1
|
Carpanini SM, Harwood JC, Baker E, Torvell M, Sims R, Williams J, Morgan BP. The Impact of Complement Genes on the Risk of Late-Onset Alzheimer's Disease. Genes (Basel) 2021; 12:443. [PMID: 33804666 PMCID: PMC8003605 DOI: 10.3390/genes12030443] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 12/27/2022] Open
Abstract
Late-onset Alzheimer's disease (LOAD), the most common cause of dementia, and a huge global health challenge, is a neurodegenerative disease of uncertain aetiology. To deliver effective diagnostics and therapeutics, understanding the molecular basis of the disease is essential. Contemporary large genome-wide association studies (GWAS) have identified over seventy novel genetic susceptibility loci for LOAD. Most are implicated in microglial or inflammatory pathways, bringing inflammation to the fore as a candidate pathological pathway. Among the most significant GWAS hits are three complement genes: CLU, encoding the fluid-phase complement inhibitor clusterin; CR1 encoding complement receptor 1 (CR1); and recently, C1S encoding the complement enzyme C1s. Complement activation is a critical driver of inflammation; changes in complement genes may impact risk by altering the inflammatory status in the brain. To assess complement gene association with LOAD risk, we manually created a comprehensive complement gene list and tested these in gene-set analysis with LOAD summary statistics. We confirmed associations of CLU and CR1 genes with LOAD but showed no significant associations for the complement gene-set when excluding CLU and CR1. No significant association with other complement genes, including C1S, was seen in the IGAP dataset; however, these may emerge from larger datasets.
Collapse
Affiliation(s)
- Sarah M. Carpanini
- UK Dementia Research Institute at Cardiff University, School of Medicine, Cardiff, CF24 4HQ, UK; (S.M.C.); (E.B.); (M.T.); (J.W.)
- Division of Infection and Immunity, School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - Janet C. Harwood
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK; (J.C.H.); (R.S.)
| | - Emily Baker
- UK Dementia Research Institute at Cardiff University, School of Medicine, Cardiff, CF24 4HQ, UK; (S.M.C.); (E.B.); (M.T.); (J.W.)
| | - Megan Torvell
- UK Dementia Research Institute at Cardiff University, School of Medicine, Cardiff, CF24 4HQ, UK; (S.M.C.); (E.B.); (M.T.); (J.W.)
- Division of Infection and Immunity, School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | | | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, CF24 4HQ, UK; (J.C.H.); (R.S.)
| | - Julie Williams
- UK Dementia Research Institute at Cardiff University, School of Medicine, Cardiff, CF24 4HQ, UK; (S.M.C.); (E.B.); (M.T.); (J.W.)
| | - B. Paul Morgan
- UK Dementia Research Institute at Cardiff University, School of Medicine, Cardiff, CF24 4HQ, UK; (S.M.C.); (E.B.); (M.T.); (J.W.)
- Division of Infection and Immunity, School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| |
Collapse
|
2
|
Serum Clusterin: A Potential Marker for Assessing the Clinical Severity and Short-Term Prognosis of Hepatitis B Virus-Related Acute-on-Chronic Liver Failure. DISEASE MARKERS 2021; 2020:8814841. [PMID: 33381244 PMCID: PMC7755493 DOI: 10.1155/2020/8814841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 12/03/2022]
Abstract
Background Acute-on-chronic liver failure (ACLF) is a clinical syndrome characterized by acute deterioration of liver function and high short-term mortality. Clusterin, with biological functions similar to small heat shock proteins, can protect cells from apoptosis induced by various stressors. The aim of this study was to detect the level of serum clusterin in hepatitis B virus- (HBV-) related ACLF and to assess the predictive value of clusterin for the short-term prognosis of HBV-ACLF. Methods We detected serum clusterin by ELISA in 108 HBV-ACLF patients, 63 HBV-non-ACLF patients, and 44 normal controls. Results Serum clusterin was markedly lower in HBV-ACLF patients (median, 51.09 μg/mL) than in HBV-non-ACLF patients (median, 188.56 μg/mL) and normal controls (median, 213.45 μg/mL; all P < 0.05). Nonsurviving HBV-ACLF patients who died within 90 days had much lower clusterin levels than did surviving patients, especially those who died within 28 days (nonsurvival group vs. survival group: 39.82 ± 19.34 vs. 72.26 ± 43.52, P < 0.001; survival time ≤ 28 vs. survival time > 28: median 28.39 vs. 43.22, P = 0.013). The results showed that for identifying HBV-ACLF, the sensitivity of clusterin (93.7%) was similar to the sensitivities of the international normalized ratio (INR; 94.4%) and total bilirubin (TBIL; 94.8%), but its specificity (90.7%) was higher than that of prothrombin activity (PTA; 65.8%) and TBIL (69.8%) and was similar to INR (88.9%). As the concentration of clusterin increased, the mortality of HBV-ACLF patients decreased significantly from 59.3% to 7.0%. Clusterin had better ability for predicting the prognosis of HBV-ACLF patients than did the model for end-stage liver disease (MELD) score and the chronic liver failure consortium (CLIF-C) ACLF score (MELD vs. clusterin: P = 0.012; CLIF-C ACLF vs. clusterin: P = 0.031). Conclusion Serum clusterin is a potential biomarker for HBV-ACLF which can be used to assess clinical severity and the short-term prognosis of patients with this disease and may help clinicians identify HBV-ACLF with greater specificity and improved prognostic accuracy than existing prognostic markers.
Collapse
|
3
|
Associations between CLU polymorphisms and memory performance: The role of serum lipids in Alzheimer's disease. J Psychiatr Res 2020; 129:281-288. [PMID: 32882505 DOI: 10.1016/j.jpsychires.2020.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/10/2020] [Accepted: 07/15/2020] [Indexed: 11/22/2022]
Abstract
CLU encoding clusterin, has been reported to associate with Alzherimer's disease (AD) by genome-wide association studies (GWAS) based on Caucasian populations. Our previous case-control study has independently confirmed the disease association of CLU in Chinese population. Since little is known about the underlying mechanism of CLU in AD, we have conducted this study to investigate whether the genetic impact of CLU polymorphisms on cognitive functioning is via serum lipid's dysfunction. Three GWAS previously published CLU polymorphisms including rs2279590, rs11136000 and rs9331888, were genotyped in 689 subjects. Serum levels of triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were measured and tested as mediators. Delayed Word Recall Test (DWRT) was used to evaluate subjects' memory performance. Multiple mediation analysis, a nonparametric procedure to create confidence interval, was performed according to Preacher and Hayes's Bootstrapping method. Our findings suggested significant correlation between CLU polymorphism and DWRT scores for rs11136000 (p = 0.045) after adjustment for age, gender, body mass index, and APOEε4 status, with borderline significant correlation for rs2279590 (p = 0.058). Both T allele of rs11136000 and A allele of rs2279590 were negatively correlated with serum TG levels (p = 0.003; p = 0.001, separately). Moreover, A allele of rs2279590 was positively correlated with serum HDL-C levels (p = 0.015). Consistent with our hypotheses, the genetic impact of CLU polymorphisms on memory performance were partially mediated through TG (rs11136000 95% CI [-0.099,-0.003] and rs2279590 95% CI [-0.104, -0.004]), but not through HDL-C and LDL-C. Our findings indicate CLU polymorphisms may modify AD susceptibility through lipid metabolic pathway.
Collapse
|
4
|
Study of the circulatory energy balance indicators and hepatic fat content in dromedary camel during late pregnancy and early lactation. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.08.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Choi JH, Jeong E, Youn BS, Kim MS. Distinct Ultradian Rhythms in Plasma Clusterin Concentrations in Lean and Obese Korean Subjects. Endocrinol Metab (Seoul) 2018; 33:245-251. [PMID: 29766682 PMCID: PMC6021305 DOI: 10.3803/enm.2018.33.2.245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Blood levels of many hormones show rhythmic fluctuations with variable duration of cycles. Clusterin/apolipoprotein J is a glycoprotein which is highly expressed in the plasma and has modulatory roles in immune and inflammatory reactions, neurobiology, lipid metabolism, and leptin signaling. In this study, we examined the diurnal fluctuations of plasma clusterin concentrations in lean and obese young men. METHODS For the study, 14 subjects (five lean and five obese men; two lean and two obese women) were admitted to the research ward and blood samples were drawn every 30 minutes during light-on period (6:00 AM to 10:00 PM) and every hour during light-off period. RESULTS Notably, plasma clusterin concentrations displayed a unique ultradian rhythm with five cycles a day in both men and women. During the light-on period, circulating clusterin levels showed fluctuating curves with 4 hours regular intervals with sharp peaks and troughs. In contrast, single oscillation curve during light-off exhibited a smoothened/lower peak and longer (8-hour) duration. In obese men, these cycles were phase-advanced by approximately 1 hour, and had reduced amplitude of fluctuating curves and blunted diurnal pattern. Cyclic fluctuations of plasma clusterin were preserved under fasting and unexpected meal condition, suggesting that rhythmic oscillations in plasma clusterin levels are not generated by meal-related cues. CONCLUSION These findings firstly demonstrate a novel pattern of plasma clusterin fluctuations with extremely regular cycles.
Collapse
Affiliation(s)
- Jong Han Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eunheui Jeong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Korea
| | | | - Min Seon Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
6
|
Kim MJ, Choi MY, Lee DH, Roh GS, Kim HJ, Kang SS, Cho GJ, Kim YS, Choi WS. O-linked N-acetylglucosamine transferase enhances secretory clusterin expression via liver X receptors and sterol response element binding protein regulation in cervical cancer. Oncotarget 2017; 9:4625-4636. [PMID: 29435130 PMCID: PMC5797001 DOI: 10.18632/oncotarget.23588] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023] Open
Abstract
O-linked N-acetylglucosamine transferase (OGT) expression is increased in various cancer types, indicating the potential importance of O-GlcNAcylation in tumorigenesis. Secretory clusterin (sCLU) is involved in cancer cell proliferation and drug resistance, and recently, liver X receptors (LXRs) and sterol response element binding protein-1 (SREBP-1) were reported to regulate sCLU transcription. Here, we found that sCLU is significantly increased in cervical cancer cell lines, which have higher expression levels of O-GlcNAc and OGT than keratinocytes. OGT knockdown decreased expression of LXRs, SREBP-1 and sCLU through hypo-O-GlcNAcylation of LXRs. Additionally, treatment with Thiamet G, O-GlcNAcase OGA inhibitor, increased expression of O-GlcNAcylation and sCLU, and high glucose increased levels of LXRs, SREBP-1 and sCLU in HeLa cells. Moreover, OGT knockdown induced G0/G1 phase cell cycle arrest and late apoptosis in cisplatin-treated HeLa cells, and decreased viability compared to OGT intact HeLa cells. Taken together, these findings suggest that OGT, O-GlcNAcylated LXRs, and SREBP-1 increase sCLU expression in cervical cancer cells, which contributes to drug resistance.
Collapse
Affiliation(s)
- Min Jun Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Mee Young Choi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Dong Hoon Lee
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Sang Soo Kang
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Gyeong Jae Cho
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Yoon Sook Kim
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| | - Wan Sung Choi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju, Gyeongnam, Republic of Korea
| |
Collapse
|
7
|
The E-box-like sterol regulatory element mediates the insulin-stimulated expression of hepatic clusterin. Biochem Biophys Res Commun 2015; 465:501-6. [DOI: 10.1016/j.bbrc.2015.08.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 08/11/2015] [Indexed: 01/21/2023]
|
8
|
Kurpińska AK, Jarosz A, Ożgo M, Skrzypczak WF. Changes in lipid metabolism during last month of pregnancy and first two months of lactation in primiparous cows - analysis of apolipoprotein expression pattern and changes in concentration of total cholesterol, HDL, LDL, triglycerides. Pol J Vet Sci 2015; 18:291-8. [PMID: 26172178 DOI: 10.1515/pjvs-2015-0038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The final weeks of pregnancy and period of increasing lactation abound with adaptive changes in the intensity of metabolic processes. Maintaining the homeostasis of an organism in prepartum and postpartum periods is the key condition in maintaining the health of the mother and the fetus/calf. The aim of the study was to analyze physiological changes in lipid metabolism in cows during the last month of first pregnancy and in the first two months of lactation, based on the expression of identified apolipoproteins and changes in selected parameters of the lipid metabolism in peripheral blood plasma. Statistically significant changes in the expression of identified apolipoproteins were observed for apolipoprotein A-1 precursor, apolipoprotein A-IV precursor, apolipoprotein E precursor and apolipoprotein J precursor. The lowest expression of the apolipoproteins was noted around parturition and higher expression was observed during the final weeks of pregnancy and during lactation. Tendencies of changes in the concentration of total cholesterol, HDL and LDL were similar in blood plasma from analyzed cows - in the last month of pregnancy a decrease was observed and subsequently an increase in the first two months of lactation was noted. In contrast to abrupt changes observed for total cholesterol, HDL and LDL, changes in concentration of triglycerides were not that extensive and during lactation this parameter was rather stable. Evaluation of changes in the analyzed parameters may contribute to a better understanding of the changes in lipid metabolism occurring in the body of pregnant and lactating young cows.
Collapse
|
9
|
Plasma clusterin (ApoJ) levels are associated with adiposity and systemic inflammation. PLoS One 2014; 9:e103351. [PMID: 25076422 PMCID: PMC4116172 DOI: 10.1371/journal.pone.0103351] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/30/2014] [Indexed: 12/21/2022] Open
Abstract
Obesity and insulin resistance are hallmarks of the metabolic syndrome, which is associated with low-grade chronic inflammation. Clusterin/apolipoprotein J is an abundant plasma chaperone protein that has recently been suggested as a potential biomarker that reflects the inflammatory process in Alzheimer's disease. In the present study, we investigated anthropometric and clinical factors affecting the plasma levels of clusterin in healthy Korean subjects. We measured fasting plasma clusterin levels in healthy Korean adults (111 men and 93 women) using ELISA kit. We analyzed the relationship between plasma clusterin concentrations and anthropometric and clinical parameters. Fasting plasma clusterin concentrations were higher in overweight and obese subjects than in lean subjects. Correlation analysis revealed that the plasma clusterin levels were positively associated with indices of obesity such as body mass index (BMI), waist circumference and waist-hip ratio and markers of systemic inflammation such as high sensitivity C-reactive protein (hsCRP), uric acid, ferritin and retinol binding protein-4. Multiple linear regression analysis showed that sex, BMI and hsCRP were independent determinants of plasma clusterin levels. Furthermore, plasma clusterin levels showed an upward trend with increasing numbers of metabolic syndrome components. These findings suggest that fasting plasma clusterin levels correlate with the parameters of adiposity and systemic inflammation in healthy adults. Therefore, the circulating clusterin level may be a surrogate marker for obesity-associated systemic inflammation.
Collapse
|
10
|
Kögel D, Concannon CG, Müller T, König H, Bonner C, Poeschel S, Chang S, Egensperger R, Prehn JHM. The APP intracellular domain (AICD) potentiates ER stress-induced apoptosis. Neurobiol Aging 2011; 33:2200-9. [PMID: 21803450 DOI: 10.1016/j.neurobiolaging.2011.06.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/03/2011] [Accepted: 06/17/2011] [Indexed: 11/17/2022]
Abstract
Here we employed human SHEP neuroblastoma cells either stably or inducibly expressing the amyloid precursor protein (APP) intracellular domain (AICD) to investigate its ability to modulate stress-induced cell death. Analysis of effector caspase activation revealed that AICD overexpression was specifically associated with an increased sensitivity to apoptosis induced by the 2 endoplasmic reticulum (ER) stressors thapsigargin and tunicamycin, but not by staurosporine (STS). Basal and ER stress-induced expression of Bip/Grp78 and C/EBP-homologous protein/GADD153 were not altered by AICD implying that AICD potentiated cell death downstream or independent of the conserved unfolded protein response (UPR). Interestingly, quantitative polymerase chain reaction analysis and reporter gene assays revealed that AICD significantly downregulated messenger RNA levels of the Alzheimer's disease susceptibility gene ApoJ/clusterin, indicating transcriptional repression. Knockdown of ApoJ/clusterin mimicked the effect of AICD on ER stress-induced apoptosis, but had no discernible effect on staurosporine-induced cell death. Our data suggest that altered levels of AICD may abolish the prosurvival function of ApoJ/clusterin and increase the susceptibility of neurons to ER stress-mediated cell death, a pathway that may contribute to the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Donat Kögel
- Experimental Neurosurgery, Center for Neurology and Neurosurgery, Goethe University Hospital, Frankfurt, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
SREBP-1c regulates glucose-stimulated hepatic clusterin expression. Biochem Biophys Res Commun 2011; 408:720-5. [PMID: 21549685 DOI: 10.1016/j.bbrc.2011.04.111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 04/21/2011] [Indexed: 12/29/2022]
Abstract
Clusterin is a stress-response protein that is involved in diverse biological processes, including cell proliferation, apoptosis, tissue differentiation, inflammation, and lipid transport. Its expression is upregulated in a broad spectrum of diverse pathological states. Clusterin was recently reported to be associated with diabetes, metabolic syndrome, and their sequelae. However, the regulation of clusterin expression by metabolic signals was not addressed. In this study we evaluated the effects of glucose on hepatic clusterin expression. Interestingly, high glucose concentrations significantly increased clusterin expression in primary hepatocytes and hepatoma cell lines, but the conventional promoter region of the clusterin gene did not respond to glucose stimulation. In contrast, the first intronic region was transcriptionally activated by high glucose concentrations. We then defined a glucose response element (GlRE) of the clusterin gene, showing that it consists of two E-box motifs separated by five nucleotides and resembles carbohydrate response element (ChoRE). Unexpectedly, however, these E-box motifs were not activated by ChoRE binding protein (ChREBP), but were activated by sterol regulatory element binding protein-1c (SREBP-1c). Furthermore, we found that glucose induced recruitment of SREBP-1c to the E-box of the clusterin gene intronic region. Taken together, these results suggest that clusterin expression is increased by glucose stimulation, and SREBP-1c plays a crucial role in the metabolic regulation of clusterin.
Collapse
|
12
|
Abstract
We previously reported that clusterin enhances astrocyte proliferation and extracellular signal-regulated kinase (ERK) activity. It, however, remains largely unknown how clusterin promotes cell growth. Here, we investigate the signaling pathway and related molecules underlying astrocyte proliferation by clusterin. Exogenous clusterin stimulates Ras-dependent Raf-1/mitogen-activated protein kinase kinase (MEK)/ERK activation. Clusterin-induced astrocyte proliferation and ERK1/2 phosphorylation were abrogated by either AG1478 (an inhibitor of epidermal growth factor receptor, EGFR) or EGFR small interfering RNA. Furthermore, clusterin treatment provoked tyrosine phosphorylation of EGFR (pY(1173)), which was also blocked by AG1478. These results suggest that clusterin requires EGFR activation to deliver its mitogenic signal through the Ras/Raf-1/MEK/ERK signaling cascade in astrocytes.
Collapse
|
13
|
Londou A, Mikrou A, Zarkadis IK. Cloning and characterization of two clusterin isoforms in rainbow trout. Mol Immunol 2007; 45:470-8. [PMID: 17669495 DOI: 10.1016/j.molimm.2007.05.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 05/21/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
Clusterin is a broadly distributed glycoprotein constitutively expressed by various tissues and cell types and has been shown to be associated with several physiological and pathological functions. In order to study the molecular evolution of clusterin, here we report the cloning and characterization of two clusterin genes in rainbow trout (Oncorhynchus mykiss). The deduced amino acid sequences of clusterin-1 and a partial clusterin-2 clone are 89% identical to each other, showing 45, 42 and 38% identity with chicken, frog and human orthologs, respectively. Most of the putative N-glycosylation sites, as well as all 10 cysteine residues which are involved in disulfide bond formation in the mature trout clusterin-1 protein, are fully conserved when aligned with its orthologs from various species. Although trout clusterin genes exhibit the same exon-intron organization, in line with that of human clusterin, they show a totally different mRNA expression profile among various trout tissues. Phylogenetic analysis indicates an early segregation of the clusterin ancestral gene within the taxon of fish leading to the formation of a separate subgroup.
Collapse
Affiliation(s)
- Adamantia Londou
- Department of Biology, School of Medicine, University of Patras, Rion 26500, Patras, Greece
| | | | | |
Collapse
|
14
|
Cochrane DR, Wang Z, Muramaki M, Gleave ME, Nelson CC. Differential regulation of clusterin and its isoforms by androgens in prostate cells. J Biol Chem 2006; 282:2278-87. [PMID: 17148459 DOI: 10.1074/jbc.m608162200] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Clusterin mRNA levels were shown to increase dramatically in rat ventral prostate following castration, and clusterin was therefore originally thought to be repressed by androgens. It was later discovered that the increased clusterin levels are most likely due to castration-induced apoptosis of the prostatic epithelium rather than direct action of the androgen receptor (AR). In the studies presented here, LNCaP cells in culture and rat prostate organ culture were treated with androgens. Clusterin mRNA and protein are shown to increase with androgen treatment in a time- and dose-dependent manner. This induction of clusterin requires AR and can be inhibited by casodex, an AR antagonist. We have found that the first intron of the clusterin gene contains putative androgen response elements. The intronic region is shown to be bound by AR in chromatin immunoprecipitation assays and is transactivated by AR in reporter assays. Two isoforms of clusterin result from alternate transcriptional start sites. Both isoforms are cytoprotective; however, Isoform 1 has the capacity to produce a splice variant that is apoptotic. Real time PCR was used to determine the response of the two isoforms to androgens. Intriguingly, these results illustrated that Isoform 2 was up-regulated, whereas Isoform 1 was down-regulated by androgens. Isoform 2 was also increased as the LNCaP xenograft tumor progressed to androgen-independence, whereas Isoform 1 was unaltered. This androgen regulation of clusterin may underline the cytoprotective role of androgens in normal prostate physiology as well as play an antiapoptotic role in prostate cancer progression.
Collapse
Affiliation(s)
- Dawn R Cochrane
- Department of Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | |
Collapse
|
15
|
Matsuda A, Itoh Y, Koshikawa N, Akizawa T, Yana I, Seiki M. Clusterin, an abundant serum factor, is a possible negative regulator of MT6-MMP/MMP-25 produced by neutrophils. J Biol Chem 2003; 278:36350-7. [PMID: 12860995 DOI: 10.1074/jbc.m301509200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MT6-MMP/MMP-25 is the latest member of the membrane-type matrix metalloproteinase (MT-MMP) subgroup in the MMP family and is expressed in neutrophils and some brain tumors. The proteolytic activity of MT6-MMP has been studied using recombinant catalytic fragments and shown to degrade several components of the extracellular matrix. However, the activity is possibly modulated further by the C-terminal hemopexin-like domain, because some MMPs are known to interact with other proteins through this domain. To explore the possible function of this domain, we purified a recombinant MT6-MMP with the hemopexin-like domain as a soluble form using a Madin-Darby canine kidney cell line as a producer. Mature and soluble MT6-MMP processed at the furin motif was purified as a 45-kDa protein together with a 46-kDa protein having a single cleavage in the hemopexin-like domain. Interestingly, 73- and 70-kDa proteins were co-purified with the soluble MT6-MMP by forming stable complexes. They were identified as clusterin, a major component of serum, by N-terminal amino acid sequencing. MT1-MMP that also has a hemopexin-like domain did not form a complex with clusterin. MT6-MMP forming a complex with clusterin was detected in human neutrophils as well. The enzyme activity of the soluble MT6-MMP was inactive in the clusterin complex. Purified clusterin was inhibitory against the activity of soluble MT6-MMP. On the other hand, it had no effect on the activities of MMP-2 and soluble MT1-MMP. Because clusterin is an abundant protein in the body fluid in tissues, it may act as a negative regulator of MT6-MMP in vivo.
Collapse
Affiliation(s)
- Akira Matsuda
- Division of Cancer Cell Research, Institute of Medical Science, the University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Clusterin/Apolipoprotein J (ApoJ) is a heterodimeric highly conserved secreted glycoprotein being expressed in a wide variety of tissues and found in all human fluids. Despite being cloned since 1989, no genuine function has been attributed to ApoJ so far. The protein has been reportedly implicated in several diverse physiological processes such as sperm maturation, lipid transportation, complement inhibition, tissue remodeling, membrane recycling, cell-cell and cell-substratum interactions, stabilization of stressed proteins in a folding-competent state and promotion or inhibition of apoptosis. ApoJ gene is differentially regulated by cytokines, growth factors and stress-inducing agents, while another defining prominent and intriguing ApoJ feature is its upregulation in many severe physiological disturbances states and in several neurodegenerative conditions mostly related to advanced aging. Moreover, ApoJ accumulates during the viable growth arrested cellular state of senescence, that is thought to contribute to aging and to tumorigenesis suppression; paradoxically ApoJ is also upregulated in several cases of in vivo cancer progression and tumor formation. This review focuses on the reported data related to ApoJ cell-type and signal specific regulation, function and site of action in normal and cancer cells. We discuss the role of ApoJ during cellular senescence and tumorigenesis, especially under the light of the recently demonstrated various ApoJ intracellular protein forms and their interaction with molecules involved in signal transduction and DNA repair, raising the possibility that its overexpression during cellular senescence might cause a predisposition to cancer.
Collapse
Affiliation(s)
- Ioannis P Trougakos
- Laboratory of Molecular & Cellular Aging, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, 48 Vas Constantinou Avenue, Athens 11635, Greece
| | | |
Collapse
|
17
|
Trougakos IP, Poulakou M, Stathatos M, Chalikia A, Melidonis A, Gonos ES. Serum levels of the senescence biomarker clusterin/apolipoprotein J increase significantly in diabetes type II and during development of coronary heart disease or at myocardial infarction. Exp Gerontol 2002; 37:1175-87. [PMID: 12470829 DOI: 10.1016/s0531-5565(02)00139-0] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Clusterin/apolipoprotein J (hereafter ApoJ) is a conserved secreted glycoprotein expressed by a wide array of tissues and being implicated in several physiological processes. ApoJ has been shown to associate with both normal in vitro aging, namely replicative senescence, as well as with stress induced premature senescence. In vivo, the protein is up-regulated in many severe physiological disturbances that relate to advanced aging, including accumulation in the artery wall during the development of atherosclerosis. In the current report we have expanded our previous studies that focus in the biological role of ApoJ during aging by addressing two interrelated issues: (a) we have examined the potential ApoJ association with in vivo aging and (b) we have studied whether its accumulation in the artery wall during the development of atherosclerosis is combined with a measurable increase of its serum levels, as well as, whether a similar effect occurs in diseases, such as diabetes type II, known to represent major risk factors of atherosclerosis. By combining a sandwich ELISA assay and immunoblotting analysis we demonstrate a measurable increase of ApoJ serum levels with age in males and provide evidence that, as compared to healthy donors, the serum ApoJ amount increases significantly in diabetic type II patients and in patients suffering from either a developing coronary heart disease, or myocardial infarction. The highest serum ApoJ levels were found during myocardial infarction but no correlation was observed with the number of vessels with documented atherosclerotic damage. In conclusion, this report illustrates that ApoJ accumulation in serum is probably coupled to a generalized stress mediated induction mechanism that is specifically related to certain diseases; moreover these data raise the possibility that elevated ApoJ levels in serum may represent a strong indication of vascular damage.
Collapse
Affiliation(s)
- Ioannis P Trougakos
- Laboratory of Molecular and Cellular Ageing, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Avenue, Athens 11635, Greece
| | | | | | | | | | | |
Collapse
|
18
|
Girton RA, Sundin DP, Rosenberg ME. Clusterin protects renal tubular epithelial cells from gentamicin-mediated cytotoxicity. Am J Physiol Renal Physiol 2002; 282:F703-9. [PMID: 11880332 DOI: 10.1152/ajprenal.00060.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Clusterin is a heterodimeric secreted glycoprotein that is upregulated after acute renal injury. In aminoglycoside nephrotoxicity, clusterin is induced in the tubular epithelium and increased levels are found in the urine. In this study, we developed an in vitro model of gentamicin-induced cytotoxicity in renal proximal tubule cells and tested whether clusterin protected these cells from injury. LLC-PK(1) cells were incubated with varying concentrations of gentamicin in serum-free media, and cytotoxicity was quantified by lactate dehydrogenase release and confirmed by vital dye exclusion. A dose-dependent increase in cytotoxicity occurred with gentamicin concentrations up to 27 mg/ml. Clusterin decreased cytotoxicity in a dose- and time-dependent manner at 6, 12, and 24 h, whereas albumin, used as a control protein, had no effect. In contrast to the aminoglycoside model, when cells were injured by depletion of ATP, clusterin had only a minimally protective effect. LLC-PK(1) cells did not express megalin, a receptor that can mediate the uptake of both clusterin and aminoglycosides into proximal tubule cells. Uptake of gentamicin into LLC-PK(1) cells was observed despite the absence of megalin. In conclusion, clusterin specifically protects against gentamicin-induced renal tubular cell injury by a megalin-independent mechanism.
Collapse
Affiliation(s)
- Richard A Girton
- Dept. of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
19
|
Petropoulou C, Trougakos IP, Kolettas E, Toussaint O, Gonos ES. Clusterin/apolipoprotein J is a novel biomarker of cellular senescence that does not affect the proliferative capacity of human diploid fibroblasts. FEBS Lett 2001; 509:287-97. [PMID: 11741605 DOI: 10.1016/s0014-5793(01)03150-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Normal human fibroblasts have a limited replicative potential in culture and eventually reach a state of irreversible growth arrest, termed senescence. In a previous study aiming to identify genes that are differentially regulated during cellular senescence we have cloned clusterin/apolipoprotein J (Apo J), a 80 kDa secreted glycoprotein. In the current report we pursue our studies and show that senescence of human diploid fibroblasts is accompanied by up-regulation of both Apo J mRNA and protein levels, but with no altered biogenesis, binding partner profile or intracellular distribution of the two Apo J forms detected. To analyze the causal relationship between senescence and Apo J protein accumulation, we stably overexpressed the Apo J gene in primary as well as in SV40 T antigen-immortalized human fibroblasts and we showed no alteration of the proliferative capacity of the transduced cells. Despite previous reports on tumor-derived cell lines, overexpression of Apo J in human fibroblasts did not provide protection against apoptosis or growth arrest induced by hydrogen peroxide. Overall, our results suggest that Apo J overexpression does not induce senescence but it is rather a secondary consequence of the senescence phenotype. To our knowledge this is the first report that provides a functional analysis of human Apo J during replicative senescence.
Collapse
Affiliation(s)
- C Petropoulou
- Laboratory of Molecular and Cellular Aging, Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | | | | | | | | |
Collapse
|
20
|
Leskov KS, Criswell T, Antonio S, Li J, Yang CR, Kinsella TJ, Boothman DA. When X-ray-inducible proteins meet DNA double strand break repair. Semin Radiat Oncol 2001; 11:352-72. [PMID: 11677660 DOI: 10.1053/srao.2001.26912] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Cellular responses to ionizing radiation (IR) include (a) activation of signal transduction enzymes; (b) stimulation of DNA repair, most notably DNA double strand break (DSB) repair by homologous or nonhomologous recombinatorial pathways; (c) activation of transcription factors and subsequent IR-inducible transcript and protein changes; (d) cell cycle checkpoint delays in G(1), S, and G(2) required for repair or for programmed cell death of severely damaged cells; (e) activation of zymogens needed for programmed cell death (although IR is a poor inducer of such responses in epithelial cells); and (f) stimulation of IR-inducible proteins that may mediate bystander effects influencing signal transduction, DNA repair, angiogenesis, the immune response, late responses to IR, and possibly adaptive survival responses. The overall response to IR depends on the cell's inherent genetic background, as well as its ability to biochemically and genetically respond to IR-induced damage. To improve the anti-tumor efficacy of IR, our knowledge of these pleiotropic responses must improve. The most important process for the survival of a tumor cell following IR is the repair of DNA double strand breaks (DSBs). Using yeast two-hybrid analyses along with other molecular and cellular biology techniques, we cloned transcripts/proteins that are involved in, or presumably affect, nonhomologous DNA double strand break end-joining (NHEJ) repair mediated by the DNA-PK complex. Using Ku70 as bait, we isolated a number of Ku-binding proteins (KUBs). We identified the first X-ray-inducible transcript/protein (xip8, Clusterin (CLU)) that associates with DNA-PK. A nuclear form of CLU (nCLU) prevented DNA-PK-mediated end joining, and stimulated cell death in response to IR or when overexpressed in the absence of IR. Structure-function analyses using molecular and cellular (including green fluorescence-tagged protein trafficking) biology techniques showed that nCLU appears to be an inactive protein residing in the cytoplasm of epithelial cells. Following IR injury, nCLU levels increase and an as yet undefined posttranslational modification appears to alter the protein, exposing nuclear localization sequences (NLSs) and coiled-coil domains. The modified protein translocates to the nucleus and triggers cell death, presumably through its interaction specifically with Ku70. Understanding nCLU responses, as well as the functions of the KUBs, will be important for understanding DSB repair. Knowledge of DSB repair may be used to improve the antitumor efficacy of IR, as well as other chemotherapeutic agents.
Collapse
Affiliation(s)
- K S Leskov
- Department of Human Oncology, University of Wisconsin-Madison, 53792, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Xu Q, Li Y, Cyras C, Sanan DA, Cordell B. Isolation and characterization of apolipoproteins from murine microglia. Identification of a low density lipoprotein-like apolipoprotein J-rich but E-poor spherical particle. J Biol Chem 2000; 275:31770-7. [PMID: 10918055 DOI: 10.1074/jbc.m002796200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Amyloid Abeta deposition is a neuropathologic hallmark of Alzheimer's disease. Activated microglia are intimately associated with plaques and appear to facilitate Abeta deposition, an event believed to contribute to pathogenesis. It is unclear if microglia can modulate pathogenesis of Alzheimer's disease by secreting lipoprotein particles. Here we show that cultured BV2 murine microglial cells, like astrocytes, secrete apolipoprotein E (apoE) and apolipoprotein J (apoJ) in a time-dependent manner. To isolate and identify BV2 microglial particles, gel filtration chromatography was employed to fractionate BV2-conditioned medium. Analyses by Western blot, lipid determination, electron microscopy, and native gel electrophoresis demonstrate that BV2 microglial cells release spherical low density lipoprotein (LDL)-like lipid-containing particles rich in apoJ but poor in apoE. These microglial particles are dissimilar in size, shape, and lipoprotein composition to astrocyte-derived particles. The microglial-derived particles were tested for functional activity. Under conditions of suppressed de novo cholesterol synthesis, the LDL-like particles effectively rescued primary rat cortical neurons from mevastatin-induced neurotoxicity. The particles were also shown to bind Abeta. We speculate that the LDL-like apoJ-rich apoE-poor microglial lipoproteins preferentially bind the lipoprotein receptor, recognizing apoJ, which is abundant in the choroid plexus, facilitating Abeta clearance from the brain. BV2 cells also secrete an apoE-rich lipid-poor species that binds Abeta. Consistent with the role of apoE in Abeta fibril formation and deposition, this microglial species may promote plaque formation.
Collapse
MESH Headings
- Alzheimer Disease/metabolism
- Amyloid beta-Peptides/metabolism
- Animals
- Apolipoproteins E/chemistry
- Apolipoproteins E/immunology
- Apolipoproteins E/isolation & purification
- Apolipoproteins E/ultrastructure
- Blotting, Western
- Cell Death/drug effects
- Cells, Cultured
- Chromatography, Gel
- Clusterin
- Culture Media, Conditioned/chemistry
- Electrophoresis, Polyacrylamide Gel
- Glycoproteins/chemistry
- Glycoproteins/immunology
- Glycoproteins/isolation & purification
- Glycoproteins/ultrastructure
- Kinetics
- Lipoproteins, LDL/chemistry
- Lipoproteins, LDL/metabolism
- Lipoproteins, LDL/ultrastructure
- Liposomes/chemistry
- Liposomes/metabolism
- Lovastatin/analogs & derivatives
- Lovastatin/pharmacology
- Mice
- Microglia/chemistry
- Microglia/cytology
- Microglia/metabolism
- Microscopy, Electron
- Molecular Chaperones
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/immunology
- Nerve Tissue Proteins/isolation & purification
- Nerve Tissue Proteins/ultrastructure
- Neurons/cytology
- Neurons/drug effects
- Particle Size
- Plaque, Amyloid/chemistry
- Plaque, Amyloid/metabolism
- Protein Binding
- Rats
Collapse
Affiliation(s)
- Q Xu
- Scios Inc., Sunnyvale, California 94085 and Gladstone Institute of Cardiovascular Disease, University of California, San Francisco, California 94141-9100, USA
| | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- M R Wilson
- Dept of Biological Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW Australia 2522.
| | | |
Collapse
|
23
|
Targeted disruption of the murine lecithin:cholesterol acyltransferase gene is associated with reductions in plasma paraoxonase and platelet-activating factor acetylhydrolase activities but not in apolipoprotein J concentration. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)33489-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
24
|
Hochgrebe TT, Humphreys D, Wilson MR, Easterbrook-Smith SB. A reexamination of the role of clusterin as a complement regulator. Exp Cell Res 1999; 249:13-21. [PMID: 10328949 DOI: 10.1006/excr.1999.4459] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Clusterin is a highly conserved glycoprotein which has been proposed to protect host cells against complement-mediated cytolysis. We tested the hypothesis that clusterin is a complement regulator using erythrocytes and cells which had been stably transfected with a membrane-anchored form of clusterin as targets for complement-mediated cytolysis. Clusterin gave dose-dependent protection of antibody-coated sheep erythrocytes against complement-mediated lysis by diluted normal human serum. There was a linear relationship between the concentration of clusterin giving 50% protection and the concentration of serum; extrapolation of this to the case of undiluted human serum showed that a clusterin concentration at least two orders of magnitude greater than its physiological plasma concentration would be needed to confer protection against complement-mediated cytolysis under physiological conditions. Physiological concentrations of clusterin did not protect rabbit erythrocytes against alternative complement pathway-mediated lysis using dilute human serum. Exogenous clusterin had no effect on lysis of human erythrocytes triggered by the addition of inulin to autologous human serum. Induction of cell-surface clusterin expression by L929 (murine fibroblast) cells which had been stably transfected with cDNA for human clusterin linked to DNA coding for the 44 C-terminal amino acid residues of CD55 did not protect the cells against complement-mediated lysis by either normal or clusterin-depleted human serum. These data suggest that clusterin may not be a physiologically relevant regulator of complement activation.
Collapse
Affiliation(s)
- T T Hochgrebe
- Department of Biochemistry, University of Sydney, Sydney, New South Wales, 2006, Australia
| | | | | | | |
Collapse
|
25
|
Reddy KB, Jin G, Karode MC, Harmony JA, Howe PH. Transforming growth factor beta (TGF beta)-induced nuclear localization of apolipoprotein J/clusterin in epithelial cells. Biochemistry 1996; 35:6157-63. [PMID: 8634259 DOI: 10.1021/bi952981b] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Apolipoprotein J (apoJ)/clusterin was first identified as an 80 kDa secretory glycoprotein present in most body fluids. It has been implicated in a variety of physiological processes including cellular differentiation and apoptosis. We demonstrate here that in addition to the well characterized secreted form of the protein, there exists an intracellular, nuclear form of apoJ. This intracellular form of the protein is induced to accumulate in the nucleus of two epithelial cell lines (HepG2 and CCL64) in response to treatment with transforming growth factor beta (TGF beta). We demonstrate in vitro that apoJ protein can be translated from two in-frame ATG sites. Initiation from the first ATG encodes for the secretory form of apoJ and initiation from the second ATG, located 33 amino acids downstream of the first and lacking the hydrophobic signal sequence, encodes for a truncated apoJ protein. This shorter form of apoJ is not recognized by microsomes and therefore not glycosylated, and we postulate that it is retained intracellularly and targeted to the nucleus due to the presence of an SV40-like nuclear localization sequence (NLS). This mechanism of nuclear targeting of apoJ occurs in cells since the protein isolated from nuclei of TGF beta-treated cells and the in vitro-translated truncated form are identical by V8 protease analysis. These results suggest that the diverse physiological responses attributed to apoJ may be elicited through a common molecular mechanism involving a previously uncharacterized intracellular form of the protein.
Collapse
Affiliation(s)
- K B Reddy
- Department of Cell Biology, Cleveland Clinic Research Institute, Ohio 44195-5245, USA
| | | | | | | | | |
Collapse
|
26
|
Reddy KB, Karode MC, Harmony AK, Howe PH. Interaction of transforming growth factor beta receptors with apolipoprotein J/clusterin. Biochemistry 1996; 35:309-14. [PMID: 8555189 DOI: 10.1021/bi951880a] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Proteins mediating the transmission of the signal from an activated transforming growth factor beta (TGF beta) receptor complex have not been identified. Using a yeast interaction screen to search for proteins that associate with the type II TGF beta receptor (RII), we isolated a protein which was identical to apolipoprotein J (apoJ)/clusterin. ApoJ interacts with both the type I (RI) and type II (RII) TGF beta receptors but does not interact with the epidermal growth factor (EGF) receptor. The interaction between RII and apoJ occurs through the C-terminal 127 amino acids of RII. Deletion of this region, which contains the kinase insert 2 domain, abrogates binding to apoJ. The binding of apoJ to either the RI and the RII receptors is direct, not requiring other proteins, and is not specific for the alpha or beta subunit of apoJ since both subunits are effective in competing for binding. RI and RII fusion proteins are capable of precipitating the 60 kDa intracellular form of apoJ from [35S]methionine-labeled cellular lysates, suggesting that this form of the protein may play some role in TGF beta signaling or TGF beta receptor processing.
Collapse
Affiliation(s)
- K B Reddy
- Department of Cell Biology, Cleveland Clinic Research Institute, Ohio 44195-5245, USA
| | | | | | | |
Collapse
|
27
|
Affiliation(s)
- S H Jenkins
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Ohio 45267, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Apolipoprotein J (apoJ), a secretory glycoprotein known to transport lipids and to regulate terminal complement function, is present in the human eye in both aqueous and vitreous, as well as in the retina. Ocular apoJ is the product of local synthesis, rather than plasma contamination, as demonstrated by its distinct structural properties and the presence of abundant apoJ mRNA in retina and retina pigment epithelium. ApoJ mRNA is also present in mouse eye, with a developmentally regulated pattern of expression. In fetal mouse, apoJ mRNA is present in retina, lens and cornea. In contrast, adult eye apoJ mRNA is present in retina and ciliary body. We propose that apoJ is important in tissue remodeling and in stabilizing hydrophobic molecules which are required for vision and/or which would otherwise be deleterious and membrane-active.
Collapse
Affiliation(s)
- D J Reeder
- Department of Ophthalmology, University of Cincinnati College of Medicine, OH, USA
| | | | | | | | | |
Collapse
|
29
|
Kelso GJ, Stuart WD, Richter RJ, Furlong CE, Jordan-Starck TC, Harmony JA. Apolipoprotein J is associated with paraoxonase in human plasma. Biochemistry 1994; 33:832-9. [PMID: 8292612 DOI: 10.1021/bi00169a026] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Apolipoprotein J (apoJ)-containing high-density lipoproteins (HDL), isolated from human plasma by immunoaffinity chromatography, are associated with apoAI and a protein of approximately 44 kDa. In order to advance our understanding of apoJ's role in the vasculature, a comprehensive investigation was performed to identify and characterize this 44-kDa protein and to study its interaction with apoJ. The 44-kDa protein, a monomeric glycoyslated polypeptide, was identified by N-terminal sequencing as serum paraoxonase. Paraoxonase exists in two oxidation states: one contains all free cysteines while the other has one disulfide bond between Cys42 and Cys284. Northern analysis of eight human tissues shows paraoxonase message present only in the liver. The majority of apoJ/paraoxonase-HDL are 90-140 kDa; however, not all of the plasma paraoxonase is associated with apoJ. The specificity of the apoJ/paraoxonase interaction, inferred by the constant mole ratio of the two proteins in affinity-purified apoJ-HDL, is confirmed in direct binding assays. For purified proteins, there is more than a 5-fold increase in the apparent affinity of apoJ for immobilized paraoxonase as the paraoxonase coating concentration is increased from 0.5 to 2.0 micrograms/mL. Both oxidation states of paraoxonase bind to apoJ with equal affinity. Our data combined with other evidence suggest that the plasma link of apoJ with paraoxonase will be implicated as a predictor of vascular damage.
Collapse
Affiliation(s)
- G J Kelso
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, Ohio 45267
| | | | | | | | | | | |
Collapse
|