1
|
Cao JJ, Lv QQ, Zhang B, Chen HQ. Structural characterization and hepatoprotective activities of polysaccharides from the leaves of Toona sinensis (A. Juss) Roem. Carbohydr Polym 2019; 212:89-101. [DOI: 10.1016/j.carbpol.2019.02.031] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 02/03/2023]
|
2
|
Platelet-activating factor modulates fat storage in the liver induced by a high-refined carbohydrate-containing diet. J Nutr Biochem 2015; 26:978-85. [DOI: 10.1016/j.jnutbio.2015.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 03/21/2015] [Accepted: 04/03/2015] [Indexed: 12/17/2022]
|
3
|
Kabir N, Ali H, Ateeq M, Bertino MF, Shah MR, Franzel L. Silymarin coated gold nanoparticles ameliorates CCl4-induced hepatic injury and cirrhosis through down regulation of hepatic stellate cells and attenuation of Kupffer cells. RSC Adv 2014. [DOI: 10.1039/c3ra46093b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
4
|
Michelotto PV, Muehlmann LA, Zanatta AL, Bieberbach EWR, Kryczyk M, Fernandes LC, Nishiyama A. Pulmonary inflammation due to exercise-induced pulmonary haemorrhage in Thoroughbred colts during race training. Vet J 2012; 190:e3-e6. [PMID: 22108190 DOI: 10.1016/j.tvjl.2010.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 08/11/2010] [Accepted: 08/24/2010] [Indexed: 10/15/2022]
Abstract
This study investigated the putative roles of inflammation and platelet-activating factor (PAF) in exercise-induced pulmonary haemorrhage (EIPH). Two-year-old Thoroughbred colts (n=37) were exercised on a racetrack for 5months before commencement of the study. Each colt was then exercised at 15-16m/s over 800-1000m and broncho-alveolar lavage fluid (BALF) was collected 24h later. The colts were subsequently divided into two groups on the basis of BALF analysis; an EIPH-positive group (presence of haemosiderophages, n=23) and an EIPH-negative group (absence of haemosiderophages, n=14). BALF from the EIPH-positive group had a significantly higher protein concentration (0.39±0.28 vs. 0.19±0.12mg/mL, P=0.031), higher PAF bioactivity (0.18±0.12 vs. 0.043±0.05 340:380nm ratio, P=0.042) and a higher lipid hydroperoxide concentration compared to the EIPH-negative group. There was also a lower nitrite concentration and reduced production of superoxide anion and hydrogen peroxide by alveolar macrophages in the EIPH-positive group. There was evidence of pulmonary inflammation and a decreased innate immune response of alveolar macrophages in EIPH-positive colts compared with the EIPH-negative group.
Collapse
Affiliation(s)
- Pedro V Michelotto
- Laboratory of Cellular Metabolism, Department of Physiology, Universidade Federal do Paraná, Curitiba, PR 81530-000, Brazil; Department of Agricultural and Environmental Sciences, Pontifícia Universidade Católica do Paraná, São José dos Pinhais, PR 80242-980, Brazil.
| | - Luis A Muehlmann
- Laboratory of Cellular Metabolism, Department of Physiology, Universidade Federal do Paraná, Curitiba, PR 81530-000, Brazil
| | - Ana L Zanatta
- Laboratory of Cellular Metabolism, Department of Physiology, Universidade Federal do Paraná, Curitiba, PR 81530-000, Brazil
| | - Eloyse W R Bieberbach
- Laboratory of Cellular Metabolism, Department of Physiology, Universidade Federal do Paraná, Curitiba, PR 81530-000, Brazil
| | - Marcelo Kryczyk
- Laboratory of Cellular Metabolism, Department of Physiology, Universidade Federal do Paraná, Curitiba, PR 81530-000, Brazil
| | - Luis C Fernandes
- Laboratory of Cellular Metabolism, Department of Physiology, Universidade Federal do Paraná, Curitiba, PR 81530-000, Brazil
| | - Anita Nishiyama
- Laboratory of Cellular Metabolism, Department of Physiology, Universidade Federal do Paraná, Curitiba, PR 81530-000, Brazil
| |
Collapse
|
5
|
Mohamed S, Hashim SN, Rahman HA. Seaweeds: A sustainable functional food for complementary and alternative therapy. Trends Food Sci Technol 2012. [DOI: 10.1016/j.tifs.2011.09.001] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Lee BJ, Senevirathne M, Kim JS, Kim YM, Lee MS, Jeong MH, Kang YM, Kim JI, Nam BH, Ahn CB, Je JY. Protective effect of fermented sea tangle against ethanol and carbon tetrachloride-induced hepatic damage in Sprague-Dawley rats. Food Chem Toxicol 2010; 48:1123-8. [PMID: 20138953 DOI: 10.1016/j.fct.2010.02.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/28/2009] [Accepted: 02/02/2010] [Indexed: 10/19/2022]
Abstract
Sea tangle has long been used as Korean folk remedy to promote material health, and is one of the popular dietary supplement. This study was designed to evaluate the protective effect of fermented sea tangle (FST) against ethanol and carbon tetrachloride (CCl(4))-induced hepatotoxicity in rats. Sprague-Dawley rats were orally treated with FST (25, 250, 2500 mg/kg/day) with administration of ethanol (5 mL/kg) for 13 weeks and the single intraperitoneal (i.p.) dose of 50% CCl(4) (5 mL/kg/day, CCl(4) in olive oil) at 12 week, and repeated i.p. dose of 20% CCl(4) (2 mL/kg/day) for 1 week. Hepatotoxicity was evaluated by measuring the serum levels of glutamic pyruvate transaminase (GPT), gamma glutamyl transpeptidase (gamma-GT) and malondialdehyde (MDA) as well as the tissue levels of antioxidant enzyme such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Ethanol and CCl(4)-induced the rat liver damage, and significantly increased (p<0.05) the GPT, gamma-GT and MDA levels, and decreased the SOD, CAT and GPx levels. However, treatment with FST could decrease serum GPT, gamma-GT, and MDA levels significantly in plasma, and increase the activities of SOD, CAT, and GPx in liver tissues compared with ethanol and CCl(4)-treated group.
Collapse
Affiliation(s)
- Bae-Jin Lee
- Marinebioprocess Co., Ltd., Busan 619-912, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Amin A, Mahmoud-Ghoneim D. Zizyphus spina-christi protects against carbon tetrachloride-induced liver fibrosis in rats. Food Chem Toxicol 2009; 47:2111-9. [PMID: 19500642 DOI: 10.1016/j.fct.2009.05.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 04/28/2009] [Accepted: 05/27/2009] [Indexed: 12/19/2022]
Abstract
The study of chronic hepatic fibrosis has been receiving an escalating attention in the past two decades. The aim of the study was to examine the effects of the water extract of Zizyphus spina-christi (L.) (ZSC) on carbon tetrachloride (CCl(4))-induced hepatic fibrosis. ZSC extract was daily administered [alone (ZSC-control group) or along with CCl(4) (protected groups)] at 0.125 (low dose), 0.250 (medium dose) and 0.350 (high dose) g/kg b.wt. for 8 weeks. Histo-pathological, biochemical and histology texture analyses revealed that ZSC significantly impede the progression of hepatic fibrosis. ZSC resulted in a significant amelioration of liver injury judged by the reduced activities of serum ALT and AST. Oral administration of ZSC has also restored normal levels of malondialdehyde and retained control activities of endogenous antioxidants such as SOD, CAT and GSH. Furthermore, ZSC reduced the expression of alpha-smooth muscle actin, the deposition of types I and III collagen in CCl(4)-injured rats. Texture analysis of microscopic images along with fibrosis index calculation showed improvement in the quality of type I collagen distribution and its quantity after administration of ZSC extract. These results demonstrate that administration of ZSC may be useful in the treatment and prevention of hepatic fibrosis.
Collapse
Affiliation(s)
- Amr Amin
- Biology Department, College of Science, UAE University, P.O. Box 17551, Al-Ain, United Arab Emirates.
| | | |
Collapse
|
8
|
Bauer A, Schumann A, Gilbert M, Wilhelm C, Hengstler JG, Schiller J, Fuchs B. Evaluation of carbon tetrachloride-induced stress on rat hepatocytes by 31P NMR and MALDI-TOF mass spectrometry: lysophosphatidylcholine generation from unsaturated phosphatidylcholines. Chem Phys Lipids 2009; 159:21-9. [DOI: 10.1016/j.chemphyslip.2009.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 02/09/2009] [Accepted: 02/13/2009] [Indexed: 01/11/2023]
|
9
|
Grypioti AD, Kostopanagiotou G, Demopoulos CA, Roussos A, Mykoniatis M. Platelet activating factor (PAF) antagonism with ginkgolide B protects the liver against acute injury. importance of controlling the receptor of PAF. Dig Dis Sci 2008; 53:1054-62. [PMID: 17934819 DOI: 10.1007/s10620-007-9982-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Accepted: 08/15/2007] [Indexed: 01/24/2023]
Abstract
Platelet activating factor (PAF) is an ubiquitous phospholipid that acts as a mediator of numerous pathophysiological conditions, including hepatotoxicity. The present study has been conducted to evaluate the eventual role of the platelet activating factor in post-acetaminophen intoxication of liver, using ginkgolide B, BN52021, a selective PAF receptor antagonist. One group of rats was treated with a toxic dose of acetaminophen (APAP) (3.5 g/kg b.w.) (control group) and a second one with the same dose of APAP followed by a dose of ginkgolide B, BN52021 (10 mg/kg b.w.) (BN52021-treated group). The animals were killed at 8, 16, 24, 32 and 40 h after treatment. APAP was found to cause an acute hepatic injury, evident by alterations of biochemical (serum enzymes: ALT, AST and ALP) and liver histopathological (degree of inflammation and apoptosis) indices, which was followed by liver regeneration evident by three independent indices ([3H] thymidine incorporation into hepatic DNA, liver thymidine kinase activity and hepatocyte mitotic index). Hepatic levels of malondialdehyde and serum cholesterol/HDL cholesterol fraction were also measured as parameters of oxidant-antioxidant balance. The protected effects of ginkgolide B were qualified during post treatment time by: (1) reduction of oxidative stress, (2) high decrease of hepatic injury, and (3) decrease of regenerating activity. These results indicate that PAF may play an important role in APAP-induced liver injury and regeneration, and that the use of ginkgolide B attenuates liver damage providing important means of improving liver function following acetaminophen intoxication.
Collapse
Affiliation(s)
- Agni D Grypioti
- Department of Experimental Pharmacology, Medical School, National and Kapodistrian University of Athens, 25, Idaspou Street, Ano Ilisia, Athens 157 72, Greece.
| | | | | | | | | |
Collapse
|
10
|
Yuan LP, Chen FH, Ling L, Dou PF, Bo H, Zhong MM, Xia LJ. Protective effects of total flavonoids of Bidens pilosa L. (TFB) on animal liver injury and liver fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2008; 116:539-546. [PMID: 18313245 DOI: 10.1016/j.jep.2008.01.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Revised: 12/24/2007] [Accepted: 01/07/2008] [Indexed: 05/26/2023]
Abstract
The hepatoprotective effects of total flavonoids of Bidens pilosa L. (TFB), a traditional Chinese medicine were evaluated in carbon tetrachloride (CCl(4))-induced liver injury in mice and rats. Total flavonoids of Bidens pilosa L. (25, 50 and 100mg/kg) were administered via gavage daily for 10 days to CCl(4)-treated mice as well as TFB (30, 60 and 90mg/kg) administered for 6 weeks to CCl(4)-treated rats. Liver index (liver weight/body weight), serum levels of transaminases (alanine aminotransferase, ALT and aspartate aminotransferase, AST), hepatic malondialdehyde (MDA) content, superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were evaluated following the 10 days treatment in mice. In addition histopathologic changes and nuclear factor-kappaB (NF-kappaB) expression of the liver were detected with hematoxylin-eosin (HE) and immunohistochemistry methods, respectively. The results showed that TFB (50 and 100mg/kg) effectively reduced the CCl(4)-induced elevated liver index, serum ALT, AST levels, hepatic MDA content, and restored hepatic SOD, GSH-Px activities in acute liver injury mice. TFB (60 and 90mg/kg) treatment significantly inhibited NF-kappaB activation in liver fibrosis of rats. The histopathological analysis suggested that TFB reduced the degree of liver injury in mice and severity of liver fibrosis in rats. These results suggested that TFB had a protective and therapeutic effect on animal liver injury, which might be associated with its antioxidant properties and inhibition of NF-kappaB activation.
Collapse
Affiliation(s)
- Li-Ping Yuan
- College of Pharmacy, Anhui Medical University, Hefei 230032, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Guo TT, Xu HL, Zhang LX, Zhang JP, Guo YF, Gu JW, He PM. In vivo protective effect of Porphyra yezoensis polysaccharide against carbon tetrachloride induced hepatotoxicity in mice. Regul Toxicol Pharmacol 2007; 49:101-6. [PMID: 17869397 DOI: 10.1016/j.yrtph.2006.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2006] [Indexed: 10/23/2022]
Abstract
To study the protective effect and possible mechanism of Porphyra yezoensis polysaccharide (PYP) in hepatotoxicity mice, acute liver injury was successfully induced by injecting 0.2% carbon tetrachloride (CCl(4)) intraperitoneally. Levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum and liver homogenate, content of malondialdehyde (MDA), activities of total superoxide dismutase (T-SOD) in liver were measured by biochemical methods. Liver index was calculated and pathological changes of the liver tissue were observed microscopically. PYP was found to significantly decrease the activities of ALT and AST (P<0.05), to remarkably lower the liver indexes and MDA level in hepatical tissues in mice (P<0.05), and to upregulated the lower T-SOD level in liver homogenate (P<0.01). Furthermore, histologic examination showed that PYP could attenuate and the extent of necrosis, reduce the immigration of inflammatory cells. PYP plays a protective action against hepatotoxicity induced by CCl(4) in mice, and its mechanisms may be related to free radical scavenging, increasing SOD activities and anti-lipid peroxide.
Collapse
Affiliation(s)
- Ting-ting Guo
- Department of Aqua-Life Science and Technology, Shanghai Fisheries University, Shanghai 200090, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Grypioti AD, Kostopanagiotou G, Mykoniatis M. Platelet-activating factor inactivator (rPAF-AH) enhances liver's recovery after paracetamol intoxication. Dig Dis Sci 2007; 52:2580-90. [PMID: 17410443 DOI: 10.1007/s10620-006-9728-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 12/03/2006] [Indexed: 12/19/2022]
Abstract
Platelet-activating factor (PAF) is a potent endogenous phospholipid modulator of diverse biological activities, including inflammation. The aim of this study was to investigate the effects of PAF inactivator, recombinant PAF acetylhydrolase (rPAF-AH) on post-paracetamol treatment functional outcome of the liver in the rat. Fifty male Wistar rats were divided into two groups: the control group received by gastric tube a toxic dose of paracetamol (3.5 g/kg body weight) and the rPAF-AH-treated group received the same dose of paracetamol followed by a dose of rPAF-AH (10 mg/kg body weight) intraperitoneally. The animals were sacrificed at 8, 16, 24, 32, and 40 hr after paracetamol treatment. APAP was found to cause acute hepatic injury, evident by alterations of biochemical (serum enzymes: ALT, AST, and ALP) and liver histopathological (degree of inflammation and apoptosis) indexes, which was followed by liver regeneration evident by three independent indexes ([(3)H]thymidine incorporation into hepatic DNA, liver thymidine kinase activity, and hepatocyte mitotic index). Hepatic levels of malondialdehyde (MDA) and serum cholesterol/HDL cholesterol fraction were also measured as parameters of oxidant-antioxidant balance. The positive effects of rPAF-AH were expressed by (1) a reduction of oxidative stress, (2) a large decrease in hepatic injury, and (3) a reduction of regenerating activity. These results suggest that PAF plays an important role in paracetamol-induced liver injury and regeneration. Furthermore, PAF inactivator enhances liver's recovery and attenuates the severity of experimental liver injury, providing important means of improving liver function following paracetamol intoxication.
Collapse
Affiliation(s)
- A D Grypioti
- Department of Experimental Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | | | | |
Collapse
|
13
|
Ho YL, Chiu JH, Wu CY, Liu MY. Separation and determination of in vitro oxidized phospholipids by capillary zone electrophoresis. Anal Biochem 2007; 367:210-8. [PMID: 17553450 DOI: 10.1016/j.ab.2007.04.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 04/10/2007] [Accepted: 04/17/2007] [Indexed: 11/25/2022]
Abstract
A simple capillary zone electrophoresis (CZE) method was used to determine in vitro oxidized phosphatidyl choline (ox-PC). To optimize the capillary electrophoresis (CE) conditions, organic buffer additives, buffer ionic strength, buffer pH, and applied voltage were examined. The optimal CE separation buffer chosen was an aqueous-organic solvent system containing 10% sodium phosphate buffer (5 mM, pH 7.40), 80% methanol, and 10% acetonitrile. One major peak with a small shoulder was found for phosphatidyl choline (PC), whereas one major peak and a complex region containing several lower-mobility peaks were found for ox-PC. The lower-mobility species of ox-PC has high levels of conjugated dienes characterized by strong absorbance at 234 nm. The electropherograms of PC and ox-PC were significantly different and highly reproducible. The intensities of lower-mobility species decreased significantly when the antioxidant vitamin C concentration was increased from 6 to 600 microM. This study provides a simple CZE method to differentiate in vitro oxidized from nonoxidized PC molecular species.
Collapse
Affiliation(s)
- Yu-Ling Ho
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan
| | | | | | | |
Collapse
|
14
|
Grypioti AD, Mykoniatis M, Demopoulos CA, Kostopanagiotou G. Recombinant platelet-activating factor-acetylhydrolase attenuates paracetamol-induced liver oxidative stress, injury, and regeneration. Dig Dis Sci 2007; 52:192-9. [PMID: 17160478 DOI: 10.1007/s10620-006-9363-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 03/28/2006] [Indexed: 12/09/2022]
Abstract
The aim of this study was to investigate the effects of platelet-activating factor (PAF) inactivator, recombinant PAF-acetylhydrolase (rPAF-AH), on post-paracetamol treatment functional outcome of the liver in the rat. Fifty male Wistar rats were divided into two groups: the control group received a toxic dose of paracetamol (3.5 g/kg body weight [BW]) by gastric tube and the rPAF-AH-treated group received the same dose of paracetamol followed by a dose of rPAF-AH (10 mg/kg BW) intraperitoneally. The animals were sacrificed at time points of 56, 66, 72, 84, and 96 hr after paracetamol treatment. Hepatic injury was evaluated by determination of AST, ALT, and ALP activities and degree of necrosis and apoptosis. Liver regeneration was estimated by [3H]thymidine incorporation into hepatic DNA, liver thymidine kinase activity, and hepatocyte mitotic index. Hepatic levels of malondialdehyde (MDA) and serum cholesterol/high-density lipoprotein cholesterol fraction were also measured as parameters of oxidant-antioxidant balance. The positive effects of rPAF-AH were expressed by (1) reduction of oxidative stress, (2) large decrease in hepatic injury, and (3) diminution of regenerating activity. These results indicate that the use of PAF inactivator enhances the liver's recovery from paracetamol intoxication and attenuates the severity of experimental liver injury, providing important means of improving liver function following paracetamol intoxication.
Collapse
Affiliation(s)
- A D Grypioti
- Department of Experimental Pharmacology, Medical School, National and Kapodistrian University of Athens, 25 Idaspou Street, Ano Ilisia, GR 157 72, Athens, Greece.
| | | | | | | |
Collapse
|
15
|
Cao AH, Vo LT, King RG. Honokiol protects against carbon tetrachloride induced liver damage in the rat. Phytother Res 2006; 19:932-7. [PMID: 16317648 DOI: 10.1002/ptr.1757] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study aims to investigate the possible hepato-protective effects of honokiol against liver damage and cirrhosis induced by carbon tetrachloride (CCl(4)) in the rat. Rats were treated acutely, or chronically with CCl(4) at 5 day intervals (0.06 mL/100 g body weight, administered as 50% vol/vol solution in liquid paraffin) by gavage, in combination with phenobarbitone in drinking water (0.5 g/L for 7 days prior to, and during CCl(4) treatment) to induce liver damage. Some were also co-treated with 0.1 mg/kg or 0.03 mg/kg honokiol (i.p.) or with appropriate vehicle. In vivo measurement of the liver sinusoidal area was performed using confocal microscopy following i.v. fluorescein isothiocyanate (FITC) dextran. Liver histology and function tests were performed, and liver and body weights were measured. Confocal microscopy showed that acute and chronic CCl(4) treatment significantly reduced the sinusoidal area. Honokiol (0.1 mg/kg, but not 0.03 mg/kg) partially reversed the decrease in the sinusoidal area after acute or chronic treatments with CCl(4). Acute and chronic CCl(4) treatment produced significant histological liver damage. Honokiol (0.1 mg/kg) significantly reduced the histological damage caused by chronic treatment. Chronic treatment with CCl(4) caused a significant increase in the bilirubin level that was not observed following the high dose of honokiol (0.1 mg/kg). In conclusion, this study showed that honokiol exhibits potent hepato-protective effects in rats treated with CCl(4).
Collapse
Affiliation(s)
- Anh H Cao
- Department of Pharmacology, P.O. Box 13E, Monash University, VIC 3800, Australia
| | | | | |
Collapse
|
16
|
Grypioti AD, Theocharis SE, Demopoulos CA, Papadopoulou-Daifoti Z, Basayiannis AC, Mykoniatis MG. Effect of platelet-activating factor (PAF) receptor antagonist (BN52021) on acetaminophen-induced acute liver injury and regeneration in rats. Liver Int 2006; 26:97-105. [PMID: 16420515 DOI: 10.1111/j.1478-3231.2005.01186.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Platelet-activating factor (PAF) is an endogenous lipid mediator that plays a key role in catalyzing various pro-inflammatory processes associated with acute liver injury. In the present study, the possible influence of PAF-R antagonist (BN52021) on the protection of liver injury after 4-hydroxyacetanilide, N-acetyl-p-aminophenol, paracetamol (APAP) intoxication was investigated. METHODS Thereby, one group of rats was treated with a toxic dose of APAP (3.5 g/kg body weight (b.w.). The animals were killed at 56, 66, 72, 84 and 96 h after treatment. RESULTS APAP was found to cause an acute hepatic injury, evident by alterations of biochemical (serum enzymes: aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase) and liver histopathological (degree of necrosis and apoptosis) indices, which was followed by liver regeneration, evident by three independent indices ([3H] thymidine incorporation into hepatic DNA, liver thymidine kinase activity and hepatocyte mitotic index). The protective effects of BN52021 were qualified during post-treatment time by: (1) significant reduction of hepatic injury as showed by all biochemical and histological parameters, (2) high decrease of regenerating activity showed by three regenerative markers and (3) remarkable increase of PAF-acetylhydrolase (PAF-AH) activity. CONCLUSION These results suggest that PAF may play an important role in APAP-induced liver injury and regeneration, and PAF-R antagonist (BN52021) attenuates liver damage.
Collapse
Affiliation(s)
- A D Grypioti
- Department of Experimental Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | | | | | | |
Collapse
|
17
|
Marathe GK, Johnson C, Billings SD, Southall MD, Pei Y, Spandau D, Murphy RC, Zimmerman GA, McIntyre TM, Travers JB. Ultraviolet B Radiation Generates Platelet-activating Factor-like Phospholipids underlying Cutaneous Damage. J Biol Chem 2005; 280:35448-57. [PMID: 16115894 DOI: 10.1074/jbc.m503811200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ultraviolet B light (UVB) causes cutaneous inflammation and cell death, but the agents responsible are not defined. These studies examined the role of the platelet-activating factor (PAF) signaling system in UVB-mediated effects. Expression of the PAF receptor in the PAF receptor-negative epidermoid cell line KB augmented apoptosis in response to UVB irradiation. Overexpression of the PAF receptor in primary human keratinocytes also enhanced UVB-mediated apoptosis in vitro, and it enhanced apoptosis in an in vivo model of human keratinocytes grafted onto severe combined immune-deficient (SCID) mice. To define the mechanism by which UVB activates the PAF receptor, we used mass spectrometry to demonstrate significant amounts of the C4 PAF analogs 1-alkyl-2-(butanoyl and butenoyl)-sn-glycero-3-phosphocholine, as well as native PAF in an epidermal cell line after UVB irradiation. Supplementing the cells with the precursor phospholipid 1-hexadecyl-2-arachidonoyl-sn-glycero-3-phosphocholine (HAPC) increased the amount of C4 PAF analogs recovered after UVB exposure. We irradiated HAPC directly and found, even in the absence of a photosensitizer, fragmentation to C4-PAF receptor ligands. We conclude UVB photo-oxidizes cellular phospholipids, creating PAF analogs that stimulate the PAF receptor to induce further PAF synthesis and apoptosis. PAF signaling may participate in the cutaneous inflammation that occurs during photo-aggravated dermatoses.
Collapse
Affiliation(s)
- Gopal K Marathe
- Human Molecular Biology and Genetics Program, University of Utah, Salt Lake City 84112-5330, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Grypioti AD, Theocharis SE, Papadimas GK, Demopoulos CA, Papadopoulou-Daifoti Z, Basayiannis AC, Mykoniatis MG. Platelet-activating factor (PAF) involvement in acetaminophen-induced liver toxicity and regeneration. Arch Toxicol 2005; 79:466-74. [PMID: 15995853 DOI: 10.1007/s00204-005-0651-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2004] [Accepted: 01/24/2005] [Indexed: 02/07/2023]
Abstract
Acetaminophen-induced toxicity has been attributed to cytochrome P-450-generated metabolites, which covalently modify target proteins. However, the mechanism of liver injury pathogenesis needs to be further elucidated. Platelet-activating factor (PAF) is one of the mediators involved in inflammatory tissue alterations associated with acute liver failure. In this study, alterations in blood PAF levels and the serum activity of PAF-acetylhydrolase (PAF-AH) were investigated over the time course of liver injury and regeneration induced by acetaminophen treatment in rats. The administration of a toxic dose of acetaminophen (3.5 g/kg) in rats caused acute hepatic injury, as evident by alterations of biochemical (serum enzymes: ALT, AST and ALP) and liver histopathological (degree of inflammation and apoptosis) indices between 20 and 40 h post-treatment. The hepatic damage was followed by liver regeneration, made evident by three independent indices ([3H]thymidine incorporation into hepatic DNA, liver thymidine kinase activity and hepatocyte mitotic index), presenting a peak at 72 h. The PAF levels were elevated at 24 and 28 h, presenting a remarkable peak at 32 h post-treatment. PAF-AH activity presented different kinetics to that of PAF. The enzyme activity was relatively low at all time points examined before the rise in PAF activity, peaking later, at 72, 84 and 96 h. Our data demonstrate that PAF is involved in the pathogenesis of acute liver failure and in augmented compensatory liver tissue repair post-acetaminophen treatment. However, the putative role of PAF during liver toxicity and regeneration remains to be established.
Collapse
Affiliation(s)
- A D Grypioti
- Department of Experimental Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Goudi, GR 11527 Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
19
|
Gui SY, Wei W, Wang H, Wu L, Sun WY, Wu CY. Protective effect of fufanghuangqiduogan against acute liver injury in mice. World J Gastroenterol 2005; 11:2984-9. [PMID: 15902742 PMCID: PMC4305673 DOI: 10.3748/wjg.v11.i19.2984] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the effects and possible mechanisms of fufanghuangqiduogan (FFHQ) in mice with acute liver injury (ALI).
METHODS: ALI was successfully induced by injecting carbon tetrachloride (CCl4) intraperitoneally and by tail vein injection of Bacillus Calmette Guerin (BCG) and lipopolysaccharide (LPS) in mice, respectively. Each of the two model groups was divided into normal group, model group, FFHQ (60, 120 and 240 mg/kg) treatment groups, and bifendate treatment group. At the end of the experiment, levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), content of malondialdehyde (MDA), activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-px) in liver homogenate were measured by biochemical methods. The activities of tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1) were determined by radio-immunoassay. Hepatic tissue sections were stained with hematoxylin and eosin and examined under a light microscope.
RESULTS: In the two models of ALI, FFHQ (60, 120, 240 mg/kg) was found to significantly decrease the serum transaminase (ALT, AST) activities. Meanwhile, FFHQ decreased MDA contents and upregulated the lower SOD and GSH-px levels in liver homogenate. Furthermore, in immunologic liver injury model, FFHQ decreased levels of TNF-α and IL-1 in serum. Histologic examination showed that FFHQ could attenuate the area and extent of necrosis, reduce the immigration of inflammatory cells.
CONCLUSION: FFHQ had protective effect on liver injury induced by either CCl4 or BCG+LPS in mice, and its mecha-nisms were related to free radical scavenging, increasing SOD and GSH-px activities and inhibiting the production of proinflammatory mediators.
Collapse
Affiliation(s)
- Shuang-Ying Gui
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei 230032, Anhui Province, China
| | | | | | | | | | | |
Collapse
|
20
|
Beaudeux JL, Said T, Ninio E, Ganné F, Soria J, Delattre J, Soria C, Legrand A, Peynet J. Activation of PAF receptor by oxidised LDL in human monocytes stimulates chemokine releases but not urokinase-type plasminogen activator expression. Clin Chim Acta 2005; 344:163-71. [PMID: 15149885 DOI: 10.1016/j.cccn.2004.02.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2004] [Revised: 02/05/2004] [Accepted: 02/23/2004] [Indexed: 01/30/2023]
Abstract
BACKGROUND We investigated whether the increase of urokinase-type plasminogen activator (uPA) monocyte expression and chemokine releases induced by oxidised low density lipoproteins (LDL), which participate to vascular tissue remodeling and to atherosclerotic plaque rupture, involved proinflammatory phospholipid products having platelet-activating factor (PAF)-like activity via the PAF-receptor pathway. METHODS uPA monocyte expression was stimulated by either copper ions-oxidised or O2*-/HO* free radical-oxidised LDL. The effects of PAF and oxidised LDL on the production of monocyte chemoattractant protein-1 and interleukin-8 were also examined. RESULTS Synthetic PAF significantly enhanced chemokine releases (P<0.001) without modifying uPA expression. Copper-oxidised LDL, which exhibit a higher content in lysophosphatidylcholines than free radical-oxidised LDL, induced a significantly higher enhancement in uPA expression (P<0.05). By contrast, free radical-oxidised LDL were more efficient than copper-oxidised LDL to increase chemokine releases (P<0.01). Oxidised LDL-enhanced uPA expressions were not altered by the PAF-receptor antagonist SR27417, whereas increases in chemokine releases induced by oxidised LDL and by PAF were abolished. PAF-acetylhydrolase activity was rapidly and largely inhibited in free radical-oxidised LDL when compared to copper-oxidised LDL, suggesting that free radical-oxidised LDL would contain a higher content in PAF-like products than copper-oxidised LDL. CONCLUSION Our results indicated that PAF-like oxidation products are responsible for the monocyte chemokine releases, but did not contribute to the enhanced monocyte uPA expression by oxidised LDL.
Collapse
Affiliation(s)
- Jean-Louis Beaudeux
- Laboratoire de Biochimie, EA 3617, Faculté des Sciences Pharmaceutiques et Biologiques, 4, avenue de l'Observatoire, 75006 Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Owen JS, Baker PRS, O'Flaherty JT, Thomas MJ, Samuel MP, Wooten RE, Wykle RL. Stress-induced platelet-activating factor synthesis in human neutrophils. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1733:120-9. [PMID: 15863359 DOI: 10.1016/j.bbalip.2004.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2004] [Revised: 11/29/2004] [Accepted: 12/28/2004] [Indexed: 11/22/2022]
Abstract
Platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine; PAF) is a potent inflammatory mediator produced by cells in response to physical or chemical stress. The mechanisms linking cell injury to PAF synthesis are unknown. We used liquid chromatography-tandem mass spectrometry to investigate stress-induced PAF synthesis in human neutrophils. PAF synthesis induced by extracellular pH 5.4 correlated with the activation of a stress-activated kinase, p38 mitogen-activated protein kinase (MAPK), and was blocked by the p38 MAPK inhibitor SB 203580. A key enzyme of PAF synthesis, acetyl-CoA:lysoPAF acetyltransferase, which we have previously shown is a target of p38 MAPK, was also activated in an SB 203580-sensitive fashion. Another MAPK pathway, extracellular signal-regulated kinase-1/2 (ERK-1/2), was also activated. Surprisingly, the pharmacological blockade of the ERK-1/2 pathway with PD 98059 did not block, but rather enhanced, PAF accumulation. Two unexpected actions of PD 98059 may underlie this phenomenon: an augmentation of stress-induced p38 MAPK phosphorylation and an inhibition of PAF catabolism. The latter effect did not appear to be due to a direct inhibition of PAF acetylhydrolase. Finally, similar results were obtained using another form of cellular stress, hypertonic sodium chloride. These data are consistent with a model in which stress-induced PAF accumulation is regulated positively by p38 MAPK and negatively by ERK-1/2. Such a model contrasts with the PAF accumulation induced by other forms of stimulation, which we and others have found is up-regulated by both p38 MAPK and ERK-1/2.
Collapse
Affiliation(s)
- John S Owen
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Megli FM, Sabatini K. Mitochondrial phospholipid bilayer structure is ruined after liver oxidative injury in vivo. FEBS Lett 2004; 573:68-72. [PMID: 15327977 DOI: 10.1016/j.febslet.2004.07.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 07/19/2004] [Indexed: 01/21/2023]
Abstract
The purpose of this study was to investigate whether, after oxidative injury in vivo, liver mitochondrial phospholipids suffered from structural defects similar to those we have previously observed after either chemical oxidation or respiration state IV incubation of isolated mitochondria in vitro. Oxidative injury of the liver was simulated by endogastric administration of CCl4 to rats in variable amounts for different times, under various conditions. Measurements of the phospholipid bilayer packing order were carried out by electron paramagnetic resonance (EPR) spectrometry of oriented planar samples of phospholipids extracted from liver mitochondria, spin labeled with 5-doxylstearoyl-lecithin. Disordering of the bilayer was revealed by the anisotropy loss of EPR spectra and reached a maximum value 4.5 h after CCl4 administration, vanishing thereafter. The observed disorder also increased with the amount of CCl4 administered, showing distinct dose-dependence, while administration of resveratrol soon after carbon tetrachloride decreased bilayer disordering by 50%. On the contrary, the order parameter S of spin labeled lecithin in isolated mitochondrial membranes from intoxicated rats revealed no change in membrane fluidity after oxidative stress. It is concluded that the phospholipid damage leading to disturbed bilayer geometry after oxidative attack already observed in model membranes and in isolated mitochondria in vitro also occurs in a simulated pathological state in vivo, indicating its possible occurrence also in real oxidative stress-linked pathologies as a contribution to the onset/sustaining of related diseases.
Collapse
Affiliation(s)
- Francesco M Megli
- Dipartimento di Biochimica e Biologia Molecolare, Università di Bari, Centro di Studio sui Mitocondri e Metabolismo Energetico--CNR, Via E. Orabona, 4-70126 Bari, Italy.
| | | |
Collapse
|
23
|
Yang Y, Harvey SAK, Gandhi CR. Kupffer cells are a major source of increased platelet activating factor in the CCl4-induced cirrhotic rat liver. J Hepatol 2003; 39:200-7. [PMID: 12873816 DOI: 10.1016/s0168-8278(03)00229-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIMS Endothelin-1 (ET-1) stimulates the synthesis of platelet-activating factor (PAF) by Kupffer cells in vitro. Hepatic concentrations of both ET-1 (a potent vasoconstrictor) and PAF (a mediator of hepatic vasoconstriction and the cirrhotic hyperdynamic state) increase in cirrhosis. The aim of this study was to determine if the responsiveness of Kupffer cells to produce PAF upon ET-1 challenge is modified by cirrhosis. METHODS Kupffer cells, isolated from the livers of control and CCl(4)-induced cirrhotic rats, were placed in serum-free medium after overnight culture. PAF and ET-1 receptors, ET-1-induced PAF synthesis, and PAF- and ET-1-induced prostaglandin E(2) (PGE(2)) synthesis were determined 24 h later. RESULTS Both basal and ET-1-stimulated PAF synthesis was increased in cirrhotic Kupffer cells as indicated by increased cell-associated and released PAF. Cirrhotic Kupffer cells also had elevated densities of functional receptors for both PAF and ET-1 (exclusively ET(B)), as measured by ligand binding, mRNA expression of the respective receptors, and ligand-stimulated PGE(2) synthesis. CONCLUSIONS Cirrhosis sensitizes Kupffer cells to both ET-1 and PAF by elevating their respective receptor levels. Since both mediators individually cause portal hypertension, an increase in ET-1-stimulated PAF synthesis in Kupffer cells will exacerbate the hepatic and extrahepatic complications of cirrhosis.
Collapse
Affiliation(s)
- Yongping Yang
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, E-1542 BST, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
24
|
Marathe GK, Zimmerman GA, Prescott SM, McIntyre TM. Activation of vascular cells by PAF-like lipids in oxidized LDL. Vascul Pharmacol 2002; 38:193-200. [PMID: 12449015 DOI: 10.1016/s1537-1891(02)00169-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The components of inflammation, including macrophages, cytokines and lipid inflammatory mediators, have a role in atherosclerosis. A key lipid mediator in regulated, physiologic inflammation is platelet-activating factor (PAF). PAF activates cells, including monocytes, through a single molecularly characterized receptor, the PAF receptor (PAFR), at exceedingly low concentrations. The PAFR recognizes the short residue, an acetate residue, at the 2-position of the phospholipid, and this sharp specificity precludes receptor activation by other related phosphatidylcholines. Oxidation of low-density lipoproteins (LDLs) is an early and causal step in atherosclerosis that generates inflammatory compounds leading to foam cell formation. One class of oxidatively generated inflammatory compounds are phospholipids that structurally mimic PAF, the PAF-like lipids. Oxidation of LDLs fragments and derivatizes the fatty acid residues at the 2-position of the phosphatidylcholines that comprise the shell of LDLs, an event that allows certain oxidized phospholipids to interact with and activate the PAFR. We know that these products activate polymorphonuclear leukocytes, but because the function of the PAFR differs among cells, we do not know if monocytes or platelets themselves respond to PAF-like lipids. Here, we show that PAF-like lipids from oxidized LDLs are potent and serve as specific agonists for all cells that express the PAFR.
Collapse
Affiliation(s)
- Gopal K Marathe
- Department of Internal Medicine, Human Molecular Biology and Genetics Program, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|