1
|
Garrett TA, Moncada RM. The Arabidopsis thaliana lysophospholipid acyltransferase At1g78690p acylates a variety of lysophospholipids including bis(monoacylglycero)phosphate. Biochem Biophys Res Commun 2014; 452:1022-7. [PMID: 25240136 DOI: 10.1016/j.bbrc.2014.09.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022]
Abstract
When the lysoglycerophospholipid (GPL) acyltransferase At1g78690 from Arabidopsis thaliana is over-expressed in Escherichiacoli a headgroup acylated GPL, acyl phosphatidylglycerol (PG), accumulates despite that in vitro this enzyme catalyzes the transfer of an acyl chain from acyl-CoA to the sn-2 position of 1-acyl phosphatidylethanolamine (PE) or 1-acyl PG to form the sn-1, sn-2, di acyl PE and PG respectively; it does not acylate PG to form acyl PG. To begin to understand why the overexpression of a lyso GPL acyltransferase leads to the accumulation of a headgroup acylated GPL in E. coli we investigated the headgroup specificity of At1g78690. Using membranes prepared from E. coli overexpressing At1g78690, we assessed the ability of At1g78690 to catalyze the transfer of acyl chains from acyl-coenzyme A to a variety of lyso GPL acyl acceptors including lyso-phosphatidic acid (PA), -phosphatidylcholine (PC), -phosphatidylserine (PC), -phosphatidylinositol (PI) and three stereoisoforms of bis(monoacylglycero)phosphate (BMP). The predicted products were formed when lyso PI and lyso PC were used as the acyl acceptor but not with lyso PC or lyso PA. In addition, At1g78690 robustly acylates two BMP isoforms with sn-2 and/or sn-2' hydroxyls in the R-stereoconfiguration, but not the BMP isoform with the sn-2 and sn-2' hydroxyls in the S-stereoconfiguration. This strongly suggests that At1g78690 is stereoselective for hydroxyls with R-stereochemistry. In addition, this robust acylation of BMPs by At1g78690, which yields acyl PG like molecules, may explain the mechanism by which At1g78690 so strikingly alters the lipid composition of E. coli.
Collapse
Affiliation(s)
- Teresa A Garrett
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, United States.
| | - Reuben M Moncada
- Department of Chemistry, Vassar College, 124 Raymond Avenue, Poughkeepsie, NY 12604, United States
| |
Collapse
|
2
|
Bis (monoacylglycero) phosphate interfacial properties and lipolysis by pancreatic lipase-related protein 2, an enzyme present in THP-1 human monocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:419-30. [DOI: 10.1016/j.bbalip.2011.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 04/12/2011] [Accepted: 04/18/2011] [Indexed: 02/04/2023]
|
3
|
Biological Function of the Cellular Lipid BMP—BMP as a Key Activator for Cholesterol Sorting and Membrane Digestion. Neurochem Res 2010; 36:1594-600. [DOI: 10.1007/s11064-010-0337-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
|
4
|
Goursot A, Mineva T, Bissig C, Gruenberg J, Salahub DR. Structure, dynamics, and energetics of lysobisphosphatidic acid (LBPA) isomers. J Phys Chem B 2010; 114:15712-20. [PMID: 21053942 DOI: 10.1021/jp108361d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lysobisphosphatidic acid (LBPA), or bis(monoacylglycerol)phosphate, is a very interesting lipid, that is mainly found in late endosomes. It has several intriguing characteristics, which differ from those of other animal glycerophospholipids, that may be related to its specific functions, particularly in the metabolism of cholesterol. Its phosphodiester group is bonded at the sn-1 (sn-1') positions of the glycerols rather than at sn-3 (sn-3'); the position of the two fatty acid chains is still under debate but, increasingly, arguments favor the sn-2, sn-2' position in the native molecule, whereas isolation procedures or acidic conditions lead to the thermodynamically more stable sn-3, sn-3' structure. Because of these peculiar features, it can be expected that LBPA shape and interactions with membrane lipids and proteins are related to its structure at the molecular level. We applied quantum mechanical methods to study the structures and stabilities of the 2,2' and 3,3' LBPA isomers, using a step-by-step procedure from glycerol to precursors (in vitro syntheses) and to the final isoforms. The structures of the two positional LBPA isomers are substantially different, showing that the binding positions of the fatty acid chains on the glycerol backbone determine the shape of the LBPA molecule and thus, possibly, its functions. The 3,3' LBPA structures obtained are more stable with respect to the 2,2' form, as expected from experiment. If one argues that the in vivo synthesis starts from the present glycerol conformers and considering the most stable bis(glycero)phosphate structures, the 2,2' isoform should be the most probable isomer.
Collapse
Affiliation(s)
- A Goursot
- UMR 5253 CNRS/ENSCM/UM2/UM1 Ecole de Chimie de Montpellier, 8 rue de l'Ecole Normale, 34296, Montpellier, Cedex 5, France
| | | | | | | | | |
Collapse
|
5
|
Frederick TE, Goff PC, Mair CE, Farver RS, Long JR, Fanucci GE. Effects of the endosomal lipid bis(monoacylglycero)phosphate on the thermotropic properties of DPPC: A 2H NMR and spin label EPR study. Chem Phys Lipids 2010; 163:703-11. [PMID: 20599855 DOI: 10.1016/j.chemphyslip.2010.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 05/31/2010] [Accepted: 06/14/2010] [Indexed: 11/25/2022]
Abstract
Bis(monoacylglycero)phosphate (BMP) is an endosomal lipid with a unique structure that is implicated in the formation of intraendosomal vesicular bodies. Here we have characterized the effects of dioleoyl-BMP (BMP(18:1)) at concentrations of 5, 10, 15 and 20mol% on the thermotropic behavior of dipalmitoyl phosphatidylcholine (DPPC) vesicles, and compared them to those of equimolar concentrations of dioleoyl phosphatidylglycerol (DOPG), a structural isoform of BMP(18:1). Because BMP is found in the acidic environments of the late endosome and intralysosomal vesicles, samples were prepared at pH 4.2 to mimic the pH of the lysosome. Both (2)H NMR of perdeuterated DPPC and spin-labeled EPR with 16-doxyl phosphatidylcholine were utilized in these investigations. NMR and EPR results show that BMP(18:1) induces a lowering in the main phase transition temperature of DPPC similar to that of DOPG. The EPR studies reveal that BMP(18:1) induced more disorder in the L(beta) phase when compared to equimolar concentrations of DOPG. Analysis from dePaked (2)H NMR spectra in the L(alpha) phase reveals that BMP(18:1) induces less disorder than equal concentrations of DOPG. Additionally, the results demonstrate that BMP mixes with other phospholipids as a phospholipid and not as a detergent molecule as once speculated.
Collapse
Affiliation(s)
- Thomas E Frederick
- Department of Chemistry, P.O. Box 117200, University of Florida, Gainesville, FL 32611-7200, USA
| | | | | | | | | | | |
Collapse
|
6
|
Rowland MM, Best MD. Modular synthesis of bis(monoacylglycero)phosphate for convenient access to analogues bearing hydrocarbon and perdeuterated acyl chains of varying length. Tetrahedron 2009. [DOI: 10.1016/j.tet.2009.06.085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Frederick TE, Chebukati JN, Mair CE, Goff PC, Fanucci GE. Bis(monoacylglycero)phosphate forms stable small lamellar vesicle structures: insights into vesicular body formation in endosomes. Biophys J 2009; 96:1847-55. [PMID: 19254543 DOI: 10.1016/j.bpj.2008.12.3892] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 12/01/2008] [Indexed: 11/28/2022] Open
Abstract
Bis(monoacylglycero)phosphate (BMP) is an unusually shaped lipid found in relatively high percentage in the late endosome. Here, we report the characterization of the morphology and molecular organization of dioleoyl-BMP (DOBMP) with dynamic light scattering, transmission electron microscopy, nuclear magnetic resonance (NMR) spectroscopy, and electron paramagnetic resonance spectroscopy. The morphology of hydrated DOBMP dispersions varies with pH and ionic strength, and DOBMP vesicles are significantly smaller in diameter than phosphatidylcholine dispersions. At neutral pH, DOBMP forms highly structured, clustered dispersions 500 nm in size. On the other hand, at acidic pH, spherically shaped vesicles are formed. NMR and spin-labeled electron paramagnetic resonance demonstrate that DOBMP forms a lamellar mesophase with acyl-chain packing similar to that of other unsaturated phospholipids. (31)P NMR reveals an orientation of the phosphate group in DOBMP that differs significantly from that of other phospholipids. These macroscopic and microscopic structural characterizations suggest that the biosynthesis of BMP on the inner luminal membrane of maturing endosomes may possibly produce budded vesicles high in BMP content, which form small vesicular structures stabilized by the physical properties of the BMP lipid.
Collapse
Affiliation(s)
- Thomas E Frederick
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, USA
| | | | | | | | | |
Collapse
|
8
|
Morita SY, Ueda K, Kitagawa S. Enzymatic measurement of phosphatidic acid in cultured cells. J Lipid Res 2009; 50:1945-52. [PMID: 19369695 DOI: 10.1194/jlr.d900014-jlr200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work, we developed a novel enzymatic method for measuring phosphatidic acid (PA) in cultured cells. The enzymatic reaction sequence of the method involves hydrolysis of PA to produce glycerol-3-phosphate (G3P), which is then oxidized by G3P oxidase to generate hydrogen peroxide. In the presence of peroxidase, hydrogen peroxide reacted with Amplex Red to produce highly fluorescent resorufin. We found that lipase from Pseudomonas sp. can completely hydrolyze PA to G3P and FAs. The calibration curve for PA measurement was linear between 20 and 250 microM, and the detection limit was 5 microM (50 pmol in the reaction mixture). We also modified the method for the enzymatic measurement of lysophosphatidic acid. By this new method, we determined the PA content in the lipid extract from HEK293 cells. The cellular content of PA was decreased with increasing cell density but not correlated with the proliferation rate. The diacylglycerol kinase inhibitor R59949 markedly reduced the cellular PA content, suggesting the diacylglycerol kinase activity was involved in a large part of the PA production in HEK293 cells. This novel method for PA quantification is simple, rapid, specific, sensitive, and high-throughput and will help to study the biological functions of PA and its related enzymes.
Collapse
Affiliation(s)
- Shin-ya Morita
- Laboratory of Pharmaceutical Technology, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-8558, Japan.
| | | | | |
Collapse
|
9
|
Xu Z, Farver W, Kodukula S, Storch J. Regulation of sterol transport between membranes and NPC2. Biochemistry 2008; 47:11134-43. [PMID: 18823126 DOI: 10.1021/bi801328u] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Niemann-Pick disease type C (NPC) is caused by defects in either the NPC1 or NPC2 gene and is characterized by accumulation of cholesterol and glycolipids in the late endosome/lysosome compartment. NPC2 is an intralysosomal protein that binds cholesterol in vitro. Previous studies demonstrated rapid rates of cholesterol transfer from NPC2 to model membranes [Cheruku, S. R., et al. (2006) J. Biol. Chem. 281, 31594-31604]. To model the potential role of NPC2 as a lysosomal cholesterol export protein, in this study we used fluorescence spectroscopic approaches to examine cholesterol transfer from membranes to NPC2, assessing the rate, mechanism, and regulation of this transport step. In addition, we examined the effect of NPC2 on the rate and kinetic mechanism of intermembrane sterol transport, to model the movement of cholesterol from internal lysosomal membranes to the limiting lysosomal membrane. The results support the hypothesis that NPC2 plays an important role in endo/lysosomal cholesterol trafficking by markedly accelerating the rates of cholesterol transport. Rates of sterol transfer from and between membranes were increased by as much as 2 orders of magnitude by NPC2. The transfer studies indicate that the mechanism of NPC2 action involves direct interaction of the protein with membranes. Such interactions were observed directly using FTIR spectroscopy and protein tryptophan spectral shifts. Additionally, cholesterol transfer by NPC2 was found to be greatly enhanced by the unique lysosomal phospholipid lyso-bisphosphatidic acid (LBPA), suggesting an important role for LBPA in NPC2-mediated cholesterol trafficking.
Collapse
Affiliation(s)
- Zhi Xu
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | | | | | | |
Collapse
|
10
|
Luquain C, Laugier C, Lagarde M, Pageaux JF. High-performance liquid chromatography determination of bis(monoacylglycerol) phosphate and other lysophospholipids. Anal Biochem 2001; 296:41-8. [PMID: 11520030 DOI: 10.1006/abio.2001.5158] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bis(monoacylglycerol) phosphate (BMP) is a very minor component of the phospholipid (PL) fraction in rat uterine stromal cell cultures (U(III) cells). Under several culture conditions, including the addition of (n-3) or (n-6) polyunsaturated fatty acids, BMP selectively accumulates docosahexaenoic acid (DHA). We have recently described the structure of this PL, but its biological function is still largely unknown, except for a role in late endosomes trafficking. In order to further investigate this function, we have developed a sensitive assay for accurate determination of BMP in small biological samples. Total PL from cells, labeled or not with trace amount of [3H]DHA, were extracted and PL classes separated by thin-layer chromatography. After extraction of the gel corresponding to the BMP area, a known amount of an internal standard was added. The free hydroxyl groups of PL were totally derivatized with naproxen. Derivatized PL were separated by normal-phase high-pressure liquid chromatography and quantified using UV absorption at 231 nm. Since the sensitivity of the proposed method was about 0.1 nmol for BMP, samples of only 3 x 10(5) cells were required. The BMP level was found to be 616 +/- 46 pmol for 10(6) control cells. It was increased threefold in starved cells and significantly increased in cells cultured in the presence of exogenous phosphatidylglycerol.
Collapse
Affiliation(s)
- C Luquain
- Laboratoire de Biochimie and Pharmacologie, INSERM U352-INSA de Lyon, 20 avenue A. Einstein, Villeurbanne Cedex, 69621, France
| | | | | | | |
Collapse
|
11
|
Thornburg T, Miller C, Thuren T, King L, Waite M. Glycerol reorientation during the conversion of phosphatidylglycerol to bis(monoacylglycerol)phosphate in macrophage-like RAW 264.7 cells. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(20)89576-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
Affiliation(s)
- H H Schmid
- Hormel Institute, University of Minnesota, Austin 55912
| | | | | |
Collapse
|
13
|
|
14
|
Synthesis of labelled stereoisomers of bis(diacylglycero) phosphates and lyso derivatives. ACTA ACUST UNITED AC 1985. [DOI: 10.1016/0005-2760(85)90184-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Davis RA, McNeal MM, Moses RL. Intrahepatic assembly of very low density lipoprotein. Competition by cholesterol esters for the hydrophobic core. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)34971-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Chapter 2 Plasmalogens and O-alkyl glycerophospholipids. ACTA ACUST UNITED AC 1982. [DOI: 10.1016/s0167-7306(08)60006-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
17
|
Frentzen-Bertrams M, Debuch H. Production of bis(monoacylglycero)phosphate from phosphatidylglycerol in isolated liver lysosomes of chloroquine-pretreated rats. HOPPE-SEYLER'S ZEITSCHRIFT FUR PHYSIOLOGISCHE CHEMIE 1981; 362:1229-36. [PMID: 7346382 DOI: 10.1515/bchm2.1981.362.2.1229] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Labelled phosphatidylglycerol was incubated with rat liver lysosomes from animals treated for 3 to 20 days with chloroquine diphosphate. The longer the period of pretreatment with the amphiphilic drug, the greater was the increase in the synthesis rate of bis(monoacylglycero)phosphate, both in the absolute values and when related to the lysosomal protein which was also increased. The mechanism of the in vitro conversion of phosphatidylglycerol to bis(monoacylglycero)phosphate was studied by using phosphatidylglycerol labelled with 14C and/or 3H in different positions of the molecule. Assays with rac-1-(1,2-diacyl-[2-3H]glycero-3-phospho)-[U-14C]glycerol clearly demonstrated that the 3H/14C ratio of the substrate was the same as found in the product bis(monoacylglycero)phosphate. Therefore the whole glycerophosphoglycerol backbone of the substrate is used for bis(monoacylglycero)phosphate formation, and recombination of released glycerol moieties can be excluded. Experiments with phosphatidylglycerol labelled in both fatty acids suggest that only one acyl group of the substrate is preserved in bis(monoacylglycero)-phosphate. The analysis of further products formed during incubations of rat liver lysosomes with labelled phosphatidylglycerol showed a rapid degradation of the glycerolipid mainly by the action of phospholipase A and C.
Collapse
|
18
|
Werchola GM, Mellors A. A lysosomal enzyme involved in diphosphatidylglycerol degradation. Lipids 1981; 16:149-53. [PMID: 6264263 DOI: 10.1007/bf02535691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A soluble lysosomal phosphodiesterase in rat liver that hydrolyzes monoacylglycerophosphorylglycerophosphorylglycerol (AGPGPGase) was shown to be distinct from a lysosomal acid phosphodiesterase IV (PDase IV) which catalyzes the hydrolysis of bis(p-nitrophenyl) phosphate. The criteria used to distinguish lysosomal AGPGPGase from PDase IV were: separation on ion exchange celluloses, dissimilar inhibition patterns and different rates of inactivation on concentration. The lysosomal PDase IV activity was competitively inhibited by inorganic phosphate with a Ki value of 0.33 mM phosphate and was inhibited by a number of organophosphoryl compounds including AGPGPG, phosphatidylcholine, phosphatidylinositol, ATP and 4-methylumbelliferylpyrophosphate.
Collapse
|
19
|
Somerharju P, Renkonen O. Conversion of phosphatidylglycerol lipids to bis(monoacylglycero)phosphate in vivo. BIOCHIMICA ET BIOPHYSICA ACTA 1980; 618:407-19. [PMID: 7397205 DOI: 10.1016/0005-2760(80)90259-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Liposomes containing either 32P-labeled diphosphatidylglycerol (cardiolipin) or 32P-labeled phosphatidyl-rac-(1)-glycerol were injected into the circulation of rats. Analysis of the liver lipids 2-3 after injection showed incorporation of the 32P label from both lipids to a lipid which had chromatographic properties identical with bis(monoacylglycero)phosphate. Stereochemical analysis of this lipid indicated that its backbone was sn-glycero-1-phospho-1'-glycerol. Cultured hamster fibroblasts (BHK cells) were incubated in a medium containing lyso[32P]phosphatidyl-rac-(1)-glycerol and the formation of radioactive lipids in the cells was followed. Bis(monoacylglycero) phosphate was the major 32P-labelled lipid formed: as much as 36.4% of the lyso[32P]phosphatidyl-rac-(1)-glycerol absorbed to the cells was converted to bis(monoacylglycero)phosphate. Similar results were obtained with lyso[32P]phosphatidyl-sn-1-glycerol as a precursor. Stereoanalysis of the bis(monoacylglycero)-[32P]-phosphate formed from either precursor indicated that this lipid was a derivative of sn-glycero-1-phospho-1'-glycerol. These results establish phosphatidylglycerol, diphosphatidylglycerol and lysophosphatidylglycerol as precursors of bis-(monoacyl-sn-glycero-1)phosphate in vivo. The mechanism of the conversion of lysophosphatidylglycerol to bis-(monoacyl-sn-glycero-1)phosphate was studied by using 32P,3H-labeled lysophosphatidyl-rac-(1)-glycerol as a precursor. Both labels were incorporated to bis(monoacylglycero)phosphate with similar efficiency, which suggests that rearrangement, rather than replacement, of the (originally acylated) sn-glycero-3-phospho moiety of the precursor is the essential reaction in the biosynthesis of the sn-glycero-1-phospho-1'-glycerol backbone of bis(monoacylglycero) phosphate.
Collapse
|