1
|
Limbocker R, Cremades N, Cascella R, Tessier PM, Vendruscolo M, Chiti F. Characterization of Pairs of Toxic and Nontoxic Misfolded Protein Oligomers Elucidates the Structural Determinants of Oligomer Toxicity in Protein Misfolding Diseases. Acc Chem Res 2023. [PMID: 37071750 DOI: 10.1021/acs.accounts.3c00045] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
ConspectusThe aberrant misfolding and aggregation of peptides and proteins into amyloid aggregates occurs in over 50 largely incurable protein misfolding diseases. These pathologies include Alzheimer's and Parkinson's diseases, which are global medical emergencies owing to their prevalence in increasingly aging populations worldwide. Although the presence of mature amyloid aggregates is a hallmark of such neurodegenerative diseases, misfolded protein oligomers are increasingly recognized as of central importance in the pathogenesis of many of these maladies. These oligomers are small, diffusible species that can form as intermediates in the amyloid fibril formation process or be released by mature fibrils after they are formed. They have been closely associated with the induction of neuronal dysfunction and cell death. It has proven rather challenging to study these oligomeric species because of their short lifetimes, low concentrations, extensive structural heterogeneity, and challenges associated with producing stable, homogeneous, and reproducible populations. Despite these difficulties, investigators have developed protocols to produce kinetically, chemically, or structurally stabilized homogeneous populations of protein misfolded oligomers from several amyloidogenic peptides and proteins at experimentally ameneable concentrations. Furthermore, procedures have been established to produce morphologically similar but structurally distinct oligomers from the same protein sequence that are either toxic or nontoxic to cells. These tools offer unique opportunities to identify and investigate the structural determinants of oligomer toxicity by a close comparative inspection of their structures and the mechanisms of action through which they cause cell dysfunction.This Account reviews multidisciplinary results, including from our own groups, obtained by combining chemistry, physics, biochemistry, cell biology, and animal models for pairs of toxic and nontoxic oligomers. We describe oligomers comprised of the amyloid-β peptide, which underlie Alzheimer's disease, and α-synuclein, which are associated with Parkinson's disease and other related neurodegenerative pathologies, collectively known as synucleinopathies. Furthermore, we also discuss oligomers formed by the 91-residue N-terminal domain of [NiFe]-hydrogenase maturation factor from E. coli, which we use as a model non-disease-related protein, and by an amyloid stretch of Sup35 prion protein from yeast. These oligomeric pairs have become highly useful experimental tools for studying the molecular determinants of toxicity characteristic of protein misfolding diseases. Key properties have been identified that differentiate toxic from nontoxic oligomers in their ability to induce cellular dysfunction. These characteristics include solvent-exposed hydrophobic regions, interactions with membranes, insertion into lipid bilayers, and disruption of plasma membrane integrity. By using these properties, it has been possible to rationalize in model systems the responses to pairs of toxic and nontoxic oligomers. Collectively, these studies provide guidance for the development of efficacious therapeutic strategies to target rationally the cytotoxicity of misfolded protein oligomers in neurodegenerative conditions.
Collapse
Affiliation(s)
- Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Nunilo Cremades
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza 50009, Spain
| | - Roberta Cascella
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Peter M Tessier
- Departments of Chemical Engineering, Pharmaceutical Sciences, and Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| |
Collapse
|
2
|
Errico S, Ramshini H, Capitini C, Canale C, Spaziano M, Barbut D, Calamai M, Zasloff M, Oropesa-Nuñez R, Vendruscolo M, Chiti F. Quantitative Measurement of the Affinity of Toxic and Nontoxic Misfolded Protein Oligomers for Lipid Bilayers and of its Modulation by Lipid Composition and Trodusquemine. ACS Chem Neurosci 2021; 12:3189-3202. [PMID: 34382791 PMCID: PMC8414483 DOI: 10.1021/acschemneuro.1c00327] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Many neurodegenerative diseases are associated with the self-assembly of peptides and proteins into fibrillar aggregates. Soluble misfolded oligomers formed during the aggregation process, or released by mature fibrils, play a relevant role in neurodegenerative processes through their interactions with neuronal membranes. However, the determinants of the cytotoxicity of these oligomers are still unclear. Here we used liposomes and toxic and nontoxic oligomers formed by the same protein to measure quantitatively the affinity of the two oligomeric species for lipid membranes. To this aim, we quantified the perturbation to the lipid membranes caused by the two oligomers by using the fluorescence quenching of two probes embedded in the polar and apolar regions of the lipid membranes and a well-defined protein-oligomer binding assay using fluorescently labeled oligomers to determine the Stern-Volmer and dissociation constants, respectively. With both approaches, we found that the toxic oligomers have a membrane affinity 20-25 times higher than that of nontoxic oligomers. Circular dichroism, intrinsic fluorescence, and FRET indicated that neither oligomer type changes its structure upon membrane interaction. Using liposomes enriched with trodusquemine, a potential small molecule drug known to penetrate lipid membranes and make them refractory to toxic oligomers, we found that the membrane affinity of the oligomers was remarkably lower. At protective concentrations of the small molecule, the binding of the oligomers to the lipid membranes was fully prevented. Furthermore, the affinity of the toxic oligomers for the lipid membranes was found to increase and slightly decrease with GM1 ganglioside and cholesterol content, respectively, indicating that physicochemical properties of lipid membranes modulate their affinity for misfolded oligomeric species.
Collapse
Affiliation(s)
- Silvia Errico
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Hassan Ramshini
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
- Department
of Biology, Payame Noor University, Tehran 19395-4697, Islamic Republic of Iran
| | - Claudia Capitini
- European
Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino 50019, Italy
- Department
of Physics and Astronomy, University of
Florence, Sesto
Fiorentino 50019, Italy
| | - Claudio Canale
- Department
of Physics, University of Genoa, Genoa 16146, Italy
| | - Martina Spaziano
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Denise Barbut
- Enterin
Inc., 2005 Market Street, Philadelphia, Pennsylvania 19103, United States
| | - Martino Calamai
- European
Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino 50019, Italy
- National
Institute of Optics, National Research Council
of Italy (CNR), Florence 50125, Italy
| | - Michael Zasloff
- Enterin
Inc., 2005 Market Street, Philadelphia, Pennsylvania 19103, United States
- MedStar-Georgetown
Transplant Institute, Georgetown University
School of Medicine, Washington D.C. 20007, United States
| | - Reinier Oropesa-Nuñez
- Department
of Materials Science and Engineering, Uppsala
University, Uppsala SE-751 03, Sweden
| | - Michele Vendruscolo
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Fabrizio Chiti
- Department
of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| |
Collapse
|
3
|
Patel JR, Xu Y, Capitini C, Chiti F, De Simone A. Backbone NMR assignments of HypF-N under conditions generating toxic and non-toxic oligomers. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:273-277. [PMID: 29786756 PMCID: PMC6132818 DOI: 10.1007/s12104-018-9822-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
The HypF protein is involved in the maturation and regulation of hydrogenases. The N-terminal domain of HypF (HypF-N) has served as a key model system to study the pathways of protein amyloid formation and the nature of the toxicity of pre-fibrilar protein oligomers. This domain can aggregate into two forms of oligomers having significantly different toxic effects when added to neuronal cultures. Here, NMR assignments of HypF-N backbone resonances are presented in its native state and under the conditions favouring the formation of toxic and non-toxic oligomers. The analyses of chemical shifts provide insights into the protein conformational state and the possible pathways leading to the formation of different types of oligomers.
Collapse
Affiliation(s)
- Jayneil R Patel
- Department of Life Sciences, Imperial College London, South Kensington, London, SW72AZ, UK
| | - Yingqi Xu
- Department of Life Sciences, Imperial College London, South Kensington, London, SW72AZ, UK
| | - Claudia Capitini
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Firenze, Italy
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Firenze, Italy
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, South Kensington, London, SW72AZ, UK.
| |
Collapse
|
4
|
Structural Insights into l-Tryptophan Dehydrogenase from a Photoautotrophic Cyanobacterium, Nostoc punctiforme. Appl Environ Microbiol 2017; 83:AEM.02710-16. [PMID: 27815281 DOI: 10.1128/aem.02710-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 10/31/2016] [Indexed: 01/08/2023] Open
Abstract
l-Tryptophan dehydrogenase from Nostoc punctiforme NIES-2108 (NpTrpDH), despite exhibiting high amino acid sequence identity (>30%)/homology (>50%) with NAD(P)+-dependent l-Glu/l-Leu/l-Phe/l-Val dehydrogenases, exclusively catalyzes reversible oxidative deamination of l-Trp to 3-indolepyruvate in the presence of NAD+ Here, we determined the crystal structure of the apo form of NpTrpDH. The structure of the NpTrpDH monomer, which exhibited high similarity to that of l-Glu/l-Leu/l-Phe dehydrogenases, consisted of a substrate-binding domain (domain I, residues 3 to 133 and 328 to 343) and an NAD+/NADH-binding domain (domain II, residues 142 to 327) separated by a deep cleft. The apo-NpTrpDH existed in an open conformation, where domains I and II were apart from each other. The subunits dimerized themselves mainly through interactions between amino acid residues around the β-1 strand of each subunit, as was observed in the case of l-Phe dehydrogenase. The binding site for the substrate l-Trp was predicted by a molecular docking simulation and validated by site-directed mutagenesis. Several hydrophobic residues, which were located in the active site of NpTrpDH and possibly interacted with the side chain of the substrate l-Trp, were arranged similarly to that found in l-Leu/l-Phe dehydrogenases but fairly different from that of an l-Glu dehydrogenase. Our crystal structure revealed that Met-40, Ala-69, Ile-74, Ile-110, Leu-288, Ile-289, and Tyr-292 formed a hydrophobic cluster around the active site. The results of the site-directed mutagenesis experiments suggested that the hydrophobic cluster plays critical roles in protein folding, l-Trp recognition, and catalysis. Our results provide critical information for further characterization and engineering of this enzyme. IMPORTANCE In this study, we determined the three-dimensional structure of l-Trp dehydrogenase, analyzed its various site-directed substitution mutants at residues located in the active site, and obtained the following informative results. Several residues in the active site form a hydrophobic cluster, which may be a part of the hydrophobic core essential for protein folding. To our knowledge, there is no previous report demonstrating that a hydrophobic cluster in the active site of any l-amino acid dehydrogenase may have a critical impact on protein folding. Furthermore, our results suggest that this hydrophobic cluster could strictly accommodate l-Trp. These studies show the structural characteristics of l-Trp dehydrogenase and hence would facilitate novel applications of l-Trp dehydrogenase.
Collapse
|
5
|
Iannuzzi C, Irace G, Sirangelo I. The effect of glycosaminoglycans (GAGs) on amyloid aggregation and toxicity. Molecules 2015; 20:2510-28. [PMID: 25648594 PMCID: PMC6272481 DOI: 10.3390/molecules20022510] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/29/2015] [Indexed: 01/15/2023] Open
Abstract
Amyloidosis is a protein folding disorder in which normally soluble proteins are deposited extracellularly as insoluble fibrils, impairing tissue structure and function. Charged polyelectrolytes such as glycosaminoglycans (GAGs) are frequently found associated with the proteinaceous deposits in tissues of patients affected by amyloid diseases. Experimental evidence indicate that they can play an active role in favoring amyloid fibril formation and stabilization. Binding of GAGs to amyloid fibrils occurs mainly through electrostatic interactions involving the negative polyelectrolyte charges and positively charged side chains residues of aggregating protein. Similarly to catalyst for reactions, GAGs favor aggregation, nucleation and amyloid fibril formation functioning as a structural templates for the self-assembly of highly cytotoxic oligomeric precursors, rich in β-sheets, into harmless amyloid fibrils. Moreover, the GAGs amyloid promoting activity can be facilitated through specific interactions via consensus binding sites between amyloid polypeptide and GAGs molecules. We review the effect of GAGs on amyloid deposition as well as proteins not strictly related to diseases. In addition, we consider the potential of the GAGs therapy in amyloidosis.
Collapse
Affiliation(s)
- Clara Iannuzzi
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Via L. De Crecchio 7, Napoli 80138, Italy.
| | - Gaetano Irace
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Via L. De Crecchio 7, Napoli 80138, Italy.
| | - Ivana Sirangelo
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università di Napoli, Via L. De Crecchio 7, Napoli 80138, Italy.
| |
Collapse
|
6
|
de Rosa M, Bemporad F, Pellegrino S, Chiti F, Bolognesi M, Ricagno S. Edge strand engineering prevents native-like aggregation in Sulfolobus solfataricus acylphosphatase. FEBS J 2014; 281:4072-84. [PMID: 24893801 DOI: 10.1111/febs.12861] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 01/09/2023]
Abstract
β-proteins are constantly threatened by the risk of aggregation because β-sheets are inherently structured for edge-to-edge interactions. To avoid native-like aggregation, evolution has resulted in a set of strategies that prevent intermolecular β-interactions. Acylphosphatase from Sulfolobus solfataricus (Sso AcP) represents a suitable model for the study of such a process. Under conditions promoting aggregation, Sso AcP acquires a native-like conformational state whereby an unstructured N-terminal segment interacts with the edge β-strand B4 of an adjacent Sso AcP molecule. Because B4 is poorly protected against aggregation, this interaction triggers the aggregation cascade without the need for unfolding. Recently, three single Sso AcP mutants (V84D, Y86E and V84P) were designed to engineer additional protection against aggregation in B4 and were observed to successfully impair native-like aggregation in all three variants at the expense of a lower stability. To understand the structural basis of the reduced aggregation propensity and lower stability, the crystal structures of the Sso AcP variants were determined in the present study. Structural analysis reveals that the V84D and Y86E mutations exert protection by the insertion of an edge negative charge. A conformationally less regular B4 underlies protection against aggregation in the V84P mutant. The thermodynamic basis of instability is discussed. Moreover, kinetic experiments indicate that aggregation of the three mutants is not native-like and is independent of the interaction between B4 and the unstructured N-terminal segment. The reported data rationalize previous evidence regarding Sso AcP native-like aggregation and provide a basis for the design of aggregation-free proteins. DATABASE The atomic coordinates and related experimental data for the Sso AcP mutants V84P, V84D, ΔN11 Y86E have been deposited in the Protein Data Bank under accession numbers 4OJ3, 4OJG and 4OJH, respectively. STRUCTURED DIGITAL ABSTRACT • Sso AcP and Sso AcP bind by fluorescence technology (View interaction).
Collapse
|
7
|
Affiliation(s)
- Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Edward Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
8
|
Tominaga T, Watanabe S, Matsumi R, Atomi H, Imanaka T, Miki K. Crystal structures of the carbamoylated and cyanated forms of HypE for [NiFe] hydrogenase maturation. Proc Natl Acad Sci U S A 2013; 110:20485-90. [PMID: 24297906 PMCID: PMC3870729 DOI: 10.1073/pnas.1313620110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Hydrogenase pleiotropically acting protein (Hyp)E plays a role in biosynthesis of the cyano groups for the NiFe(CN)2CO center of [NiFe] hydrogenases by catalyzing the ATP-dependent dehydration of the carbamoylated C-terminal cysteine of HypE to thiocyanate. Although structures of HypE proteins have been determined, until now there has been no structural evidence to explain how HypE dehydrates thiocarboxamide into thiocyanate. Here, we report the crystal structures of the carbamoylated and cyanated forms of HypE from Thermococcus kodakarensis in complex with nucleotides at 1.53- and 1.64-Å resolution, respectively. Carbamoylation of the C-terminal cysteine (Cys338) of HypE by chemical modification is clearly observed in the present structures. In the presence of ATP, the thiocarboxamide of Cys338 is successfully dehydrated into the thiocyanate. In the carbamoylated state, the thiocarboxamide nitrogen atom of Cys338 is close to a conserved glutamate residue (Glu272), but the spatial position of Glu272 is less favorable for proton abstraction. On the other hand, the thiocarboxamide oxygen atom of Cys338 interacts with a conserved lysine residue (Lys134) through a water molecule. The close contact of Lys134 with an arginine residue lowers the pKa of Lys134, suggesting that Lys134 functions as a proton acceptor. These observations suggest that the dehydration of thiocarboxamide into thiocyanate is catalyzed by a two-step deprotonation process, in which Lys134 and Glu272 function as the first and second bases, respectively.
Collapse
Affiliation(s)
- Taiga Tominaga
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Satoshi Watanabe
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Rie Matsumi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
- CREST, Japan Science and Technology Agency, Chiyoda-ku, Tokyo 102-0075, Japan; and
| | - Tadayuki Imanaka
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
9
|
Sinz Q, Freiding S, Vogel RF, Schwab W. A hydrolase from Lactobacillus sakei moonlights as a transaminase. Appl Environ Microbiol 2013; 79:2284-93. [PMID: 23354716 PMCID: PMC3623254 DOI: 10.1128/aem.03762-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/21/2013] [Indexed: 02/08/2023] Open
Abstract
Enzymatic transamination of amino acids yields α-keto acids and is the initial step for the production of volatile compounds that contribute to the sensory perception of fermented foods such as salami. Lactobacillus sakei is one of the lactic acid bacterial strains commonly used in starter cultures. Although the genome sequence of L. sakei 23K lacks genes encoding typical branched-chain amino acid transaminases, transamination activity and the formation of amino acid-derived volatile metabolites could be demonstrated. A protein purified from L. sakei is held responsible for the transamination activity. By heterologous expression of the corresponding gene in Escherichia coli, we were able to characterize the transamination side activity of an enzyme annotated as a putative acylphosphatase (AcP). A transamination side activity of hen egg white lysozyme (HEWL) was also discovered. Both enzymes showed substrate specificity toward branched-chain and aromatic amino acids. AcP also accepted l-methionine. Activity was optimal at neutral pH for both enzymes, whereas AcP showed a significantly higher temperature optimum (55°C) than that of HEWL (37°C). Kinetic parameters revealed high affinity toward l-leucine for AcP (K(m) = 1.85 mM) and toward l-isoleucine for HEWL (K(m) = 3.79 mM). AcP seems to play a major role in the metabolism of amino acids in L. sakei.
Collapse
Affiliation(s)
- Quirin Sinz
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| | - Simone Freiding
- Technical Microbiology, Technische Universität München, Freising, Germany
| | - Rudi F. Vogel
- Technical Microbiology, Technische Universität München, Freising, Germany
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technische Universität München, Freising, Germany
| |
Collapse
|
10
|
Salt Anions Promote the Conversion of HypF-N into Amyloid-Like Oligomers and Modulate the Structure of the Oligomers and the Monomeric Precursor State. J Mol Biol 2012; 424:132-49. [DOI: 10.1016/j.jmb.2012.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 09/11/2012] [Accepted: 09/26/2012] [Indexed: 11/17/2022]
|
11
|
Tominaga T, Watanabe S, Matsumi R, Atomi H, Imanaka T, Miki K. Structure of the [NiFe]-hydrogenase maturation protein HypF from Thermococcus kodakarensis KOD1. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:1153-7. [PMID: 23027738 PMCID: PMC3497970 DOI: 10.1107/s1744309112036421] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/21/2012] [Indexed: 12/27/2022]
Abstract
HypF is involved in the biosynthesis of the CN ligand of the NiFe(CN)(2)CO centre of [NiFe]-hydrogenases. Here, the full-length structure of HypF from Thermococcus kodakarenesis is reported at 4.5 Å resolution. The N-terminal acylphosphatase-like (ACP) domain interacts with the zinc-finger domain with some flexibility in its relative position. Molecular-surface analysis shows that a deep pocket formed between the ACP and zinc-finger domains is highly conserved and has positive potential. These results suggest that the positively charged pocket identified is involved in the hydrolysis of carbamoyl phosphate and the formation of a carbamoyl intermediate.
Collapse
Affiliation(s)
- Taiga Tominaga
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Satoshi Watanabe
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Rie Matsumi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Tadayuki Imanaka
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Shomura Y, Higuchi Y. Structural basis for the reaction mechanism of S-carbamoylation of HypE by HypF in the maturation of [NiFe]-hydrogenases. J Biol Chem 2012; 287:28409-19. [PMID: 22740694 DOI: 10.1074/jbc.m112.387134] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
As a remarkable structural feature of hydrogenase active sites, [NiFe]-hydrogenases harbor one carbonyl and two cyano ligands, where HypE and HypF are involved in the biosynthesis of the nitrile group as a precursor of the cyano groups. HypF catalyzes S-carbamoylation of the C-terminal cysteine of HypE via three steps using carbamoylphosphate and ATP, producing two unstable intermediates: carbamate and carbamoyladenylate. Although the crystal structures of intact HypE homodimers and partial HypF have been reported, it remains unclear how the consecutive reactions occur without the loss of unstable intermediates during the proposed reaction scheme. Here we report the crystal structures of full-length HypF both alone and in complex with HypE at resolutions of 2.0 and 2.6 Å, respectively. Three catalytic sites of the structures of the HypF nucleotide- and phosphate-bound forms have been identified, with each site connected via channels inside the protein. This finding suggests that the first two consecutive reactions occur without the release of carbamate or carbamoyladenylate from the enzyme. The structure of HypF in complex with HypE revealed that HypF can associate with HypE without disturbing its homodimeric interaction and that the binding manner allows the C-terminal Cys-351 of HypE to access the S-carbamoylation active site in HypF, suggesting that the third step can also proceed without the release of carbamoyladenylate. A comparison of the structure of HypF with the recently reported structures of O-carbamoyltransferase revealed different reaction mechanisms for carbamoyladenylate synthesis and a similar reaction mechanism for carbamoyltransfer to produce the carbamoyl-HypE molecule.
Collapse
Affiliation(s)
- Yasuhito Shomura
- Department of Life Science, Graduate School of Life Science, University of Hyogo, Hyogo 678-1297, Japan.
| | | |
Collapse
|
13
|
Saridaki T, Zampagni M, Mannini B, Evangelisti E, Taddei N, Cecchi C, Chiti F. Glycosaminoglycans (GAGs) suppress the toxicity of HypF-N prefibrillar aggregates. J Mol Biol 2012; 421:616-30. [PMID: 22326346 DOI: 10.1016/j.jmb.2012.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2011] [Revised: 01/08/2012] [Accepted: 02/03/2012] [Indexed: 10/14/2022]
Abstract
A group of diverse human pathologies is associated with proteins unable to retain their native state and convert into prefibrillar and fibrillar amyloid aggregates that are then deposited in the extracellular space. Glycosaminoglycans (GAGs) have been found to physically associate with these deposits and also to promote their formation in vitro. However, the effect of GAGs on the toxicity of these aggregates has been investigated in only one protein system, the amyloid β peptide associated with Alzheimer's disease. In this study, we investigate whether GAGs affect the toxicity of the N-terminal domain of Escherichia coli HypF (HypF-N) oligomers on Chinese hamster ovarian cells and the mechanism by which such suppression is mediated. The results show that heparin and other GAGs inhibit the toxicity observed by HypF-N oligomers in a dose-dependent manner. GAGs were not found to bind preformed HypF-N oligomers, change their morphological and structural characteristics or disaggregate them. Nevertheless, they were found to bind to the cells' surface and prevent the interaction of the oligomers with the cells. Overall, the results indicate that GAGs have a generic ability to inhibit the toxicity of aberrant protein oligomers and that such toxicity suppression can occur through different mechanisms, such as through binding to the oligomers with consequent loss of interaction of the oligomers to the GAGs present on the cell surface, as proposed previously for amyloid β aggregates, or through mechanisms independent of direct GAG-oligomer binding, as shown here for HypF-N aggregates.
Collapse
Affiliation(s)
- Theodora Saridaki
- Department of Biochemical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Petkun S, Shi R, Li Y, Asinas A, Munger C, Zhang L, Waclawek M, Soboh B, Sawers RG, Cygler M. Structure of hydrogenase maturation protein HypF with reaction intermediates shows two active sites. Structure 2011; 19:1773-83. [PMID: 22153500 DOI: 10.1016/j.str.2011.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 09/13/2011] [Accepted: 09/22/2011] [Indexed: 10/14/2022]
Abstract
[NiFe]-hydrogenases are multimeric proteins. The large subunit contains the NiFe(CN)(2)CO bimetallic active center and the small subunit contains Fe-S clusters. Biosynthesis and assembly of the NiFe(CN)(2)CO active center requires six Hyp accessory proteins. The synthesis of the CN(-) ligands is catalyzed by the combined actions of HypF and HypE using carbamoylphosphate as a substrate. We report the structure of Escherichia coli HypF(92-750) lacking the N-terminal acylphosphatase domain. HypF(92-750) comprises the novel Zn-finger domain, the nucleotide-binding YrdC-like domain, and the Kae1-like universal domain, also binding a nucleotide and a Zn(2+) ion. The two nucleotide-binding sites are sequestered in an internal cavity, facing each other and separated by ∼14 Å. The YrdC-like domain converts carbamoyl moiety to a carbamoyl adenylate intermediate, which is channeled to the Kae1-like domain. Mutations within either nucleotide-binding site compromise hydrogenase maturation but do not affect the carbamoylphosphate phosphatase activity.
Collapse
Affiliation(s)
- Svetlana Petkun
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Insights into [FeFe]-hydrogenase structure, mechanism, and maturation. Structure 2011; 19:1038-52. [PMID: 21827941 DOI: 10.1016/j.str.2011.06.008] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/01/2011] [Accepted: 06/09/2011] [Indexed: 01/06/2023]
Abstract
Hydrogenases are metalloenzymes that are key to energy metabolism in a variety of microbial communities. Divided into three classes based on their metal content, the [Fe]-, [FeFe]-, and [NiFe]-hydrogenases are evolutionarily unrelated but share similar nonprotein ligand assemblies at their active site metal centers that are not observed elsewhere in biology. These nonprotein ligands are critical in tuning enzyme reactivity, and their synthesis and incorporation into the active site clusters require a number of specific maturation enzymes. The wealth of structural information on different classes and different states of hydrogenase enzymes, biosynthetic intermediates, and maturation enzymes has contributed significantly to understanding the biochemistry of hydrogen metabolism. This review highlights the unique structural features of hydrogenases and emphasizes the recent biochemical and structural work that has created a clearer picture of the [FeFe]-hydrogenase maturation pathway.
Collapse
|
16
|
Vardar-Schara G, Maeda T, Wood TK. Metabolically engineered bacteria for producing hydrogen via fermentation. Microb Biotechnol 2011; 1:107-25. [PMID: 21261829 PMCID: PMC3864445 DOI: 10.1111/j.1751-7915.2007.00009.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Hydrogen, the most abundant and lightest element in the universe, has much potential as a future energy source. Hydrogenases catalyse one of the simplest chemical reactions, 2H+ + 2e‐ ↔ H2, yet their structure is very complex. Biologically, hydrogen can be produced via photosynthetic or fermentative routes. This review provides an overview of microbial production of hydrogen by fermentation (currently the more favourable route) and focuses on biochemical pathways, theoretical hydrogen yields and hydrogenase structure. In addition, several examples of metabolic engineering to enhance fermentative hydrogen production are presented along with some examples of expression of heterologous hydrogenases for enhanced hydrogen production.
Collapse
Affiliation(s)
- Gönül Vardar-Schara
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Road, Agricultural Sciences 218, Honolulu, HI 96822, USA.
| | | | | |
Collapse
|
17
|
Ahmad B, Vigliotta I, Tatini F, Campioni S, Mannini B, Winkelmann J, Tiribilli B, Chiti F. The induction of α-helical structure in partially unfolded HypF-N does not affect its aggregation propensity. Protein Eng Des Sel 2011; 24:553-63. [PMID: 21518735 DOI: 10.1093/protein/gzr018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The conversion of proteins into structured fibrillar aggregates is a central problem in protein chemistry, biotechnology, biology and medicine. It is generally accepted that aggregation takes place from partially structured states of proteins. However, the role of the residual structure present in such conformational states is not yet understood. In particular, it is not yet clear as to whether the α-helical structure represents a productive or counteracting structural element for protein aggregation. We have addressed this issue by studying the aggregation of pH-unfolded HypF-N. It has previously been shown that the two native α-helices of HypF-N retain a partial α-helical structure in the pH-unfolded state and that these regions are also involved in the formation of the cross-β structure of the aggregates. We have introduced mutations in such stretches of the sequence, with the aim of increasing the α-helical structure in the key regions of the pH-unfolded state, while minimizing the changes of other factors known to influence protein aggregation, such as hydrophobicity, β-Sheet propensity, etc. The resulting HypF-N mutants have higher contents of α-helical structure at the site(s) of mutation in their pH-unfolded states, but such an increase does not correlate with a change of aggregation rate. The results suggest that stabilisation of α-helical structure in amyloidogenic regions of the sequence of highly dynamic states does not have remarkable effects on the rate of protein aggregation from such conformational states. Comparison with other protein systems indicate that the effect of increasing α-helical propensity can vary if the stabilised helices are in non-amyloidogenic stretches of initially unstructured peptides (accelerating effect), in amyloidogenic stretches of initially unstructured peptides (no effect) or in amyloidogenic stretches of initially stable helices (decelerating effect).
Collapse
Affiliation(s)
- B Ahmad
- Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134 Firenze, Italy
| | | | | | | | | | | | | | | |
Collapse
|
18
|
A role for the universal Kae1/Qri7/YgjD (COG0533) family in tRNA modification. EMBO J 2011; 30:882-93. [PMID: 21285948 DOI: 10.1038/emboj.2010.363] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 12/21/2010] [Indexed: 11/09/2022] Open
Abstract
The YgjD/Kae1 family (COG0533) has been on the top-10 list of universally conserved proteins of unknown function for over 5 years. It has been linked to DNA maintenance in bacteria and mitochondria and transcription regulation and telomere homeostasis in eukaryotes, but its actual function has never been found. Based on a comparative genomic and structural analysis, we predicted this family was involved in the biosynthesis of N(6)-threonylcarbamoyl adenosine, a universal modification found at position 37 of tRNAs decoding ANN codons. This was confirmed as a yeast mutant lacking Kae1 is devoid of t(6)A. t(6)A(-) strains were also used to reveal that t(6)A has a critical role in initiation codon restriction to AUG and in restricting frameshifting at tandem ANN codons. We also showed that YaeZ, a YgjD paralog, is required for YgjD function in vivo in bacteria. This work lays the foundation for understanding the pleiotropic role of this universal protein family.
Collapse
|
19
|
Wang L, Schubert D, Sawaya MR, Eisenberg D, Riek R. Multidimensional structure-activity relationship of a protein in its aggregated states. Angew Chem Int Ed Engl 2010; 49:3904-8. [PMID: 20397175 PMCID: PMC3004770 DOI: 10.1002/anie.201000068] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Wang
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
20
|
Hu J, Li D, Su XD, Jin C, Xia B. Solution structure and conformational heterogeneity of acylphosphatase from Bacillus subtilis. FEBS Lett 2010; 584:2852-6. [PMID: 20447399 DOI: 10.1016/j.febslet.2010.04.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 04/26/2010] [Accepted: 04/26/2010] [Indexed: 10/19/2022]
Abstract
Acylphosphatase is a small enzyme that catalyzes the hydrolysis of acyl phosphates. Here, we present the solution structure of acylphosphatase from Bacillus subtilis (BsAcP), the first from a Gram-positive bacterium. We found that its active site is disordered, whereas it converted to an ordered state upon ligand binding. The structure of BsAcP is sensitive to pH and it has multiple conformations in equilibrium at acidic pH (pH<5.8). Only one main conformation could bind ligand, and the relative population of these states is modulated by ligand concentration. This study provides direct evidence for the role of ligand in conformational selection.
Collapse
Affiliation(s)
- Jicheng Hu
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing, China
| | | | | | | | | |
Collapse
|
21
|
Wang L, Schubert D, Sawaya M, Eisenberg D, Riek R. Multidimensional Structure-Activity Relationship of a Protein in Its Aggregated States. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201000068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
22
|
Winter G, Dökel S, Jones AK, Scheerer P, Krauss N, Höhne W, Friedrich B. Crystallization and preliminary X-ray crystallographic analysis of the [NiFe]-hydrogenase maturation factor HypF1 from Ralstonia eutropha H16. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:452-5. [PMID: 20383020 PMCID: PMC2852342 DOI: 10.1107/s1744309110006196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 02/16/2010] [Indexed: 11/11/2022]
Abstract
The hydrogenase maturation factor HypF1 is a truncated but functional version of the HypF protein. HypF is known to be involved in the supply of the CN(-) ligands of the active site of [NiFe]-hydrogenases, utilizing carbamoyl phosphate as a substrate. The first crystallization and preliminary X-ray studies of HypF1 from Ralstonia eutropha H16 are reported here. Crystals of HypF1 (394 amino acids, 40.7 kDa) were obtained by the sitting-drop vapour-diffusion technique using sodium formate as a precipitant. The crystals belonged to space group I222, with unit-cell parameters a = 79.7, b = 91.6, c = 107.2 A. Complete X-ray diffraction data sets were collected at 100 K from native crystals and from a platinum derivative to a maximum resolution of 1.65 A.
Collapse
Affiliation(s)
- Gordon Winter
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Monbijoustrasse 2a, D-10117 Berlin, Germany
| | - Simon Dökel
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Monbijoustrasse 2a, D-10117 Berlin, Germany
| | - Anne K. Jones
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany
| | - Patrick Scheerer
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Monbijoustrasse 2a, D-10117 Berlin, Germany
| | - Norbert Krauss
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Monbijoustrasse 2a, D-10117 Berlin, Germany
| | - Wolfgang Höhne
- Institut für Biochemie, Charité-Universitätsmedizin Berlin, Monbijoustrasse 2a, D-10117 Berlin, Germany
| | - Bärbel Friedrich
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, Chausseestrasse 117, D-10115 Berlin, Germany
| |
Collapse
|
23
|
Chen Y, Parrini C, Taddei N, Lapidus LJ. Conformational properties of unfolded HypF-N. J Phys Chem B 2010; 113:16209-13. [PMID: 19928868 DOI: 10.1021/jp904189b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have measured the intramolecular diffusion rate between distant residues in the aggregation-prone protein HypF-N under various denaturing conditions. Using the method of cysteine quenching of the tryptophan triplet state, we find that intramolecular diffusion remains roughly constant at high concentrations of denaturant (2-6 M GdnHCl) and slows down at low concentrations of denaturant, but the decrease is not uniform throughout the chain. Extrapolation of these measurements to 0 M GdnHCl gives D approximately 10(-7) cm(2) s(-1), about 1 order of magnitude lower than unstructured peptides and at least 2 orders of magnitude higher than well-behaved proteins. This suggests that there is a dynamic range of conformational reorganization within which partially unfolded states are prone to aggregation.
Collapse
Affiliation(s)
- Yujie Chen
- Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
24
|
Campioni S, Mannini B, Zampagni M, Pensalfini A, Parrini C, Evangelisti E, Relini A, Stefani M, Dobson CM, Cecchi C, Chiti F. A causative link between the structure of aberrant protein oligomers and their toxicity. Nat Chem Biol 2010; 6:140-7. [DOI: 10.1038/nchembio.283] [Citation(s) in RCA: 459] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 11/06/2009] [Indexed: 12/30/2022]
|
25
|
Schwarz C, Poss Z, Hoffmann D, Appel J. Hydrogenases and Hydrogen Metabolism in Photosynthetic Prokaryotes. RECENT ADVANCES IN PHOTOTROPHIC PROKARYOTES 2010; 675:305-48. [DOI: 10.1007/978-1-4419-1528-3_18] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Ahmad B, Winkelmann J, Tiribilli B, Chiti F. Searching for conditions to form stable protein oligomers with amyloid-like characteristics: The unexplored basic pH. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:223-34. [DOI: 10.1016/j.bbapap.2009.10.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/21/2009] [Accepted: 10/07/2009] [Indexed: 10/20/2022]
|
27
|
Fontecilla-Camps JC. Structure and Function of [NiFe]-Hydrogenases. METAL-CARBON BONDS IN ENZYMES AND COFACTORS 2009. [DOI: 10.1039/9781847559333-00151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
[NiFe(Se)]-hydrogenases are hetero-dimeric enzymes present in many microorganisms where they catalyze the oxidation of molecular hydrogen or the reduction of protons. Like the other two types of hydrogen-metabolizing enzymes, the [FeFe]- and [Fe]-hydrogenases, [NiFe]-hydrogenases have a Fe(CO)x unit in their active sites that is most likely involved in hydride binding. Because of their complexity, hydrogenases require a maturation machinery that involves several gene products. They include nickel and iron transport, synthesis of CN− (and maybe CO), formation and insertion of a FeCO(CN−)2 unit in the apo form, insertion of nickel and proteolytic cleavage of a C-terminal stretch, a step that ends the maturation process. Because the active site is buried in the structure, electron and proton transfer are required between this site and the molecular surface. The former is mediated by either three or one Fe/S cluster(s) depending on the enzyme. When exposed to oxidizing conditions, such as the presence of O2, [NiFe]-hydrogenases are inactivated. Depending on the redox state of the enzyme, exposure to oxygen results in either a partially reduced oxo species probably a (hydro)peroxo ligand between nickel and iron or a more reduced OH– ligand instead. Under some conditions the thiolates that coordinate the NiFe center can be modified to sulfenates. Understanding this process is of biotechnological interest for H2 production by photosynthetic organisms.
Collapse
Affiliation(s)
- Juan C. Fontecilla-Camps
- Laboratoire de Cristallographie et de Cristallogenèse des Proteines, Institut de Biologie Structurale J. P. Ebel (CEA-CNRS-UJF) 41 rue Jules Horowitz F-38027 Grenoble Cédex 1 France
| |
Collapse
|
28
|
Calloni G, Lendel C, Campioni S, Giannini S, Gliozzi A, Relini A, Vendruscolo M, Dobson CM, Salvatella X, Chiti F. Structure and Dynamics of a Partially Folded Protein Are Decoupled from Its Mechanism of Aggregation. J Am Chem Soc 2008; 130:13040-50. [DOI: 10.1021/ja8029224] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Giulia Calloni
- Dipartimento di Scienze Biochimiche, Università di Firenze, Viale Morgagni 50, 50134 Firenze, Italy, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K., Dipartimento di Fisica, Università di Genova and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), via Dodecaneso 33, I-16146, Genova, Italy, and Consorzio interuniversitrio “Istituto Nazionale Biostrutture e Biosistemi” (INBB), Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| | - Christofer Lendel
- Dipartimento di Scienze Biochimiche, Università di Firenze, Viale Morgagni 50, 50134 Firenze, Italy, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K., Dipartimento di Fisica, Università di Genova and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), via Dodecaneso 33, I-16146, Genova, Italy, and Consorzio interuniversitrio “Istituto Nazionale Biostrutture e Biosistemi” (INBB), Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| | - Silvia Campioni
- Dipartimento di Scienze Biochimiche, Università di Firenze, Viale Morgagni 50, 50134 Firenze, Italy, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K., Dipartimento di Fisica, Università di Genova and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), via Dodecaneso 33, I-16146, Genova, Italy, and Consorzio interuniversitrio “Istituto Nazionale Biostrutture e Biosistemi” (INBB), Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| | - Silva Giannini
- Dipartimento di Scienze Biochimiche, Università di Firenze, Viale Morgagni 50, 50134 Firenze, Italy, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K., Dipartimento di Fisica, Università di Genova and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), via Dodecaneso 33, I-16146, Genova, Italy, and Consorzio interuniversitrio “Istituto Nazionale Biostrutture e Biosistemi” (INBB), Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| | - Alessandra Gliozzi
- Dipartimento di Scienze Biochimiche, Università di Firenze, Viale Morgagni 50, 50134 Firenze, Italy, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K., Dipartimento di Fisica, Università di Genova and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), via Dodecaneso 33, I-16146, Genova, Italy, and Consorzio interuniversitrio “Istituto Nazionale Biostrutture e Biosistemi” (INBB), Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| | - Annalisa Relini
- Dipartimento di Scienze Biochimiche, Università di Firenze, Viale Morgagni 50, 50134 Firenze, Italy, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K., Dipartimento di Fisica, Università di Genova and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), via Dodecaneso 33, I-16146, Genova, Italy, and Consorzio interuniversitrio “Istituto Nazionale Biostrutture e Biosistemi” (INBB), Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| | - Michele Vendruscolo
- Dipartimento di Scienze Biochimiche, Università di Firenze, Viale Morgagni 50, 50134 Firenze, Italy, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K., Dipartimento di Fisica, Università di Genova and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), via Dodecaneso 33, I-16146, Genova, Italy, and Consorzio interuniversitrio “Istituto Nazionale Biostrutture e Biosistemi” (INBB), Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| | - Christopher M. Dobson
- Dipartimento di Scienze Biochimiche, Università di Firenze, Viale Morgagni 50, 50134 Firenze, Italy, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K., Dipartimento di Fisica, Università di Genova and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), via Dodecaneso 33, I-16146, Genova, Italy, and Consorzio interuniversitrio “Istituto Nazionale Biostrutture e Biosistemi” (INBB), Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| | - Xavier Salvatella
- Dipartimento di Scienze Biochimiche, Università di Firenze, Viale Morgagni 50, 50134 Firenze, Italy, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K., Dipartimento di Fisica, Università di Genova and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), via Dodecaneso 33, I-16146, Genova, Italy, and Consorzio interuniversitrio “Istituto Nazionale Biostrutture e Biosistemi” (INBB), Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| | - Fabrizio Chiti
- Dipartimento di Scienze Biochimiche, Università di Firenze, Viale Morgagni 50, 50134 Firenze, Italy, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K., Dipartimento di Fisica, Università di Genova and Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM), via Dodecaneso 33, I-16146, Genova, Italy, and Consorzio interuniversitrio “Istituto Nazionale Biostrutture e Biosistemi” (INBB), Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| |
Collapse
|
29
|
Parrini C, Bemporad F, Baroncelli A, Gianni S, Travaglini-Allocatelli C, Kohn JE, Ramazzotti M, Chiti F, Taddei N. The folding process of acylphosphatase from Escherichia coli is remarkably accelerated by the presence of a disulfide bond. J Mol Biol 2008; 379:1107-18. [PMID: 18495159 DOI: 10.1016/j.jmb.2008.04.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 04/21/2008] [Accepted: 04/23/2008] [Indexed: 11/30/2022]
Abstract
The acylphosphatase from Escherichia coli (EcoAcP) is the first AcP so far studied with a disulfide bond. A mutational variant of the enzyme lacking the disulfide bond has been produced by substituting the two cysteine residues with alanine (EcoAcP mutational variant C5A/C49A, mutEcoAcP). The native states of the two protein variants are similar, as shown by far-UV and near-UV circular dichroism and dynamic light-scattering measurements. From unfolding experiments at equilibrium using intrinsic fluorescence and far-UV circular dichroism as probes, EcoAcP shows an increased conformational stability as compared with mutEcoAcP. The wild-type protein folds according to a two-state model with a very fast rate constant (k(F)(H2O)=72,600 s(-1)), while mutEcoAcP folds ca 1500-fold slower, via the accumulation of a partially folded species. The correlation between the hydrophobicity of the polypeptide chain and the folding rate, found previously in the AcP-like structural family, is maintained only when considering the mutant but not the wild-type protein, which folds much faster than expected from this correlation. Similarly, the correlation between the relative contact order and the folding rate holds only for mutEcoAcP. The correlation also holds for EcoAcP, provided the relative contact order value is recalculated by considering the disulfide bridge as an alternate path for the backbone to determine the shortest sequence separation between contacting residues. These results indicate that the presence of a disulfide bond in a protein is an important determinant of the folding rate and allows its contribution to be determined in quantitative terms.
Collapse
Affiliation(s)
- Claudia Parrini
- Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, 50134 Firenze, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Campioni S, Mossuto MF, Torrassa S, Calloni G, de Laureto PP, Relini A, Fontana A, Chiti F. Conformational properties of the aggregation precursor state of HypF-N. J Mol Biol 2008; 379:554-67. [DOI: 10.1016/j.jmb.2008.04.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 03/28/2008] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
|
31
|
Soldi G, Bemporad F, Chiti F. The degree of structural protection at the edge beta-strands determines the pathway of amyloid formation in globular proteins. J Am Chem Soc 2008; 130:4295-302. [PMID: 18335927 DOI: 10.1021/ja076628s] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The assembly of proteins into highly organized fibrillar aggregates is a key process in biology, biotechnology, and human disease. It has been shown that proteins retain a small, yet significant propensity to aggregate when they are folded into compact globular structures, and this may be physiologically relevant, particularly when considering that proteins spend most of their lifespan into such compact states. Proteins from the acylphosphatase-like structural family have been shown to aggregate via different mechanisms, with some members forming native-like aggregates as a first step of their aggregation process and others requiring unfolding as a first necessary step. Here we use the acylphosphatase from Sulfolobus solfataricus to show that assembly of folded protein molecules into native-like aggregates is prevented by single-point mutations that introduce structural protections within one of the most flexible region of the protein, the peripheral edge beta-strand 4. The resulting mutants do not form native-like aggregates, but can still form thioflavin T-binding and beta-structured oligomers, albeit more slowly than the wild-type protein. The kinetic data show that formation of the latter species proceeds via an alternative mechanism that is independent of the transient formation of native-like aggregates.
Collapse
Affiliation(s)
- Gemma Soldi
- Dipartimento di Scienze Biochimiche, Università di Firenze, Viale Morgagni 50, 50134 Firenze, Italy
| | | | | |
Collapse
|
32
|
Siltberg-Liberles J, Martinez A. Searching distant homologs of the regulatory ACT domain in phenylalanine hydroxylase. Amino Acids 2008; 36:235-49. [PMID: 18368466 DOI: 10.1007/s00726-008-0057-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 03/11/2008] [Indexed: 11/29/2022]
Abstract
High sequence divergence, evolutionary mobility, and superfold topology characterize the ACT domain. Frequently found in multidomain proteins, these domains induce allosteric effects by binding a regulatory ligand usually to an ACT domain dimer interface. In mammalian phenylalanine hydroxylase (PAH), no contacts are formed between ACT domains, and the domain promotes an allosteric effect despite the apparent lack of ligand binding. The increased functional scenario of this abundant domain encouraged us to search for distant homologs, aiming to enhance the understanding of the ACT domain in general and the ACT domain of PAH in particular. The PDB was searched using the FATCAT server with the ACT domain of PAH as a query. The hits that were confirmed by the SSAP algorithm were divided into known ACT domains (KADs) and potential ACT domains (PADs). The FATCAT/SSAP procedure recognized most of the established KADs, as well 18 so far unrecognized non-redundant PADs with extremely low sequence identities and high divergence in functionality and oligomerization. However, analysis of the structural similarity provides remarkable clustering of the proteins according to similarities in ligand binding. Despite enormous sequence divergence and high functional variability, there is a common regulatory theme among these domains. The results reveal the close relationships of the ACT domain of PAH with amino acid binding and metallobinding ACT domains and with acylphosphatase.
Collapse
|
33
|
Structure of [NiFe] hydrogenase maturation protein HypE from Escherichia coli and its interaction with HypF. J Bacteriol 2007; 190:1447-58. [PMID: 18065529 DOI: 10.1128/jb.01610-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hydrogenases are enzymes involved in hydrogen metabolism, utilizing H2 as an electron source. [NiFe] hydrogenases are heterodimeric Fe-S proteins, with a large subunit containing the reaction center involving Fe and Ni metal ions and a small subunit containing one or more Fe-S clusters. Maturation of the [NiFe] hydrogenase involves assembly of nonproteinaceous ligands on the large subunit by accessory proteins encoded by the hyp operon. HypE is an essential accessory protein and participates in the synthesis of two cyano groups found in the large subunit. We report the crystal structure of Escherichia coli HypE at 2.0-A resolution. HypE exhibits a fold similar to that of PurM and ThiL and forms dimers. The C-terminal catalytically essential Cys336 is internalized at the dimer interface between the N- and C-terminal domains. A mechanism for dehydration of the thiocarbamate to the thiocyanate is proposed, involving Asp83 and Glu272. The interactions of HypE and HypF were characterized in detail by surface plasmon resonance and isothermal titration calorimetry, revealing a Kd (dissociation constant) of approximately 400 nM. The stoichiometry and molecular weights of the complex were verified by size exclusion chromatography and gel scanning densitometry. These experiments reveal that HypE and HypF associate to form a stoichiometric, hetero-oligomeric complex predominantly consisting of a [EF]2 heterotetramer which exists in a dynamic equilibrium with the EF heterodimer. The surface plasmon resonance results indicate that a conformational change occurs upon heterodimerization which facilitates formation of a productive complex as part of the carbamate transfer reaction.
Collapse
|
34
|
Dodson E. The befores and afters of molecular replacement. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2007; 64:17-24. [PMID: 18094463 PMCID: PMC2394785 DOI: 10.1107/s0907444907049736] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 10/10/2007] [Indexed: 11/21/2022]
Abstract
This review outlines questions to consider when attempting to solve crystal structures by molecular replacement. This review addresses the essential questions to consider when attempting to phase a new crystal structure using molecular replacement. Sequence matching can suggest whether there is a suitable three-dimensional model available, but it is also important to analyse the model in order to find its likely oligomeric state and to establish whether there are likely to be domain movements. Once a solution has been found it must be refined, which can be challenging for low-homology models. There is a detailed discussion of structures used as examples for CCP4 tutorials.
Collapse
Affiliation(s)
- Eleanor Dodson
- York Structural Biology Laboratory, Chemistry Department, University of York, York YO10 5DD, England.
| |
Collapse
|
35
|
Maillard J, Spronk CAEM, Buchanan G, Lyall V, Richardson DJ, Palmer T, Vuister GW, Sargent F. Structural diversity in twin-arginine signal peptide-binding proteins. Proc Natl Acad Sci U S A 2007; 104:15641-6. [PMID: 17901208 PMCID: PMC2000414 DOI: 10.1073/pnas.0703967104] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Indexed: 11/18/2022] Open
Abstract
The twin-arginine transport (Tat) system is dedicated to the translocation of folded proteins across the bacterial cytoplasmic membrane. Proteins are targeted to the Tat system by signal peptides containing a twin-arginine motif. In Escherichia coli, many Tat substrates bind redox-active cofactors in the cytoplasm before transport. Coordination of cofactor insertion with protein export involves a "Tat proofreading" process in which chaperones bind twin-arginine signal peptides, thus preventing premature export. The initial Tat signal-binding proteins described belonged to the TorD family, which are required for assembly of N- and S-oxide reductases. Here, we report that E. coli NapD is a Tat signal peptide-binding chaperone involved in biosynthesis of the Tat-dependent nitrate reductase NapA. NapD binds tightly and specifically to the NapA twin-arginine signal peptide and suppresses signal peptide translocation activity such that transport via the Tat pathway is retarded. High-resolution, heteronuclear, multidimensional NMR spectroscopy reveals the 3D solution structure of NapD. The chaperone adopts a ferredoxin-type fold, which is completely distinct from the TorD family. Thus, NapD represents a new family of twin-arginine signal-peptide-binding proteins.
Collapse
Affiliation(s)
- Julien Maillard
- *Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Chris A. E. M. Spronk
- Center for Molecular and Biomolecular Informatics, Nijmegen Center for Molecular Life Sciences, and
| | - Grant Buchanan
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Verity Lyall
- *Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - David J. Richardson
- *Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Tracy Palmer
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Geerten W. Vuister
- **Protein Biophysics Group, Institute for Molecules and Materials, Radboud University, 6525 ED, Nijmegen, The Netherlands; and
| | - Frank Sargent
- *Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
36
|
Fontecilla-Camps JC, Volbeda A, Cavazza C, Nicolet Y. Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. Chem Rev 2007; 107:4273-303. [PMID: 17850165 DOI: 10.1021/cr050195z] [Citation(s) in RCA: 1015] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Juan C Fontecilla-Camps
- Laboratoire de Cristallographie et Cristallogenèse des Proteines, Institut de Biologie Structurale J. P. Ebel, CEA, CNRS, Universitè Joseph Fourier, 41 rue J. Horowitz, 38027 Grenoble Cedex 1, France.
| | | | | | | |
Collapse
|
37
|
Bacic MK, Jain JC, Parker AC, Smith CJ. Analysis of the zinc finger domain of TnpA, a DNA targeting protein encoded by mobilizable transposon Tn4555. Plasmid 2007; 58:23-30. [PMID: 17204325 PMCID: PMC1945114 DOI: 10.1016/j.plasmid.2006.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 11/09/2006] [Indexed: 11/26/2022]
Abstract
The mobilizable transposon Tn4555, found in Bacteroides spp., is an important antibiotic resistance element encoding a broad spectrum beta-lactamase. Tn4555 is mobilized by conjugative transposons such as CTn341 which can transfer the transposon to a wide range of bacterial species where it integrates into preferred sites on the host chromosome. Selection of the preferred target sites is mediated by a DNA-binding protein TnpA which has a prominent zinc finger motif at the N-terminus of the protein. In this report the zinc finger motif was disrupted by site directed mutagenesis in which two cysteine residues were changed to serine residues. Elemental analysis indicated that the wild-type protein but not the mutated protein was able to coordinate zinc at a molar ration of 1/1. DNA binding electrophoretic mobility shift assays showed that the ability to bind the target site DNA was not significantly affected by the mutation but there was about a 50% decrease in the ability to bind single stranded DNA. Consistent with these results, electrophoretic mobility shift assays incorporating zinc chelators did not have a significant on affect the binding of DNA target. In vivo, the zinc finger mutation completely prevented transposition/integration as measured in a conjugation assay. This was in contrast to results in which a TnpA knockout was still able to insert into host genomes but there was no preferred target site selection. The phenotype of the zinc finger mutation was not effectively rescued by providing wild-type TnpA in trans. Taken together these results indicated that the zinc finger is not required for DNA binding activity of TnpA but that it does have an important role in transposition and it may mediate protein/protein interactions with integrase or other Tn4555 proteins to facilitate insertion into the preferred sites.
Collapse
Affiliation(s)
- Melissa K. Bacic
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834
| | - Jinesh C. Jain
- Department of CE/GEOS, 156 Fitzpatrick Building, University of Notre Dame, Notre Dame, IN 46556
| | | | - C. Jeffrey Smith
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834
- *corresponding author. Tel.: (252) 744-2700; fax: (252) 744-3104; E-mail address:
| |
Collapse
|
38
|
Ramazzotti M, Parrini C, Stefani M, Manao G, Degl'Innocenti D. The intrachain disulfide bridge is responsible of the unusual stability properties of novel acylphosphatase from Escherichia coli. FEBS Lett 2006; 580:6763-8. [PMID: 17134700 DOI: 10.1016/j.febslet.2006.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 11/13/2006] [Accepted: 11/14/2006] [Indexed: 11/24/2022]
Abstract
Acylphosphatase (AcP) activity in prokaryotes was classically attributed to some aspecific acid phosphatases. We identified an open reading frame for a putative AcP in the b0968 Escherichia coli gene and purified the recombinant enzyme after checking by RT-PCR that it was indeed expressed. EcoAcP has a predicted typical fold of the AcP family but displays a very low specific activity and a high structural stability differently from its mesophilic and similarly to its hyperthermophilic counterparts. Site directed mutagenesis suggests that, together with other structural features, the intrachain S-S bridge in EcoAcP is involved in a remarkable thermal and chemical stabilization of the protein without affecting its catalytic activity.
Collapse
Affiliation(s)
- Matteo Ramazzotti
- Department of Biochemical Sciences, University of Florence, V.le Morgagni 50, 50134 Firenze, Italy
| | | | | | | | | |
Collapse
|
39
|
Abstract
Enzymes possessing the capacity to oxidize molecular hydrogen have developed convergently three class of enzymes leading to: [FeFe]-, [NiFe]-, and [FeS]-cluster-free hydrogenases. They differ in the composition and the structure of the active site metal centre and the sequence of the constituent structural polypeptides but they show one unifying feature, namely the existence of CN and/or CO ligands at the active site Fe. Recent developments in the analysis of the maturation of [FeFe]- and [NiFe]- hydrogenases have revealed a remarkably complex pattern of mostly novel biochemical reactions. Maturation of [FeFe]-hydrogenases requires a minimum of three auxiliary proteins, two of which belong to the class of Radical-SAM enzymes and other to the family of GTPases. They are sufficient to generate active enzyme when their genes are co-expressed with the structural genes in a heterologous host, otherwise deficient in [FeFe]-hydrogenase expression. Maturation of the large subunit of [NiFe]-hydrogenases depends on the activity of at least seven core proteins that catalyse the synthesis of the CN ligand, have a function in the coordination of the active site iron, the insertion of nickel and the proteolytic maturation of the large subunit. Whereas this core maturation machinery is sufficient to generate active hydrogenase in the cytoplasm, like that of hydrogenase 3 from Escherichia coli, additional proteins are involved in the export of the ready-assembled heterodimeric enzyme to the periplasm via the twin-arginine translocation system in the case of membrane-bound hydrogenases. A series of other gene products with intriguing putative functions indicate that the minimal pathway established for E. coli [NiFe]-hydrogenase maturation may possess even higher complexity in other organisms.
Collapse
Affiliation(s)
- August Böck
- Department Biology I, University of Munich, 80638 Munich, Germany
| | | | | | | |
Collapse
|
40
|
Canale C, Torrassa S, Rispoli P, Relini A, Rolandi R, Bucciantini M, Stefani M, Gliozzi A. Natively folded HypF-N and its early amyloid aggregates interact with phospholipid monolayers and destabilize supported phospholipid bilayers. Biophys J 2006; 91:4575-88. [PMID: 16997875 PMCID: PMC1779933 DOI: 10.1529/biophysj.106.089482] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent data depict membranes as the main sites where proteins/peptides are recruited and concentrated, misfold, and nucleate amyloids; at the same time, membranes are considered key triggers of amyloid toxicity. The N-terminal domain of the prokaryotic hydrogenase maturation factor HypF (HypF-N) in 30% trifluoroethanol undergoes a complex path of fibrillation starting with initial 2-3-nm oligomers and culminating with the appearance of mature fibrils. Oligomers are highly cytotoxic and permeabilize lipid membranes, both biological and synthetic. In this article, we report an in-depth study aimed at providing information on the surface activity of HypF-N and its interaction with synthetic membranes of different lipid composition, either in the native conformation or as amyloid oligomers or fibrils. Like other amyloidogenic peptides, the natively folded HypF-N forms stable films at the air/water interface and inserts into synthetic phospholipid bilayers with efficiencies depending on the type of phospholipid. In addition, HypF-N prefibrillar aggregates interact with, insert into, and disassemble supported phospholipid bilayers similarly to other amyloidogenic peptides. These results support the idea that, at least in most cases, early amyloid aggregates of different peptides and proteins produce similar effects on the integrity of membrane assembly and hence on cell viability.
Collapse
Affiliation(s)
- Claudio Canale
- Department of Physics, University of Genoa, Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Corazza A, Rosano C, Pagano K, Alverdi V, Esposito G, Capanni C, Bemporad F, Plakoutsi G, Stefani M, Chiti F, Zuccotti S, Bolognesi M, Viglino P. Structure, conformational stability, and enzymatic properties of acylphosphatase from the hyperthermophile Sulfolobus solfataricus. Proteins 2006; 62:64-79. [PMID: 16287076 DOI: 10.1002/prot.20703] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The structure of AcP from the hyperthermophilic archaeon Sulfolobus solfataricus has been determined by (1)H-NMR spectroscopy and X-ray crystallography. Solution and crystal structures (1.27 A resolution, R-factor 13.7%) were obtained on the full-length protein and on an N-truncated form lacking the first 12 residues, respectively. The overall Sso AcP fold, starting at residue 13, displays the same betaalphabetabetaalphabeta topology previously described for other members of the AcP family from mesophilic sources. The unstructured N-terminal tail may be crucial for the unusual aggregation mechanism of Sso AcP previously reported. Sso AcP catalytic activity is reduced at room temperature but rises at its working temperature to values comparable to those displayed by its mesophilic counterparts at 25-37 degrees C. Such a reduced activity can result from protein rigidity and from the active site stiffening due the presence of a salt bridge between the C-terminal carboxylate and the active site arginine. Sso AcP is characterized by a melting temperature, Tm, of 100.8 degrees C and an unfolding free energy, DeltaG(U-F)H2O, at 28 degrees C and 81 degrees C of 48.7 and 20.6 kJ mol(-1), respectively. The kinetic and structural data indicate that mesophilic and hyperthermophilic AcP's display similar enzymatic activities and conformational stabilities at their working conditions. Structural analysis of the factor responsible for Sso AcP thermostability with respect to mesophilic AcP's revealed the importance of a ion pair network stabilizing particularly the beta-sheet and the loop connecting the fourth and fifth strands, together with increased density packing, loop shortening and a higher alpha-helical propensity.
Collapse
Affiliation(s)
- Alessandra Corazza
- Dipartimento di Scienze e Tecnologie Biomediche, Università di Udine, Udine, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Miyazono KI, Sawano Y, Tanokura M. Crystal structure and structural stability of acylphosphatase from hyperthermophilic archaeon Pyrococcus horikoshii OT3. Proteins 2005; 61:196-205. [PMID: 16080154 DOI: 10.1002/prot.20535] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To elucidate the structural basis for the high stability of acylphosphatase (AcP) from Pyrococcus horikoshii OT3, we determined its crystal structure at 1.72 A resolution. P. horikoshii AcP possesses high stability despite its approximately 30% sequence identity with eukaryotic enzymes that have moderate thermostability. The overall fold of P. horikoshii AcP was very similar to the structures of eukaryotic counterparts. The crystal structure of P. horikoshii AcP shows the same fold betaalphabetabetaalphabeta topology and the conserved putative catalytic residues as observed in eukaryotic enzymes. Comparison with the crystal structure of bovine common-type AcP and that of D. melanogaster AcP (AcPDro2) as representative of eukaryotic AcP revealed some significant characteristics in P. horikoshii AcP that likely play important roles in structural stability: (1) shortening of the flexible N-terminal region and long loop; (2) an increased number of ion pairs on the protein surface; (3) stabilization of the loop structure by hydrogen bonds. In P. horikoshii AcP, two ion pair networks were observed one located in the loop structure positioned near the C-terminus, and other on the beta-sheet. The importance of ion pairs for structural stability was confirmed by site-directed mutation and denaturation induced by guanidium chloride.
Collapse
Affiliation(s)
- Ken-ichi Miyazono
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | | | | |
Collapse
|
43
|
Cheung YY, Lam SY, Chu WK, Allen MD, Bycroft M, Wong KB. Crystal structure of a hyperthermophilic archaeal acylphosphatase from Pyrococcus horikoshii--structural insights into enzymatic catalysis, thermostability, and dimerization. Biochemistry 2005; 44:4601-11. [PMID: 15779887 DOI: 10.1021/bi047832k] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acylphosphatases catalyze the hydrolysis of the carboxyl-phosphate bond in acyl phosphates. Although acylphosphatase-like sequences are found in all three domains of life, no structure of acylphosphatase has been reported for bacteria and archaea so far. Here, we report the characterization of enzymatic activities and crystal structure of an archaeal acylphosphatase. A putative acylphosphatase gene (PhAcP) was cloned from the genomic DNA of Pyrococcus horikoshii and was expressed in Escherichia coli. Enzymatic parameters of the recombinant PhAcP were measured using benzoyl phosphate as the substrate. Our data suggest that, while PhAcP is less efficient than other mammalian homologues at 25 degrees C, the thermophilic enzyme is fully active at the optimal growth temperature (98 degrees C) of P. horikoshii. PhAcP is extremely stable; its apparent melting temperature was 111.5 degrees C and free energy of unfolding at 25 degrees C was 54 kJ mol(-)(1). The 1.5 A crystal structure of PhAcP adopts an alpha/beta sandwich fold that is common to other acylphosphatases. PhAcP forms a dimer in the crystal structure via antiparallel association of strand 4. Structural comparison to mesophilic acylphosphatases reveals significant differences in the conformation of the L5 loop connecting strands 4 and 5. The extreme thermostability of PhAcP can be attributed to an extensive ion-pair network consisting of 13 charge residues on the beta sheet of the protein. The reduced catalytic efficiency of PhAcP at 25 degrees C may be due to a less flexible active-site residue, Arg20, which forms a salt bridge to the C-terminal carboxyl group. New insights into catalysis were gained by docking acetyl phosphate to the active site of PhAcP.
Collapse
Affiliation(s)
- Yuk-Yin Cheung
- Department of Biochemistry, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
44
|
Marcon G, Plakoutsi G, Canale C, Relini A, Taddei N, Dobson CM, Ramponi G, Chiti F. Amyloid formation from HypF-N under conditions in which the protein is initially in its native state. J Mol Biol 2005; 347:323-35. [PMID: 15740744 DOI: 10.1016/j.jmb.2005.01.034] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 01/12/2005] [Accepted: 01/13/2005] [Indexed: 10/25/2022]
Abstract
Aggregation of the N-terminal domain of the Escherichia coli HypF (HypF-N) was investigated in mild denaturing conditions, generated by addition of 6-12% (v/v) trifluoroethanol (TFE). Atomic force microscopy indicates that under these conditions HypF-N converts into the same type of protofibrillar aggregates previously shown to be highly toxic to cultured cells. These convert subsequently, after some weeks, into well-defined fibrillar structures. The rate of protofibril formation, monitored by thioflavin T (ThT) fluorescence, depends strongly on the concentration of TFE. Prior to aggregation the protein has far-UV circular dichroism (CD) and intrinsic fluorescence spectra identical with those observed for the native protein in the absence of co-solvent; the quenching of the intrinsic tryptophan fluorescence by acrylamide and the ANS binding properties are also identical in the two cases. These findings indicate that HypF-N is capable of forming amyloid protofibrils and fibrils under conditions in which the protein is initially in a predominantly native-like conformation. The rate constants for folding and unfolding of HypF-N, determined in 10% TFE using the stopped-flow technique, indicate that a partially folded state is in rapid equilibrium with the native state and populated to ca 1%. A kinetic analysis reveals that aggregation results from molecules accessing such a partially folded state. The approach described here shows that it is possible to probe the mechanism of aggregation of a specific protein under conditions in which the protein is initially native and hence relevant to a physiological environment. In addition, the results indicate that toxic protofibrils can be formed from globular proteins under conditions that are only marginally destabilising and in which the large majority of molecules have the native fold. This conclusion emphasises the importance for cells to constantly combat the propensity for even the most stable of these proteins to aggregate.
Collapse
Affiliation(s)
- Giordana Marcon
- Dipartimento di Scienze Biochimiche, Università di Firenze, Viale Morgagni 50, 50134 Firenze, Italy
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Zuccotti S, Rosano C, Bemporad F, Stefani M, Bolognesi M. Preliminary characterization of two different crystal forms of acylphosphatase from the hyperthermophile archaeon Sulfolobus solfataricus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:144-6. [PMID: 16508117 PMCID: PMC1952370 DOI: 10.1107/s1744309104032336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 12/07/2004] [Indexed: 11/10/2022]
Abstract
Acylphosphatase is a ubiquitous small enzyme that was first characterized in mammals. It is involved in the hydrolysis of carboxyl-phosphate bonds in several acylphosphate substrates, such as carbamoylphosphate and 1,3-biphosphoglycerate; however, a consensus on acylphosphatase action in vivo has not yet been reached. Recent investigations have focused on acylphosphatases from lower phyla, such as Drosophila melanogaster and Escherichia coli, in view of the application of these small proteins as models in the study of folding, misfolding and aggregation processes. An acylphosphatase from the hyperthermophilic archaeon Sulfolobus solfataricus has been cloned, expressed and purified. Here, the growth and characterization of a triclinic and a monoclinic crystal form of the hyperthermophilic enzyme are reported; X-ray diffraction data have been collected to 1.27 and 1.90 A resolution, respectively.
Collapse
Affiliation(s)
- Simone Zuccotti
- Department of Physics–INFM and Center of Excellence for Biomedical Research, University of Genova, Via Dodecaneso 33, 16132 Genova, Italy
| | - Camillo Rosano
- National Institute for Cancer Research (IST), X-ray Structural Biology Unit, Largo R. Benzi 10, 16132 Genova, Italy
| | - Francesco Bemporad
- Department of Biochemical Sciences, University of Firenze, Viale Morgagni 50, 50134 Florence, Italy
| | - Massimo Stefani
- Department of Biochemical Sciences, University of Firenze, Viale Morgagni 50, 50134 Florence, Italy
- Centro di Ricerca, Trasferimento e Alta Formazione MCIDNENT, University of Firenze, Viale Morgagni 50, 50134 Florence, Italy
| | - Martino Bolognesi
- Department of Physics–INFM and Center of Excellence for Biomedical Research, University of Genova, Via Dodecaneso 33, 16132 Genova, Italy
| |
Collapse
|
46
|
Sawers RG, Blokesch M, Böck A. Anaerobic Formate and Hydrogen Metabolism. EcoSal Plus 2004; 1. [PMID: 26443350 DOI: 10.1128/ecosalplus.3.5.4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2004] [Indexed: 06/05/2023]
Abstract
During fermentative growth, Escherichia coli degrades carbohydrates via the glycolytic route into two pyruvate molecules. Pyruvate can be reduced to lactate or nonoxidatively cleaved by pyruvate formate lyase into acetyl-coenzyme A (acetyl-CoA) and formate. Acetyl-CoA can be utilized for energy conservation in the phosphotransacetylase (PTA) and acetate kinase (ACK) reaction sequence or can serve as an acceptor for reducing equivalents gathered during pyruvate formation, through the action of alcohol dehydrogenase (AdhE). Formic acid is strongly acidic and has a redox potential of -420 mV under standard conditions and therefore can be classified as a high-energy compound. Its disproportionation into CO2 and molecular hydrogen (Em,7 -420 mV) via the formate hydrogenlyase (FHL) system is therefore of high selective value. The FHL reaction involves the participation of at least seven proteins, most of which are metalloenzymes, with requirements for iron, molybdenum, nickel, or selenium. Complex auxiliary systems incorporate these metals. Reutilization of the hydrogen evolved required the evolution of H2 oxidation systems, which couple the oxidation process to an appropriate energy-conserving terminal reductase. E. coli has two hydrogen-oxidizing enzyme systems. Finally, fermentation is the "last resort" of energy metabolism, since it gives the minimal energy yield when compared with respiratory processes. Consequently, fermentation is used only when external electron acceptors are absent. This has necessitated the establishment of regulatory cascades, which ensure that the metabolic capability is appropriately adjusted to the physiological condition. Here we review the genetics, biochemistry, and regulation of hydrogen metabolism and its hydrogenase maturation system.
Collapse
|
47
|
Blokesch M, Paschos A, Bauer A, Reissmann S, Drapal N, Böck A. Analysis of the transcarbamoylation-dehydration reaction catalyzed by the hydrogenase maturation proteins HypF and HypE. ACTA ACUST UNITED AC 2004; 271:3428-36. [PMID: 15291820 DOI: 10.1111/j.1432-1033.2004.04280.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hydrogenase maturation proteins HypF and HypE catalyze the synthesis of the CN ligands of the active site iron of the NiFe-hydrogenases using carbamoylphosphate as a substrate. HypE protein from Escherichia coli was purified from a transformant overexpressing the hypE gene from a plasmid. Purified HypE in gel filtration experiments behaves predominantly as a monomer. It does not contain statistically significant amounts of metals or of cofactors absorbing in the UV and visible light range. The protein displays low intrinsic ATPase activity with ADP and phosphate as the products, the apparent K(m) being 25 micro m and the k(cat) 1.7 x 10(-3) s(-1). Removal of the C-terminal cysteine residue of HypE which accepts the carbamoyl moiety from HypF affected the K(m) (47 micro m) but not significantly the k(cat) (2.1 x 10(-3) s(-1)). During the carbamoyltransfer reaction, HypE and HypF enter a complex which is rather tight at stoichiometric ratios of the two proteins. A mutant HypE variant was generated by amino acid replacements in the nucleoside triphosphate binding region, which showed no intrinsic ATPase activity. The variant was active as an acceptor in the transcarbamoylation reaction but did not dehydrate the thiocarboxamide to the thiocyanate. The results obtained with the HypE variants and also with mutant HypF forms are integrated to explain the complex reaction pattern of protein HypF.
Collapse
Affiliation(s)
- Melanie Blokesch
- Department Biologie I, Mikrobiologie, Ludwig-Maximilians-Universität München, München, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Bemporad F, Capanni C, Calamai M, Tutino ML, Stefani M, Chiti F. Studying the folding process of the acylphosphatase from Sulfolobus solfataricus. A comparative analysis with other proteins from the same superfamily. Biochemistry 2004; 43:9116-26. [PMID: 15248769 DOI: 10.1021/bi030238a] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The folding process of the acylphosphatase from Sulfolobus solfataricus (Sso AcP) has been followed, starting from the fully unfolded state, using a variety of spectroscopic probes, including intrinsic fluorescence, circular dichroism, and ANS binding. The results indicate that an ensemble of partially folded or misfolded species form rapidly on the submillisecond time scale after initiation of folding. This conformational ensemble produces a pronounced downward curvature in the Chevron plot, appears to possess a content of secondary structure similar to that of the native state, as revealed by far-UV circular dichroism, and appears to have surface-exposed hydrophobic clusters, as indicated by the ability of this ensemble to bind to 8-anilino-1-naphthalenesulfonic acid (ANS). Sso AcP folds from this conformational state with a rate constant of ca. 5 s(-1) at pH 5.5 and 37 degrees C. A minor slow exponential phase detected during folding (rate constant of 0.2 s(-1) under these conditions) is accelerated by cyclophilin A and is absent in a mutant of Sso AcP in which alanine replaces the proline residue at position 50. This indicates that for a lower fraction of Sso AcP molecules the folding process is rate-limited by the cis-trans isomerism of the peptide bond preceding Pro50. A comparative analysis with four other homologous proteins from the acylphosphatase superfamily shows that sequence hydrophobicity is an important determinant of the conformational stability of partially folded states that may accumulate during folding of a protein. A low net charge and a high propensity to form alpha-helical structure also emerge as possibly important determinants of the stability of partially folded states. A significant correlation is also observed between folding rate and hydrophobic content of the sequence within this superfamily, lending support to the idea that sequence hydrophobicity, in addition to relative contact order and conformational stability of the native state, is a key determinant of folding rate.
Collapse
Affiliation(s)
- Francesco Bemporad
- Dipartimento di Scienze Biochimiche, Università di Firenze, Viale Morgagni 50, 50134 Firenze, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Jason Kuchar
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824-4320, USA
| | | |
Collapse
|
50
|
Relini A, Torrassa S, Rolandi R, Gliozzi A, Rosano C, Canale C, Bolognesi M, Plakoutsi G, Bucciantini M, Chiti F, Stefani M. Monitoring the process of HypF fibrillization and liposome permeabilization by protofibrils. J Mol Biol 2004; 338:943-57. [PMID: 15111058 DOI: 10.1016/j.jmb.2004.03.054] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Revised: 03/04/2004] [Accepted: 03/12/2004] [Indexed: 11/20/2022]
Abstract
Much information has appeared in the last few years on the low resolution structure of amyloid fibrils and on their non-fibrillar precursors formed by a number of proteins and peptides associated with amyloid diseases. The fine structure and the dynamics of the process leading misfolded molecules to aggregate into amyloid assemblies are far from being fully understood. Evidence has been provided in the last five years that protein aggregation and aggregate toxicity are rather generic processes, possibly affecting all polypeptide chains under suitable experimental conditions. This evidence extends the number of model proteins one can investigate to assess the molecular bases and general features of protein aggregation and aggregate toxicity. We have used tapping mode atomic force microscopy to investigate the morphological features of the pre-fibrillar aggregates and of the mature fibrils produced by the aggregation of the hydrogenase maturation factor HypF N-terminal domain (HypF-N), a protein not associated to any amyloid disease. We have also studied the aggregate-induced permeabilization of liposomes by fluorescence techniques. Our results show that HypF-N aggregation follows a hierarchical path whereby initial globules assemble into crescents; these generate large rings, which evolve into ribbons, further organizing into differently supercoiled fibrils. The early pre-fibrillar aggregates were shown to be able to permeabilize synthetic phospholipid membranes, thus showing that this disease-unrelated protein displays the same amyloidogenic behaviour found for the aggregates of most pathological proteins and peptides. These data complement previously reported findings, and support the idea that protein aggregation, aggregate structure and toxicity are generic properties of polypeptide chains.
Collapse
Affiliation(s)
- Annalisa Relini
- National Institute for the Physics of Matter and Department of Physics, University of Genoa, Genoa 16146, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|