1
|
Hatanaka J, Hirose Y, Hashiya K, Bando T, Sugiyama H. N‐terminal cationic modification of linear pyrrole−imidazole polyamide improves its binding to DNA. Chembiochem 2022; 23:e202200124. [DOI: 10.1002/cbic.202200124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/18/2022] [Indexed: 11/08/2022]
Affiliation(s)
| | - Yuki Hirose
- Kyoto University - Yoshida Campus: Kyoto Daigaku Chemistry JAPAN
| | - Kaori Hashiya
- Kyoto University - Yoshida Campus: Kyoto Daigaku Chemistry JAPAN
| | - Toshikazu Bando
- Kyoto University - Yoshida Campus: Kyoto Daigaku Chemistry JAPAN
| | - Hiroshi Sugiyama
- Kyoto University Department of Chemistry Kitashirakawa-Oiwakecho 606-8502 Kyoto JAPAN
| |
Collapse
|
2
|
Finn PB, Bhimsaria D, Ali A, Eguchi A, Ansari AZ, Dervan PB. Single position substitution of hairpin pyrrole-imidazole polyamides imparts distinct DNA-binding profiles across the human genome. PLoS One 2020; 15:e0243905. [PMID: 33351840 PMCID: PMC7755219 DOI: 10.1371/journal.pone.0243905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/01/2020] [Indexed: 01/21/2023] Open
Abstract
Pyrrole-imidazole (Py-Im) polyamides are synthetic molecules that can be rationally designed to target specific DNA sequences to both disrupt and recruit transcriptional machinery. While in vitro binding has been extensively studied, in vivo effects are often difficult to predict using current models of DNA binding. Determining the impact of genomic architecture and the local chromatin landscape on polyamide-DNA sequence specificity remains an unresolved question that impedes their effective deployment in vivo. In this report we identified polyamide-DNA interaction sites across the entire genome, by covalently crosslinking and capturing these events in the nuclei of human LNCaP cells. This technique confirms the ability of two eight ring hairpin-polyamides, with similar architectures but differing at a single ring position (Py to Im), to retain in vitro specificities and display distinct genome-wide binding profiles.
Collapse
Affiliation(s)
- Paul B. Finn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| | | | - Asfa Ali
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Asuka Eguchi
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | - Aseem Z. Ansari
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Peter B. Dervan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
3
|
Gottesfeld JM. Molecular Mechanisms and Therapeutics for the GAA·TTC Expansion Disease Friedreich Ataxia. Neurotherapeutics 2019; 16:1032-1049. [PMID: 31317428 PMCID: PMC6985418 DOI: 10.1007/s13311-019-00764-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Friedreich ataxia (FRDA), the most common inherited ataxia, is caused by transcriptional silencing of the nuclear FXN gene, encoding the essential mitochondrial protein frataxin. Currently, there is no approved therapy for this fatal disorder. Gene silencing in FRDA is due to hyperexpansion of the triplet repeat sequence GAA·TTC in the first intron of the FXN gene, which results in chromatin histone modifications consistent with heterochromatin formation. Frataxin is involved in mitochondrial iron homeostasis and the assembly and transfer of iron-sulfur clusters to various mitochondrial enzymes and components of the electron transport chain. Frataxin insufficiency leads to progressive spinocerebellar neurodegeneration, causing symptoms of gait and limb ataxia, slurred speech, muscle weakness, sensory loss, and cardiomyopathy in many patients, resulting in death in early adulthood. Numerous approaches are being taken to find a treatment for FRDA, including excision or correction of the repeats by genome engineering methods, gene activation with small molecules or artificial transcription factors, delivery of frataxin to affected cells by protein replacement therapy, gene therapy, or small molecules to increase frataxin protein levels, and therapies aimed at countering the cellular consequences of reduced frataxin. This review will summarize the mechanisms involved in repeat-mediated gene silencing and recent efforts aimed at development of therapeutics.
Collapse
Affiliation(s)
- Joel M Gottesfeld
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, 92037, USA.
| |
Collapse
|
4
|
Kawamoto Y, Bando T, Sugiyama H. Sequence-specific DNA binding Pyrrole-imidazole polyamides and their applications. Bioorg Med Chem 2018; 26:1393-1411. [PMID: 29439914 DOI: 10.1016/j.bmc.2018.01.026] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/25/2018] [Accepted: 01/28/2018] [Indexed: 12/25/2022]
Abstract
Pyrrole-imidazole polyamides (Py-Im polyamides) are cell-permeable compounds that bind to the minor groove of double-stranded DNA in a sequence-specific manner without causing denaturation of the DNA. These compounds can be used to control gene expression and to stain specific sequences in cells. Here, we review the history, structural variations, and functional investigations of Py-Im polyamides.
Collapse
Affiliation(s)
- Yusuke Kawamoto
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan.
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Science (iCeMS), Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
5
|
Xiong K, Erwin GS, Ansari AZ, Blainey PC. Sliding on DNA: From Peptides to Small Molecules. Angew Chem Int Ed Engl 2016; 55:15110-15114. [PMID: 27813331 PMCID: PMC5217825 DOI: 10.1002/anie.201606768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/01/2016] [Indexed: 01/07/2023]
Abstract
Many DNA binding proteins utilize one-dimensional (1D) diffusion along DNA to accelerate their DNA target recognition. Although 1D diffusion of proteins along DNA has been studied for decades, a quantitative understanding is only beginning to emerge and few chemical tools are available to apply 1D diffusion as a design principle. Recently, we discovered that peptides can bind and slide along DNA-even transporting cargo along DNA. Such molecules are known as molecular sleds. Here, to advance our understanding of structure-function relationships governing sequence nonspecific DNA interaction of natural molecular sleds and to explore the potential for controlling sliding activity, we test the DNA binding and sliding activities of chemically modified peptides and analogs, and show that synthetic small molecules can slide on DNA. We found new ways to control molecular sled activity, novel small-molecule synthetic sleds, and molecular sled activity in N-methylpyrrole/N-methylimidazole polyamides that helps explain how these molecules locate rare target sites.
Collapse
Affiliation(s)
- Kan Xiong
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Biological Engineering, MIT, Cambridge, MA, 02142, USA
| | - Graham S Erwin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Aseem Z Ansari
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Paul C Blainey
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Biological Engineering, MIT, Cambridge, MA, 02142, USA
| |
Collapse
|
6
|
Xiong K, Erwin GS, Ansari AZ, Blainey PC. Sliding on DNA: From Peptides to Small Molecules. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kan Xiong
- Broad Institute of MIT and Harvard; Cambridge MA 02142 USA
- Department of Biological Engineering; MIT; Cambridge MA 02142 USA
| | - Graham S. Erwin
- Department of Biochemistry; University of Wisconsin-Madison; Madison WI 53706 USA
| | - Aseem Z. Ansari
- Department of Biochemistry; University of Wisconsin-Madison; Madison WI 53706 USA
| | - Paul C. Blainey
- Broad Institute of MIT and Harvard; Cambridge MA 02142 USA
- Department of Biological Engineering; MIT; Cambridge MA 02142 USA
| |
Collapse
|
7
|
DNA binders in clinical trials and chemotherapy. Bioorg Med Chem 2014; 22:4506-21. [DOI: 10.1016/j.bmc.2014.05.030] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 05/09/2014] [Accepted: 05/14/2014] [Indexed: 01/09/2023]
|
8
|
Haug R, Kramer M, Richert C. Three-pronged probes: high-affinity DNA binding with cap, β-alanines and oligopyrrolamides. Chemistry 2014; 19:15822-6. [PMID: 24222391 DOI: 10.1002/chem.201302972] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Rüdiger Haug
- Institut für Organische Chemie, Universität Stuttgart, 70569 Stuttgart (Germany), Fax: (+49) 711-685-64321
| | | | | |
Collapse
|
9
|
He G, Vasilieva E, Harris GD, Koeller KJ, Bashkin JK, Dupureur CM. Binding studies of a large antiviral polyamide to a natural HPV sequence. Biochimie 2014; 102:83-91. [PMID: 24582833 DOI: 10.1016/j.biochi.2014.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/19/2014] [Indexed: 11/16/2022]
Abstract
PA1 is a large hairpin polyamide (dImPyPy-β-PyPyPy-γ-PyPy-β-PyPyPyPy-β-Ta; Py = pyrrole, Im = imidazole, β = beta alanine) that targets the sequence 5'-WWGWWWWWWW-3' (W = A or T) and is effective in eliminating HPV16 in cell culture (Edwards, T. G., Koeller, K. J., Slomczynska, U., Fok, K., Helmus, M., Bashkin, J. K., Fisher, C., Antiviral Res. 91 (2011) 177-186). Described here are its DNA binding properties toward a natural DNA, a 523 bp portion of HPV16 (2150-2672) containing three predicted perfect match sites. Strategies for obtaining binding data on large fragments using capillary electrophoresis are also described. Using an Fe EDTA conjugate of PA1, 19 affinity cleavage (AC) patterns were detected for this fragment. In many cases, there are multiple possible binding sequences (perfect, single and double mismatch sites) consistent with the AC data. Quantitative DNase I footprinting analysis indicates that perfect and most single mismatch sites bind PA1 with Kds between 0.7 and 4 nM, indicating excellent tolerance for the latter. Double mismatch sites exhibit Kds between 12 and 62 nM. A large fraction of the accessible sequence is susceptible to PA1 binding, much larger than predicted based on the literature of polyamide-DNA recognition rules.
Collapse
Affiliation(s)
- Gaofei He
- Department of Chemistry & Biochemistry and the Center for Nanoscience, University of Missouri St. Louis, St. Louis, MO 63121, United States
| | - Elena Vasilieva
- Department of Chemistry & Biochemistry and the Center for Nanoscience, University of Missouri St. Louis, St. Louis, MO 63121, United States
| | - George Davis Harris
- Department of Chemistry & Biochemistry and the Center for Nanoscience, University of Missouri St. Louis, St. Louis, MO 63121, United States
| | - Kevin J Koeller
- Department of Chemistry & Biochemistry and the Center for Nanoscience, University of Missouri St. Louis, St. Louis, MO 63121, United States
| | - James K Bashkin
- Department of Chemistry & Biochemistry and the Center for Nanoscience, University of Missouri St. Louis, St. Louis, MO 63121, United States.
| | - Cynthia M Dupureur
- Department of Chemistry & Biochemistry and the Center for Nanoscience, University of Missouri St. Louis, St. Louis, MO 63121, United States.
| |
Collapse
|
10
|
Koeller KJ, Harris GD, Aston K, He G, Castaneda CH, Thornton MA, Edwards TG, Wang S, Nanjunda R, Wilson WD, Fisher C, Bashkin JK. DNA Binding Polyamides and the Importance of DNA Recognition in their use as Gene-Specific and Antiviral Agents. Med Chem 2014; 4:338-344. [PMID: 24839583 DOI: 10.4172/2161-0444.1000162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is a long history for the bioorganic and biomedical use of N-methyl-pyrrole-derived polyamides (PAs) that are higher homologs of natural products such as distamycin A and netropsin. This work has been pursued by many groups, with the Dervan and Sugiyama groups responsible for many breakthroughs. We have studied PAs since about 1999, partly in industry and partly in academia. Early in this program, we reported methods to control cellular uptake of polyamides in cancer cell lines and other cells likely to have multidrug resistance efflux pumps induced. We went on to discover antiviral polyamides active against HPV31, where SAR showed that a minimum binding size of about 10 bp of DNA was necessary for activity. Subsequently we discovered polyamides active against two additional high-risk HPVs, HPV16 and 18, a subset of which showed broad spectrum activity against HPV16, 18 and 31. Aspects of our results presented here are incompatible with reported DNA recognition rules. For example, molecules with the same cognate DNA recognition properties varied from active to inactive against HPVs. We have since pursued the mechanism of action of antiviral polyamides, and polyamides in general, with collaborators at NanoVir, the University of Missouri-St. Louis, and Georgia State University. We describe dramatic consequences of β-alanine positioning even in relatively small, 8-ring polyamides; these results contrast sharply with prior reports. This paper was originally presented by JKB as a Keynote Lecture in the 2nd International Conference on Medicinal Chemistry and Computer Aided Drug Design Conference in Las Vegas, NV, October 2013.
Collapse
Affiliation(s)
- Kevin J Koeller
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St.Louis, MO 63121, USA
| | - G Davis Harris
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St.Louis, MO 63121, USA
| | - Karl Aston
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St.Louis, MO 63121, USA
| | - Gaofei He
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St.Louis, MO 63121, USA
| | - Carlos H Castaneda
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St.Louis, MO 63121, USA
| | - Melissa A Thornton
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St.Louis, MO 63121, USA
| | | | - Shuo Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Rupesh Nanjunda
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - W David Wilson
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | - James K Bashkin
- Department of Chemistry & Biochemistry, University of Missouri-St. Louis, St.Louis, MO 63121, USA ; NanoVir, LLC, Kalamazoo, MI 49008, USA
| |
Collapse
|
11
|
Effect of single pyrrole replacement with β-alanine on DNA binding affinity and sequence specificity of hairpin pyrrole/imidazole polyamides targeting 5′-GCGC-3′. Bioorg Med Chem 2013; 21:5436-41. [DOI: 10.1016/j.bmc.2013.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 12/27/2022]
|
12
|
Wang S, Nanjunda R, Aston K, Bashkin JK, Wilson WD. Correlation of local effects of DNA sequence and position of β-alanine inserts with polyamide-DNA complex binding affinities and kinetics. Biochemistry 2012; 51:9796-806. [PMID: 23167504 DOI: 10.1021/bi301327v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
To improve our understanding of the effects of β-alanine (β) substitution and the number of heterocycles on DNA binding affinity and selectivity, we investigated the interactions of an eight-ring hairpin polyamide (PA) and two β derivatives as well as a six-heterocycle analogue with their cognate DNA sequence, 5'-TGGCTT-3'. Binding selectivity and the effects of β have been investigated with the cognate and five mutant DNAs. A set of powerful and complementary methods have been employed for both energetic and structural evaluations: UV melting, biosensor surface plasmon resonance, isothermal titration calorimetry, circular dichroism, and a DNA ligation ladder global structure assay. The reduced number of heterocycles in the six-ring PA weakens the binding affinity; however, the smaller PA aggregates significantly less than the larger PAs and allows us to obtain the binding thermodynamics. The PA-DNA binding enthalpy is large and negative with a large negative ΔC(p) and is the primary driving component of the Gibbs free energy. The complete SPR binding results clearly show that β substitutions can substantially weaken the binding affinity of hairpin PAs in a position-dependent manner. More importantly, the changes in the binding of PA to the mutant DNAs further confirm the position-dependent effects on the PA-DNA interaction affinity. Comparison of mutant DNA sequences also shows a different effect in recognition of T·A versus A·T base pairs. The effects of DNA mutations on binding of a single PA as well as the effects of the position of β substitution on binding tell a clear and very important story about sequence-dependent binding of PAs to DNA.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | |
Collapse
|
13
|
Meier JL, Yu AS, Korf I, Segal DJ, Dervan PB. Guiding the design of synthetic DNA-binding molecules with massively parallel sequencing. J Am Chem Soc 2012; 134:17814-22. [PMID: 23013524 PMCID: PMC3483022 DOI: 10.1021/ja308888c] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Genomic applications of DNA-binding molecules require
an unbiased
knowledge of their high affinity sites. We report the high-throughput
analysis of pyrrole-imidazole polyamide DNA-binding specificity in
a 1012-member DNA sequence library using affinity purification
coupled with massively parallel sequencing. We find that even within
this broad context, the canonical pairing rules are remarkably predictive
of polyamide DNA-binding specificity. However, this approach also
allows identification of unanticipated high affinity DNA-binding sites
in the reverse orientation for polyamides containing β/Im pairs.
These insights allow the redesign of hairpin polyamides with different
turn units capable of distinguishing 5′-WCGCGW-3′ from
5′-WGCGCW-3′. Overall, this study displays the power
of high-throughput methods to aid the optimal targeting of sequence-specific
minor groove binding molecules, an essential underpinning for biological
and nanotechnological applications.
Collapse
Affiliation(s)
- Jordan L Meier
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
14
|
Du J, Campau E, Soragni E, Ku S, Puckett JW, Dervan PB, Gottesfeld JM. Role of mismatch repair enzymes in GAA·TTC triplet-repeat expansion in Friedreich ataxia induced pluripotent stem cells. J Biol Chem 2012; 287:29861-72. [PMID: 22798143 PMCID: PMC3436184 DOI: 10.1074/jbc.m112.391961] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 07/12/2012] [Indexed: 12/29/2022] Open
Abstract
The genetic mutation in Friedreich ataxia (FRDA) is a hyperexpansion of the triplet-repeat sequence GAA·TTC within the first intron of the FXN gene. Although yeast and reporter construct models for GAA·TTC triplet-repeat expansion have been reported, studies on FRDA pathogenesis and therapeutic development are limited by the availability of an appropriate cell model in which to study the mechanism of instability of the GAA·TTC triplet repeats in the human genome. Herein, induced pluripotent stem cells (iPSCs) were generated from FRDA patient fibroblasts after transduction with the four transcription factors Oct4, Sox2, Klf4, and c-Myc. These cells were differentiated into neurospheres and neuronal precursors in vitro, providing a valuable cell model for FRDA. During propagation of the iPSCs, GAA·TTC triplet repeats expanded at a rate of about two GAA·TTC triplet repeats/replication. However, GAA·TTC triplet repeats were stable in FRDA fibroblasts and neuronal stem cells. The mismatch repair enzymes MSH2, MSH3, and MSH6, implicated in repeat instability in other triplet-repeat diseases, were highly expressed in pluripotent stem cells compared with fibroblasts and neuronal stem cells and occupied FXN intron 1. In addition, shRNA silencing of MSH2 and MSH6 impeded GAA·TTC triplet-repeat expansion. A specific pyrrole-imidazole polyamide targeting GAA·TTC triplet-repeat DNA partially blocked repeat expansion by displacing MSH2 from FXN intron 1 in FRDA iPSCs. These studies suggest that in FRDA, GAA·TTC triplet-repeat instability occurs in embryonic cells and involves the highly active mismatch repair system.
Collapse
Affiliation(s)
- Jintang Du
- From the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| | - Erica Campau
- From the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| | - Elisabetta Soragni
- From the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| | - Sherman Ku
- From the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| | - James W. Puckett
- the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Peter B. Dervan
- the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Joel M. Gottesfeld
- From the Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 and
| |
Collapse
|
15
|
Wang RE, Pandita RK, Cai J, Hunt CR, Taylor JS. Inhibition of heat shock transcription factor binding by a linear polyamide binding in an unusual 1:1 mode. Chembiochem 2012; 13:97-104. [PMID: 22134972 PMCID: PMC3516905 DOI: 10.1002/cbic.201100524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Indexed: 11/05/2022]
Abstract
Heat shock proteins (HSPs) are known to protect cells from heat, oxidative stress, and the cytotoxic effects of drugs, and thus can enhance cancer cell survival. As a result, HSPs are a newly emerging class of protein targets for chemotherapy. Among the various HSPs, the HSP70 family is the most highly conserved and prevalent. Herein we describe the development of a β-alanine rich linear polyamide that binds the GGA heat shock elements (HSEs) 3 and 4 in the HSP70 promoter in an unusual 1:1 mode and inhibits heat shock transcription factor 1 (HSF1) binding in vitro.
Collapse
Affiliation(s)
- Rongsheng E. Wang
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Raj K. Pandita
- Radiation Oncology Department, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Jianfeng Cai
- Department of Chemistry, Washington University, St. Louis, MO 63130, USA
| | - Clayton R. Hunt
- Radiation Oncology Department, Washington University School of Medicine, St. Louis, MO 63108, USA
| | | |
Collapse
|
16
|
Spitzer GM, Wellenzohn B, Markt P, Kirchmair J, Langer T, Liedl KR. Hydrogen-bonding patterns of minor groove-binder-DNA complexes reveal criteria for discovery of new scaffolds. J Chem Inf Model 2009; 49:1063-9. [PMID: 19275189 DOI: 10.1021/ci800455f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Minor groove-binding ligands are able to control gene expression and are of great interest for therapeutic applications. We extracted hydrogen-bonding geometries from all available structures of minor groove-binder-DNA complexes of two noncovalent binding modes, namely 1:1 (including hairpin and cyclic ligands) and 2:1 ligand/DNA binding. Positions of the ligand atoms involved in hydrogen bonding deviate from idealized hydrogen bond geometries and do not exploit the possibilities indicated by water molecules. Therefore, we suggest the inclusion of shape-based descriptors rather than hydrogen-bond patterns in virtual screening protocols for the identification of innovative minor groove-binding scaffolds.
Collapse
Affiliation(s)
- Gudrun M Spitzer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria.
| | | | | | | | | | | |
Collapse
|
17
|
Zhu Y, Wang Y, Chen G. Molecular Dynamics Simulations on Binding Models of Dervan-Type Polyamide + Cu(II) Nuclease Ligands to DNA. J Phys Chem B 2008; 113:839-48. [DOI: 10.1021/jp8091545] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yanyan Zhu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yan Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Guangju Chen
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
18
|
Gottesfeld JM. Small molecules affecting transcription in Friedreich ataxia. Pharmacol Ther 2007; 116:236-48. [PMID: 17826840 PMCID: PMC2080619 DOI: 10.1016/j.pharmthera.2007.06.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 06/25/2007] [Indexed: 12/21/2022]
Abstract
This review concerns the development of small molecule therapeutics for the inherited neurodegenerative disease Friedreich ataxia (FRDA). FRDA is caused by transcriptional repression of the nuclear FXN gene, encoding the essential mitochondrial protein frataxin and accompanying loss of frataxin protein. Frataxin insufficiency leads to mitochrondrial dysfunction and progressive neurodegeneration, along with scoliosis, diabetes and cardiomyopathy. Individuals with FRDA generally die in early adulthood from the associated heart disease, the most common cause of death in FRDA. While antioxidants and iron chelators have shown promise in ameliorating the symptoms of the disease, there is no effective therapy for FRDA that addresses the cause of the disease, the loss of frataxin protein. Gene therapy and protein replacement strategies for FRDA are promising approaches; however, current technology is not sufficiently advanced to envisage treatments for FRDA coming from these approaches in the near future. Since the FXN mutation in FRDA, expanded GAA.TTC triplets in an intron, does not alter the amino acid sequence of frataxin protein, gene reactivation would be of therapeutic benefit. Thus, a number of laboratories have focused on small molecule activators of FXN gene expression as potential therapeutics, and this review summarizes the current status of these efforts, as well as the molecular basis for gene silencing in FRDA.
Collapse
Affiliation(s)
- Joel M Gottesfeld
- Department of Molecular Biology, MB-27, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
19
|
Puckett JW, Muzikar KA, Tietjen J, Warren CL, Ansari AZ, Dervan PB. Quantitative microarray profiling of DNA-binding molecules. J Am Chem Soc 2007; 129:12310-9. [PMID: 17880081 PMCID: PMC3066056 DOI: 10.1021/ja0744899] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A high-throughput Cognate Site Identity (CSI) microarray platform interrogating all 524 800 10-base pair variable sites is correlated to quantitative DNase I footprinting data of DNA binding pyrrole-imidazole polyamides. An eight-ring hairpin polyamide programmed to target the 5 bp sequence 5'-TACGT-3' within the hypoxia response element (HRE) yielded a CSI microarray-derived sequence motif of 5'-WWACGT-3' (W = A,T). A linear beta-linked polyamide programmed to target a (GAA)3 repeat yielded a CSI microarray-derived sequence motif of 5'-AARAARWWG-3' (R = G,A). Quantitative DNase I footprinting of selected sequences from each microarray experiment enabled quantitative prediction of Ka values across the microarray intensity spectrum.
Collapse
Affiliation(s)
- James W. Puckett
- Contribution from the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Katy A. Muzikar
- Contribution from the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
| | - Josh Tietjen
- Department of Biochemistry and Genome Center, University of Wisconsin, Madison, Wisconsin 53706
| | - Christopher L. Warren
- Department of Biochemistry and Genome Center, University of Wisconsin, Madison, Wisconsin 53706
| | - Aseem Z. Ansari
- Department of Biochemistry and Genome Center, University of Wisconsin, Madison, Wisconsin 53706
- ;
| | - Peter B. Dervan
- Contribution from the Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125
- ;
| |
Collapse
|
20
|
Doss RM, Marques MA, Foister S, Chenoweth DM, Dervan PB. Programmable oligomers for minor groove DNA recognition. J Am Chem Soc 2007; 128:9074-9. [PMID: 16834381 PMCID: PMC2547997 DOI: 10.1021/ja0621795] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The four Watson-Crick base pairs of DNA can be distinguished in the minor groove by pairing side-by-side three five-membered aromatic carboxamides, imidazole (Im), pyrrole (Py), and hydroxypyrrole (Hp), four different ways. On the basis of the paradigm of unsymmetrical paired edges of aromatic rings for minor groove recognition, a second generation set of heterocycle pairs, imidazopyridine/pyrrole (Ip/Py) and hydroxybenzimidazole/pyrrole (Hz/Py), revealed that recognition elements not based on analogues of distamycin could be realized. A new set of end-cap heterocycle dimers, oxazole-hydroxybenzimidazole (No-Hz) and chlorothiophene-hydroxybenzimidazole (Ct-Hz), paired with Py-Py are shown to bind contiguous base pairs of DNA in the minor groove, specifically 5'-GT-3' and 5'-TT-3', with high affinity and selectivity. Utilizing this technology, we have developed a new class of oligomers for sequence-specific DNA minor groove recognition no longer based on the N-methyl pyrrole carboxamides of distamycin.
Collapse
Affiliation(s)
- Raymond M Doss
- The Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
21
|
Spitzer GM, Wellenzohn B, Laggner C, Langer T, Liedl KR. DNA minor groove pharmacophores describing sequence specific properties. J Chem Inf Model 2007; 47:1580-9. [PMID: 17518460 DOI: 10.1021/ci600500v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The more that is known about human and other genome sequences and the correlation between gene expression and the course of a disease, the more evident it seems to be that DNA is chosen as a drug target instead of proteins which are built with the information encoded by DNA. According to this approach, small minor groove binding molecules have been designed to bind the DNA sequence specifically and thereby downregulate genes. Because of their lack of druglikeness, we plan to use them as templates for forthcoming virtual screening experiments to discover molecules with the same bioactivity and a different scaffold. In this proof of principle study, carried out with the software tool Catalyst, we present a model work for description of a ligand-DNA complex with the aid of pharmacophore modeling methods. The successful reproduction of sequence specificity of a polyamidic minor groove binding ligand is the precondition for later model application to virtual screening.
Collapse
Affiliation(s)
- Gudrun M Spitzer
- Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
22
|
Chenoweth DM, Poposki JA, Marques MA, Dervan PB. Programmable oligomers targeting 5'-GGGG-3' in the minor groove of DNA and NF-kappaB binding inhibition. Bioorg Med Chem 2006; 15:759-70. [PMID: 17095230 PMCID: PMC3208330 DOI: 10.1016/j.bmc.2006.10.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2006] [Revised: 10/23/2006] [Accepted: 10/23/2006] [Indexed: 11/24/2022]
Abstract
A series of hairpin oligomers containing benzimidazole (Bi) and imidazopyridine (Ip) rings were synthesized and screened to target 5'-WGGGGW-3', a core sequence in the DNA-binding site of NF-kappaB, a prolific transcription factor important in biology and disease. Five Bi and Ip containing oligomers bound to the 5'-WGGGGW-3' site with high affinity. One of the oligomers (Im-Im-Im-Im-gamma-Py-Bi-Py-Bi-beta-Dp) was able to inhibit DNA binding by the transcription factor NF-kappaB.
Collapse
|
23
|
Dolenc J, Baron R, Oostenbrink C, Koller J, van Gunsteren WF. Configurational entropy change of netropsin and distamycin upon DNA minor-groove binding. Biophys J 2006; 91:1460-70. [PMID: 16731550 PMCID: PMC1518646 DOI: 10.1529/biophysj.105.074617] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Accepted: 03/31/2006] [Indexed: 11/18/2022] Open
Abstract
Binding of a small molecule to a macromolecular target reduces its conformational freedom, resulting in a negative entropy change that opposes the binding. The goal of this study is to estimate the configurational entropy change of two minor-groove-binding ligands, netropsin and distamycin, upon binding to the DNA duplex d(CGCGAAAAACGCG).d(CGCGTTTTTCGCG). Configurational entropy upper bounds based on 10-ns molecular dynamics simulations of netropsin and distamycin in solution and in complex with DNA in solution were estimated using the covariance matrix of atom-positional fluctuations. The results suggest that netropsin and distamycin lose a significant amount of configurational entropy upon binding to the DNA minor groove. The estimated changes in configurational entropy for netropsin and distamycin are -127 J K(-1) mol(-1) and -104 J K(-1) mol(-1), respectively. Estimates of the configurational entropy contributions of parts of the ligands are presented, showing that the loss of configurational entropy is comparatively more pronounced for the flexible tails than for the relatively rigid central body.
Collapse
Affiliation(s)
- Jozica Dolenc
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
24
|
Burnett R, Melander C, Puckett JW, Son LS, Wells RD, Dervan PB, Gottesfeld JM. DNA sequence-specific polyamides alleviate transcription inhibition associated with long GAA.TTC repeats in Friedreich's ataxia. Proc Natl Acad Sci U S A 2006; 103:11497-502. [PMID: 16857735 PMCID: PMC1544198 DOI: 10.1073/pnas.0604939103] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The DNA abnormality found in 98% of Friedreich's ataxia (FRDA) patients is the unstable hyperexpansion of a GAA.TTC triplet repeat in the first intron of the frataxin gene. Expanded GAA.TTC repeats result in decreased transcription and reduced levels of frataxin protein in affected individuals. Beta-alanine-linked pyrrole-imidazole polyamides bind GAA.TTC tracts with high affinity and disrupt the intramolecular DNA.DNA-associated region of the sticky-DNA conformation formed by long GAA.TTC repeats. Fluorescent polyamide-Bodipy conjugates localize in the nucleus of a lymphoid cell line derived from a FRDA patient. The synthetic ligands increase transcription of the frataxin gene in cell culture, resulting in increased levels of frataxin protein. DNA microarray analyses indicate that a limited number of genes are significantly affected in FRDA cells. Polyamides may increase transcription by altering the DNA conformation of genes harboring long GAA.TTC repeats or by chromatin opening.
Collapse
Affiliation(s)
- Ryan Burnett
- *Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - Christian Melander
- *Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| | - James W. Puckett
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; and
| | - Leslie S. Son
- Center for Genome Research, Institute for Biosciences and Technology, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030
| | - Robert D. Wells
- Center for Genome Research, Institute for Biosciences and Technology, Texas A&M University System Health Science Center, 2121 West Holcombe Boulevard, Houston, TX 77030
| | - Peter B. Dervan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; and
| | - Joel M. Gottesfeld
- *Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037
| |
Collapse
|
25
|
Abstract
Double-helical DNA accelerates the rate of ligation of two six-ring hairpin polyamides which bind adjacent sites in the minor groove via a 1,3-dipolar cycloaddition to form a tandem dimer. The rate of the templated reaction is dependent on DNA sequence as well as on the distance between the hairpin-binding sites. The tandem dimer product of the DNA-templated reaction has improved binding properties with respect to the smaller hairpin fragments. Since cell and nuclear uptake of DNA-binding polyamides will likely be dependent on size, this is a minimum first step toward the design of self-assembling small gene-regulating fragments to produce molecules of increasing complexity with more specific genomic targeting capabilities.
Collapse
Affiliation(s)
- Adam T Poulin-Kerstien
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | |
Collapse
|
26
|
Bando T, Iida H, Tao ZF, Narita A, Fukuda N, Yamori T, Sugiyama H. Sequence specificity, reactivity, and antitumor activity of DNA-alkylating pyrrole-imidazole diamides. CHEMISTRY & BIOLOGY 2003; 10:751-8. [PMID: 12954334 DOI: 10.1016/s1074-5521(03)00160-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three conjugates of imidazole (Im)-pyrrole (Py) diamide and a DNA-alkylating moiety derived from the antibiotic duocarmycin A were synthesized, and their sequence specificity, reactivity, and antitumor activity comparatively examined. Sequencing gel analysis indicated that ImPyDu (1) alkylates DNA at the 3' end of AT-rich sequences at micromolar concentration. ImPyDu86 (2) reacts with DNA at AT-rich sites together with dialkylation sites at micromolar concentration. ImPyLDu86 (3) efficiently alkylates dialkylation sites at nanomolar concentration. Average values of log IC(50) against a 39 cancer cell line panel of 1-3 were -4.59, -5.95, and -8.25, respectively. The differential growth inhibition pattern of 1-3 varied with relatively low correlation coefficients. Array-based gene expression monitoring was performed for 3 in a human lung cancer cell line. Substantial downregulation of expression was seen for genes involved in DNA damage response, transcription, and signal transduction.
Collapse
Affiliation(s)
- Toshikazu Bando
- Division of Biofuctional Molecules, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Surugadai, Kanda, Chiyoda-Ku, 101-0062, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Many diseases, such as cancer, are related to aberrant gene expression. Regulating transcription by chemical methods could be important in human medicine. Minor groove-binding polyamides offer one chemical approach to DNA recognition.
Collapse
Affiliation(s)
- Peter B Dervan
- Division of Chemistry and Chemical Engineering, and Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
28
|
Joubert A, Sun XW, Johansson E, Bailly C, Mann J, Neidle S. Sequence-selective targeting of long stretches of the DNA minor groove by a novel dimeric bis-benzimidazole. Biochemistry 2003; 42:5984-92. [PMID: 12755600 DOI: 10.1021/bi026926w] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A dimeric bis-benzimidazole molecule has been designed by computer modeling to bind to a DNA sequence via the DNA minor groove that covers a complete turn of B-DNA. A series of bis-benzimidazole dimers incorporating a -O-(CH(2))(n)()-X-CH(2))(n)()-O- linker, with n = 2 or 3 and X = O or N(+)H(Me), were screened for their capacity to fit the DNA minor groove. The modeling studies enabled an optimal linker to be devised (n = 3, X = N(+)H(Me)), and the synthesis of the predicted "best" molecule, N-methyl-N,N-bis-3,3-[4'-[5' '-(2' "-p-methoxyphenyl)-5' "-1H-benzimidazolyl]-2' '-1H-benzimidazolyl]phenoxypropylamine (5), is reported. The optimized linker permits the two symmetric bis-benzimidazole motifs to maintain hydrogen-bonded contacts with the floor of the DNA minor groove. DNase I footprinting studies have shown that this ligand binds with high affinity to sequences representing approximately a complete turn of B-DNA, represented by the [A.T](4)-[G.C]-[A.T](4) motif, and only poorly to sequences of half this site size, in accord with the computer modeling studies. Compound 5 does not show acute cellular cytotoxicity, in contrast with its monomeric bis-benzimidazole precursors, yet is rapidly taken up into cells.
Collapse
Affiliation(s)
- Alexandra Joubert
- INSERM U-524 et Laboratoire de Pharmacologie Antitumorale du Centre Oscar Lambret, IRCL, Place de Verdun, 59045 Lille, France
| | | | | | | | | | | |
Collapse
|