1
|
Luciani L, Pedrelli M, Parini P. Modification of lipoprotein metabolism and function driving atherogenesis in diabetes. Atherosclerosis 2024; 394:117545. [PMID: 38688749 DOI: 10.1016/j.atherosclerosis.2024.117545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, characterized by raised blood glucose levels and impaired lipid metabolism resulting from insulin resistance and relative insulin deficiency. In diabetes, the peculiar plasma lipoprotein phenotype, consisting in higher levels of apolipoprotein B-containing lipoproteins, hypertriglyceridemia, low levels of HDL cholesterol, elevated number of small, dense LDL, and increased non-HDL cholesterol, results from an increased synthesis and impaired clearance of triglyceride rich lipoproteins. This condition accelerates the development of the atherosclerotic cardiovascular disease (ASCVD), the most common cause of death in T2DM patients. Here, we review the alteration of structure, functions, and distribution of circulating lipoproteins and the pathophysiological mechanisms that induce these modifications in T2DM. The review analyzes the influence of diabetes-associated metabolic imbalances throughout the entire process of the atherosclerotic plaque formation, from lipoprotein synthesis to potential plaque destabilization. Addressing the different pathophysiological mechanisms, we suggest improved approaches for assessing the risk of adverse cardiovascular events and clinical strategies to reduce cardiovascular risk in T2DM and cardiometabolic diseases.
Collapse
Affiliation(s)
- Lorenzo Luciani
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Interdisciplinary Center for Health Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
2
|
Geh EN, Swertfeger DK, Sexmith H, Heink A, Tarapore P, Melchior JT, Davidson WS, Shah AS. A novel assay to measure low-density lipoproteins binding to proteoglycans. PLoS One 2024; 19:e0291632. [PMID: 38295021 PMCID: PMC10830033 DOI: 10.1371/journal.pone.0291632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 09/04/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND The binding of low-density lipoprotein (LDL) to proteoglycans (PGs) in the extracellular matrix (ECM) of the arterial intima is a key initial step in the development of atherosclerosis. Although many techniques have been developed to assess this binding, most of the methods are labor-intensive and technically challenging to standardize across research laboratories. Thus, sensitive, and reproducible assay to detect LDL binding to PGs is needed to screen clinical populations for atherosclerosis risk. OBJECTIVES The aim of this study was to develop a quantitative, and reproducible assay to evaluate the affinity of LDL towards PGs and to replicate previously published results on LDL-PG binding. METHODS Immunofluorescence microscopy was performed to visualize the binding of LDL to PGs using mouse vascular smooth muscle (MOVAS) cells. An in-cell ELISA (ICE) was also developed and optimized to quantitatively measure LDL-PG binding using fixed MOVAS cells cultured in a 96-well format. RESULTS We used the ICE assay to show that, despite equal APOB concentrations, LDL isolated from adults with cardiovascular disease bound to PG to a greater extent than LDL isolated from adults without cardiovascular disease (p<0.05). CONCLUSION We have developed an LDL-PG binding assay that is capable of detecting differences in PG binding affinities despite equal APOB concentrations. Future work will focus on candidate apolipoproteins that enhance or diminish this interaction.
Collapse
Affiliation(s)
- Esmond N. Geh
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center & the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Debi K. Swertfeger
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center & the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Hannah Sexmith
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center & the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Anna Heink
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center & the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Pheruza Tarapore
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - John T. Melchior
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- Department of Neurology, Oregon Health and Science University, Portland, Oregon, United States of America
| | - W. Sean Davidson
- Center for Lipid and Arteriosclerosis Science, Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Amy Sanghavi Shah
- Division of Endocrinology, Cincinnati Children’s Hospital Medical Center & the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
3
|
Martemucci G, Fracchiolla G, Muraglia M, Tardugno R, Dibenedetto RS, D’Alessandro AG. Metabolic Syndrome: A Narrative Review from the Oxidative Stress to the Management of Related Diseases. Antioxidants (Basel) 2023; 12:2091. [PMID: 38136211 PMCID: PMC10740837 DOI: 10.3390/antiox12122091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Metabolic syndrome (MS) is a growing disorder affecting thousands of people worldwide, especially in industrialised countries, increasing mortality. Oxidative stress, hyperglycaemia, insulin resistance, inflammation, dysbiosis, abdominal obesity, atherogenic dyslipidaemia and hypertension are important factors linked to MS clusters of different pathologies, such as diabesity, cardiovascular diseases and neurological disorders. All biochemical changes observed in MS, such as dysregulation in the glucose and lipid metabolism, immune response, endothelial cell function and intestinal microbiota, promote pathological bridges between metabolic syndrome, diabesity and cardiovascular and neurodegenerative disorders. This review aims to summarise metabolic syndrome's involvement in diabesity and highlight the link between MS and cardiovascular and neurological diseases. A better understanding of MS could promote a novel strategic approach to reduce MS comorbidities.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Giuseppe Fracchiolla
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Marilena Muraglia
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Tardugno
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | - Roberta Savina Dibenedetto
- Department of Pharmacy–Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy; (M.M.); (R.T.); (R.S.D.)
| | | |
Collapse
|
4
|
Sorokin AV, Patel N, Li H, Hong CG, Sampson M, O'Hagan R, Florida EM, Teague HL, Playford MP, Chen MY, Mehta NN, Remaley AT. Estimated sdLDL-C for predicting high-risk coronary plaque features in psoriasis: a prospective observational study. Lipids Health Dis 2023; 22:55. [PMID: 37106374 PMCID: PMC10134516 DOI: 10.1186/s12944-023-01819-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/21/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Psoriasis (PSO) is a skin disorder with systemic inflammation and high coronary artery disease risk. A distinct lipid phenotype occurs in psoriasis, which is characterized by high plasma triglycerides (TGs) with typically normal or even low LDL-C. The extent to which cholesterol on LDL subfractions, such as small dense LDL-C (sdLDL-C), are associated with vulnerable coronary plaque characteristics in PSO remains elusive. METHODS A recently developed equation for estimating sdLDL-C from the standard lipid panel was utilized in a PSO cohort (n = 200) with 4-year follow-up of 75 subjects. Coronary plaque burden was assessed by quantitative coronary computed tomography angiography (CCTA). Multivariate regression analyses were used for establishing associations and prognostic value of estimated sdLDL-C. RESULTS Estimated sdLDL-C was positively associated with non-calcified burden (NCB) and fibro-fatty burden (FFB), which remained significant after multivariate adjustment for NCB (β = 0.37; P = 0.050) and LDL-C adjustment for FFB (β = 0.29; P < 0.0001). Of note, total LDL-C calculated by the Friedewald equation was not able to capture these associations in the study cohort. Moreover, in the regression modelling estimated sdLDL-C was significantly predicting necrotic burden progression over 4 years follow-up (P = 0.015), whereas LDL-C did not. Finally, small LDL particles (S-LDLP) and small HDL particles (S-HDLP), along with large and medium TG-rich lipoproteins (TRLPs) had the most significant positive correlation with estimated sdLDL-C. CONCLUSIONS Estimated sdLDL-C has a stronger association than LDL-C with high-risk features of coronary atherosclerotic plaques in psoriasis patients. CLINICAL TRIAL REGISTRATION URL: https://www. CLINICALTRIALS gov . Unique identifiers: NCT01778569.
Collapse
Affiliation(s)
- Alexander V Sorokin
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bldg 10, Clinical Research Center, Room 5-5150, Bethesda, MD, 20892, USA.
| | - Nidhi Patel
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bldg 10, Clinical Research Center, Room 5-5150, Bethesda, MD, 20892, USA
| | - Haiou Li
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bldg 10, Clinical Research Center, Room 5-5150, Bethesda, MD, 20892, USA
| | - Christin G Hong
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bldg 10, Clinical Research Center, Room 5-5150, Bethesda, MD, 20892, USA
| | - Maureen Sampson
- Section of Lipoprotein Metabolism, Translational Vascular Medicine Branch, Lung and Blood Institute, National Heart, National Institutes of Health, Bethesda, MD, USA
| | - Ross O'Hagan
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bldg 10, Clinical Research Center, Room 5-5150, Bethesda, MD, 20892, USA
| | - Elizabeth M Florida
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bldg 10, Clinical Research Center, Room 5-5150, Bethesda, MD, 20892, USA
| | - Heather L Teague
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bldg 10, Clinical Research Center, Room 5-5150, Bethesda, MD, 20892, USA
| | - Martin P Playford
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bldg 10, Clinical Research Center, Room 5-5150, Bethesda, MD, 20892, USA
| | - Marcus Y Chen
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bldg 10, Clinical Research Center, Room 5-5150, Bethesda, MD, 20892, USA
| | - Nehal N Mehta
- Section of Inflammation and Cardiometabolic Diseases, Cardiovascular Branch, National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bldg 10, Clinical Research Center, Room 5-5150, Bethesda, MD, 20892, USA
| | - Alan T Remaley
- Section of Lipoprotein Metabolism, Translational Vascular Medicine Branch, Lung and Blood Institute, National Heart, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Nakamura M, Shiga A, Iimori A, Matsuzaki T. Efficient endocytosis of the human lactoferrin N-lobe enhances its antiproliferative activity against human cancer cells. Biol Pharm Bull 2023. [PMID: 37088555 DOI: 10.1248/bpb.b23-00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Human lactoferrin (hLF) is a glycosylated globular iron-binding protein with high functional versatility that elicits anticancer, neuroprotective, and anti-inflammatory effects. Some of the diverse functions of hLF are induced after its internalization into various cells via cell surface endocytosis receptors, such as proteoglycans, which contain glycosaminoglycan (GAG) chains. We have previously demonstrated that an hLF derivative comprising the N-terminal half of hLF (referred to as the N-lobe) is internalized by intestinal enterocyte Caco-2 cells. However, the relationship between the intracellular uptake of the N-lobe and its pharmacological activity remains poorly understood. Here, we report that the N-lobe is efficiently internalized by lung cancer cells via endocytic pathways, suppressing their proliferation. Moreover, the N-lobe showed higher intracellular uptake than hLF. We found that the N-lobe was internalized into the human lung cancer cell lines PC-14 and PC-3 via clathrin- and/or caveolae-mediated endocytosis. Intracellular uptake of the N-lobe was inhibited when an equimolar concentration of chondroitin sulfate (CS)-E, a GAG subtype involved in malignant transformation and tumor metastasis, was added. The inhibitory effect of the N-lobe on PC-14 cell proliferation decreased with the addition of CS-E in a dose-dependent manner, suggesting that the CS-recognizing sequence on the N-lobe is necessary for its internalization or that the CS proteoglycan on cancer cells acts as an endocytosis receptor. These results suggest that the efficient endocytic uptake of the N-lobe is important for its antiproliferation effects on lung cancer cell lines. Thus, the N-lobe presents a promising drug candidate for cancer treatment.
Collapse
Affiliation(s)
- Masao Nakamura
- Department of Peptidomics, Sasaki Institute, Sasaki Foundation
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | - Akira Shiga
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | - Ami Iimori
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | - Takumi Matsuzaki
- School of Bioscience and Biotechnology, Tokyo University of Technology
| |
Collapse
|
6
|
Pencina KM, Pencina MJ, Lawler PR, Engert JC, Dufresne L, Ridker PM, Thanassoulis G, Mora S, Sniderman AD. Interplay of Atherogenic Particle Number and Particle Size and the Risk of Coronary Heart Disease. Clin Chem 2023; 69:48-55. [PMID: 36331823 PMCID: PMC10833272 DOI: 10.1093/clinchem/hvac172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/09/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND We examined the interplay of apolipoprotein B (apoB) and LDL particle size, approximated by the LDL-cholesterol (LDL-C)/apoB ratio, on the risk of new-onset coronary heart disease (CHD). METHODS Participants without cardiovascular disease from the UK Biobank (UKB; n = 308 182), the Women's Health Study (WHS; n = 26 204), and the Framingham Heart Study (FHS; n = 2839) were included. Multivariable Cox models were used to assess the relationship between apoB and LDL-C/apoB ratio and incidence of CHD (14 994 events). Our analyses were adjusted for age, sex (except WHS), HDL-cholesterol (HDL-C), systolic blood pressure, antihypertensive treatment, diabetes, and smoking. RESULTS In all 3 studies, there was a strong positive correlation between apoB and LDL-C (correlation coefficients r = 0.80 or higher) and a weak inverse correlation of apoB with LDL-C/apoB ratio (-0.28 ≤ r ≤ -0.14). For all 3 cohorts, CHD risk was higher for higher levels of apoB. Upon multivariable adjustment, the association between apoB and new-onset CHD remained robust and statistically significant in all 3 cohorts with hazard ratios per 1 SD (95% CI): 1.24 (1.22-1.27), 1.33 (1.20-1.47), and 1.24 (1.09-1.42) for UKB, WHS, and FHS, respectively. However, the association between LDL-C/apoB and CHD was statistically significant only in the FHS cohort: 0.78 (0.64-0.94). CONCLUSIONS Our analysis confirms that apoB is a strong risk factor for CHD. However, given the null association in 2 of the 3 studies, we cannot confirm that cholesterol-depleted LDL particles are substantially more atherogenic than cholesterol-replete particles. These results lend further support to routine measurement of apoB in clinical care.
Collapse
Affiliation(s)
- Karol M. Pencina
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael J. Pencina
- North Carolina Department of Laboratory Medicine, Duke University School of Medicine, Biostatistics and Bioinformatics, DCRI, Durham, NC 27614, USA
| | - Patrick R. Lawler
- Peter Munk Cardiac Centre, Toronto General Hospital, University of Toronto, Toronto, Ontario M5G 2C4, Canada
| | - James C. Engert
- Research Institute of the McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Line Dufresne
- Mike and Valeria Rosenbloom Centre for Cardiovascular Prevention, Department of Medicine, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Paul M Ridker
- Department of Medicine, Center for Cardiovascular Disease Prevention, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - George Thanassoulis
- Mike and Valeria Rosenbloom Centre for Cardiovascular Prevention, Department of Medicine, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Samia Mora
- Center for Lipid Metabolomics, Division of Preventive Medicine, Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Allan D. Sniderman
- Mike and Valeria Rosenbloom Centre for Cardiovascular Prevention, Department of Medicine, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| |
Collapse
|
7
|
Nguyen SD, Maaninka K, Mäyränpää MI, Baumann M, Soliymani R, Lee-Rueckert M, Jauhiainen M, Kovanen PT, Öörni K. Neutrophil proteinase 3 - An LDL- and HDL-proteolyzing enzyme with a potential to contribute to cholesterol accumulation in human atherosclerotic lesions. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159225. [PMID: 36058498 DOI: 10.1016/j.bbalip.2022.159225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 10/14/2022]
Affiliation(s)
- Su Duy Nguyen
- Wihuri Research Institute, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Katariina Maaninka
- Wihuri Research Institute, Haartmaninkatu 8, 00290 Helsinki, Finland; EV Group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Finland; CURED, Drug Research Program, Faculty of Pharmacy, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Mikko I Mäyränpää
- Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marc Baumann
- Institute of Biomedicine, Department of Biochemistry and Developmental Biology, Meilahti Clinical Proteomics Core Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | - Rabah Soliymani
- Institute of Biomedicine, Department of Biochemistry and Developmental Biology, Meilahti Clinical Proteomics Core Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland
| | | | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland; National Institute for Health and Welfare, Helsinki, Finland
| | - Petri T Kovanen
- Wihuri Research Institute, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Katariina Öörni
- Wihuri Research Institute, Haartmaninkatu 8, 00290 Helsinki, Finland; Molecular and Integrative Biosciences, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Alizadeh-Fanalou S, Nazarizadeh A, Alian F, Faraji P, Sorori B, Khosravi M. Small dense low-density lipoprotein-lowering agents. Biol Chem 2021; 401:1101-1121. [PMID: 32427116 DOI: 10.1515/hsz-2019-0426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/06/2020] [Indexed: 02/06/2023]
Abstract
Metabolic disorders, including obesity, diabetes, and hyperlipidemia, as well as cardiovascular diseases (CVD), particularly atherosclerosis, are still leading causes of death worldwide. Plasma levels of low-density lipoprotein (LDL) are currently being considered as a critical risk factor for the diseases mentioned above, especially atherosclerosis. Because of the heterogeneous nature of LDL, many studies have already been conducted on its subclasses, especially small dense LDL (sdLDL). According to available evidence, sdLDL levels can be considered as an ideal alternative to LDL levels for monitoring CVD and early diagnosis of atherosclerosis. Recently, several researchers have focused on factors that are able to decrease sdLDL levels and improve health quality. Therefore, the purpose of this study is to describe the production process of sdLDL particles and review the effects of pharmaceutical and dietary agents as well as lifestyle on sdLDL plasma levels. In brief, their mechanisms of action are discussed. Apparently, cholesterol and LDL-lowering compounds are also effective in the reduction of sdLDL levels. In addition, improving lipid profile, especially the reduction of triglyceride levels, appropriate regimen, and lifestyle can decrease sdLDL levels. Therefore, all the aforementioned parameters should be taken into consideration simultaneously in sdLDL levels reducing strategies.
Collapse
Affiliation(s)
- Shahin Alizadeh-Fanalou
- Student Research Committee, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran.,Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran1449614535,Islamic Republic of Iran
| | - Ali Nazarizadeh
- Department of Biochemistry, Faculty of Medicine, Iran University of Medical Sciences, Tehran1449614535,Islamic Republic of Iran
| | - Fatemeh Alian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran131451365,Islamic Republic of Iran
| | - Parisa Faraji
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran131451365,Islamic Republic of Iran
| | - Bahareh Sorori
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Islamic Republic of Iran
| | - Mohsen Khosravi
- Department of Medicine, Islamic Azad University, Qom Branch, Qom3714668669,Islamic Republic of Iran
| |
Collapse
|
9
|
Sniderman AD, Thanassoulis G, Glavinovic T, Navar AM, Pencina M, Catapano A, Ference BA. Apolipoprotein B Particles and Cardiovascular Disease: A Narrative Review. JAMA Cardiol 2020; 4:1287-1295. [PMID: 31642874 DOI: 10.1001/jamacardio.2019.3780] [Citation(s) in RCA: 293] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Importance The conventional model of atherosclerosis presumes that the mass of cholesterol within very low-density lipoprotein particles, low-density lipoprotein particles, chylomicron, and lipoprotein (a) particles in plasma is the principal determinant of the mass of cholesterol that will be deposited within the arterial wall and will drive atherogenesis. However, each of these particles contains one molecule of apolipoprotein B (apoB) and there is now substantial evidence that apoB more accurately measures the atherogenic risk owing to the apoB lipoproteins than does low-density lipoprotein cholesterol or non-high-density lipoprotein cholesterol. Observations Cholesterol can only enter the arterial wall within apoB particles. However, the mass of cholesterol per apoB particle is variable. Therefore, the mass of cholesterol that will be deposited within the arterial wall is determined by the number of apoB particles that are trapped within the arterial wall. The number of apoB particles that enter the arterial wall is determined primarily by the number of apoB particles within the arterial lumen. However, once within the arterial wall, smaller cholesterol-depleted apoB particles have a greater tendency to be trapped than larger cholesterol-enriched apoB particles because they bind more avidly to the glycosaminoglycans within the subintimal space of the arterial wall. Thus, a cholesterol-enriched particle would deposit more cholesterol than a cholesterol-depleted apoB particle whereas more, smaller apoB particles that enter the arterial wall will be trapped than larger apoB particles. The net result is, with the exceptions of the abnormal chylomicron remnants in type III hyperlipoproteinemia and lipoprotein (a), all apoB particles are equally atherogenic. Conclusions and Relevance Apolipoprotein B unifies, amplifies, and simplifies the information from the conventional lipid markers as to the atherogenic risk attributable to the apoB lipoproteins.
Collapse
Affiliation(s)
- Allan D Sniderman
- Mike and Valeria Rosenbloom Centre for Cardiovascular Prevention, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | - George Thanassoulis
- Mike and Valeria Rosenbloom Centre for Cardiovascular Prevention, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
| | | | - Ann Marie Navar
- Duke Clinical Research Institute, Durham, North Carolina.,Associate Editor
| | - Michael Pencina
- Duke University School of Medicine, Durham, North Carolina.,Deputy Editor for Statistics
| | - Alberico Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Multimedica IRCCS, Milano, Italy
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, United Kingdom.,Institute for Advanced Studies, University of Bristol, Bristol, United Kingdom.,MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
10
|
Zhang YY, Zhao ZD, Kong PY, Gao L, Yu YN, Liu J, Wang PQ, Li B, Zhang XX, Yang LQ, Wang Z. A comparative pharmacogenomic analysis of three classic TCM prescriptions for coronary heart disease based on molecular network modeling. Acta Pharmacol Sin 2020; 41:735-744. [PMID: 32051552 PMCID: PMC7471444 DOI: 10.1038/s41401-019-0352-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/17/2019] [Indexed: 12/15/2022] Open
Abstract
Traditional Chinese medicine (TCM) has evolved over several thousands of years, which has been shown to be efficacious in the treatment of ischemic heart disease. Three classical TCM prescriptions, namely Xuefu Zhuyu Decoction, Zhishi Xiebai Guizhi Decoction, and Gualou Xiebai Banxia Decoction, have been extensively used in the treatment of coronary heart disease (CHD). Based on molecular network modeling, we performed a comparative pharmacogenomic analysis to systematically determine the drug-targeting spectrum of the three prescriptions at molecular level. Wide-area target molecules of CHD were covered, which was a common feature of the three decoctions, demonstrating their therapeutic functions. Meanwhile, collective signaling involved metabolic/pro-metabolic pathways, driving and transferring pathways, neuropsychiatric pathways, and exocrine or endocrine pathways. These organized pharmacological disturbance was mainly focused on almost all stages of CHD intervention, such as anti-atherosclerosis, lipid metabolism, inflammation, vascular wall function, foam cells formation, platelets aggregation, thrombosis, arrhythmia, and ischemia-reperfusion injury. In addition, heterogeneity analysis of the global pharmacological molecular spectrum revealed that signaling crosstalk, cascade convergence, and key targets were tendentious among the three decoctions. After all, it is unadvisable to rank the findings on targeting advantages of the three decoctions. Comparative pharmacological evidence may provide an appropriate decoction scheme for individualized intervention of CHD.
Collapse
Affiliation(s)
- Ying-Ying Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zi-de Zhao
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, 100040, China
| | - Peng-Yun Kong
- Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Lin Gao
- Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Ya-Nan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Peng-Qian Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bing Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xiao-Xu Zhang
- Eye Hospital, China Academy of Chinese Medical Sciences, Beijing, 100040, China
| | - Li-Qiang Yang
- Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
11
|
Chapman MJ, Orsoni A, Tan R, Mellett NA, Nguyen A, Robillard P, Giral P, Thérond P, Meikle PJ. LDL subclass lipidomics in atherogenic dyslipidemia: effect of statin therapy on bioactive lipids and dense LDL. J Lipid Res 2020; 61:911-932. [PMID: 32295829 PMCID: PMC7269759 DOI: 10.1194/jlr.p119000543] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/01/2020] [Indexed: 01/05/2023] Open
Abstract
Atherogenic LDL particles are physicochemically and metabolically heterogeneous. Can bioactive lipid cargo differentiate LDL subclasses, and thus potential atherogenicity? What is the effect of statin treatment? Obese hypertriglyceridemic hypercholesterolemic males [n = 12; lipoprotein (a) <10 mg/dl] received pitavastatin calcium (4 mg/day) for 180 days in a single-phase unblinded study. The lipidomic profiles (23 lipid classes) of five LDL subclasses fractionated from baseline and post-statin plasmas were determined by LC-MS. At baseline and on statin treatment, very small dense LDL (LDL5) was preferentially enriched (up to 3-fold) in specific lysophospholipids {LPC, lysophosphatidylinositol (LPI), lysoalkylphosphatidylcholine [LPC(O)]; 9, 0.2, and 0.14 mol per mole of apoB, respectively; all P < 0.001 vs. LDL1-4}, suggesting elevated inflammatory potential per particle. In contrast, lysophosphatidylethanolamine was uniformly distributed among LDL subclasses. Statin treatment markedly reduced absolute plasma concentrations of all LDL subclasses (up to 33.5%), including LPC, LPI, and LPC(O) contents (up to -52%), consistent with reduction in cardiovascular risk. Despite such reductions, lipotoxic ceramide load per particle in LDL1-5 (1.5-3 mol per mole of apoB; 3-7 mmol per mole of PC) was either conserved or elevated. Bioactive lipids may constitute biomarkers for the cardiometabolic risk associated with specific LDL subclasses in atherogenic dyslipidemia at baseline, and with residual risk on statin therapy.
Collapse
Affiliation(s)
- M John Chapman
- Endocrinology Metabolism Division, Pitié-Salpetrière University Hospital, Sorbonne University and National Institute for Health and Medical Research (INSERM), Paris, France; Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia. mailto:
| | - Alexina Orsoni
- Service de Biochimie AP-HP, HU Paris-Saclay, Bicetre University Hospital, Le Kremlin Bicêtre and EA 7357, Paris-Saclay University, Chatenay-Malabry, France
| | - Ricardo Tan
- Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Natalie A Mellett
- Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Anh Nguyen
- Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Paul Robillard
- Endocrinology Metabolism Division, Pitié-Salpetrière University Hospital, Sorbonne University and National Institute for Health and Medical Research (INSERM), Paris, France
| | - Philippe Giral
- INSERM UMR1166 and Cardiovascular Prevention Units, ICAN-Institute of CardioMetabolism and Nutrition, AP-HP, Pitié-Salpetrière University Hospital, Paris, France
| | - Patrice Thérond
- Service de Biochimie AP-HP, HU Paris-Saclay, Bicetre University Hospital, Le Kremlin Bicêtre and EA 7357, Paris-Saclay University, Chatenay-Malabry, France
| | - Peter J Meikle
- Metabolomics Laboratory Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Jin JL, Zhang HW, Cao YX, Liu HH, Hua Q, Li YF, Zhang Y, Wu NQ, Zhu CG, Xu RX, Gao Y, Li XL, Cui CJ, Liu G, Sun J, Dong Q, Guo YL, Li JJ. Association of small dense low-density lipoprotein with cardiovascular outcome in patients with coronary artery disease and diabetes: a prospective, observational cohort study. Cardiovasc Diabetol 2020; 19:45. [PMID: 32245386 PMCID: PMC7118853 DOI: 10.1186/s12933-020-01015-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 03/16/2020] [Indexed: 12/23/2022] Open
Abstract
Background Elevation in small dense low-density lipoprotein (sdLDL) is common in patients with diabetes mellitus (DM), which has already been reported to be associated with incidence of coronary artery disease (CAD). The aim of the present study was to investigate the prognostic value of plasma sdLDL level in patients with stable CAD and DM. Methods A total of 4148 consecutive patients with stable CAD were prospectively enrolled into the study and followed up for major cardiovascular events (MACEs) up to 8.5 years. Plasma sdLDL level was measured in each patient by a direct method using automated chemistry analyzer. The patients were subsequently divided into four groups by the quartiles of sdLDL and the association of sdLDL level with MACEs in different status of glucose metabolism [DM, Pre-DM, normal glycaemia regulation (NGR)] was evaluated. Results A total of 464 MACEs were documented. Both Kaplan–Meier analysis and Cox regression analysis indicated that the patients in quartile 4 but not quartile 2 or 3 of sdLDL level had significantly higher rate of MACEs than that in lowest quartile. When the prognostic value of high sdLDL was assessed in different glucose metabolism status, the results showed that the high sdLDL plus DM was associated with worse outcome after adjustment of confounding risk factors (hazard ratio: 1.83, 95% confident interval: 1.24–2.70, p < 0.05). However, no significant association was observed for high sdLDL plus Pre-DM or NGR. Conclusions The present study firstly indicated that elevated levels of plasma sdLDL were associated with increased risk of MACEs among DM patients with proven CAD, suggesting that sdLDL may be useful for CAD risk stratification in DM.
Collapse
Affiliation(s)
- Jing-Lu Jin
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Hui-Wen Zhang
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Ye-Xuan Cao
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Hui-Hui Liu
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Qi Hua
- Department of Cardiology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yan-Fang Li
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, 100029, China
| | - Yan Zhang
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Na-Qiong Wu
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Cheng-Gang Zhu
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Rui-Xia Xu
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Ying Gao
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Xiao-Lin Li
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Chuan-Jue Cui
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Geng Liu
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Jing Sun
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Qian Dong
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China
| | - Yuan-Lin Guo
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China.
| | - Jian-Jun Li
- State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, BeiLiShi Road 167, Beijing, 100037, China.
| |
Collapse
|
13
|
Prichard S, Cianflone K, Sniderman A. The Role of the Liver in the Pathogenesis of Hyperlipidemia in Patients with End-St Age Renal Disease Treated with Continuous Ambulatory Peritoneal Dialysis. Perit Dial Int 2020. [DOI: 10.1177/089686089601601s39] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Sarah Prichard
- McGi11 Unit for the Prevention of Cardiovascular Disease and the Division of Nephrology, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Katherine Cianflone
- McGi11 Unit for the Prevention of Cardiovascular Disease and the Division of Nephrology, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Allan Sniderman
- McGi11 Unit for the Prevention of Cardiovascular Disease and the Division of Nephrology, Royal Victoria Hospital, Montreal, Quebec, Canada
| |
Collapse
|
14
|
Ahmed O, Littmann K, Gustafsson U, Pramfalk C, Öörni K, Larsson L, Minniti ME, Sahlin S, Camejo G, Parini P, Eriksson M. Ezetimibe in Combination With Simvastatin Reduces Remnant Cholesterol Without Affecting Biliary Lipid Concentrations in Gallstone Patients. J Am Heart Assoc 2019; 7:e009876. [PMID: 30561264 PMCID: PMC6405603 DOI: 10.1161/jaha.118.009876] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background In randomized trials (SHARP [Study of Heart and Renal Protection], IMPROVE‐IT [Improved Reduction of Outcomes: Vytorin Efficacy International Trial]), combination of statin and ezetimibe resulted in additional reduction of cardiovascular events. The reduction was greater in patients with type 2 diabetes mellitus (T2DM), where elevated remnant cholesterol and high cardiovascular disease risk is characteristic. To evaluate possible causes behind these results, 40 patients eligible for cholecystectomy, randomized to simvastatin, ezetimibe, combined treatment (simvastatin+ezetimibe), or placebo treatment during 4 weeks before surgery, were studied. Methods and Results Fasting blood samples were taken before treatment start and at the end (just before surgery). Bile samples and liver biopsies were collected during surgery. Hepatic gene expression levels were assessed with qPCR. Lipoprotein, apolipoprotein levels, and content of cholesterol, cholesteryl ester, and triglycerides were measured after lipoprotein fractionation. Lipoprotein subclasses were analyzed by nuclear magnetic resonance. Apolipoprotein affinity for human arterial proteoglycans (PG) was measured. Biomarkers of cholesterol biosynthesis and intestinal absorption and bile lipid composition were analyzed using mass spectrometry. Combined treatment caused a statistically significant decrease in plasma remnant particles and apolipoprotein B (ApoB)/lipoprotein content of cholesterol, cholesteryl esters, and triglycerides. All treatments reduced ApoB‐lipoprotein PG binding. Simvastatin and combined treatment modified the composition of lipoproteins. Changes in biomarkers of cholesterol synthesis and absorption and bile acid synthesis were as expected. No adverse events were found. Conclusions Combined treatment caused atheroprotective changes on ApoB‐lipoproteins, remnant particles, bile components, and in ApoB‐lipoprotein affinity for arterial PG. These effects might explain the decrease of cardiovascular events seen in the SHARP and IMPROVE‐IT trials. Clinical Trial Registration URL: www.clinicaltrialsregister.eu. Unique identifier: 2006‐004839‐30).
Collapse
Affiliation(s)
- Osman Ahmed
- 1 Division of Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden.,2 Department of Biochemistry Faculty of Medicine Khartoum University Khartoum Sudan
| | - Karin Littmann
- 1 Division of Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden.,3 Function Area Clinical Chemistry Karolinska University Laboratory Function Karolinska University Hospital Stockholm Sweden
| | - Ulf Gustafsson
- 5 Department of Surgery Karolinska Institutet at Danderyd Hospital Stockholm Sweden
| | - Camilla Pramfalk
- 1 Division of Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
| | | | - Lilian Larsson
- 1 Division of Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
| | - Mirko E Minniti
- 1 Division of Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
| | - Staffan Sahlin
- 5 Department of Surgery Karolinska Institutet at Danderyd Hospital Stockholm Sweden
| | - German Camejo
- 1 Division of Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden
| | - Paolo Parini
- 1 Division of Clinical Chemistry Department of Laboratory Medicine Karolinska Institutet Stockholm Sweden.,4 Patient Area Endocrinology and Nephrology, Inflammation and Infection Theme Karolinska University Hospital Stockholm Sweden.,7 Metabolism Unit Department of Medicine Karolinska Institutet at Karolinska University Hospital Huddinge Stockholm Sweden
| | - Mats Eriksson
- 4 Patient Area Endocrinology and Nephrology, Inflammation and Infection Theme Karolinska University Hospital Stockholm Sweden.,7 Metabolism Unit Department of Medicine Karolinska Institutet at Karolinska University Hospital Huddinge Stockholm Sweden
| |
Collapse
|
15
|
Dansinger ML, Williams PT, Superko HR, Schaefer EJ. Effects of weight change on apolipoprotein B-containing emerging atherosclerotic cardiovascular disease (ASCVD) risk factors. Lipids Health Dis 2019; 18:154. [PMID: 31311555 PMCID: PMC6636168 DOI: 10.1186/s12944-019-1094-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/01/2019] [Indexed: 01/05/2023] Open
Abstract
Background and aims Non-high-density (HDL)-cholesterol, low-density lipoprotein (LDL)-particle number, apolipoprotein B, lipoprotein(a) (Lp(a)), and small-dense (sdLDL) and large-buoyant (lbLDL) LDL-subfractions are emerging apo B-containing atherosclerotic cardiovascular disease (ASCVD) risk factors. Current guidelines emphasize lifestyle, including weight loss, for ASCVD risk management. Whether weight change affects these emerging risk factors beyond that predicted by traditional triglyceride and LDL-cholesterol measurements remains to be determined. Method Regression analyses of fasting ∆apo B-containing lipoproteins vs. ∆BMI were examined in a large anonymized clinical laboratory database of 33,165 subjects who did not report use of lipid-lowering medications. Regression slopes (±SE) were estimated as: *∆mmol/L per ∆kg/m2, †∆g/L per ∆kg/m2, ‡∆% per ∆kg/m2, and §∆μmol/L per ∆kg/m2. Results When adjusted for age, ∆BMI was significantly related to ∆nonHDL-cholesterol (males: 0.0238 ± 0.0041, P = 7.9 × 10− 9; females: 0.0330 ± 0.0037, P < 10− 16)*, ∆LDL-particles (males: 0.0128 ± 0.0024, P = 2.1 × 10− 7; females: 0.0114 ± 0.0022, P = 3.2 × 10− 7)*, ∆apo B (males: 0.0053 ± 0.0010, P = 7.9 × 10− 8; females: 0.0073 ± 0.0009, P = 2.2 × 10− 16)†, ∆sdLDL (males: 0.0125 ± 0.0015, P = 2.2 × 10− 16; females: 0.0128 ± 0.0012, P < 10− 16)*, ∆percent LDL carried on small dense particles (%sdLDL, males: 0.296 ± 0.035, P < 10− 16; females: 0.221 ± 0.023, P < 10− 16)‡, ∆triglycerides (males: 0.0358 ± 0.0049, P = 2.0 × 10− 13; females: 0.0304 ± 0.0029, P < 10− 16)*, and ∆LDL-cholesterol (males: 0.0128 ± 0.0034, P = 0.0002; females: 0.0232 ± 0.0031, P = 1.2 × 10− 13)* in both males and females. Age-adjusted ∆BMI was significantly related to ∆lbLDL in females (0.0098 ± 0.0024, P = 3.9 × 10− 5)* but not males (0.0007 ± 0.0026, P = 0.78)*. Female showed significantly greater increases in ∆LDL-cholesterol (P = 0.02) and ∆lbLDL (P = 0.008) per ∆BMI than males. ∆BMI had a greater effect on ∆LDL-cholesterol measured directly than indirect estimate of ∆LDL-cholesterol from the Friedewald equation. When sexes were combined and adjusted for age, sex, ∆triglycerides and ∆LDL-cholesterol, ∆BMI retained residual associations with ∆nonHDL-cholesterol (0.0019 ± 0.0009, P = 0.03)*, ∆LDL-particles (0.0032 ± 0.0010, P = 0.001)*, ∆apo B (0.0010 ± 0.0003, P = 0.0008)†, ∆Lp(a) (− 0.0091 ± 0.0021, P = 1.2 × 10− 5)§, ∆sdLDL (0.0001 ± 0.0000, P = 1.6 × 10− 11)* and ∆%sdLDL (0.151 ± 0.018, P < 10− 16) ‡. Conclusions Emerging apo B-containing risk factors show associations with weight change beyond those explained by the more traditional triglyceride and LDL-cholesterol measurements. Electronic supplementary material The online version of this article (10.1186/s12944-019-1094-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael L Dansinger
- Boston Heart Diagnostics, 175 Crossing Boulevard, Suite 100, Framingham, MA, 01702, USA. .,Tufts Medical Center, 800 Washington St, Boston, MA, 02111, USA.
| | - Paul T Williams
- Boston Heart Diagnostics, 175 Crossing Boulevard, Suite 100, Framingham, MA, 01702, USA
| | - H Robert Superko
- Boston Heart Diagnostics, 175 Crossing Boulevard, Suite 100, Framingham, MA, 01702, USA
| | - Ernst J Schaefer
- Boston Heart Diagnostics, 175 Crossing Boulevard, Suite 100, Framingham, MA, 01702, USA.,Cardiovascular Nutrition Laboratory, USDA Human Nutrition Research Center at Tufts University, 711 Washington St., Boston, MA, 02111, USA
| |
Collapse
|
16
|
Dash S, Leiter LA. Residual cardiovascular risk among people with diabetes. Diabetes Obes Metab 2019; 21 Suppl 1:28-38. [PMID: 31002458 DOI: 10.1111/dom.13646] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/16/2019] [Accepted: 01/28/2019] [Indexed: 01/05/2023]
Abstract
Type 2 diabetes (T2D) is a growing health concern across both developed and developing countries. Cardiovascular disease (CVD) remains the major cause of increased mortality in this patient population. In recent years, effective low density lipoprotein lowering treatments and other risk reduction strategies have substantially reduced the risk of atherosclerotic CVD, yet patients with T2D continue to remain at increased risk for atherosclerotic CVD. Here, we will briefly review various proposed underlying mechanisms for this residual risk with a more in-depth focus on the potential role of triglyceride-rich lipoproteins in residual risk and potential avenues to target this pharmacologically.
Collapse
Affiliation(s)
- Satya Dash
- Department of Medicine, University Health Network, University of Toronto, Toronto, Ontario, Canada
- University of Toronto, Toronto, Ontario, Canada
| | - Lawrence A Leiter
- Li Ka Shing Knowledge Institute, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Galletti F, Fazio V, Gentile M, Schillaci G, Pucci G, Battista F, Mercurio V, Bosso G, Bonaduce D, Brambilla N, Vitalini C, D'Amato M, Giacovelli G. Efficacy of a nutraceutical combination on lipid metabolism in patients with metabolic syndrome: a multicenter, double blind, randomized, placebo controlled trial. Lipids Health Dis 2019; 18:66. [PMID: 30885221 PMCID: PMC6421674 DOI: 10.1186/s12944-019-1002-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/01/2019] [Indexed: 01/14/2023] Open
Abstract
Background Nutraceuticals represent a new therapeutic frontier in the treatment of metabolic syndrom (MetS) and related cardiovascular risk factors. The aim of this study was to evaluate the potential beneficial effects of Armolipid Plus (AP) (berberine 500 mg, red yest rice, monacolin K 3 mg and policosanol 10 mg) on insulin resistance, lipid profile, particularly on small and dense LDL cholesterol (sdLDL-C), representing the most atherogenic components, as well as its effects on high sensitivity C-reactive protein, a notable marker of cardiovascular risk, blood pressure and cardiac remodeling in subjects affected by MetS, with left ventricular hypertrophy. Methods The study was a prospective, multi-center, randomized, double blind, placebo-controlled trial. One hundred and fifty eight patients, aged between 28 and 76 years old, were enrolled and randomized to receive either one tablet of AP or placebo (PL) once daily for 24 weeks. Anthropometric and vital parameters, total cholesterol (tot-C), low-density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), triglyceridemia (TG), non-HDL cholesterol (NHDL-C) and sdLDL-C were evaluated. Results After 24 weeks of treatment, the analysis performed on 141 subjects (71 in AP arm and 70 in PL arm), showed a significant improvement of lipid profile in the AP group, with reduction in tot-C (− 13.2 mg/dl), LDL-C (− 13.9 mg/dl) and NHDL-C (− 15.3 mg/dl) and increase in HDL-C (+ 2.0 mg/dl). These changes were equally significant compared with placebo (tot-C: AP − 13.2 mg/dL vs PL + 2.7 mg/dL, p < 0.01; LDL-C: AP -13.9 mg/dl vs PL + 1.5 mg/dl, p < 0.01; NHDL-C: AP -15.3 mg/dl vs PL + 2.8 mg/dl, p < 0.01), Although no significant difference was observed between the two arms in the reduction of HDL-C nevertheless it increased significantly in the AP group (AP + 2 mg/dL p < 0.05, PL 0.13 mg/dL). Conclusion The results of this study, applicable to a specific local population show that, in a population of subjects affected by MetS, treatment with AP improves the lipid profile and the most atherogenic factors, thus suggesting a reduction in the risk of development and progression of atherosclerosis, particularly in subjects with high atherogenic risk, due to the presence of sdLDL-C.
Collapse
Affiliation(s)
- Ferruccio Galletti
- Department of Clinical Medicine and Surgery, ESH Excellence Centre of Hypertension, "Federico II" University of Naples Medical School, Naples, Italy.
| | - Valeria Fazio
- Department of Clinical Medicine and Surgery, ESH Excellence Centre of Hypertension, "Federico II" University of Naples Medical School, Naples, Italy
| | - Marco Gentile
- Department of Clinical Medicine and Surgery, ESH Excellence Centre of Hypertension, "Federico II" University of Naples Medical School, Naples, Italy
| | - Giuseppe Schillaci
- Unit of Internal Medicine, Terni University Hospital, Department of Medicine, University of Perugia, Perugia, Italy
| | - Giacomo Pucci
- Unit of Internal Medicine, Terni University Hospital, Department of Medicine, University of Perugia, Perugia, Italy
| | - Francesca Battista
- Unit of Internal Medicine, Terni University Hospital, Department of Medicine, University of Perugia, Perugia, Italy
| | - Valentina Mercurio
- Department of Translational Medical Sciences, "Federico II" University of Naples Medical School, Naples, Italy
| | - Giorgio Bosso
- Department of Translational Medical Sciences, "Federico II" University of Naples Medical School, Naples, Italy
| | - Domenico Bonaduce
- Department of Translational Medical Sciences, "Federico II" University of Naples Medical School, Naples, Italy
| | | | | | | | | |
Collapse
|
18
|
ApoB-100 Lipoprotein Complex Formation with Intima Proteoglycans as a Cause of Atherosclerosis and Its Possible Ex Vivo Evaluation as a Disease Biomarker. J Cardiovasc Dev Dis 2018; 5:jcdd5030036. [PMID: 29966388 PMCID: PMC6162553 DOI: 10.3390/jcdd5030036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/22/2022] Open
Abstract
Experimental and clinical data indicate that the initiation and progress of atherosclerosis and its clinical manifestations are first caused by circulating apoB-100 lipoproteins that enter and are retained in the arterial intima. Extracellular sulfated proteoglycans (PGs) of the intima are the retention agents. The PGs also initiate physical and biochemical lipoprotein degradation with the production of bioactive, lipid products that trigger an inflammatory response that leads to atherosclerosis. There are many simple methods for measuring abnormalities of circulating lipoproteins and their relation to atherosclerotic cardiovascular disease (ACVD). However, limited research aims to evaluate procedures that could report quantitatively about the contribution of the interaction of apoB-100 lipoprotein-arterial intima PGs to clinical manifestation of ACVD. In the present review we discuss observations indicating that simple ex vivo evaluation of the affinity of apoB-100 lipoproteins for arterial PGs and glycosaminoglycans (GAGs) can give an indication of its association with clinical manifestations of atherosclerosis. In addition, we discuss molecular and cellular aspects of the apoB-100 lipoproteins association with arterial PGs that are related to atherogenesis and that support the experimental framework behind the current “Response-to-Retention” hypothesis of atherosclerosis.
Collapse
|
19
|
Maaninka K, Nguyen SD, Mäyränpää MI, Plihtari R, Rajamäki K, Lindsberg PJ, Kovanen PT, Öörni K. Human mast cell neutral proteases generate modified LDL particles with increased proteoglycan binding. Atherosclerosis 2018; 275:390-399. [PMID: 29703634 DOI: 10.1016/j.atherosclerosis.2018.04.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/06/2018] [Accepted: 04/12/2018] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND AIMS Subendothelial interaction of LDL with extracellular matrix drives atherogenesis. This interaction can be strengthened by proteolytic modification of LDL. Mast cells (MCs) are present in atherosclerotic lesions, and upon activation, they degranulate and release a variety of neutral proteases. Here we studied the ability of MC proteases to cleave apoB-100 of LDL and affect the binding of LDL to proteoglycans. METHODS Mature human MCs were differentiated from human peripheral blood-derived CD34+ progenitors in vitro and activated with calcium ionophore to generate MC-conditioned medium. LDL was incubated in the MC-conditioned medium or with individual MC proteases, and the binding of native and modified LDL to isolated human aortic proteoglycans or to human atherosclerotic plaques ex vivo was determined. MC proteases in atherosclerotic human coronary artery lesions were detected by immunofluorescence and qPCR. RESULTS Activated human MCs released the neutral proteases tryptase, chymase, carboxypeptidase A3, cathepsin G, and granzyme B. Of these, cathepsin G degraded most efficiently apoB-100, induced LDL fusion, and enhanced binding of LDL to isolated human aortic proteoglycans and human atherosclerotic lesions ex vivo. Double immunofluoresence staining of human atherosclerotic coronary arteries for tryptase and cathepsin G indicated that lesional MCs contain cathepsin G. In the lesions, expression of cathepsin G correlated with the expression of tryptase and chymase, but not with that of neutrophil proteinase 3. CONCLUSIONS The present study suggests that cathepsin G in human atherosclerotic lesions is largely derived from MCs and that activated MCs may contribute to atherogenesis by enhancing LDL retention.
Collapse
Affiliation(s)
- Katariina Maaninka
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Su Duy Nguyen
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Mikko I Mäyränpää
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland; Pathology, University of Helsinki and Helsinki University Hospital, Finland
| | - Riia Plihtari
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Kristiina Rajamäki
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland; Clinicum Department, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Perttu J Lindsberg
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki, Finland; Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Finland
| | - Petri T Kovanen
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Katariina Öörni
- Wihuri Research Institute, Biomedicum 1, Haartmaninkatu 8, 00290 Helsinki, Finland.
| |
Collapse
|
20
|
Park H, Kim M, Kim HJ, Lee Y, Seo Y, Pham CD, Lee J, Byun SJ, Kwon MH. Heparan sulfate proteoglycans (HSPGs) and chondroitin sulfate proteoglycans (CSPGs) function as endocytic receptors for an internalizing anti-nucleic acid antibody. Sci Rep 2017; 7:14373. [PMID: 29085061 PMCID: PMC5662561 DOI: 10.1038/s41598-017-14793-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 10/16/2017] [Indexed: 02/02/2023] Open
Abstract
A subset of monoclonal anti-DNA autoantibodies enters a variety of living cells. Here, we aimed to identify the endocytic receptors recognized by an internalizing anti-nucleic acid autoantibody, the 3D8 single-chain variable fragment (scFv). We found that cell surface binding and internalization of 3D8 scFv were inhibited markedly in soluble heparan sulfate (HS)/chondroitin sulfate (CS)-deficient or -removed cells and in the presence of soluble HS and CS. 3D8 scFv colocalized intracellularly with either HS proteoglycans (HSPGs) or CSPGs in HeLa cells. 3D8 scFv was co-endocytosed and co-precipitated with representative individual HSPG and CSPG molecules: syndecan-2 (a transmembrane HSPG), glypican-3 (a glycosylphosphatidylinositol (GPI)-anchored HSPG); CD44 (a transmembrane CSPG); and brevican (a GPI-anchored CSPG). Collected data indicate that 3D8 scFv binds to the negatively charged sugar chains of both HSPGs and CSPGs and is then internalized along with these molecules, irrespective of how these proteoglycans are associated with the cell membrane. This is the first study to show that anti-DNA antibodies enter cells via both HSPGs and CSPGs simultaneously. The data may aid understanding of endocytic receptors that bind anti-DNA autoantibodies. The study also provides insight into potential cell membrane targets for macromolecular delivery.
Collapse
Affiliation(s)
- Hyunjoon Park
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 443-749, South Korea
| | - Minjae Kim
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 443-749, South Korea
| | - Hye-Jin Kim
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 443-749, South Korea
| | - Yeonjin Lee
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 443-749, South Korea
| | - Youngsil Seo
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 443-749, South Korea
| | - Chuong D Pham
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 443-749, South Korea
| | - Joungmin Lee
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 443-749, South Korea
| | - Sung June Byun
- Animal Biotechnology Division, National Institute of Animal Science, RDA, 1500, Kongjwipatjwi-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 565-851, South Korea
| | - Myung-Hee Kwon
- Department of Biomedical Sciences, Graduate School, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon, 443-749, South Korea. .,Department of Microbiology, Ajou University School of Medicine, 206 World cup-ro, Yeongtong-gu, Suwon, 443-749, South Korea.
| |
Collapse
|
21
|
Raal FJ, Areias AJ, Joffe BI. Low density lipoproteins and atherosclerosis—quantity or quality? Redox Rep 2016; 1:171-6. [DOI: 10.1080/13510002.1995.11746980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
22
|
High apolipoprotein M serum levels correlate with chronic obstructive pulmonary disease. Lipids Health Dis 2016; 15:59. [PMID: 27001252 PMCID: PMC4802916 DOI: 10.1186/s12944-016-0228-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/15/2016] [Indexed: 11/16/2022] Open
Abstract
Background Recently, variations in a component of high-density lipoprotein (HDL), namely apolipoprotein M (apoM), were found to be associated with chronic obstructive pulmonary disease (COPD). The aim of this study was to evaluate the association between apoM and COPD severity. Factors associated with apoM, COPD, or coronary artery disease (CAD) were also assessed. Methods A total of 110 COPD patients and 110 age- and sex-matched non-COPD controls were included. Among them, thirty COPD patients and seven non-COPD controls had CAD. ApoM and pentraxin-3 levels were measured by ELISA. Additionally, the levels of high-sensitivity C-reactive protein (hs-CRP), cholesterol, and triglyceride were assessed using an automatic biochemical analyzer. Results Serum apoM levels increased gradually with COPD severity, with the most prominent apoM elevation observed in very severe COPD cases. In addition, ApoM was correlated with percent-predicted forced expiratory volume in one second (% predicted FEV1) (r = −0.38, P < 0.001), low-density lipoprotein cholesterol (LDL-C) (r = 0.23, P < 0.017), and hs-CRP (r = 0.24, P = 0.01) in COPD patients. Furthermore, apoM was shown to be a risk factor for COPD onset (OR = 1.095, 95 % CI = 1.034–1.160, P = 0.002), but not associated with CAD in COPD patients. Conclusions Serum apoM was elevated in COPD patients and increased gradually with COPD severity. However, there was no association between apoM and CAD development in COPD patients. Electronic supplementary material The online version of this article (doi:10.1186/s12944-016-0228-1) contains supplementary material, which is available to authorized users.
Collapse
|
23
|
Apro J, Parini P, Broijersén A, Angelin B, Rudling M. Levels of atherogenic lipoproteins are unexpectedly reduced in interstitial fluid from type 2 diabetes patients. J Lipid Res 2015; 56:1633-9. [PMID: 26092865 DOI: 10.1194/jlr.p058842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Indexed: 01/20/2023] Open
Abstract
At a given level of serum cholesterol, patients with T2D have an increased risk of developing atherosclerosis compared with nondiabetic subjects. We hypothesized that T2D patients have an increased interstitial fluid (IF)-to-serum gradient ratio for LDL, due to leakage over the vascular wall. Therefore, lipoprotein profiles in serum and IF from 35 T2D patients and 35 healthy controls were assayed using fast performance liquid chromatography. The IF-to-serum gradients for VLDL and LDL cholesterol, as well as for apoB, were clearly reduced in T2D patients compared with healthy controls. No such differences were observed for HDL cholesterol. Contrary to our hypothesis, the atherogenic VLDL and LDL particles were not increased in IF from diabetic patients. Instead, they were relatively sparser than in healthy controls. The most probable explanation to our unexpected finding is that these lipoproteins are more susceptible to retainment in the extravascular space of these patients, reflecting a more active uptake by, or adhesion to, tissue cells, including macrophages in the vascular wall. Further studies are warranted to further characterize the mechanisms underlying these observations, which may be highly relevant for the understanding of why the propensity to develop atherosclerosis is increased in T2D.
Collapse
Affiliation(s)
- Johanna Apro
- Metabolism Unit Karolinska Institutet at Karolinska University Hospital Huddinge, C2-84, S-141 86 Stockholm, Sweden KI/AZ Integrated CardioMetabolic Center, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, C2-84, S-141 86 Stockholm, Sweden Molecular Nutrition Unit, Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet at Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Paolo Parini
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, C1-74, S-141 86 Stockholm, Sweden
| | - Anders Broijersén
- Metabolism Unit Karolinska Institutet at Karolinska University Hospital Huddinge, C2-84, S-141 86 Stockholm, Sweden
| | - Bo Angelin
- Metabolism Unit Karolinska Institutet at Karolinska University Hospital Huddinge, C2-84, S-141 86 Stockholm, Sweden KI/AZ Integrated CardioMetabolic Center, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, C2-84, S-141 86 Stockholm, Sweden Molecular Nutrition Unit, Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet at Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| | - Mats Rudling
- Metabolism Unit Karolinska Institutet at Karolinska University Hospital Huddinge, C2-84, S-141 86 Stockholm, Sweden KI/AZ Integrated CardioMetabolic Center, Department of Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, C2-84, S-141 86 Stockholm, Sweden Molecular Nutrition Unit, Center for Innovative Medicine, Department of Biosciences and Nutrition, Karolinska Institutet at Karolinska University Hospital Huddinge, S-141 86 Stockholm, Sweden
| |
Collapse
|
24
|
Nguyen SD, Javanainen M, Rissanen S, Zhao H, Huusko J, Kivelä AM, Ylä-Herttuala S, Navab M, Fogelman AM, Vattulainen I, Kovanen PT, Öörni K. Apolipoprotein A-I mimetic peptide 4F blocks sphingomyelinase-induced LDL aggregation. J Lipid Res 2015; 56:1206-21. [PMID: 25861792 DOI: 10.1194/jlr.m059485] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Indexed: 12/23/2022] Open
Abstract
Lipolytic modification of LDL particles by SMase generates LDL aggregates with a strong affinity for human arterial proteoglycans and may so enhance LDL retention in the arterial wall. Here, we evaluated the effects of apoA-I mimetic peptide 4F on structural and functional properties of the SMase-modified LDL particles. LDL particles with and without 4F were incubated with SMase, after which their aggregation, structure, and proteoglycan binding were analyzed. At a molar ratio of L-4F to apoB-100 of 2.5 to 20:1, 4F dose-dependently inhibited SMase-induced LDL aggregation. At a molar ratio of 20:1, SMase-induced aggregation was fully blocked. Binding of 4F to LDL particles inhibited SMase-induced hydrolysis of LDL by 10% and prevented SMase-induced LDL aggregation. In addition, the binding of the SMase-modified LDL particles to human aortic proteoglycans was dose-dependently inhibited by pretreating LDL with 4F. The 4F stabilized apoB-100 conformation and inhibited SMase-induced conformational changes of apoB-100. Molecular dynamic simulations showed that upon binding to protein-free LDL surface, 4F locally alters membrane order and fluidity and induces structural changes to the lipid layer. Collectively, 4F stabilizes LDL particles by preventing the SMase-induced conformational changes in apoB-100 and so blocks SMase-induced LDL aggregation and the resulting increase in LDL retention.
Collapse
Affiliation(s)
- Su Duy Nguyen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| | - Matti Javanainen
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Sami Rissanen
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Hongxia Zhao
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jenni Huusko
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Annukka M Kivelä
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland Science Service Center, Kuopio University Hospital, Kuopio, Finland
| | - Mohamad Navab
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Alan M Fogelman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, Tampere, Finland MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark
| | - Petri T Kovanen
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| | - Katariina Öörni
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Gan C, Ao M, Liu Z, Chen Y. Imaging and force measurement of LDL and HDL by AFM in air and liquid. FEBS Open Bio 2015; 5:276-82. [PMID: 25893163 PMCID: PMC4398754 DOI: 10.1016/j.fob.2015.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 11/26/2022] Open
Abstract
The size and biomechanical properties of lipoproteins are tightly correlated with their structures/functions. While atomic force microscopy (AFM) has been used to image lipoproteins the force measurement of these nano-sized particles is missing. We detected that the sizes of LDL and HDL in liquid are close to the commonly known values. The Young's modulus of LDL or HDL is ∼0.4 GPa which is similar to that of some viral capsids or nanovesicles but greatly larger than that of various liposomes. The adhesive force of LDL or HDL is small (∼200 pN). The comparison of AFM detection in air and liquid was also performed which is currently lacking. Our data may provide useful information for better understanding and AFM detection of lipoproteins.
Collapse
Affiliation(s)
- Chaoye Gan
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, China ; College of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Meiying Ao
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, China ; Department of Pharmacy, Science and Technology College, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330025, China
| | - Zhanghua Liu
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, China ; College of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yong Chen
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang, Jiangxi 330031, China ; College of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| |
Collapse
|
26
|
|
27
|
Abstract
PURPOSE OF REVIEW Decreased size and increased density of LDL have been associated with increased coronary heart disease (CHD) risk. Elevated plasma concentrations of small dense LDL (sdLDL) correlate with high plasma triglycerides and low HDL cholesterol levels. This review highlights recent findings about the metabolism and composition of LDL subfractions. RECENT FINDINGS The development of an automated assay has recently made possible the assessment of the CHD risk associated with sdLDL in large clinical trials and has demonstrated convincingly that sdLDL cholesterol levels are a more significant independent determinant of CHD risk than total LDL cholesterol. Metabolic studies have revealed that sdLDL particles originate through the delipidation of larger atherogenic VLDL and large LDL and from direct de novo production by the liver. Proteins associated with LDL, in addition to apolipoprotein (apo) B, include the C apolipoproteins, apoA-I, apoA-IV, apoD, apoE, apoF, apoH, apoJ, apoL-1, apoM, α-1 antitrypsin, migration inhibitory factor-related protein 8, lysosome C, prenylcysteine oxidase 1, paraoxonase 1, transthyretin, serum amyloid A4, and fibrinogen α chain. The role of the increasing number of LDL-associated proteins remains unclear; however, the data do indicate that LDL particles not only transport lipids but also carry proteins involved in inflammation and thrombosis. The sdLDL proteome in diabetic individuals differs significantly from that of larger LDL, being enriched in apoC-III. SUMMARY Progress in our understanding of the composition and metabolism of LDL subfractions strengthens the association between sdLDL and CHD risk.
Collapse
Affiliation(s)
- Margaret R Diffenderfer
- Cardiovascular Nutrition Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, USA
| | | |
Collapse
|
28
|
Hoogeveen RC, Gaubatz JW, Sun W, Dodge RC, Crosby JR, Jiang J, Couper D, Virani SS, Kathiresan S, Boerwinkle E, Ballantyne CM. Small dense low-density lipoprotein-cholesterol concentrations predict risk for coronary heart disease: the Atherosclerosis Risk In Communities (ARIC) study. Arterioscler Thromb Vasc Biol 2014; 34:1069-77. [PMID: 24558110 PMCID: PMC3999643 DOI: 10.1161/atvbaha.114.303284] [Citation(s) in RCA: 355] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 02/10/2014] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate the relationship between plasma levels of small dense low-density lipoprotein-cholesterol (sdLDL-C) and risk for incident coronary heart disease (CHD) in a prospective study among Atherosclerosis Risk in Communities (ARIC) study participants. APPROACH AND RESULTS Plasma sdLDL-C was measured in 11 419 men and women of the biracial ARIC study using a newly developed homogeneous assay. A proportional hazards model was used to examine the relationship among sdLDL-C, vascular risk factors, and risk for CHD events (n=1158) for a period of ≈11 years. Plasma sdLDL-C levels were strongly correlated with an atherogenic lipid profile and were higher in patients with diabetes mellitus than non-diabetes mellitus (49.6 versus 42.3 mg/dL; P<0.0001). In a model that included established risk factors, sdLDL-C was associated with incident CHD with a hazard ratio of 1.51 (95% confidence interval, 1.21-1.88) for the highest versus the lowest quartile, respectively. Even in individuals considered to be at low cardiovascular risk based on their LDL-C levels, sdLDL-C predicted risk for incident CHD (hazard ratio, 1.61; 95% confidence interval, 1.04-2.49). Genome-wide association analyses identified genetic variants in 8 loci associated with sdLDL-C levels. These loci were in or close to genes previously associated with risk for CHD. We discovered 1 novel locus, PCSK7, for which genetic variation was significantly associated with sdLDL-C and other lipid factors. CONCLUSIONS sdLDL-C was associated with incident CHD in ARIC study participants. The novel association of genetic variants in PCSK7 with sdLDL-C and other lipid traits may provide new insights into the role of this gene in lipid metabolism.
Collapse
Affiliation(s)
- Ron C Hoogeveen
- From the Department of Medicine, Baylor College of Medicine and Methodist DeBakey Heart and Vascular Center, Houston, TX (R.C.H., J.W.G., W.S., J.J., S.S.V., C.M.B.); Human Genetics Center, University of Texas Health Science Center School of Public Health, Houston (R.C.D., J.R.C., E.B.); Department of Biostatistics, University of North Carolina at Chapel Hill (D.C.); Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX (S.S.V.); Center for Human Genetic Research and Cardiovascular Research Center, Massachusetts General Hospital, Boston (S.K.); and Department of Medicine, Harvard Medical School, Boston, MA (S.K.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Camejo G, Hurt-Camejo E. Macrophages, extracellular matrix, and lipoproteins in arterial cholesterol balance. J Lipid Res 2013; 55:1-3. [PMID: 24253373 DOI: 10.1194/jlr.e045732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Germán Camejo
- Cardiovascular and Metabolic Diseases, AstraZeneca, Mölndal, 431 83, Sweden
| | | |
Collapse
|
30
|
de Gonzalo-Calvo D, Revuelta-López E, Llorente-Cortés V. [Basic mechanisms. Regulation and clearance of lipoproteins that contain apolipoprotein B]. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2013; 25:194-200. [PMID: 23768652 DOI: 10.1016/j.arteri.2013.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 05/17/2013] [Indexed: 06/02/2023]
Affiliation(s)
- David de Gonzalo-Calvo
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | | | | |
Collapse
|
31
|
Umaerus M, Rosengren B, Fagerberg B, Hurt-Camejo E, Camejo G. HDL2 interferes with LDL association with arterial proteoglycans: A possible athero-protective effect. Atherosclerosis 2012; 225:115-20. [DOI: 10.1016/j.atherosclerosis.2012.08.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 08/06/2012] [Accepted: 08/31/2012] [Indexed: 02/06/2023]
|
32
|
Lu M, Gantz DL, Herscovitz H, Gursky O. Kinetic analysis of thermal stability of human low density lipoproteins: a model for LDL fusion in atherogenesis. J Lipid Res 2012; 53:2175-2185. [PMID: 22855737 DOI: 10.1194/jlr.m029629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fusion of modified LDL in the arterial wall promotes atherogenesis. Earlier we showed that thermal denaturation mimics LDL remodeling and fusion, and revealed kinetic origin of LDL stability. Here we report the first quantitative analysis of LDL thermal stability. Turbidity data show sigmoidal kinetics of LDL heat denaturation, which is unique among lipoproteins, suggesting that fusion is preceded by other structural changes. High activation energy of denaturation, E(a) = 100 ± 8 kcal/mol, indicates disruption of extensive packing interactions in LDL. Size-exclusion chromatography, nondenaturing gel electrophoresis, and negative-stain electron microscopy suggest that LDL dimerization is an early step in thermally induced fusion. Monoclonal antibody binding suggests possible involvement of apoB N-terminal domain in early stages of LDL fusion. LDL fusion accelerates at pH < 7, which may contribute to LDL retention in acidic atherosclerotic lesions. Fusion also accelerates upon increasing LDL concentration in near-physiologic range, which likely contributes to atherogenesis. Thermal stability of LDL decreases with increasing particle size, indicating that the pro-atherogenic properties of small dense LDL do not result from their enhanced fusion. Our work provides the first kinetic approach to measuring LDL stability and suggests that lipid-lowering therapies that reduce LDL concentration but increase the particle size may have opposite effects on LDL fusion.
Collapse
Affiliation(s)
- Mengxiao Lu
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118.
| | - Donald L Gantz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Haya Herscovitz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118
| | - Olga Gursky
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA 02118.
| |
Collapse
|
33
|
Lähdesmäki K, Öörni K, Alanne-Kinnunen M, Jauhiainen M, Hurt-Camejo E, Kovanen PT. Acidity and lipolysis by group V secreted phospholipase A2 strongly increase the binding of apoB-100-containing lipoproteins to human aortic proteoglycans. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:257-67. [DOI: 10.1016/j.bbalip.2011.10.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 10/11/2011] [Accepted: 10/17/2011] [Indexed: 11/16/2022]
|
34
|
Asplund A, Fridén V, Stillemark-Billton P, Camejo G, Bondjers G. Macrophages exposed to hypoxia secrete proteoglycans for which LDL has higher affinity. Atherosclerosis 2011; 215:77-81. [DOI: 10.1016/j.atherosclerosis.2010.12.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 11/29/2010] [Accepted: 12/14/2010] [Indexed: 01/13/2023]
|
35
|
Abstract
Conventionally, atherogenic dyslipidemias have been defined by elevated levels of triglyceride and/or LDL cholesterol. However, cholesterol and triglycerides are not metabolically and physically independent entities. Rather, they are constituents of the atherogenic apolipoprotein B (apoB) particles, which differ in their origin and their metabolic function. Moreover, the risk of vascular disease is not related to the plasma concentration of cholesterol or triglyceride per se, but to the number, composition and size of the apoB particles, within which the cholesterol and triglycerides are contained. After all, the entire apoB particle--rather than individual cholesterol or triglyceride molecules--enters and is trapped within the arterial wall, and this particle initiates and sustains the process that results in atherosclerosis. Accordingly, we suggest a change of name and focus from dyslipidemias to dyslipoproteinemias. Virtually all the atherogenic apoB dyslipoproteinemias can be specifically identified on the basis of plasma levels of cholesterol, triglyceride and apoB. Not only does this enable an accurate diagnosis in the individual, but the major familial dyslipoproteinemias can be identified as well. Here, we review the diagnostic algorithm for apoB dyslipoproteinemias and provide, for the first time, a treatment plan on the basis of a reduction of atherogenic lipoprotein particles rather than plasma lipids.
Collapse
Affiliation(s)
- Allan Sniderman
- Mike Rosenbloom Laboratory for Cardiovascular Research, McGill University Health Center, Room H7.22, Royal Victoria Hospital, 687 Pine Avenue West, Montreal, QC H3A 1A1, Canada.
| | | | | |
Collapse
|
36
|
Wang L, Jiang ZG, McKnight CJ, Small DM. Interfacial properties of apolipoprotein B292-593 (B6.4-13) and B611-782 (B13-17). Insights into the structure of the lipovitellin homology region in apolipoprotein B. Biochemistry 2010; 49:3898-907. [PMID: 20353182 DOI: 10.1021/bi100056v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The N-terminal sequence of apolipoprotein B (apoB) is critical in triacylglycerol-rich lipoprotein assembly. The first 17% of apoB (B17) is thought to consist of three domains: B5.9, a beta-barrel, B6.4-13, a series of 17 alpha-helices, and B13-17, a putative beta-sheet. B5.9 does not bind to lipid, while B6.4-13 and B13-17 contain hydrophobic interfaces that can interact with lipids. To understand how B6.4-13 and B13-17 might interact with triacylglycerol during lipoprotein assembly, the interfacial properties of both peptides were studied at the triolein/water interface. Both B6.4-13 and B13-17 are surface active. Once bound, the peptides can be neither exchanged nor pushed off the interface. Some residues of the peptides can be ejected from the interface upon compression but readsorb on expansion. B13-17 binds to the interface more strongly. The maximum pressure the peptide can withstand without being partially ejected (Pi(max)) is 19.2 mN/m for B13-17 compared to 16.7 mN/m for B6.4-13. B13-17 is purely elastic at the interface, while B6.4-13 forms a viscous-elastic film. When they are spread at an air/water interface, the limiting area and the collapse pressures are 16.6 A(2)/amino acid and 31 mN/m for B6.4-13 and 17.8 A(2)/amino acid and 35 mN/m for B13-17, respectively. The alpha-helical B6.4-13 contains some hydrophobic helices that stay bound and prevent the peptide from leaving the surface. The beta-sheets of B13-17 bind irreversibly to the surface. We suggest that during lipoprotein assembly, the N-terminal apoB starts recruiting lipid as early as B6.4, but additional sequences are essential for formation of a lipid pocket that can stabilize lipoprotein emulsion particles for secretion.
Collapse
Affiliation(s)
- Libo Wang
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
37
|
Cholesterol crystals piercing the arterial plaque and intima trigger local and systemic inflammation. J Clin Lipidol 2010; 4:156-64. [PMID: 21122648 DOI: 10.1016/j.jacl.2010.03.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 03/03/2010] [Accepted: 03/05/2010] [Indexed: 11/20/2022]
Abstract
The response to arterial wall injury is an inflammatory process, which over time becomes integral to the development of atherosclerosis and subsequent plaque instability. However, the underlying injurious agent, critical to this process, has not received much attention. In this review, a model of plaque rupture is hypothesized with two stages of inflammatory activity. In stage I (cholesterol crystal-induced cell injury and apoptosis), intracellular cholesterol crystals induce foam cell apoptosis, setting up a vicious cycle by signaling more macrophages, resulting in accumulation of extra cellular lipids. This local inflammation eventually leads to the formation of a semi-liquid, lipid-rich necrotic core of a vulnerable plaque. In stage II (cholesterol crystal-induced arterial wall injury), the saturated lipid core is now primed for crystallization, which can manifest as a clinical syndrome with a systemic inflammation response. Cholesterol crystallization is the trigger that causes core expansion, leading to intimal injury. We recently demonstrated that when cholesterol crystallizes from a liquid to a solid state, it undergoes volume expansion, which can tear the plaque cap. This observation of cholesterol crystals perforating the cap and intimal surface was made in the plaques of patients who died with acute coronary syndrome. We have also demonstrated that several agents (ie, statins, aspirin, and ethanol) can dissolve cholesterol crystals and may be exerting their immediate benefits by this direct mechanism. Also, because recent studies have demonstrated that high-sensitivity C-reactive protein may be a reliable marker in selecting patients for statin therapy, it could reflect the presence of intimal injury by cholesterol crystals. This was demonstrated in an atherosclerotic rabbit model. Therefore, we propose that cholesterol crystallization could help explain in part both local and systemic inflammation associated with atherosclerosis.
Collapse
|
38
|
Plihtari R, Hurt-Camejo E, Oörni K, Kovanen PT. Proteolysis sensitizes LDL particles to phospholipolysis by secretory phospholipase A2 group V and secretory sphingomyelinase. J Lipid Res 2010; 51:1801-9. [PMID: 20124257 DOI: 10.1194/jlr.m003103] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
LDL particles that enter the arterial intima become exposed to proteolytic and lipolytic modifications. The extracellular hydrolases potentially involved in LDL modification include proteolytic enzymes, such as chymase, cathepsin S, and plasmin, and phospholipolytic enzymes, such as secretory phospholipases A2 (sPLA2-IIa and sPLA2-V) and secretory acid sphingomyelinase (sSMase). Here, LDL was first proteolyzed and then subjected to lipolysis, after which the effects of combined proteolysis and lipolysis on LDL fusion and on binding to human aortic proteoglycans (PG) were studied. Chymase and cathepsin S led to more extensive proteolysis and release of peptide fragments from LDL than did plasmin. sPLA2-IIa was not able to hydrolyze unmodified LDL, and even preproteolysis of LDL particles failed to enhance lipolysis by this enzyme. However, preproteolysis with chymase and cathepsin S accelerated lipolysis by sPLA2-V and sSMase, which resulted in enhanced fusion and proteoglycan binding of the preproteolyzed LDL particles. Taken together, the results revealed that proteolysis sensitizes the LDL particles to hydrolysis by sPLA2-V and sSMase. By promoting fusion and binding of LDL to human aortic proteoglycans, the combination of proteolysis and phospholipolysis of LDL particles potentially enhances extracellular accumulation of LDL-derived lipids during atherogenesis.
Collapse
|
39
|
Phospholipase A2-modified LDL particles retain the generated hydrolytic products and are more atherogenic at acidic pH. Atherosclerosis 2009; 207:352-9. [DOI: 10.1016/j.atherosclerosis.2009.04.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 04/20/2009] [Accepted: 04/28/2009] [Indexed: 11/21/2022]
|
40
|
Bancells C, Benítez S, Jauhiainen M, Ordóñez-Llanos J, Kovanen PT, Villegas S, Sánchez-Quesada JL, O¨o¨rni K. High binding affinity of electronegative LDL to human aortic proteoglycans depends on its aggregation level. J Lipid Res 2009; 50:446-455. [DOI: 10.1194/jlr.m800318-jlr200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
41
|
D’Ulivo L, Chen J, Meinander K, Öörni K, Kovanen PT, Riekkola ML. In situ delipidation of low-density lipoproteins in capillary electrochromatography yields apolipoprotein B-100-coated surfaces for interaction studies. Anal Biochem 2008; 383:38-43. [DOI: 10.1016/j.ab.2008.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 08/14/2008] [Accepted: 08/15/2008] [Indexed: 11/24/2022]
|
42
|
A diagnostic algorithm for the atherogenic apolipoprotein B dyslipoproteinemias. ACTA ACUST UNITED AC 2008; 4:608-18. [DOI: 10.1038/ncpendmet0982] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 08/29/2008] [Indexed: 01/05/2023]
|
43
|
Jönsson-Rylander AC, Lundin S, Rosengren B, Pettersson C, Hurt-Camejo E. Role of secretory phospholipases in atherogenesis. Curr Atheroscler Rep 2008; 10:252-9. [PMID: 18489854 DOI: 10.1007/s11883-008-0039-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Elevated circulating levels of secretory phospholipase A(2) (sPLA(2)) are associated with atherosclerotic cardiovascular disease. sPLA(2) can contribute to atherogenesis by hydrolyzing phospholipids of circulating lipoproteins and lipoproteins entrapped in the arterial wall and/or in cells that reside in the intima and that participate in the inflammatory response to lipoprotein deposition. This article reviews differences and similarities between sPLA(2)-IIA, sPLA(2)-V, and sPLA(2)-X, all of which are members of this family of enzymes with reported potential proatherogenic features. Published data suggest that each of the enzymes has a distinct profile characterized by differences in tissue expression and localization, capacity to act on phospholipids of cell membranes and lipoproteins, and their interaction with arterial proteoglycans. In addition, the article discusses results from the authors' laboratory showing that diet-induced or gene-induced hyperlipidemia in mice enhances the expression of sPLA(2)-V in different tissues, but not sPLA(2)-IIA. Such differences indicate that these enzymes may have different roles in atherosclerotic cardiovascular disease through their distinct profiles.
Collapse
Affiliation(s)
- Ann-Cathrine Jönsson-Rylander
- AstraZeneca, R&D, Bioscience, Mölndal S-431 83, Wallenberg Laboratory for Cardiovascular Research, Sahlgrenska University Hospital, Gotheburg, Sweden
| | | | | | | | | |
Collapse
|
44
|
Devlin CM, Leventhal AR, Kuriakose G, Schuchman EH, Williams KJ, Tabas I. Acid sphingomyelinase promotes lipoprotein retention within early atheromata and accelerates lesion progression. Arterioscler Thromb Vasc Biol 2008; 28:1723-30. [PMID: 18669882 DOI: 10.1161/atvbaha.108.173344] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The key initial step in atherogenesis is the subendothelial retention of apolipoprotein B-containing lipoproteins. Acid sphingomyelinase (acid SMase), an enzyme present extracellularly within the arterial wall, strongly enhances lipoprotein retention in model systems in vitro, and retained lipoproteins in human plaques are enriched in ceramide, a product of SMase. We now sought to test a direct causative role for acid SMase in lipoprotein retention and atherogenesis in vivo. METHODS AND RESULTS We studied atherogenesis and lipoprotein retention in Asm(-/-) versus Asm(+/+) mice on the Apoe(-/-) and Ldlr(-/-) backgrounds. Asm(-/-);Apoe(-/-) mice had a approximately 40% to 50% decrease in early foam cell aortic root lesion area compared with Asm(+/+);Apoe(-/-) mice (P<0.05) despite no difference in plasma cholesterol or lipoproteins. To assay lipoprotein retention in vivo, the two groups of mice were injected with fluorescently labeled Apoe(-/-) lipoproteins. Early foam cell lesions of Asm(-/-);Apoe(-/-) mice showed a striking 87% reduction in lipoprotein trapping (P<0.0001) compared with Asm(+/+);Apoe(-/-) lesions. Similar results were obtained with Ldlr(-/-) mice, including an 81% reduction in lipoprotein retention within Asm(-/-);Ldlr(-/-) lesions compared with Asm(+/+);Ldlr(-/-) lesions (P<0.0005). CONCLUSIONS These findings support a causal role for acid SMase in lipoprotein retention and lesion progression and provides further support for the response-to-retention model of atherogenesis.
Collapse
Affiliation(s)
- Cecilia M Devlin
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
45
|
Alonzi T, Mancone C, Amicone L, Tripodi M. Elucidation of lipoprotein particles structure by proteomic analysis. Expert Rev Proteomics 2008; 5:91-104. [PMID: 18282126 DOI: 10.1586/14789450.5.1.91] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lipoproteins are responsible for lipid packaging and transport through the bloodstream, and for their delivery to target tissues. Their participation in process, such as inflammation and innate immunity has also been suggested recently. Lipoprotein particles have very complex biochemical structures, which result from intricate processes involving coordinated mechanisms of protein and lipid synthesis, intracellular assembling and trafficking, and intra- and extracellular metabolism. Alterations in these mechanisms cause several negative effects on human health. The ability of current proteomic approaches to dissect the dynamic nature of complex particles revealing protein composition and post-translational modifications is shedding further light on lipoprotein structures and functions. This review summarizes lipoprotein classification, biogenesis and metabolism as well as discussing how the results of 20 proteomics-based reports integrate our knowledge on both their biochemical composition and their effects on target cells, thus contributing to reveal the possible functions.
Collapse
Affiliation(s)
- Tonino Alonzi
- National Institute for Infectious Diseases, L. Spallanzani, IRCCS, Rome, Italy.
| | | | | | | |
Collapse
|
46
|
Maris M, Overbergh L, D'Hertog W, Mathieu C. Proteomics as a tool to discover biomarkers for the prediction of diabetic complications. ACTA ACUST UNITED AC 2008; 2:277-87. [DOI: 10.1517/17530059.2.3.277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
47
|
Rufail ML, Schenkein HA, Koertge TE, Best AM, Barbour SE, Tew JG, van Antwerpen R. Atherogenic lipoprotein parameters in patients with aggressive periodontitis. J Periodontal Res 2008; 42:495-502. [PMID: 17956461 DOI: 10.1111/j.1600-0765.2007.00973.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND OBJECTIVE Certain types of chronic infection increase the plasma level of very-low-density lipoprotein, leading to formation of the particularly atherogenic low-density lipoprotein subclass, small dense low-density lipoprotein. In the present study, we examined whether aggressive forms of periodontitis are associated with these atherogenic lipoprotein parameters. MATERIAL AND METHODS Twelve healthy control subjects without periodontitis, 12 subjects with localized aggressive periodontitis and 12 subjects with generalized aggressive periodontitis were studied. Lipoprotein subclass levels were determined using nuclear magnetic resonance methodology. RESULTS Healthy control subjects, localized aggressive periodontitis subjects and generalized aggressive periodontitis subjects had progressively higher plasma levels of very-low-density lipoprotein and progressively smaller average low-density lipoprotein size (p < 0.05, one-way analysis of variance). In pairwise comparisons, differences were only significant between healthy controls and generalized aggressive periodontitis subjects (p < 0.05, Tukey's post test). After adjustment for body mass index, the mean periodontal pocket depth correlated positively with plasma very-low-density lipoprotein levels (p = 0.047). Very-low-density lipoprotein concentrations correlated positively with small dense low-density lipoprotein levels and negatively with average low-density lipoprotein size. Prevalence of the atherogenic lipoprotein pattern-B in healthy controls, localized aggressive periodontitis subjects and generalized aggressive periodontitis subjects was 8.3%, 33.3% and 66.6%, respectively. CONCLUSION These results indicate that periodontal infection is associated with elevated plasma levels of atherogenic lipoprotein species. This association may account for the increased risk of periodontitis patients for cardiovascular disease.
Collapse
Affiliation(s)
- M L Rufail
- Department of Biochemistry, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, VA 23298, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Meyer BJ, Duvillard L, Owen A, Packard CJ, Caslake MJ. Fractionation of cholesteryl ester rich intermediate density lipoprotein subpopulations by chondroitin sulphate. Atherosclerosis 2007; 195:e28-34. [PMID: 17336988 DOI: 10.1016/j.atherosclerosis.2007.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 12/05/2006] [Accepted: 01/02/2007] [Indexed: 11/27/2022]
Abstract
IDL is considered an atherogenic lipoprotein but little progress has been made on methods to subfractionate this density class. Furthermore, previous work suggests that lipoproteins retained by the arterial wall, of which chondoitin sulphate is the major arterial wall proteoglycan, are potentially atherogenic. The aim of this study was to assess the subfractionation of IDL particles using chondroitin sulphate (CS). Forty healthy subjects were recruited from laboratory staff and/or their partners. Fasted plasma samples were obtained and IDL (1.006 g/ml<d<1.030 g/ml) was isolated. Approximately 1mg protein of IDL was allowed to interact with CS. The unbound and bound IDL particles were eluted using a low salt and high salt buffer, respectively. On average 70% of IDL bound to CS ranging from 56 to 92%. Total, unbound and bound IDL particles were analysed for lipid composition and particle size. The unbound IDL particles were larger (32 nm) and triglyceride rich (40% versus 33%, P<0.01), whereas the bound IDL particles were smaller (26-28 nm) and cholesterol rich (21% versus 14%, P<0.01). The unbound particles contain at least double the amount of apo C-II and apo C-III per IDL particle compared with the bound IDL particles. There are specific IDL particles that bind to CS in vitro, these being the cholesterol rich IDL particles. It remains to be determined if these cholesterol rich IDL particles are potentially more atherogenic than the triglyceride rich IDL particles.
Collapse
Affiliation(s)
- Barbara J Meyer
- School of Health Sciences, University of Wollongong, Northfields Ave., Wollongong, NSW 2522, Australia.
| | | | | | | | | |
Collapse
|
49
|
Park JS, Park J, Kim CS, Cho MH, Kim HJ, Kim JH, Ahn CW, Kim KR, Cha BS, Lim SK, Lee HC. Relationship of low-density lipoprotein particle size to insulin resistance and intima-media thickness in nondiabetic Koreans. Metabolism 2006; 55:1610-5. [PMID: 17142132 DOI: 10.1016/j.metabol.2006.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Accepted: 07/24/2006] [Indexed: 10/23/2022]
Abstract
The aim of this study was to investigate whether low-density lipoprotein (LDL) particle size is associated with insulin resistance and to explore the association between LDL particle size and preclinical atherosclerosis in nondiabetic Korean population. We measured the carotid intima-media thickness (IMT), LDL particle size, and insulin resistance in 136 nondiabetic subjects. Low-density lipoprotein particle size was significantly correlated with insulin resistance, but the independent risk factors of LDL particle size determined by the multiple regression analysis were age, triglyceride, and high-density lipoprotein cholesterol (HDL-C). Carotid IMT was associated with traditional risk factors of atherosclerosis, which are age, HDL-C, LDL cholesterol, systolic and diastolic blood pressure, but LDL particle size was not correlated with carotid IMT. We conclude that LDL particle size was associated with insulin resistance, but age, triglyceride, and HDL-C contributed independently to the variability in LDL particle size, and LDL particle size was not a predictor of preclinical atherosclerosis in nondiabetic Koreans.
Collapse
Affiliation(s)
- Jong Suk Park
- Department of Internal Medicine, College of Medicine, Yonsei University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kwon SW, Yoon SJ, Kang TS, Kwon HM, Kim JH, Rhee J, Lee SJ, Park JK, Lim JY, Yoon YW, Hong BK. Significance of small dense low-density lipoprotein as a risk factor for coronary artery disease and acute coronary syndrome. Yonsei Med J 2006; 47:405-14. [PMID: 16807992 PMCID: PMC2688162 DOI: 10.3349/ymj.2006.47.3.405] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Small dense LDL (sd-LDL) has recently emerged as an important coronary artery disease (CAD) risk factor. This study was performed to investigate how LDL particle size is related to CAD and acute coronary syndrome (ACS). Blood samples were collected from 504 patients that underwent coronary angiography to evaluate chest pain. The LDL particle size of these samples was measured. The mean LDL particle size was smaller in patients with angiographically proven CAD than in the controls (26.41 +/- 0.95 vs 26.73 +/- 0.64 nm, p < 0.001), and was negatively correlated with the Framingham risk score (r=-0.121, p=0.007). Patients with more extensive CAD had smaller LDL particles. LDL particle size was also smaller in patients with acute coronary syndrome as compared to non-ACS patients (26.09 +/- 1.42 vs 26.54 +/- 0.63 nm, p=0.011). These results suggest that sd-LDL is independently associated with the incidence and extent of CAD, and can be a risk factor for the development of ACS in the Korean population.
Collapse
Affiliation(s)
- Sung Woo Kwon
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Se-Jung Yoon
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Soo Kang
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyuck Moon Kwon
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jeong-Ho Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jihyuk Rhee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Sung-Ju Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jong-Kwan Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Yun Lim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Young Won Yoon
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Bum Kee Hong
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|