding does not increase its amounts in male plasma. The hemelipoglycoprotein was detected also in hemocytes, salivary glands, and gut. In salivary glands, the protein was present in both glycosylated and nonglycosylated forms. Conclusion A 290 kDa hemelipoglycoprotein from the tick Dermacentor marginatus, was characterized. The protein has two subunits with 95 and 100 kDa, and bears high-mannose and complex N-linked glycans. In hemolymph, it is present in complexes with putative fibrinogen-related proteins. This, together with its carbohydrate-binding activity, suggests its possible involvement in tick innate immunity. In fed female salivary glands, it was found also in a form corresponding to the deglycosylated protein.
Collapse
Affiliation(s)
- Jarmila Dupejova
- Faculty of Science, University of South Bohemia, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic
| | | | | | | |
Collapse
|
15
|
Boldbaatar D, Umemiya-Shirafuji R, Liao M, Tanaka T, Xuan X, Fujisaki K. Multiple vitellogenins from the Haemaphysalis longicornis tick are crucial for ovarian development. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1587-1598. [PMID: 20576517 DOI: 10.1016/j.jinsphys.2010.05.019] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 05/21/2010] [Accepted: 05/21/2010] [Indexed: 05/29/2023]
Abstract
Ovarian development and egg maturation are crucial processes for the success of reproduction in ticks. Three full-length cDNAs encoding the precursor of major yolk protein, vitellogenin, were obtained from cDNA libraries of the Haemaphysalis longicornis tick and designated as HlVg-1, HlVg-2 and HlVg-3. The HlVg mRNAs were found in fed females with major expression sites in the midgut, fat body and ovary. Native PAGE and Western blot demonstrated that HlVgs in the hemolymph, fat body and ovary of fed females consisted of four major polypeptides. RNAi results showed that HlVg dsRNA-injected ticks obtained lower body weight, egg weight and showed higher mortality of engorged females after blood sucking than control groups. Our results indicate that all HlVgs are essential for egg development and oviposition.
Collapse
Affiliation(s)
- Damdinsuren Boldbaatar
- Department of Frontier Veterinary Science, Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Cabrera AR, Donohue KV, Roe RM. Regulation of female reproduction in mites: a unifying model for the Acari. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:1079-1090. [PMID: 19698719 DOI: 10.1016/j.jinsphys.2009.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 08/11/2009] [Accepted: 08/11/2009] [Indexed: 05/28/2023]
Abstract
It is well established in the literature that circulating high levels of juvenile hormone (JH) are responsible for the initiation of vitellogenesis and female reproduction in most insects studied so far. Exceptions include some Diptera, Lepidoptera and Hymenoptera. The current view is that JH also regulates yolk protein (vitellogenin, Vg) synthesis and female reproduction in mites. However, there is no published evidence that mites have the common insect JHs at any stage of their development. Also, research on the effects of exogenous applications of JH and JH analogs on the reproduction of mites is contradictory. Significant information is available on the life history of mite reproduction, and new information has become available on mite storage proteins including Vg. Although initial studies suggested that ticks may respond to exogenously applied juvenile hormone or anti-JHs, current research shows that ticks cannot synthesize the common insect JHs and have no detectable levels of these hormones in their hemolymph during female reproduction. In ticks, it appears that ecdysteroids, and not JH, regulate expression of the Vg gene and the synthesis and release of Vg protein into the hemolymph. In fact within the Arthropoda, JH has been found only in insects. Methyl farnesoate and not JH regulates Vg synthesis in the Crustacea, the sister group to the insects. Based on this evidence, a new working hypothesis is proposed, i.e., that ecdysteroids and not the JHs regulate vitellogenesis in the Acari including both ticks and mites. To the present, the role of neuropeptides in the regulation of female reproduction in mites is not known.
Collapse
Affiliation(s)
- Ana R Cabrera
- North Carolina State University, Department of Entomology, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
17
|
Cabrera AR, Donohue KV, Khalil SMS, Sonenshine DE, Roe RM. Characterization of vitellin protein in the twospotted spider mite, Tetranychus urticae (Acari: Tetranychidae). JOURNAL OF INSECT PHYSIOLOGY 2009; 55:655-661. [PMID: 19394341 DOI: 10.1016/j.jinsphys.2009.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 04/13/2009] [Accepted: 04/13/2009] [Indexed: 05/27/2023]
Abstract
In mites, vitellogenin synthesis, regulation and uptake by the oocytes as vitellin remain practically unknown. Although a partial sequence of the gene is now available, no previous studies have been conducted that describe the native vitellin protein in mites. The objective of this study was to characterize vitellin in the twospotted spider mite, Tetranychus urticae. The native twospotted spider mite vitellin migrated as a single major band with a molecular weight of 476+/-14.5 kDa as compared to 590+/-25.5 kDa for vitellin from the American dog tick, Dermacentor variabilis. However, isoelectric focusing analysis of native spider mite vitellin showed five bands with pI values slightly acidic to neutral (pH 5.8, 6.2, 6.7, 7.0 and 7.2), as is the case for insect and tick vitellins. Reducing conditions (SDS-PAGE) also revealed multiple subunits ranging from 290.9 to 3.6 kDa and was similar to that found in D. variabilis. Spider mite vitellin weakly bound lipids and carbohydrates compared to the tick. Unlike D. variabilis, the spider mite egg yolk protein does not bind heme. The significance of non-heme binding in mites is discussed.
Collapse
Affiliation(s)
- Ana R Cabrera
- North Carolina State University, Department of Entomology, Campus Box 7613, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
18
|
Donohue KV, Khalil SMS, Sonenshine DE, Roe RM. Heme-binding storage proteins in the Chelicerata. JOURNAL OF INSECT PHYSIOLOGY 2009; 55:287-296. [PMID: 19183556 DOI: 10.1016/j.jinsphys.2009.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 01/02/2009] [Accepted: 01/05/2009] [Indexed: 05/27/2023]
Abstract
Lipoglycoproteins in the Chelicerata that bind and store heme appear to represent a unique evolutionary strategy to both mitigate the toxicity of heme and utilize the molecule as a prosthetic group. Knowledge of heme-binding storage proteins in these organisms is in its infancy and much of what is known is from studies with vitellogenins (Vg) and more recently the main hemolymph storage protein in ixodid ticks characterized as a hemelipoglyco-carrier protein (CP). Data have also been reported from another arachnid, the black widow spider, Latrodectus mirabilis, and seem to suggest that the heme-binding capability of these large multimeric proteins is not a phenomenon found only in the Acari. CP appears to be most closely related to Vg in ticks in terms of primary structure but post-translational processing is different. Tick CP and L. mirabilis high-density lipoprotein 1 (HDL1) are similar in that they consist of two subunits of approximate molecular masses of 90 and 100 kDa, are found in the hemolymph as the dominant protein, and bind lipids, carbohydrates and cholesterol. CP binds heme which may also be the case for HDL1 since the protein was found to contain a brown pigment when analyzed by native polyacrylamide gel electrophoresis. Vgs in ticks are composed of multiple subunits and are the precursor of the yolk protein, vitellin. The phylogeny of these proteins, regulation of gene expression and putative functions of binding and storing heme throughout reproduction, blood-feeding and development are discussed. Comparisons with non-chelicerate arthropods are made in order to highlight the mechanisms and putative functions of heme-binding storage proteins and their possible critical function in the evolution of hematophagy.
Collapse
Affiliation(s)
- Kevin V Donohue
- Department of Entomology, Campus Box 7647, North Carolina State University, Raleigh, NC 27695-7647, USA
| | | | | | | |
Collapse
|
19
|
Donohue KV, Khalil SMS, Mitchell RD, Sonenshine DE, Roe RM. Molecular characterization of the major hemelipoglycoprotein in ixodid ticks. INSECT MOLECULAR BIOLOGY 2008; 17:197-208. [PMID: 18477238 DOI: 10.1111/j.1365-2583.2008.00794.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The major hemelipoglyco-carrier protein (CP) found throughout the development of male and female adult American dog ticks, Dermacentor variabilis (Say) was sequenced. DvCP is a single transcript coding for two protein subunits that together contain three motifs: (1) a lipoprotein n-terminal domain that is a common attribute of proteins that bind lipids, carbohydrates and metals; (2) a domain of unknown function characteristic of proteins with several large open beta sheets; and (3) a von Willebrand factor type D domain near the carboxy-terminus apparently important for multimerization. These motifs, which are also found in tick vitellogenin, are not shared by heme-binding proteins studied thus far in other hematophagous insects. DvCP message was highest in fat body and salivary gland but was also found in midgut and ovary tissue. Expression was initiated by blood feeding in virgin females and not by mating, as is typical of tick vitellogenin; and the message was found in fed males at levels similar to part fed, virgin females. CP appears to be highly conserved among the Ixodida. The closest match by BlastP to DvCP is vitellogenin from Caenorhabditis elegans (AAC04423), suggesting that CP is a novel protein. The role of CP in heme sequestration, the evolution of hematophagy and host complementation are discussed.
Collapse
Affiliation(s)
- K V Donohue
- Department of Entomology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
20
|
Cunningham M, Garcia F, Pollero RJ. Arachnid lipoproteins: comparative aspects. Comp Biochem Physiol C Toxicol Pharmacol 2007; 146:79-87. [PMID: 16887396 DOI: 10.1016/j.cbpc.2006.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 06/23/2006] [Accepted: 06/24/2006] [Indexed: 12/01/2022]
Abstract
Findings on hemolymph lipoproteins in the class Arachnida are reviewed in relation to their lipid and protein compositions, hydrated densities, the capacity of apoproteins to bind lipids, and the influence of xenobiotics on their structures and functionality. The occurrence of hemolymphatic lipoproteins in arachnids has been reported in species belonging to the orders Araneida, Scorpionida, Solpugida and Acarina. However, lipoproteins were properly characterized in only three species, Eurypelma californicum, Polybetes pythagoricus and Latrodectus mirabilis. Like insect and crustaceans the arachnids examined contain high density lipoproteins (HDLs) as predominant circulating lipoproteins. Although in most arachnids these particles resemble those of insect HDLs called "lipophorins", in two arachnid species they differ from lipophorins in their apoproteins, total mass and lipid composition. The hemolymph of P. pythagoricus and L. mirabilis contains another HDL of higher density, while P. pythagoricus and E. californicum hemolymph contain a third lipoprotein of very high density (VHDL). Composition of arachnid lipoproteins regarding apoprotein classes as well as lipid classes differ among species. Hemocyanin, in addition to the classical role of this protein as respiratory pigment, is presented here performing the function of apolipoprotein in some arachnid species. Reports on experiments demonstrating the capacity of hemocyanin to bind neutral and polar lipid classes, including ecdysteroids, are commented. Recent works about the changes evoked by a phosphorous pesticide on the structures and functionality of spider lipoproteins are also reviewed.
Collapse
Affiliation(s)
- Mónica Cunningham
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de La Plata (UNLP), (1900) La Plata, Argentina.
| | - Fernando Garcia
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de La Plata (UNLP), (1900) La Plata, Argentina
| | - Ricardo J Pollero
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de La Plata (UNLP), (1900) La Plata, Argentina
| |
Collapse
|
21
|
Thompson DM, Khalil SMS, Jeffers LA, Sonenshine DE, Mitchell RD, Osgood CJ, Michael Roe R. Sequence and the developmental and tissue-specific regulation of the first complete vitellogenin messenger RNA from ticks responsible for heme sequestration. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:363-74. [PMID: 17368200 DOI: 10.1016/j.ibmb.2007.01.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 01/03/2007] [Accepted: 01/03/2007] [Indexed: 05/14/2023]
Abstract
The first full-length mRNA for vitellogenin (Vg) from ticks was sequenced. This also represents the first complete sequence of Vg from the Chelicerata and of a heme binding Vg. The Vg cDNA from the American dog tick, Dermacentor variabilis was 5744nt in length (GenBank Accession number AY885250), which coded for a protein of 1843 aa with a calculated molecular weight of 208 kD. This protein had an 18 aa signal sequence, a single RXXR cleavage signal that would generate two subunits (49.5 and 157K in molecular weight) and lipoprotein N-terminal and carboxy von Willebrand factor type D domains. Tryptic digest MS analysis of vitellin protein confirmed the function of the cDNA as the tick yolk protein. Apparently, vitellin in D. variabilis is oligomeric (possibly dimeric) and is comprised of a mixture of the uncleaved monomer and subunits that were predicted from the single RXXR cleavage signal. The highly conserved GL/ICG motif close to the C-terminus in insect Vg genes was different in the tick Vg message, i.e., GLCS. This variant was also present in a partial sequence of Vg from Boophilus microplus. Phylogenic analysis showed that the full length Vg cDNA from D. variabilis and the partial cDNA from B. microplus were distinct from insects and Crustacea. The Vg message was not found in whole body RNA from unfed or fed males or in unfed and partially fed (virgin) females as determined by Northern blotting. The message was found in replete (mated) pre-ovipositional females, increased to higher levels in ovipositing females and was absent after egg laying was complete. The endocrine regulation of the Vg mRNA is discussed. The tissue sources of the Vg message are both the gut and fat body. Tryptic digest MS fingerprinting suggests that a second Vg mRNA might be present in the American dog tick, which needs further study.
Collapse
Affiliation(s)
- Deborah M Thompson
- Department of Entomology, Campus Box 7647, North Carolina State University, Raleigh, NC 27695-7647, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Thompson DM, Khalil SMS, Jeffers LA, Ananthapadmanaban U, Sonenshine DE, Mitchell RD, Osgood CJ, Apperson CS, Michael Roe R. In vivo role of 20-hydroxyecdysone in the regulation of the vitellogenin mRNA and egg development in the American dog tick, Dermacentor variabilis (Say). JOURNAL OF INSECT PHYSIOLOGY 2005; 51:1105-16. [PMID: 16061249 DOI: 10.1016/j.jinsphys.2005.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 05/19/2005] [Accepted: 06/02/2005] [Indexed: 05/03/2023]
Abstract
Injection of the hormone 20-hydroxyecdysone (20-E) into partially fed (virgin) female adults of the American dog tick, Dermacentor variabilis, while they are attached and feeding on the rabbit host, initiated the expression of the vitellogenin (Vg) gene, and Vg protein secretion and uptake by the ovary. The induction of egg production by 20-E in this bioassay was dose dependent in the range of 1-50 times the concentration normally found in a replete, vitellogenic female. Ticks examined 4 d after the 50 x treatment were still attached to the host, had numerous enlarged vitellin-filled (brown) oocytes in their ovaries, but had not engorged to repletion. The ovaries reached weights similar to those found in untreated, replete (mated) females (pre-oviposition) while solvent-injected controls demonstrated no increase in oocyte size or increase in ovary weight. An increase in the levels of a putative Vg protein was observed in hemolymph samples collected 1, 2 and 3d post-20-E injection but was not observed in the corresponding solvent controls as determined by native PAGE. Analysis of the ecdysteroid-induced protein by tryptic digestion-mass fingerprinting and BLASTP found that the putative Vg had the strongest match to GP80 (U49934), the partial sequence for the vitellogenin protein from Boophilus microplus. A partial Vg cDNA was cloned and sequenced from replete females of D. variabilis with a high similarity to GP80. Using this message as a probe, Northern blots conducted with RNA collected from partially fed, virgin females 1, 2 and 3d post-20-E injection showed upregulation of the Vg mRNA on all 3 days. Controls injected with solvent only showed no Vg mRNA. Injections with juvenile hormone III did not stimulate Vg expression, oocyte growth or full engorgement. These studies indicate that ecdysteroids and not JH can initiate expression of the Vg gene, Vg protein synthesis and release into hemolymph, and Vg uptake into developing oocytes under bioassay conditions mimicking normal feeding on the host.
Collapse
Affiliation(s)
- Deborah M Thompson
- Department of Entomology, Campus Box 7647, North Carolina State University, Raleigh, NC 27695-7647, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nene V, Lee D, Kang'a S, Skilton R, Shah T, de Villiers E, Mwaura S, Taylor D, Quackenbush J, Bishop R. Genes transcribed in the salivary glands of female Rhipicephalus appendiculatus ticks infected with Theileria parva. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:1117-1128. [PMID: 15475305 DOI: 10.1016/j.ibmb.2004.07.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2004] [Revised: 06/30/2004] [Accepted: 07/01/2004] [Indexed: 05/24/2023]
Abstract
We describe the generation of an auto-annotated index of genes that are expressed in the salivary glands of four-day fed female adult Rhipicephalus appendiculatus ticks. A total of 9162 EST sequences were derived from an uninfected tick cDNA library and 9844 ESTs were from a cDNA library from ticks infected with Theileria parva, which develop in type III salivary gland acini. There were no major differences between abundantly expressed ESTs from the two cDNA libraries, although there was evidence for an up-regulation in the expression of some glycine-rich proteins in infected salivary glands. Gene ontology terms were also assigned to sequences in the index and those with potential enzyme function were linked to the Kyoto encyclopedia of genes and genomes database, allowing reconstruction of metabolic pathways. Several genes code for previously characterized tick proteins such as receptors for myokinin or ecdysteroid and an immunosuppressive protein. cDNAs coding for homologs of heme-lipoproteins which are major components of tick hemolymph were identified by searching the database with published N-terminal peptide sequence data derived from biochemically purified Boophilus microplus proteins. The EST data will be a useful resource for construction of microarrays to probe vector biology, vector-host and vector-pathogen interactions and to underpin gene identification via proteomics approaches.
Collapse
Affiliation(s)
- Vishvanath Nene
- Parasite Genomics Department, The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Gudderra NP, Sonenshine DE, Apperson CS, Roe RM. Hemolymph proteins in ticks. JOURNAL OF INSECT PHYSIOLOGY 2002; 48:269-278. [PMID: 12770100 DOI: 10.1016/s0022-1910(02)00050-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In comparison to insects and Crustacea, our knowledge of the predominant hemolymph proteins in ticks is minimal. The hemolymph protein most studied in ticks has been vitellogenin (Vg). Vg is synthesized by the tick fat body after female adults obtain a blood meal, is released into the hemolymph and is absorbed by developing oocytes as vitellin (Vn). Much of what we know about Vg is from studies of Vn. In general, the carbohydrate, lipid and amino acid composition is similar to insects except that in the tick, Vg contains heme, most likely from the digestion of host hemoglobin. In the American dog tick, Dermacentor variabilis, Vg is comprised of two native proteins and seven subunits on SDS-PAGE. Vg has been characterized in five tick species but the amino acid sequence is not yet available. Another predominant hemolymph protein, apparently a carrier protein (CP), has recently been studied in two tick species. This protein is found in the hemolymph of both male and females adults, in adult tissues outside of the hemolymph in some tick species, in coxal fluid of soft ticks and in whole body homogenates from eggs, larvae and nymphs. CP from the hard tick, D. variabilis, contains cholesterol, phospholipids, monoacylglycerides, triacylglycerides, free fatty acids, carbohydrate and heme. Under identical assay conditions, the analogous protein in the soft tick, Ornithodoros parkeri, did not contain heme. CP in the American dog tick consists of two subunits, one of which has 61% identity to the biliprotein, artemocyanin, from the fairy shrimp. CP is identical to a heme-lipoprotein (HeLp) from Boophilus microplus. The exact roles of CP and HeLp have not yet been fully determined, but they apparently are important in heme sequestration and as a storage depot for protein and lipid. Macroglobulin, lectin, antimicrobial, JH binding, JH esterase, and other tick hemolymph proteins are also discussed.
Collapse
Affiliation(s)
- N P. Gudderra
- Department of Entomology, Campus Box 7647, North Carolina State University, 27695-7647, Raleigh, NC, USA
| | | | | | | |
Collapse
|