1
|
Maestri A, Garagnani P, Pedrelli M, Hagberg CE, Parini P, Ehrenborg E. Lipid droplets, autophagy, and ageing: A cell-specific tale. Ageing Res Rev 2024; 94:102194. [PMID: 38218464 DOI: 10.1016/j.arr.2024.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Lipid droplets are the essential organelle for storing lipids in a cell. Within the variety of the human body, different cells store, utilize and release lipids in different ways, depending on their intrinsic function. However, these differences are not well characterized and, especially in the context of ageing, represent a key factor for cardiometabolic diseases. Whole body lipid homeostasis is a central interest in the field of cardiometabolic diseases. In this review we characterize lipid droplets and their utilization via autophagy and describe their diverse fate in three cells types central in cardiometabolic dysfunctions: adipocytes, hepatocytes, and macrophages.
Collapse
Affiliation(s)
- Alice Maestri
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy; IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Carolina E Hagberg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine (Huddinge), Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Ewa Ehrenborg
- Division of Cardiovascular Medicine, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Muhieddine A, Fournier N, Dakroub H, Assi A, Paul JL, Tfayli A, Chaminade P, Tfaili S. In vitro Raman imaging of human macrophages: Impact of eicosapentaenoic acid on the hydrolysis of cholesterol esters in lipid droplets. Talanta 2023; 256:124314. [PMID: 36753884 DOI: 10.1016/j.talanta.2023.124314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Atherosclerosis - a cardiovascular disease and the primary cause of morbidity and mortality in industrialized countries - is linked to the existence of atherosclerotic plaques characterized by cholesterol-laden macrophages called foam cells. In these cells, cholesterol esters associated with triglycerides form lipid droplets (LD). The only way to remove this excess cholesterol is to promote free cholesterol efflux from macrophages to specific acceptors. It has been shown recently that eicosapentaenoic acid (EPA) reduces efflux on cholesterol-loaded THP-1 macrophages in vitro due to decreased cholesterol esters hydrolysis. These in vitro observations could reflect EPA's difficulty in facilitating in vivo the antiatherogenic process of cholesterol efflux within advanced atherosclerotic plaques. This work aims to study in vitro the impact of EPA on cholesterol esters hydrolysis in the LD of human THP-1 macrophages using vibrational Raman microspectroscopy. For this, we used deuterated EPA and recorded spectral images at the cell scale after different hydrolysis times. RESULTS: showed that EPA is involved in forming triglycerides and phospholipids of LD. Hydrolysis kinetics slowed down after 24 h, triglycerides increased, and the intensity of the characteristic bands linked to deuteration decreased. The size of LD without hydrolysis (H0) is higher than that after 24 h (H1) or 48 h (H2) of hydrolysis. The size decrease is sharper when going from H0 to H1 than from H1 to H2. Principal component analysis illustrated data' projection according to the cellular compartment, the hydrolysis time, and the supplementation of the medium.
Collapse
Affiliation(s)
- Ali Muhieddine
- Lip(Sys)(2) - Chimie Analytique Pharmaceutique, UFR Pharmacie, Université Paris-Saclay, Orsay, France
| | - Natalie Fournier
- Lip(Sys)(2) - Equipe de Biologie, UFR Pharmacie, Université Paris-Saclay, Orsay, France
| | - Hani Dakroub
- Lip(Sys)(2) - Equipe de Biologie, UFR Pharmacie, Université Paris-Saclay, Orsay, France
| | - Ali Assi
- Lip(Sys)(2) - Chimie Analytique Pharmaceutique, UFR Pharmacie, Université Paris-Saclay, Orsay, France
| | - Jean-Louis Paul
- Lip(Sys)(2) - Equipe de Biologie, UFR Pharmacie, Université Paris-Saclay, Orsay, France
| | - Ali Tfayli
- Lip(Sys)(2) - Chimie Analytique Pharmaceutique, UFR Pharmacie, Université Paris-Saclay, Orsay, France
| | - Pierre Chaminade
- Lip(Sys)(2) - Chimie Analytique Pharmaceutique, UFR Pharmacie, Université Paris-Saclay, Orsay, France
| | - Sana Tfaili
- Lip(Sys)(2) - Chimie Analytique Pharmaceutique, UFR Pharmacie, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
3
|
Vanherle S, Jorissen W, Dierckx T, Loix M, Grajchen E, Mingneau F, Guns J, Gervois P, Lambrichts I, Dehairs J, Swinnen JV, Mulder MT, Remaley AT, Haidar M, Hendriks JJ, Bogie JJ. The ApoA-I mimetic peptide 5A enhances remyelination by promoting clearance and degradation of myelin debris. Cell Rep 2022; 41:111591. [DOI: 10.1016/j.celrep.2022.111591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
|
4
|
Quiroga IY, Pellon-Maison M, Gonzalez MC, Coleman RA, Gonzalez-Baro MR. Triacylglycerol synthesis directed by glycerol-3-phosphate acyltransferases -3 and -4 is required for lipid droplet formation and the modulation of the inflammatory response during macrophage to foam cell transition. Atherosclerosis 2021; 316:1-7. [PMID: 33260006 PMCID: PMC7803380 DOI: 10.1016/j.atherosclerosis.2020.11.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 10/21/2020] [Accepted: 11/19/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND AND AIMS The transition of macrophage to foam cells is a major hallmark of early stage atherosclerotic lesions. This process is characterized by the accumulation of large cytoplasmic lipid droplets containing large quantities of cholesterol esters (CE), triacylglycerol (TAG) and phospholipid (PL). Although cholesterol and CE metabolism during foam cell formation has been broadly studied, little is known about the role of the glycerolipids (TAG and PL) in this context. Here we studied the contribution of glycerolipid synthesis to lipid accumulation, focusing specifically on the first and rate-limiting enzyme of the pathway: glycerol-3-phosphate acyltransferase (GPAT). METHODS We used RAW 264.7 cells and bone marrow derived macrophages (BMDM) treated with oxidized LDL (oxLDL). RESULTS We showed that TAG synthesis is induced during the macrophage to foam cell transition. The expression and activity of GPAT3 and GPAT4 also increased during this process, and these two isoforms were required for the accumulation of cell TAG and PL. Compared to cells from wildtype mice after macrophage to foam cell transition, Gpat4-/- BMDM released more pro-inflammatory cytokines and chemokines, suggesting that the activity of GPAT4 could be associated with a decrease in the inflammatory response, probably by sequestering signaling precursors into lipid droplets. CONCLUSIONS Our results provide evidence that TAG synthesis directed by GPAT3 and GPAT4 is required for lipid droplet formation and the modulation of the inflammatory response during the macrophage-foam cell transition.
Collapse
Affiliation(s)
- Ivana Y Quiroga
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Magali Pellon-Maison
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Marina C Gonzalez
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Maria R Gonzalez-Baro
- Instituto de Investigaciones Bioquímicas de La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, 1900, Argentina.
| |
Collapse
|
5
|
Wang HY, Bharti D, Levental I. Membrane Heterogeneity Beyond the Plasma Membrane. Front Cell Dev Biol 2020; 8:580814. [PMID: 33330457 PMCID: PMC7710808 DOI: 10.3389/fcell.2020.580814] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/02/2020] [Indexed: 01/21/2023] Open
Abstract
The structure and organization of cellular membranes have received intense interest, particularly in investigations of the raft hypothesis. The vast majority of these investigations have focused on the plasma membrane of mammalian cells, yielding significant progress in understanding membrane heterogeneity in terms of lipid composition, molecular structure, dynamic regulation, and functional relevance. In contrast, investigations on lipid organization in other membrane systems have been comparatively scarce, despite the likely relevance of membrane domains in these contexts. In this review, we summarize recent observations on lipid organization in organellar membranes, including endoplasmic reticulum, Golgi, endo-lysosomes, lipid droplets, and secreted membranes like lung surfactant, milk fat globule membranes, and viral membranes. Across these non-plasma membrane systems, it seems that the biophysical principles underlying lipid self-organization contribute to lateral domains.
Collapse
Affiliation(s)
- Hong-Yin Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
| | - Deepti Bharti
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
- National Institute of Technology, Rourkela, India
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
6
|
Abstract
Lipid droplets are cytoplasmic microscale organelles involved in energy homeostasis and handling of cellular lipids and proteins. The core structure is mainly composed of two kinds of neutral lipids, triglycerides and cholesteryl esters, which are coated by a phospholipid monolayer and proteins. Despite the liquid crystalline nature of cholesteryl esters, the connection between the lipid composition and physical states is poorly understood. Here, we present a universal intracellular phase diagram of lipid droplets, semiquantitatively consistent with the in vitro phase diagram, and reveal that cholesterol esters cause the liquid-liquid crystal phase transition under near-physiological conditions. We moreover combine in vivo and in vitro studies, together with the theory of confined liquid crystals, to suggest that the radial molecular alignments in the liquid crystallized lipid droplets are caused by an anchoring force at the droplet surface. Our findings on the phase transition of lipid droplets and resulting molecular organization contribute to a better understanding of their biological functions and diseases.
Collapse
|
7
|
Fournier N, Sayet G, Vedie B, Nowak M, Allaoui F, Solgadi A, Caudron E, Chaminade P, Benoist JF, Paul JL. Eicosapentaenoic acid membrane incorporation impairs cholesterol efflux from cholesterol-loaded human macrophages by reducing the cholesteryl ester mobilization from lipid droplets. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1079-1091. [PMID: 28739279 DOI: 10.1016/j.bbalip.2017.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/26/2022]
Abstract
A diet containing a high n-3/n-6 polyunsaturated fatty acids (PUFA) ratio has cardioprotective properties. PUFAs incorporation into membranes influences the function of membrane proteins. We investigated the impact of the membrane incorporation of PUFAs, especially eicosapentaenoic acid (EPA) (C20:5 n-3), on the anti-atherogenic cholesterol efflux pathways. We used cholesteryl esters (CE)-loaded human monocyte-derived macrophages (HMDM) to mimic foam cells exposed to the FAs for a long period of time to ensure their incorporation into cellular membranes. Phospholipid fraction of EPA cells exhibited high levels of EPA and its elongation product docosapentaenoic acid (DPA) (C22:5 n-3), which was associated with a decreased level of arachidonic acid (AA) (C20:4 n-6). EPA 70μM reduced ABCA1-mediated cholesterol efflux to apolipoprotein (apo) AI by 30% without any alteration in ABCA1 expression. The other tested PUFAs, DPA, docosahexaenoic acid (DHA) (C22:6 n-3), and AA, were also able to reduce ABCA1 functionality while the monounsaturated oleic FA slightly decreased efflux and the saturated palmitic FA had no impact. Moreover, EPA also reduced cholesterol efflux to HDL mediated by the Cla-1 and ABCG1 pathways. EPA incorporation did not hinder efflux in free cholesterol-loaded HMDM and did not promote esterification of cholesterol. Conversely, EPA reduced the neutral hydrolysis of cytoplasmic CE by 24%. The reduced CE hydrolysis was likely attributed to the increase in cellular TG contents and/or the decrease in apo E secretion after EPA treatment. In conclusion, EPA membrane incorporation reduces cholesterol efflux in human foam cells by reducing the cholesteryl ester mobilization from lipid droplets.
Collapse
Affiliation(s)
- Natalie Fournier
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France; AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Laboratoire de Biochimie, 75015 Paris, France.
| | - Guillaume Sayet
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA 4041), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Benoît Vedie
- AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Laboratoire de Biochimie, 75015 Paris, France
| | - Maxime Nowak
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Fatima Allaoui
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Audrey Solgadi
- Univ Paris Sud-Paris Saclay, SFR IPSIT (Institut Paris-Saclay d'Innovation Thérapeutique), UMS IPSIT Service d'Analyse des Médicaments et Métabolites, 92296 Châtenay-Malabry, France
| | - Eric Caudron
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA 4041), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Pierre Chaminade
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Chimie Analytique Pharmaceutique (FKA EA 4041), UFR de Pharmacie, 92296 Châtenay-Malabry, France
| | - Jean-François Benoist
- AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Robert Debré, Laboratoire de Biochimie hormonale, 75019 Paris, France
| | - Jean-Louis Paul
- Univ Paris Sud-Paris Saclay, EA 7357, Lip(Sys)(2), Athérosclérose: homéostasie et trafic du cholestérol des macrophages (FKA EA 4529), UFR de Pharmacie, 92296 Châtenay-Malabry, France; AP-HP (Assistance Publique-Hôpitaux de Paris), Hôpital Européen Georges Pompidou, Laboratoire de Biochimie, 75015 Paris, France
| |
Collapse
|
8
|
Batt KV, Avella M, Moore EH, Jackson B, Suckling KE, Botham KM. Differential Effects of Low-Density Lipoprotein and Chylomicron Remnants on Lipid Accumulation in Human Macrophages. Exp Biol Med (Maywood) 2016; 229:528-37. [PMID: 15169972 DOI: 10.1177/153537020422900611] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The effects of low-density lipoprotein (LDL) and chylomicron remnants on lipid accumulation in human monocyte–derived macrophages (HMDMs) and in macrophages derived from the human monocyte cell line THP-1 were compared. The HMDMs or THP-1 macrophages were incubated with LDL, oxidized LDL (oxLDL), chylomicron remnant–like particles (CMR-LPs), or oxidized CMR-LPs (oxCMR-LPs), and the amount and type of lipid accumulated were determined. As expected, the lipid content of both cell types was increased markedly by oxLDL but not LDL, and this was due to a rise in cholesterol, cholesteryl ester (CE), and triacylglycerol (TG) levels. In contrast, both CMR-LPs and oxCMR-LPs caused a considerable increase in cellular lipid in HMDMs and THP-1 macrophages, but in this case there was a greater rise in the TG than in the cholesterol or CE content. Lipid accumulation in response to oxLDL, CMR-LPs, and oxCMR-LPs was prevented by the ACAT inhibitor CI976 in HMDMs but not in THP-1 macrophages, where TG levels remained markedly elevated. The rate of incorporation of [3H]oleate into CE and TG in THP-1 macrophages was increased by oxLDL, CMR-LPs, and oxCMR-LPs, but incorporation into TG was increased to a greater extent with CMR-LPs and oxCMR-LPs compared with oxLDL. These results demonstrate that both CMR-LPs and oxCMR-LPs cause lipid accumulation in human macrophages comparable to that seen with oxLDL and that oxidation of the remnant particles does not enhance this effect. They also demonstrate that a greater proportion of the lipid accumulated in response to CMR-LPs compared with oxLDL is TG rather than cholesterol or CE and that this is associated with a higher rate of TG synthesis. This study, therefore, provides further evidence to suggest that chylomicron remnants have a role in foam cell formation that is distinct from that of oxLDL.
Collapse
Affiliation(s)
- Kelly V Batt
- Department of Veterinary Basic Sciences, The Royal Veterinary College, London NW1 0TU, England
| | | | | | | | | | | |
Collapse
|
9
|
Bautista G, Pfisterer SG, Huttunen MJ, Ranjan S, Kanerva K, Ikonen E, Kauranen M. Polarized THG microscopy identifies compositionally different lipid droplets in mammalian cells. Biophys J 2015; 107:2230-6. [PMID: 25418291 PMCID: PMC4241439 DOI: 10.1016/j.bpj.2014.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 10/01/2014] [Accepted: 10/10/2014] [Indexed: 11/27/2022] Open
Abstract
Cells store excess lipids as two major compounds, triacylglycerols (TAGs) and cholesteryl esters (CEs), inside lipid droplets (LDs). The degree of lipid ordering is considered to play a major role in the mobility and enzymatic processing of lipids in LDs. Here, we provide evidence that polarized third-harmonic generation (THG) microscopy distinguishes between native TAG- and CE-enriched LDs in cells due to the different ordering of the two lipid species. We first demonstrate that the responses from synthetic TAG- and CE-enriched LDs using THG microscopy with linear and circular polarizations differ according to their different intrinsic ordering. We then employ simulations to dissect how polarization effects influence the THG from an isotropic LD. Finally, we induce TAG- and CE-enriched LDs in murine macrophages and demonstrate that polarized THG responses increase in a nonlinear fashion with increasing CE/TAG ratio. This suggests that with an increasing CE content, there is a rather sharp transition toward increased LD ordering. Our results demonstrate that polarized THG microscopy enables label-free quantitative analysis of LD ordering and discriminates between compositionally different LDs in intact mammalian cells.
Collapse
Affiliation(s)
- Godofredo Bautista
- Department of Physics, Tampere University of Technology, Tampere, Finland.
| | - Simon G Pfisterer
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Mikko J Huttunen
- Department of Physics, Tampere University of Technology, Tampere, Finland; COMP Centre of Excellence and Department of Applied Physics, Aalto University, Aalto, Finland
| | - Sanjeev Ranjan
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Kristiina Kanerva
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Elina Ikonen
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland; Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Martti Kauranen
- Department of Physics, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
10
|
López-Quesada C, Fontaine AS, Farré A, Joseph M, Selva J, Egea G, Ludevid MD, Martín-Badosa E, Montes-Usategui M. Artificially-induced organelles are optimal targets for optical trapping experiments in living cells. BIOMEDICAL OPTICS EXPRESS 2014; 5:1993-2008. [PMID: 25071944 PMCID: PMC4102344 DOI: 10.1364/boe.5.001993] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/24/2014] [Accepted: 05/25/2014] [Indexed: 05/24/2023]
Abstract
Optical trapping supplies information on the structural, kinetic or rheological properties of inner constituents of the cell. However, the application of significant forces to intracellular objects is notoriously difficult due to a combination of factors, such as the small difference between the refractive indices of the target structures and the cytoplasm. Here we discuss the possibility of artificially inducing the formation of spherical organelles in the endoplasmic reticulum, which would contain densely packed engineered proteins, to be used as optimized targets for optical trapping experiments. The high index of refraction and large size of our organelles provide a firm grip for optical trapping and thereby allow us to exert large forces easily within safe irradiation limits. This has clear advantages over alternative probes, such as subcellular organelles or internalized synthetic beads.
Collapse
Affiliation(s)
- C. López-Quesada
- Optical Trapping Lab – Grup de Biofotònica, Departament de Física Aplicada i Òptica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - A.-S. Fontaine
- Optical Trapping Lab – Grup de Biofotònica, Departament de Física Aplicada i Òptica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - A. Farré
- Optical Trapping Lab – Grup de Biofotònica, Departament de Física Aplicada i Òptica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - M. Joseph
- Department of Molecular Genetics, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - J. Selva
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), U. de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - G. Egea
- Departament de Biologia Cel·lular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), U. de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - M. D. Ludevid
- Department of Molecular Genetics, Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), 08193 Barcelona, Spain
| | - E. Martín-Badosa
- Optical Trapping Lab – Grup de Biofotònica, Departament de Física Aplicada i Òptica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), U. de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - M. Montes-Usategui
- Optical Trapping Lab – Grup de Biofotònica, Departament de Física Aplicada i Òptica, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institut de Nanociència i Nanotecnologia (IN2UB), U. de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
11
|
Ouimet M, Marcel YL. Regulation of Lipid Droplet Cholesterol Efflux From Macrophage Foam Cells. Arterioscler Thromb Vasc Biol 2012; 32:575-81. [DOI: 10.1161/atvbaha.111.240705] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cholesterol efflux from macrophages is the first and potentially most important step in reverse cholesterol transport, a process especially relevant to atherosclerosis and to the regression of atherosclerotic plaques. Increasingly, lipid droplet (LD) cholesteryl ester (CE) hydrolysis is being recognized as a rate-limiting step in cholesterol efflux. The traditional view on macrophage CE hydrolysis is that this pathway is entirely dependent on the action of neutral hydrolases, and numerous candidate CE hydrolases have been proposed to play a role in lipid hydrolysis in macrophages and atherogenesis. Although the exact identity of macrophage-specific CE hydrolases remains to be clarified, a common point to all of these studies is that enhancing LD-associated CE hydrolysis increases cholesterol efflux and is antiatherogenic. Understanding how cholesterol is mobilized from LDs offers new steps for modulating cholesterol efflux, and recently a role for autophagy and lysosomal acid lipase in macrophage lipolysis has emerged. Autophagy and lysosomal acid lipase thus represent novel therapeutic targets to enhance macrophage reverse cholesterol transport. This review discusses our current understanding of the relationship between macrophage LDs and atherosclerosis and presents recent insights into the mechanisms for LD CE hydrolysis in macrophage foam cells.
Collapse
Affiliation(s)
- Mireille Ouimet
- From the Department of Biochemistry, Microbiology, and Immunology (M.O., Y.L.M.), Department of Pathology and Laboratory Medicine (Y.L.M.), University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Yves L. Marcel
- From the Department of Biochemistry, Microbiology, and Immunology (M.O., Y.L.M.), Department of Pathology and Laboratory Medicine (Y.L.M.), University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Qin Z. The use of THP-1 cells as a model for mimicking the function and regulation of monocytes and macrophages in the vasculature. Atherosclerosis 2011; 221:2-11. [PMID: 21978918 DOI: 10.1016/j.atherosclerosis.2011.09.003] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 08/16/2011] [Accepted: 09/01/2011] [Indexed: 10/17/2022]
Abstract
Since their establishment thirty years ago, THP-1 cells have become one of most widely used cell lines to investigate the function and regulation of monocytes and macrophages in the cardiovascular system. However, because this cell line was derived from the blood of a patient with acute monocytic leukemia, the extent to which THP-1 cells mimic monocytes and macrophages in the vasculature is not entirely known. This article serves as a meaningful attempt to address this question by reviewing the recent publications. The interactions between THP-1 cells and various vascular cells (such as endothelial cells, smooth muscle cells, adipocytes, and T cells) provide insight into the roles of the interconnection of monocytes-macrophages with other vascular cells during vascular inflammation, particularly atherogenesis and obesity. Transcriptome, microRNA profile, and histone modifications of THP-1 cells shed new light on the regulatory mechanism of the monocytes-macrophages in response to various inflammatory mediators, such as oxidized low density lipoprotein, lipopolysaccharide, and glucose. These studies hint that under certain defined conditions, THP-1 cells not only resemble primary monocytes-macrophages isolated from healthy donors or donors with disease, such as diabetes mellitus, but also mimic the in situ alteration of macrophages in the adipose tissue of obese subjects and in atherosclerotic lesions. A potential trajectory is to use this cell line to study the novel molecular mechanisms in monocytes and macrophages in relation to the physiology and pathophysiology of the cardiovascular system, however, the conclusion of studies employing THP-1 cells requires further verification using primary cells and/or in vivo models to be generalized to monocytes and macrophages.
Collapse
Affiliation(s)
- Zhenyu Qin
- Division of Vascular Surgery, Department of Surgery, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, United States.
| |
Collapse
|
13
|
Abstract
Cholesterol-engorged macrophage foam cells are a critical component of the atherosclerotic lesion. Reducing the sterol deposits in lesions reduces clinical events. Sterol accumulations within lysosomes have proven to be particularly hard to mobilize out of foam cells. Moreover, excess sterol accumulation in lysosomes has untoward effects, including a complete disruption of lysosome function. Recently, we demonstrated that treatment of sterol-engorged macrophages in culture with triglyceride-containing particles can reverse many of the effects of cholesterol on lysosomes and dramatically reduce the sterol burden in these cells. This article describes what is known about lysosomal sterol engorgement, discusses the possible mechanisms by which triglyceride could produce its effects, and evaluates the possible positive and negative effects of reducing the lysosomal cholesterol levels in foam cells.
Collapse
Affiliation(s)
- W Gray Jerome
- Department of Pathology, U-2206 Medical Center North Vanderbilt University School of Medicine 1161 21st Avenue, South Nashville, TN 37232-32561, USA, Tel.: +1 615 322 5530
| |
Collapse
|
14
|
Ullery-Ricewick JC, Cox BE, Griffin EE, Jerome WG. Triglyceride alters lysosomal cholesterol ester metabolism in cholesteryl ester-laden macrophage foam cells. J Lipid Res 2009; 50:2014-26. [PMID: 19461120 DOI: 10.1194/jlr.m800659-jlr200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In late-stage atherosclerosis, much of the cholesterol in macrophage foam cells resides within enlarged lysosomes. Similarly, human macrophages incubated in vitro with modified LDLs contain significant amounts of lysosomal free cholesterol and cholesteryl ester (CE), which disrupts lysosomal function similar to macrophages in atherosclerotic lesions. The lysosomal cholesterol cannot be removed, even in the presence of strong efflux promoters. Thus, efflux of sterol is prevented. In the artery wall, foam cells interact with triglyceride-rich particles (TRPs) in addition to modified LDLs. Little is known about how TRP metabolism affects macrophage cholesterol. Therefore, we explored the effect of TRP on intracellular CE metabolism. Triglyceride (TG), delivered to lysosomes in TRP, reduced CE accumulation by 50%. Increased TG levels within the cell, particularly within lysosomes, correlated with reductions in CE content. The volume of cholesterol-engorged lysosomes decreased after TRP treatment, indicating cholesterol was cleared. Lysosomal TG also reduced the cholesterol-induced inhibition of lysosomal acidification allowing lysosomes to remain active. Enhanced degradation and clearance of CE may be explained by movement of cholesterol out of the lysosome to sites where it is effluxed. Thus, our results show that introduction of TG into CE-laden foam cells influences CE metabolism and, potentially, atherogenesis.-Ullery-Ricewick, J. C., B. E. Cox, E. E. Griffin, and W. G. Jerome. Triglyceride alters lysosomal cholesterol ester metabolism in cholesteryl ester-laden macrophage foam cells.
Collapse
|
15
|
Hynynen R, Suchanek M, Spandl J, Bäck N, Thiele C, Olkkonen VM. OSBP-related protein 2 is a sterol receptor on lipid droplets that regulates the metabolism of neutral lipids. J Lipid Res 2009; 50:1305-15. [PMID: 19224871 DOI: 10.1194/jlr.m800661-jlr200] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Oxysterol binding protein-related protein 2 (ORP2) is a member of the oxysterol binding protein family, previously shown to bind 25-hydroxycholesterol and implicated in cellular cholesterol metabolism. We show here that ORP2 also binds 22(R)-hydroxycholesterol [22(R)OHC], 7-ketocholesterol, and cholesterol, with 22(R)OHC being the highest affinity ligand of ORP2 (K(d) 1.4 x 10(-8) M). We report the localization of ORP2 on cytoplasmic lipid droplets (LDs) and its function in neutral lipid metabolism using the human A431 cell line as a model. The ORP2 LD association depends on sterol binding: Treatment with 5 microM 22(R)OHC inhibits the LD association, while a mutant defective in sterol binding is constitutively LD bound. Silencing of ORP2 using RNA interference slows down cellular triglyceride hydrolysis. Furthermore, ORP2 silencing increases the amount of [(14)C]cholesteryl esters but only under conditions in which lipogenesis and LD formation are enhanced by treatment with oleic acid. The results identify ORP2 as a sterol receptor present on LD and provide evidence for its role in the regulation of neutral lipid metabolism, possibly as a factor that integrates the cellular metabolism of triglycerides with that of cholesterol.
Collapse
Affiliation(s)
- Riikka Hynynen
- National Institute for Health and Welfare, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
16
|
Evolution of foamy macrophages in the pulmonary granulomas of experimental tuberculosis models. Tuberculosis (Edinb) 2008; 89:175-82. [PMID: 19110471 DOI: 10.1016/j.tube.2008.11.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Revised: 10/04/2008] [Accepted: 11/12/2008] [Indexed: 11/23/2022]
Abstract
The chronic phase of Mycobacterium tuberculosis infection in mouse experimental models is characterized by the accumulation of foamy macrophages (FM)--which shape the outer ring of the granuloma - in the alveolar spaces, as detected in paraffin-embedded tissues stained with hematoxylin-eosin. In this study, the use of semi- and ultra-thin sections offers more detailed information about the origin of FM both in mouse and guinea-pig experimental models. Lipid bodies (LB) are present in macrophages from the beginning of infection and accumulate in the chronic phase. LB progress from an early (ELB) to a late (LLB) stage, defined according to their progressive capacity to generate cholesterol crystals, resembling atherosclerotic lesions. FM arise from massive accumulation of LLB. Electronic microscopy reveals intracellular lipophilic inclusions (ILIs) in those M. tuberculosis bacilli inside FM. It is our hypothesis that the accumulation of lipids in M. tuberculosis concomitant to the establishment of the non-replicating state prepares the bacilli for future reactivation and for facing future stressful environments.
Collapse
|
17
|
Anti-atherosclerotic activity of triacsin C, an acyl-CoA synthetase inhibitor. J Antibiot (Tokyo) 2008; 61:318-21. [PMID: 18653998 DOI: 10.1038/ja.2008.45] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
As previously reported, triacsin C, a selective inhibitor of acyl-CoA synthetase, inhibited the synthesis of cholesteryl ester and triacylglycerol in mouse peritoneal macrophages, leading to a reduction of lipid droplets. Therefore, the in vivo efficacy was studied. Low-density lipoprotein receptor-knockout (LDLR-/-) mice were fed a high cholesterol diet (0.15%) for two months to measure the atherogenic areas of the hearts and aortas. When triacsin C was orally administered (10 mg/kg/day), the atherosclerotic areas were significantly reduced by 86% in aorta and 36% in hearts. The results strongly suggested that triacsin C shows anti-atherogenic activity by inhibiting acyl-CoA synthetase activity.
Collapse
|
18
|
Diaz G, Melis M, Batetta B, Angius F, Falchi AM. Hydrophobic characterization of intracellular lipids in situ by Nile Red red/yellow emission ratio. Micron 2008; 39:819-24. [DOI: 10.1016/j.micron.2008.01.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 01/04/2008] [Accepted: 01/05/2008] [Indexed: 11/24/2022]
|
19
|
Diaz G, Batetta B, Sanna F, Uda S, Reali C, Angius F, Melis M, Falchi AM. Lipid droplet changes in proliferating and quiescent 3T3 fibroblasts. Histochem Cell Biol 2008; 129:611-21. [PMID: 18297300 DOI: 10.1007/s00418-008-0402-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2008] [Indexed: 01/19/2023]
Abstract
Lipid droplets (LDs) are fat-storing organelles present in virtually all eukaryotic cells and involved in many aspects of cell biology related to lipid metabolism and cholesterol homeostasis. In this study, we investigated the presence of LDs in proliferating and quiescent (contact-inhibited) 3T3 fibroblasts to verify a correlation with cell growth. LDs were characterized by Nile red staining, positivity to adipophilin and negativity to perilipin. LDs were numerous in proliferating cells, but very few in quiescent cells. However, the fraction of quiescent cells, which resumed proliferation after scratch-wound assay, also resumed the formation of LDs. In proliferating cells, the number of LDs correlated with the DNA content, suggesting a continuous accumulation of LDs during cell growth. These findings were supported by biochemical data showing much higher rates of cholesterol esterification and triglyceride synthesis in proliferating cells. Both filipin staining and the fluorescent cholesterol analog dehydroergosterol revealed the presence of an intense traffic of free cholesterol, mediated by acidic vesicles, in proliferating cells. Nile red ratiometric measurements revealed a different lipid composition of LDs in proliferating and quiescent cells. Changes in the number and composition of LDs were also found in growing cells treated with inhibitors of cholesterol esterification (Sandoz 58-035), endosomal cholesterol efflux (U18666A) and V-ATPase (bafilomycin-A1).
Collapse
Affiliation(s)
- Giacomo Diaz
- Department of Cytomorphology, University of Cagliari, Cittadella Universitaria Monserrato, 09042 Monserrato (CA), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Perilipin and adipophilin expression in lipid loaded macrophages. Biochem Biophys Res Commun 2007; 363:1020-6. [DOI: 10.1016/j.bbrc.2007.09.074] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 09/14/2007] [Indexed: 11/21/2022]
|
21
|
Fujimoto Y, Itabe H, Kinoshita T, Homma KJ, Onoduka J, Mori M, Yamaguchi S, Makita M, Higashi Y, Yamashita A, Takano T. Involvement of ACSL in local synthesis of neutral lipids in cytoplasmic lipid droplets in human hepatocyte HuH7. J Lipid Res 2007; 48:1280-92. [PMID: 17379924 DOI: 10.1194/jlr.m700050-jlr200] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Lipid droplets (LDs) function as intracellular storage depots of neutral lipids. Recently, we identified long-chain acyl-coenzyme A synthetase 3 (ACSL3) as a major LD-associated protein in the human hepatocyte cell line HuH7. In this study, we investigated whether droplet-associated ACSL is involved in lipid metabolism in LDs. Addition of oleic acid (OA) to culture medium was shown to enhance the intracellular accumulation of LDs in the cells, which was accompanied by an increase of droplet ACSL3. When LD-enriched cells induced by OA were further incubated without OA for 3 days, approximately 80% of LDs were retained in the cells. Conversely, cellular LD content was greatly decreased after the addition of an ACSL inhibitor, triacsin C. This was accompanied by a concomitant decrease of the droplet ACSL3. Incubation of isolated LD fractions with (14)C-labeled OA or palmitic acid resulted in [(14)C]acyl-CoA generation in vitro, indicating the presence of ACSL activity in LDs. The droplet ACSL activity varied according to the quantity of LDs in their emergence and disappearance in cells. Incubation of the LD fraction with [(14)C]oleoyl-CoA resulted in radioactive triacylglycerol and cholesteryl esters. These results suggest that LD ACSL activity is involved in local synthesis of neutral lipids and LD formation.
Collapse
Affiliation(s)
- Yasuyuki Fujimoto
- Department of Molecular Pathology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Sagamihara, Kanagawa 199-0195, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Masuda Y, Itabe H, Odaki M, Hama K, Fujimoto Y, Mori M, Sasabe N, Aoki J, Arai H, Takano T. ADRP/adipophilin is degraded through the proteasome-dependent pathway during regression of lipid-storing cells. J Lipid Res 2005; 47:87-98. [PMID: 16230742 DOI: 10.1194/jlr.m500170-jlr200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adipose differentiation-related protein (ADRP) is a major protein associated with lipid droplets in various types of cells, including macrophage-derived foam cells and liver cells. However, the role of ADRP in the processes of formation and regression of these cells is not understood. When J774 murine macrophages were incubated with either VLDL or oleic acid, their content of both ADRP and triacylglycerol (TG) increased 3- to 4-fold. Induction of ADRP during TG accumulation was also observed in oleic acid-treated HuH-7 human liver cells. Addition of triacsin C, a potent inhibitor of acyl-CoA synthase, for 6 h decreased the amount of TG in VLDL-induced foam cells and oleic acid-treated liver cells; it decreased the amount of ADRP protein in parallel, indicating the amount of ADRP reduced during regression of the lipid-storing cells. Addition of a proteasome inhibitor during triacsin C treatment abolished the ADRP decrease and accumulated polyubiquitinated ADRP. In addition, the proteasome inhibitor reversed not only the degradation of ADRP but also TG reduction by triacsin C. These results suggest that cellular amounts of ADRP and TG regulate each other and that the ubiquitin-proteasome system is involved in degradation of ADRP during regression of lipid-storing cells.
Collapse
Affiliation(s)
- Yutaka Masuda
- Department of Biological Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhao B, Fisher BJ, St Clair RW, Rudel LL, Ghosh S. Redistribution of macrophage cholesteryl ester hydrolase from cytoplasm to lipid droplets upon lipid loading. J Lipid Res 2005; 46:2114-21. [PMID: 16024911 DOI: 10.1194/jlr.m500207-jlr200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrolysis of intracellular cholesteryl esters (CEs) represents the first step in the removal of cholesterol from lipid-laden foam cells associated with atherosclerotic lesions. Neutral cholesteryl ester hydrolase (CEH) catalyzes this reaction, and we recently cloned the cDNA for the human macrophage CEH and demonstrated increased mobilization of intracellular CE droplets by CEH overexpression. The present study was undertaken to test the hypothesis that for CE hydrolysis, CEH must become associated with the surface of the cytoplasmic lipid droplets. Our data show the redistribution of CEH from cytosol to lipid droplets upon lipid loading of human THP-1 macrophages. Depletion of triacylglycerol (TG) by incubation with the acyl-CoA synthetase inhibitor Triacsin D had no effect on CEH association with the lipid droplets, suggesting that CEH associates with mixed (CE + TG) as well as TG-depleted CE droplets. However, CEH had 2.5-fold higher activity when mixed droplets were used as substrate in an in vitro assay, consistent with the reported higher cholesterol efflux from cells containing mixed isotropic droplets. Perilipin as well as adipophilin, two lipid droplet-associated proteins, were also present on the lipid droplets in THP-1 macrophages. In conclusion, CEH associates with its intracellular substrate (lipid droplets) and hydrolyzes CE more efficiently from mixed droplets.
Collapse
Affiliation(s)
- Bin Zhao
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23298-0050, USA
| | | | | | | | | |
Collapse
|
24
|
Palmer AM, Murphy N, Graham A. Triglyceride-rich lipoproteins inhibit cholesterol efflux to apolipoprotein (apo) A1 from human macrophage foam cells. Atherosclerosis 2004; 173:27-38. [PMID: 15177121 DOI: 10.1016/j.atherosclerosis.2003.12.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2003] [Revised: 10/21/2003] [Accepted: 12/08/2003] [Indexed: 11/16/2022]
Abstract
High circulating levels of triglyceride-rich lipoproteins (TGRL) represent an independent risk factor for coronary artery disease. Here, we show that TGRL inhibit the efflux of cholesterol from 'foam cell' macrophages to lipid-poor apolipoprotein (apo) A1, and may thereby inhibit arterial reverse cholesterol transport and promote the formation of atherosclerotic lesions. Human (THP-1) monocyte-derived macrophages were pre-incubated (48 h) with acetylated low-density lipoprotein (AcLDL) to provide a foam cell model of cholesterol efflux to apoA1. Pre-incubation of macrophage 'foam cells' with TGRL (0-200 microg/ml, 0-24 h) inhibited the efflux of exogenously radiolabelled ([3H]), endogenously synthesised ([14C]) and cellular cholesterol mass to lipid-poor apoA1, but not control medium, during a (subsequent) efflux period. This inhibition is dependent upon the length of prior exposure to, and concentration of, TGRL employed, but is independent of changes in intracellular triglyceride accumulation or turnover of the cholesteryl ester pool. Despite the negative impact of TGRL on cholesterol efflux, major proteins involved in this process--namely apoE, ABCA1, SR-B1 and caveolin-1--were unaffected by TGRL pre-incubation, suggesting that exposure to these lipoproteins inhibits an alternate, and possibly novel, anti-atherogenic pathway.
Collapse
Affiliation(s)
- Anna M Palmer
- Department of Biochemistry and Molecular Biology, Royal Free and University College Medical School, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK.
| | | | | |
Collapse
|
25
|
Choy HA, Wang XP, Schotz MC. Reduced atherosclerosis in hormone-sensitive lipase transgenic mice overexpressing cholesterol acceptors. Biochim Biophys Acta Mol Cell Biol Lipids 2004; 1634:76-85. [PMID: 14643795 DOI: 10.1016/j.bbalip.2003.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macrophage-specific overexpression of cholesteryl ester hydrolysis in hormone-sensitive lipase transgenic (HSL Tg) female mice paradoxically increases cholesterol esterification and cholesteryl ester accumulation in macrophages, and thus susceptibility to diet-induced atherosclerosis compared to nontransgenic C57BL/6 mice. The current studies suggest that whereas increased cholesterol uptake could contribute to transgenic foam cell formation, there are no differences in cholesterol synthesis and the expression of cholesterol efflux mediators (ABCA1, ABCG1, apoE, PPARgamma, and LXRalpha) compared to wild-type macrophages. HSL Tg macrophages exhibit twofold greater efflux of cholesterol to apoA-I in vitro, suggesting the potential rate-limiting role of cholesteryl ester hydrolysis in efflux. However, macrophage cholesteryl ester levels appear to depend on the relative efficacy of alternate pathways for free cholesterol in either efflux or re-esterification. Thus, increased atherosclerosis in HSL Tg mice appears to be due to the coupling of the efficient re-esterification of excess free cholesterol to its limited removal mediated by the cholesterol acceptors in these mice. The overexpression of cholesterol acceptors in HSL-apoA-IV double-transgenic mice increases plasma HDL levels and decreases diet-induced atherosclerosis compared to HSL Tg mice, with aortic lesions reduced to sizes in nontransgenic littermates. The results in vivo are consistent with the effective efflux from HSL Tg macrophages supplemented with HDL and apoA-I in vitro, and highlight the importance of cholesterol acceptors in inhibiting atherosclerosis caused by imbalances in the cholesteryl ester cycle.
Collapse
Affiliation(s)
- Henry A Choy
- Lipid Research Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | | | | |
Collapse
|
26
|
Lada AT, Rudel LL, St Clair RW. Effects of LDL enriched with different dietary fatty acids on cholesteryl ester accumulation and turnover in THP-1 macrophages. J Lipid Res 2003; 44:770-9. [PMID: 12562836 DOI: 10.1194/jlr.m200431-jlr200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LDL enriched with either saturated, monounsaturated, n-6 polyunsaturated, or n-3 polyunsaturated fatty acids were used to study the effects of dietary fatty acids on macrophage cholesteryl ester (CE) accumulation, physical state, hydrolysis, and cholesterol efflux. Incubation of THP-1 macrophages with acetylated LDL (AcLDL) from each of the four diet groups resulted in both CE and triglyceride (TG) accumulation, in addition to alterations of cellular CE, TG, and phospholipid fatty acyl compositions reflective of the individual LDLs. Incubation with monounsaturated LDL resulted in significantly higher total and CE accumulation when compared with the other groups. After TG depletion, intracellular anisotropic lipid droplets were visible in all four groups, with 71% of the cells incubated with monounsaturated AcLDL containing anisotropic lipid droplets, compared with 30% of cells incubated with n-3 AcLDL. These physical state differences translated into higher rates of both CE hydrolysis and cholesterol efflux in the n-3 group. These data suggest that monounsaturated fatty acids may enhance atherosclerosis by increasing both cholesterol delivery to macrophage foam cells and the percentage of anisotropic lipid droplets, while n-3 PUFAs decrease atherosclerosis by creating more fluid cellular CE droplets that accelerate the rate of CE hydrolysis and the efflux of cholesterol from the cell.
Collapse
Affiliation(s)
- Aaron T Lada
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|