1
|
Levintov L, Vashisth H. Structural and computational studies of HIV-1 RNA. RNA Biol 2024; 21:1-32. [PMID: 38100535 PMCID: PMC10730233 DOI: 10.1080/15476286.2023.2289709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Viruses remain a global threat to animals, plants, and humans. The type 1 human immunodeficiency virus (HIV-1) is a member of the retrovirus family and carries an RNA genome, which is reverse transcribed into viral DNA and further integrated into the host-cell DNA for viral replication and proliferation. The RNA structures from the HIV-1 genome provide valuable insights into the mechanisms underlying the viral replication cycle. Moreover, these structures serve as models for designing novel therapeutic approaches. Here, we review structural data on RNA from the HIV-1 genome as well as computational studies based on these structural data. The review is organized according to the type of structured RNA element which contributes to different steps in the viral replication cycle. This is followed by an overview of the HIV-1 transactivation response element (TAR) RNA as a model system for understanding dynamics and interactions in the viral RNA systems. The review concludes with a description of computational studies, highlighting the impact of biomolecular simulations in elucidating the mechanistic details of various steps in the HIV-1's replication cycle.
Collapse
Affiliation(s)
- Lev Levintov
- Department of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, USA
| | - Harish Vashisth
- Department of Chemical Engineering & Bioengineering, University of New Hampshire, Durham, USA
| |
Collapse
|
2
|
Zarudnaya MI, Potyahaylo AL, Kolomiets IM, Gorb LG. Genome sequence analysis suggests coevolution of the DIS, SD, and Psi hairpins in HIV-1 genomes. Virus Res 2022; 321:198910. [PMID: 36070810 DOI: 10.1016/j.virusres.2022.198910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 12/24/2022]
Abstract
HIV-1 RNA dimerization is a critical step in viral life cycle. It is a prerequisite for genome packaging and plays an important role in reverse transcription and recombination. Dimerization is promoted by the DIS (dimerization initiation site) hairpin located in the 5' leader of HIV-1 genome. Despite the high genetic diversity in HIV-1 group M, only five apical loops (AAGCGCGCA, AAGUGCGCA, AAGUGCACA, AGGUGCACA and AGUGCAC) are commonly found in DIS hairpins. We refer to the parent DISes with these apical loops as DISLai, DISTrans, DISF, DISMal, and DISC, respectively. Based on identity or similarity of DIS hairpins to parent DISes, we distributed HIV-1 M genomes into five dimerization groups. Comparison of the primary and secondary structures of DIS, SD and Psi hairpins in about 3000 HIV-1 M genomes showed that the mutation frequencies at particular nucleotide positions of these hairpins differ among the dimerization groups, and DISF may be an origin of other parent DISes. We found that DIS, SD and Psi hairpins have hundreds of variants, only some of them occurring rather frequently. The lower part of DIS hairpin with G x AGG internal loop is highly conserved in both HIV-1 and SIV genomes. We supposed that the G-quadruplex, located 56 nts downstream of the Gag start codon, may participate in switching of HIV-1 leader RNA from BMH (branched multiple hairpins) to LDI (long distance interaction) conformation.
Collapse
Affiliation(s)
- Margarita I Zarudnaya
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str, Kyiv 03143, Ukraine
| | - Andriy L Potyahaylo
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str, Kyiv 03143, Ukraine
| | - Iryna M Kolomiets
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str, Kyiv 03143, Ukraine
| | - Leonid G Gorb
- Department of Molecular and Quantum Biophysics, Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150 Akademika Zabolotnoho Str, Kyiv 03143, Ukraine.
| |
Collapse
|
3
|
D’Souza AR, Jayaraman D, Long Z, Zeng J, Prestwood LJ, Chan C, Kappei D, Lever AML, Kenyon JC. HIV-1 Packaging Visualised by In-Gel SHAPE. Viruses 2021; 13:v13122389. [PMID: 34960658 PMCID: PMC8707378 DOI: 10.3390/v13122389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
HIV-1 packages two copies of its gRNA into virions via an interaction with the viral structural protein Gag. Both copies and their native RNA structure are essential for virion infectivity. The precise stepwise nature of the packaging process has not been resolved. This is largely due to a prior lack of structural techniques that follow RNA structural changes within an RNA-protein complex. Here, we apply the in-gel SHAPE (selective 2'OH acylation analysed by primer extension) technique to study the initiation of HIV-1 packaging, examining the interaction between the packaging signal RNA and the Gag polyprotein, and compare it with that of the NC domain of Gag alone. Our results imply interactions between Gag and monomeric packaging signal RNA in switching the RNA conformation into a dimerisation-competent structure, and show that the Gag-dimer complex then continues to stabilise. These data provide a novel insight into how HIV-1 regulates the translation and packaging of its genome.
Collapse
Affiliation(s)
- Aaron R. D’Souza
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (A.R.D.); (D.J.)
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (C.C.); (D.K.)
| | - Dhivya Jayaraman
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (A.R.D.); (D.J.)
| | - Ziqi Long
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital, Cambridge CB2 0QQ, UK; (Z.L.); (J.Z.); (L.J.P.)
| | - Jingwei Zeng
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital, Cambridge CB2 0QQ, UK; (Z.L.); (J.Z.); (L.J.P.)
| | - Liam J. Prestwood
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital, Cambridge CB2 0QQ, UK; (Z.L.); (J.Z.); (L.J.P.)
| | - Charlene Chan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (C.C.); (D.K.)
| | - Dennis Kappei
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (C.C.); (D.K.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrew M. L. Lever
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (A.R.D.); (D.J.)
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (C.C.); (D.K.)
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital, Cambridge CB2 0QQ, UK; (Z.L.); (J.Z.); (L.J.P.)
- Correspondence: (A.M.L.L.); (J.C.K.); Tel.: +44-(0)1-2237-47308 (J.C.K.)
| | - Julia C. Kenyon
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; (C.C.); (D.K.)
- Department of Medicine, University of Cambridge, Level 5 Addenbrookes Hospital, Cambridge CB2 0QQ, UK; (Z.L.); (J.Z.); (L.J.P.)
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Homerton College, University of Cambridge, Cambridge CB2 8PH, UK
- Correspondence: (A.M.L.L.); (J.C.K.); Tel.: +44-(0)1-2237-47308 (J.C.K.)
| |
Collapse
|
4
|
Dagenais P, Desjardins G, Legault P. An integrative NMR-SAXS approach for structural determination of large RNAs defines the substrate-free state of a trans-cleaving Neurospora Varkud Satellite ribozyme. Nucleic Acids Res 2021; 49:11959-11973. [PMID: 34718697 PMCID: PMC8599749 DOI: 10.1093/nar/gkab963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 09/01/2021] [Accepted: 10/26/2021] [Indexed: 11/26/2022] Open
Abstract
The divide-and-conquer strategy is commonly used for protein structure determination, but its applications to high-resolution structure determination of RNAs have been limited. Here, we introduce an integrative approach based on the divide-and-conquer strategy that was undertaken to determine the solution structure of an RNA model system, the Neurospora VS ribozyme. NMR and SAXS studies were conducted on a minimal trans VS ribozyme as well as several isolated subdomains. A multi-step procedure was used for structure determination that first involved pairing refined NMR structures with SAXS data to obtain structural subensembles of the various subdomains. These subdomain structures were then assembled to build a large set of structural models of the ribozyme, which was subsequently filtered using SAXS data. The resulting NMR-SAXS structural ensemble shares several similarities with the reported crystal structures of the VS ribozyme. However, a local structural difference is observed that affects the global fold by shifting the relative orientation of the two three-way junctions. Thus, this finding highlights a global conformational change associated with substrate binding in the VS ribozyme that is likely critical for its enzymatic activity. Structural studies of other large RNAs should benefit from similar integrative approaches that allow conformational sampling of assembled fragments.
Collapse
Affiliation(s)
- Pierre Dagenais
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Box 6128, Downtown Station, Montreal, QC H3C 3J7, Quebec, Canada
| | - Geneviève Desjardins
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Box 6128, Downtown Station, Montreal, QC H3C 3J7, Quebec, Canada
| | - Pascale Legault
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Box 6128, Downtown Station, Montreal, QC H3C 3J7, Quebec, Canada
| |
Collapse
|
5
|
Fairman CW, Lever AML, Kenyon JC. Evaluating RNA Structural Flexibility: Viruses Lead the Way. Viruses 2021; 13:v13112130. [PMID: 34834937 PMCID: PMC8624864 DOI: 10.3390/v13112130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Our understanding of RNA structure has lagged behind that of proteins and most other biological polymers, largely because of its ability to adopt multiple, and often very different, functional conformations within a single molecule. Flexibility and multifunctionality appear to be its hallmarks. Conventional biochemical and biophysical techniques all have limitations in solving RNA structure and to address this in recent years we have seen the emergence of a wide diversity of techniques applied to RNA structural analysis and an accompanying appreciation of its ubiquity and versatility. Viral RNA is a particularly productive area to study in that this economy of function within a single molecule admirably suits the minimalist lifestyle of viruses. Here, we review the major techniques that are being used to elucidate RNA conformational flexibility and exemplify how the structure and function are, as in all biology, tightly linked.
Collapse
Affiliation(s)
| | - Andrew M. L. Lever
- Department of Medicine, Cambridge University, Level 5, Addenbrookes’ Hospital (Box 157), Cambridge CB2 0QQ, UK
- Correspondence: (A.M.L.L.); (J.C.K.); Tel.: +44-(0)-1223-747308 (A.M.L.L. & J.C.K.)
| | - Julia C. Kenyon
- Homerton College, University of Cambridge, Cambridge CB2 8PH, UK;
- Department of Medicine, Cambridge University, Level 5, Addenbrookes’ Hospital (Box 157), Cambridge CB2 0QQ, UK
- Correspondence: (A.M.L.L.); (J.C.K.); Tel.: +44-(0)-1223-747308 (A.M.L.L. & J.C.K.)
| |
Collapse
|
6
|
Advanced approaches for elucidating structures of large RNAs using NMR spectroscopy and complementary methods. Methods 2020; 183:93-107. [DOI: 10.1016/j.ymeth.2020.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/11/2019] [Accepted: 01/16/2020] [Indexed: 11/23/2022] Open
|
7
|
Boyd PS, Brown JB, Brown JD, Catazaro J, Chaudry I, Ding P, Dong X, Marchant J, O’Hern CT, Singh K, Swanson C, Summers MF, Yasin S. NMR Studies of Retroviral Genome Packaging. Viruses 2020; 12:v12101115. [PMID: 33008123 PMCID: PMC7599994 DOI: 10.3390/v12101115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/03/2022] Open
Abstract
Nearly all retroviruses selectively package two copies of their unspliced RNA genomes from a cellular milieu that contains a substantial excess of non-viral and spliced viral RNAs. Over the past four decades, combinations of genetic experiments, phylogenetic analyses, nucleotide accessibility mapping, in silico RNA structure predictions, and biophysical experiments were employed to understand how retroviral genomes are selected for packaging. Genetic studies provided early clues regarding the protein and RNA elements required for packaging, and nucleotide accessibility mapping experiments provided insights into the secondary structures of functionally important elements in the genome. Three-dimensional structural determinants of packaging were primarily derived by nuclear magnetic resonance (NMR) spectroscopy. A key advantage of NMR, relative to other methods for determining biomolecular structure (such as X-ray crystallography), is that it is well suited for studies of conformationally dynamic and heterogeneous systems—a hallmark of the retrovirus packaging machinery. Here, we review advances in understanding of the structures, dynamics, and interactions of the proteins and RNA elements involved in retroviral genome selection and packaging that are facilitated by NMR.
Collapse
|
8
|
Abstract
Systematics is described for annotation of variations in RNA molecules. The conceptual framework is part of Variation Ontology (VariO) and facilitates depiction of types of variations, their functional and structural effects and other consequences in any RNA molecule in any organism. There are more than 150 RNA related VariO terms in seven levels, which can be further combined to generate even more complicated and detailed annotations. The terms are described together with examples, usually for variations and effects in human and in diseases. RNA variation type has two subcategories: variation classification and origin with subterms. Altogether six terms are available for function description. Several terms are available for affected RNA properties. The ontology contains also terms for structural description for affected RNA type, post-transcriptional RNA modifications, secondary and tertiary structure effects and RNA sugar variations. Together with the DNA and protein concepts and annotations, RNA terms allow comprehensive description of variations of genetic and non-genetic origin at all possible levels. The VariO annotations are readable both for humans and computer programs for advanced data integration and mining.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Boutant E, Bonzi J, Anton H, Nasim MB, Cathagne R, Réal E, Dujardin D, Carl P, Didier P, Paillart JC, Marquet R, Mély Y, de Rocquigny H, Bernacchi S. Zinc Fingers in HIV-1 Gag Precursor Are Not Equivalent for gRNA Recruitment at the Plasma Membrane. Biophys J 2020; 119:419-433. [PMID: 32574557 PMCID: PMC7376094 DOI: 10.1016/j.bpj.2020.05.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 01/16/2023] Open
Abstract
The human immunodeficiency virus type 1 Gag precursor specifically selects the unspliced viral genomic RNA (gRNA) from the bulk of cellular and spliced viral RNAs via its nucleocapsid (NC) domain and drives gRNA encapsidation at the plasma membrane (PM). To further identify the determinants governing the intracellular trafficking of Gag-gRNA complexes and their accumulation at the PM, we compared, in living and fixed cells, the interactions between gRNA and wild-type Gag or Gag mutants carrying deletions in NC zinc fingers (ZFs) or a nonmyristoylated version of Gag. Our data showed that the deletion of both ZFs simultaneously or the complete NC domain completely abolished intracytoplasmic Gag-gRNA interactions. Deletion of either ZF delayed the delivery of gRNA to the PM but did not prevent Gag-gRNA interactions in the cytoplasm, indicating that the two ZFs display redundant roles in this respect. However, ZF2 played a more prominent role than ZF1 in the accumulation of the ribonucleoprotein complexes at the PM. Finally, the myristate group, which is mandatory for anchoring the complexes at the PM, was found to be dispensable for the association of Gag with the gRNA in the cytosol.
Collapse
Affiliation(s)
- Emmanuel Boutant
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.
| | - Jeremy Bonzi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Halina Anton
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Maaz Bin Nasim
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Raphael Cathagne
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Eléonore Réal
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Denis Dujardin
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Philippe Carl
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Jean-Christophe Paillart
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Roland Marquet
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Hugues de Rocquigny
- Morphogenèse et Antigénicité du VIH et des Virus des Hépatites, Inserm - U1259 MAVIVH, Tours, France.
| | - Serena Bernacchi
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR9002, Strasbourg, France.
| |
Collapse
|
10
|
Dubois N, Marquet R, Paillart JC, Bernacchi S. Retroviral RNA Dimerization: From Structure to Functions. Front Microbiol 2018; 9:527. [PMID: 29623074 PMCID: PMC5874298 DOI: 10.3389/fmicb.2018.00527] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/08/2018] [Indexed: 01/18/2023] Open
Abstract
The genome of the retroviruses is a dimer composed by two homologous copies of genomic RNA (gRNA) molecules of positive polarity. The dimerization process allows two gRNA molecules to be non-covalently linked together through intermolecular base-pairing. This step is critical for the viral life cycle and is highly conserved among retroviruses with the exception of spumaretroviruses. Furthermore, packaging of two gRNA copies into viral particles presents an important evolutionary advantage for immune system evasion and drug resistance. Recent studies reported RNA switches models regulating not only gRNA dimerization, but also translation and packaging, and a spatio-temporal characterization of viral gRNA dimerization within cells are now at hand. This review summarizes our current understanding on the structural features of the dimerization signals for a variety of retroviruses (HIVs, MLV, RSV, BLV, MMTV, MPMV…), the mechanisms of RNA dimer formation and functional implications in the retroviral cycle.
Collapse
Affiliation(s)
- Noé Dubois
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Roland Marquet
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| | - Serena Bernacchi
- Architecture et Réactivité de l'ARN, UPR 9002, IBMC, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
11
|
Zhang K, Keane SC, Su Z, Irobalieva RN, Chen M, Van V, Sciandra CA, Marchant J, Heng X, Schmid MF, Case DA, Ludtke SJ, Summers MF, Chiu W. Structure of the 30 kDa HIV-1 RNA Dimerization Signal by a Hybrid Cryo-EM, NMR, and Molecular Dynamics Approach. Structure 2018; 26:490-498.e3. [PMID: 29398526 PMCID: PMC5842133 DOI: 10.1016/j.str.2018.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 11/12/2017] [Accepted: 01/03/2018] [Indexed: 02/01/2023]
Abstract
Cryoelectron microscopy (cryo-EM) and nuclear magnetic resonance (NMR) spectroscopy are routinely used to determine structures of macromolecules with molecular weights over 65 and under 25 kDa, respectively. We combined these techniques to study a 30 kDa HIV-1 dimer initiation site RNA ([DIS]2; 47 nt/strand). A 9 Å cryo-EM map clearly shows major groove features of the double helix and a right-handed superhelical twist. Simulated cryo-EM maps generated from time-averaged molecular dynamics trajectories (10 ns) exhibited levels of detail similar to those in the experimental maps, suggesting internal structural flexibility limits the cryo-EM resolution. Simultaneous inclusion of the cryo-EM map and 2H-edited NMR-derived distance restraints during structure refinement generates a structure consistent with both datasets and supporting a flipped-out base within a conserved purine-rich bulge. Our findings demonstrate the power of combining global and local structural information from these techniques for structure determination of modest-sized RNAs.
Collapse
Affiliation(s)
- Kaiming Zhang
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sarah C Keane
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA
| | - Zhaoming Su
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rossitza N Irobalieva
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Muyuan Chen
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Verna Van
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA
| | - Carly A Sciandra
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA
| | - Jan Marchant
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA
| | - Xiao Heng
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Michael F Schmid
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David A Case
- Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| | - Steven J Ludtke
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Michael F Summers
- Howard Hughes Medical Institute (HHMI) and Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, MD 21250, USA.
| | - Wah Chiu
- National Center for Macromolecular Imaging, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Guerrero S, Batisse J, Libre C, Bernacchi S, Marquet R, Paillart JC. HIV-1 replication and the cellular eukaryotic translation apparatus. Viruses 2015; 7:199-218. [PMID: 25606970 PMCID: PMC4306834 DOI: 10.3390/v7010199] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/12/2015] [Indexed: 12/13/2022] Open
Abstract
Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1) uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication.
Collapse
Affiliation(s)
- Santiago Guerrero
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France.
| | - Julien Batisse
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France.
| | - Camille Libre
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France.
| | - Serena Bernacchi
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France.
| | - Roland Marquet
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France.
| | - Jean-Christophe Paillart
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France.
| |
Collapse
|
13
|
Jones CP, Cantara WA, Olson ED, Musier-Forsyth K. Small-angle X-ray scattering-derived structure of the HIV-1 5' UTR reveals 3D tRNA mimicry. Proc Natl Acad Sci U S A 2014; 111:3395-400. [PMID: 24550473 PMCID: PMC3948283 DOI: 10.1073/pnas.1319658111] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The most conserved region of the HIV type 1 (HIV-1) genome, the ∼335-nt 5' UTR, is characterized by functional stem loop domains responsible for regulating the viral life cycle. Despite the indispensable nature of this region of the genome in HIV-1 replication, 3D structures of multihairpin domains of the 5' UTR remain unknown. Using small-angle X-ray scattering and molecular dynamics simulations, we generated structural models of the transactivation (TAR)/polyadenylation (polyA), primer-binding site (PBS), and Psi-packaging domains. TAR and polyA form extended, coaxially stacked hairpins, consistent with their high stability and contribution to the pausing of reverse transcription. The Psi domain is extended, with each stem loop exposed for interactions with binding partners. The PBS domain adopts a bent conformation resembling the shape of a tRNA in apo and primer-annealed states. These results provide a structural basis for understanding several key molecular mechanisms underlying HIV-1 replication.
Collapse
Affiliation(s)
| | | | - Erik D. Olson
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
14
|
Kenyon JC, Prestwood LJ, Le Grice SFJ, Lever AML. In-gel probing of individual RNA conformers within a mixed population reveals a dimerization structural switch in the HIV-1 leader. Nucleic Acids Res 2013; 41:e174. [PMID: 23935074 PMCID: PMC3794615 DOI: 10.1093/nar/gkt690] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Definitive secondary structural mapping of RNAs in vitro can be complicated by the presence of more than one structural conformer or multimerization of some of the molecules. Until now, probing a single structure of conformationally flexible RNA molecules has typically relied on introducing stabilizing mutations or adjusting buffer conditions or RNA concentration. Here, we present an in-gel SHAPE (selective 2'OH acylation analysed by primer extension) approach, where a mixed structural population of RNA molecules is separated by non-denaturing gel electrophoresis and the conformers are individually probed within the gel matrix. Validation of the technique using a well-characterized RNA stem-loop structure, the HIV-1 trans-activation response element, showed that authentic structure was maintained and that the method was accurate and highly reproducible. To further demonstrate the utility of in-gel SHAPE, we separated and examined monomeric and dimeric species of the HIV-1 packaging signal RNA. Extensive differences in acylation sensitivity were seen between monomer and dimer. The results support a recently proposed structural switch model of RNA genomic dimerization and packaging, and demonstrate the discriminatory power of in-gel SHAPE.
Collapse
Affiliation(s)
- Julia C Kenyon
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, Cambridgeshire, CB2 0QQ, UK and HIV-Drug Resistance Program, Centre for Cancer Research, National Cancer Institute, P.O. Box B, Building 535, Frederick, MD 21702-1201, USA
| | | | | | | |
Collapse
|
15
|
Stephenson JD, Li H, Kenyon JC, Symmons M, Klenerman D, Lever AML. Three-dimensional RNA structure of the major HIV-1 packaging signal region. Structure 2013; 21:951-62. [PMID: 23685210 PMCID: PMC3690526 DOI: 10.1016/j.str.2013.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 03/23/2013] [Accepted: 04/03/2013] [Indexed: 12/04/2022]
Abstract
HIV-1 genomic RNA has a noncoding 5′ region containing sequential conserved structural motifs that control many parts of the life cycle. Very limited data exist on their three-dimensional (3D) conformation and, hence, how they work structurally. To assemble a working model, we experimentally reassessed secondary structure elements of a 240-nt region and used single-molecule distances, derived from fluorescence resonance energy transfer, between defined locations in these elements as restraints to drive folding of the secondary structure into a 3D model with an estimated resolution below 10 Å. The folded 3D model satisfying the data is consensual with short nuclear-magnetic-resonance-solved regions and reveals previously unpredicted motifs, offering insight into earlier functional assays. It is a 3D representation of this entire region, with implications for RNA dimerization and protein binding during regulatory steps. The structural information of this highly conserved region of the virus has the potential to reveal promising therapeutic targets. The 2D structure of the HIV-1 5′ UTR RNA has been elucidated in a monomerized form The low-resolution 3D structure has been determined by FRET and simulated annealing Modeling has revealed an unpredicted kink turn
Collapse
|
16
|
Sequences within both the 5' UTR and Gag are required for optimal in vivo packaging and propagation of mouse mammary tumor virus (MMTV) genomic RNA. PLoS One 2012; 7:e47088. [PMID: 23077548 PMCID: PMC3473059 DOI: 10.1371/journal.pone.0047088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2012] [Accepted: 09/07/2012] [Indexed: 01/31/2023] Open
Abstract
Background This study mapped regions of genomic RNA (gRNA) important for packaging and propagation of mouse mammary tumor virus (MMTV). MMTV is a type B betaretrovirus which preassembles intracellularly, a phenomenon distinct from retroviruses that assemble the progeny virion at cell surface just before budding such as the type C human and feline immunodeficiency viruses (HIV and FIV). Studies of FIV and Mason-Pfizer monkey virus (MPMV), a type D betaretrovirus with similar intracellular virion assembly processes as MMTV, have shown that the 5′ untranslated region (5′ UTR) and 5′ end of gag constitute important packaging determinants for gRNA. Methodology Three series of MMTV transfer vectors containing incremental amounts of gag or 5′ UTR sequences, or incremental amounts of 5′ UTR in the presence of 400 nucleotides (nt) of gag were constructed to delineate the extent of 5′ sequences that may be involved in MMTV gRNA packaging. Real time PCR measured the packaging efficiency of these vector RNAs into MMTV particles generated by co-transfection of MMTV Gag/Pol, vesicular stomatitis virus envelope glycoprotein (VSV-G Env), and individual transfer vectors into human 293T cells. Transfer vector RNA propagation was monitored by measuring transduction of target HeLaT4 cells following infection with viral particles containing a hygromycin resistance gene expression cassette on the packaged RNA. Principal Findings MMTV requires the entire 5′ UTR and a minimum of ∼120 nucleotide (nt) at the 5′ end of gag for not only efficient gRNA packaging but also propagation of MMTV-based transfer vector RNAs. Vector RNAs without the entire 5′ UTR were defective for both efficient packaging and propagation into target cells. Conclusions/Significance These results reveal that the 5′ end of MMTV genome is critical for both gRNA packaging and propagation, unlike the recently delineated FIV and MPMV packaging determinants that have been shown to be of bipartite nature.
Collapse
|
17
|
Reyes-Darias JA, Sánchez-Luque FJ, Berzal-Herranz A. HIV RNA dimerisation interference by antisense oligonucleotides targeted to the 5' UTR structural elements. Virus Res 2012; 169:63-71. [PMID: 22820401 DOI: 10.1016/j.virusres.2012.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 06/29/2012] [Accepted: 07/07/2012] [Indexed: 02/08/2023]
Abstract
The HIV-1 genome consists of two identical RNA molecules non-covalently linked by their 5' unstranslatable regions (5' UTR). The high level of sequence and structural conservation of this region correlates with its important functional involvement in the viral cycle, making it an attractive target for antiviral treatments based on antisense technology. Ten unmodified DNA antisense oligonucleotides (ODNs) targeted against different conserved structural elements within the 5' UTR were assayed for their capacity to interfere with HIV-1 RNA dimerisation, inhibit gene expression, and prevent virus production in cell cultures. The results show that, in addition to the well-characterised dimerisation initiation site (DIS), targeting of the AUG-containing structural element may reflect its direct role in HIV-1 genomic RNA dimerisation in vitro. Similarly, blocking the 3' end sequences of the stem-loop domain containing the primer biding site interferes with RNA dimerisation. Targeting the apical portion of the TAR element, however, appears to promote dimerisation. ODNs targeted against the conserved polyadenylation signal [Poly(A)], the primer binding site (PBS), the major splicing donor (SD) or the major packaging signal (Psi), and AUG-containing structural elements led to a highly efficient inhibition of HIV-1 gene expression and virus production in cell culture. Together, these results support the idea that ODNs possess great potential as molecular tools for the functional characterisation of viral RNA structural domains. Moreover, the targeting of these domains leads to the potent inhibition of viral replication, underscoring the potential of conserved structural RNA elements as antiviral targets.
Collapse
Affiliation(s)
- José A Reyes-Darias
- Instituto de Parasitología y Biomedicina López-Neyra, IPBLN-CSIC, Parque Tecnológico de Ciencias de la Salud, Av del Conocimiento, Armilla, 18100 Granada, Spain
| | | | | |
Collapse
|
18
|
Qu J, Yang Z, Zhang Q, Liu W, Li Y, Ding Q, Liu F, Liu Y, Pan Z, He B, Zhu Y, Wu J. Human immunodeficiency virus-1 Rev protein activates hepatitis C virus gene expression by directly targeting the HCV 5′-untranslated region. FEBS Lett 2011; 585:4002-9. [DOI: 10.1016/j.febslet.2011.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/02/2011] [Accepted: 11/05/2011] [Indexed: 11/16/2022]
|
19
|
Edgcomb SP, Carmel AB, Naji S, Ambrus-Aikelin G, Reyes JR, Saphire ACS, Gerace L, Williamson JR. DDX1 is an RNA-dependent ATPase involved in HIV-1 Rev function and virus replication. J Mol Biol 2011; 415:61-74. [PMID: 22051512 PMCID: PMC3249508 DOI: 10.1016/j.jmb.2011.10.032] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 10/18/2011] [Accepted: 10/18/2011] [Indexed: 12/26/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) Rev protein is essential for the virus because it promotes nuclear export of alternatively processed mRNAs, and Rev is also linked to translation of viral mRNAs and genome encapsidation. Previously, the human DEAD-box helicase DDX1 was suggested to be involved in Rev functions, but this relationship is not well understood. Biochemical studies of DDX1 and its interactions with Rev and model RNA oligonucleotides were carried out to investigate the molecular basis for association of these components. A combination of gel-filtration chromatography and circular dichroism spectroscopy demonstrated that recombinant DDX1 expressed in Escherichia coli is a well-behaved folded protein. Binding assays using fluorescently labeled Rev and cell-based immunoprecipitation analysis confirmed a specific RNA-independent DDX1–Rev interaction. Additionally, DDX1 was shown to be an RNA-activated ATPase, wherein Rev-bound RNA was equally effective at stimulating ATPase activity as protein-free RNA. Gel mobility shift assays further demonstrated that DDX1 forms complexes with Rev-bound RNA. RNA silencing of DDX1 provided strong evidence that DDX1 is required for both Rev activity and HIV production from infected cells. Collectively, these studies demonstrate a clear link between DDX1 and HIV-1 Rev in cell-based assays of HIV-1 production and provide the first demonstration that recombinant DDX1 binds Rev and RNA and has RNA-dependent catalytic activity.
Collapse
Affiliation(s)
- Stephen P Edgcomb
- Department of Molecular Biology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu J, Henao-Mejia J, Liu H, Zhao Y, He JJ. Translational regulation of HIV-1 replication by HIV-1 Rev cellular cofactors Sam68, eIF5A, hRIP, and DDX3. J Neuroimmune Pharmacol 2011; 6:308-21. [PMID: 21360055 DOI: 10.1007/s11481-011-9265-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 02/14/2011] [Indexed: 10/18/2022]
Abstract
Nuclear export and translation of HIV-1 RNA are two important posttranscriptional events for HIV-1 gene expression and replication. HIV-1 Rev functions to export unspliced and incompletely spliced HIV-1 RNA from the nucleus to the cytoplasm; it requires interaction with several cellular cofactors such as Sam68, eIF5A, hRIP, and DDX3. Meanwhile, some studies have also implicated Rev and some of its cofactors such as Sam68 in HIV-1 RNA translation. Thus, in this study, we aimed to characterize the potential function of all these four Rev cofactors in HIV-1 RNA translation. Ectopic expression, siRNA knockdown, and trans-complementation assays confirmed that all these cofactors were very important for HIV-1 gene expression and production through Rev and, accordingly, Rev-dependent reporter gene expression. Importantly, these studies revealed for the first time that each of these cofactors also regulated Rev-independent reporter gene expression. To directly determine the roles of these cofactors in HIV-1 RNA translation, we designed and synthesized a full-length capped HIV-1 RNA in vitro, transfected it into cells to bypass the RNA nuclear export step, and determined HIV-1 Gag expression from the cytoplasmic RNA in the cells that had ectopically expressed or siRNA knocked down cofactors. Gag expression was found to closely correlate with the expression levels of all these cofactors. Furthermore, we took advantage of a HIV-1 internal ribosomal entry site (IRES)-based bicistronic reporter gene assay and determined the effects of these cofactors on cap-independent IRES-mediated HIV-1 translation. The results showed that DDX3, eIF5A, and hRIP enhanced HIV-1 IRES-mediated translation, whereas Sam68 did not. Taken together, these results show that HIV-1 Rev cofactors Sam68, eIF5A, hRIP, and DDX3 also function in the translation of HIV-1 RNA and suggest that the regulatory mechanisms of HIV-1 RNA translation are likely different among these cofactors.
Collapse
Affiliation(s)
- Jinfeng Liu
- The First Affiliated Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, People's Republic of China
| | | | | | | | | |
Collapse
|
21
|
Rizvi TA, Kenyon JC, Ali J, Aktar SJ, Phillip PS, Ghazawi A, Mustafa F, Lever AML. Optimal packaging of FIV genomic RNA depends upon a conserved long-range interaction and a palindromic sequence within gag. J Mol Biol 2010; 403:103-119. [PMID: 20732330 PMCID: PMC2987497 DOI: 10.1016/j.jmb.2010.08.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 02/06/2023]
Abstract
The feline immunodeficiency virus (FIV) is a lentivirus that is related to human immunodeficiency virus (HIV), causing a similar pathology in cats. It is a potential small animal model for AIDS and the FIV-based vectors are also being pursued for human gene therapy. Previous studies have mapped the FIV packaging signal (ψ) to two or more discontinuous regions within the 5' 511 nt of the genomic RNA and structural analyses have determined its secondary structure. The 5' and 3' sequences within ψ region interact through extensive long-range interactions (LRIs), including a conserved heptanucleotide interaction between R/U5 and gag. Other secondary structural elements identified include a conserved 150 nt stem-loop (SL2) and a small palindromic stem-loop within gag open reading frame that might act as a viral dimerization initiation site. We have performed extensive mutational analysis of these sequences and structures and ascertained their importance in FIV packaging using a trans-complementation assay. Disrupting the conserved heptanucleotide LRI to prevent base pairing between R/U5 and gag reduced packaging by 2.8-5.5 fold. Restoration of pairing using an alternative, non-wild type (wt) LRI sequence restored RNA packaging and propagation to wt levels, suggesting that it is the structure of the LRI, rather than its sequence, that is important for FIV packaging. Disrupting the palindrome within gag reduced packaging by 1.5-3-fold, but substitution with a different palindromic sequence did not restore packaging completely, suggesting that the sequence of this region as well as its palindromic nature is important. Mutation of individual regions of SL2 did not have a pronounced effect on FIV packaging, suggesting that either it is the structure of SL2 as a whole that is necessary for optimal packaging, or that there is redundancy within this structure. The mutational analysis presented here has further validated the previously predicted RNA secondary structure of FIV ψ.
Collapse
Affiliation(s)
- Tahir A Rizvi
- Departments of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE.
| | - Julia C Kenyon
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK
| | - Jahabar Ali
- Departments of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE
| | - Suriya J Aktar
- Departments of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE
| | - Pretty S Phillip
- Departments of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE
| | - Akela Ghazawi
- Departments of Microbiology & Immunology, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE
| | - Farah Mustafa
- Department of Biochemistry, Faculty of Medicine and Health Sciences (FMHS), United Arab Emirates University (UAEU), Al Ain, UAE
| | - Andrew M L Lever
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 2QQ, UK
| |
Collapse
|
22
|
Nozinovic S, Fürtig B, Jonker HRA, Richter C, Schwalbe H. High-resolution NMR structure of an RNA model system: the 14-mer cUUCGg tetraloop hairpin RNA. Nucleic Acids Res 2009; 38:683-94. [PMID: 19906714 PMCID: PMC2811024 DOI: 10.1093/nar/gkp956] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We present a high-resolution nuclear magnetic resonance (NMR) solution structure of a 14-mer RNA hairpin capped by cUUCGg tetraloop. This short and very stable RNA presents an important model system for the study of RNA structure and dynamics using NMR spectroscopy, molecular dynamics (MD) simulations and RNA force-field development. The extraordinary high precision of the structure (root mean square deviation of 0.3 A) could be achieved by measuring and incorporating all currently accessible NMR parameters, including distances derived from nuclear Overhauser effect (NOE) intensities, torsion-angle dependent homonuclear and heteronuclear scalar coupling constants, projection-angle-dependent cross-correlated relaxation rates and residual dipolar couplings. The structure calculations were performed with the program CNS using the ARIA setup and protocols. The structure quality was further improved by a final refinement in explicit water using OPLS force field parameters for non-bonded interactions and charges. In addition, the 2'-hydroxyl groups have been assigned and their conformation has been analyzed based on NOE contacts. The structure currently defines a benchmark for the precision and accuracy amenable to RNA structure determination by NMR spectroscopy. Here, we discuss the impact of various NMR restraints on structure quality and discuss in detail the dynamics of this system as previously determined.
Collapse
Affiliation(s)
- Senada Nozinovic
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
23
|
Groom HCT, Anderson EC, Dangerfield JA, Lever AML. Rev regulates translation of human immunodeficiency virus type 1 RNAs. J Gen Virol 2009; 90:1141-1147. [DOI: 10.1099/vir.0.007963-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Full-length human immunodeficiency virus type 1 (HIV-1) RNA acts as both mRNA, encoding Gag and Gag–Pol polyproteins, and genomic RNA. Translation of this RNA must be tightly controlled to allow sufficient protein synthesis prior to a switch to particle production. The viral protein Rev stimulates nuclear export of unspliced HIV-1 RNAs containing the Rev response element, but may also stimulate translation of these RNAs. We previously identified an additional Rev binding site in the 5′ untranslated region of the HIV-1 RNA. We show that Rev inhibits translation non-specifically at high concentrations and stimulates translation of HIV-1 RNAs at intermediate concentrations in vitro. Stimulation is dependent on the presence of the Rev binding site within the 5′ untranslated region and not on the Rev response element. In COS-1 cells, translation from an HIV-1 reporter is specifically increased by coexpression of Rev.
Collapse
Affiliation(s)
| | - Emma C. Anderson
- Department of Biological Sciences, University of Warwick, Warwick CV4 7AL, UK
| | - John A. Dangerfield
- Christian Doppler Laboratory for Gene Therapeutic Vectors, Research Institute of Virology and Biomedicine, University for Veterinary Sciences, Vienna, Austria
| | | |
Collapse
|
24
|
Abstract
Rev remains a hot topic. In this review, we revisit the insights that have been gained into the control of gene expression by the retroviral protein Rev and speculate on where current research is leading. We outline what is known about the role of Rev in translation and encapsidation and how these are linked to its more traditional role of nuclear export, underlining the multifaceted nature of this small viral protein. We discuss what more is to be learned in these fields and why continuing research on these 116 amino acids and understanding their function is still important in devising methods to combat AIDS.
Collapse
Affiliation(s)
- H C T Groom
- Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - E C Anderson
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - A M L Lever
- Department of Medicine, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| |
Collapse
|
25
|
Abstract
The structure of HIV-1 Psi-RNA has been elucidated by a concerted approach combining structural probes with mass spectrometric detection (MS3D), which is not affected by the size and crystallization properties of target biomolecules. Distance constraints from bifunctional cross-linkers provided the information required for assembling an all-atom model from the high-resolution coordinates of separate domains by triangulating their reciprocal placement in 3D space. The resulting structure revealed a compact cloverleaf morphology stabilized by a long-range tertiary interaction between the GNRA tetraloop of stemloop 4 (SL4) and the upper stem of stemloop 1 (SL1). The preservation of discrete stemloop structures ruled out the possibility that major rearrangements might produce a putative supersite with enhanced affinity for the nucleocapsid (NC) domain of the viral Gag polyprotein, which would drive genome recognition and packaging. The steric situation of single-stranded regions exposed on the cloverleaf structure offered a valid explanation for the stoichiometry exhibited by full-length Psi-RNA in the presence of NC. The participation of SL4 in a putative GNRA loop-receptor interaction provided further indications of the plasticity of this region of genomic RNA, which can also anneal with upstream sequences to stabilize alternative conformations of the 5' untranslated region (5'-UTR). Considering the ability to sustain specific NC binding, the multifaceted activities supported by the SL4 sequence suggest a mechanism by which Gag could actively participate in regulating the vital functions mediated by 5'-UTR. Substantiated by the 3D structure of Psi-RNA, the central role played by SL4 in specific RNA-RNA and protein-RNA interactions advances this domain as a primary target for possible therapeutic intervention.
Collapse
|
26
|
Mazier S, Genest D. Insight into the intrinsic flexibility of the SL1 stem-loop from genomic RNA of HIV-1 as probed by molecular dynamics simulation. Biopolymers 2008; 89:187-96. [PMID: 18008323 DOI: 10.1002/bip.20888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The SL1 stem-loop is the dimerization initiation site for linking the two copies of the RNA forming the HIV-1 genome. The 26 nucleotides stem contains a defect consisting on a highly conserved G-rich 1-3 asymmetrical internal loop, which is a major site for nucleocapsid protein binding. Several NMR attempts were undertaken to determine the internal loop structure in the SL1 monomer. However, the RNA constructs used in the different studies were largely mutated, in particular with replacement of the nine nucleotides apical loop by a tetraloop, and divergent results were obtained ranging from a rigid structure to a particularly large flexibility. To investigate the reasons for such discrepancies, we used molecular dynamics simulation of the SL1 monomer to probe the effect of mutations on the conformational stability of the internal loop and of the whole stem. It is found that in the wild-type sequence, the internal loop displays conformational variability originating mainly from the nine nucleotides apical loop flexibility that causes large conformational fluctuations (without changing the average structure) in the 7 bp duplex linking the apical and internal loops. The large amplitude atomic motions in the duplex are transmitted to the internal loop in which they induce conformational changes characterized by a labile hydrogen bond network such as G5 successively H-bonded to A29 and G30. On the contrary, with a four nucleotides apical loop, conformational fluctuations in the duplex are reduced by a factor of 2 and are not sufficiently energizing for promoting changes in the internal loop structure at the time scale of the simulations.
Collapse
Affiliation(s)
- Sonia Mazier
- Centre de Biophysique Moléculaire du CNRS-UPR 4301-affiliated to the University of Orleans and to INSERM, Rue Charles Sadron, 45071 Orleans cedex 02, France
| | | |
Collapse
|
27
|
Mazier S, Genest D. Molecular dynamics simulation for probing the flexibility of the 35 nucleotide SL1 sequence kissing complex from HIV-1Lai genomic RNA. J Biomol Struct Dyn 2007; 24:471-9. [PMID: 17313192 DOI: 10.1080/07391102.2007.10507135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The SL1 stem-loop located in the encapsidation domain is responsible for initiating the dimerisation of HIV-1 genomic RNA by means of a loop-loop interaction known as Kissing Complex (KC). The SL1 secondary structure has been predicted as a 35 nucleotides [K. G. Murti, M. Bondurant, and A. Tereba. J Virol 37, 411-419 (1981)] stem-loop composed of a 4 base pairs (bp) terminal duplex, a 4 nt asymmetrical internal loop, a 7 bp internal duplex, and a 9 nt apical loop. Several high resolution structures of the monomer and of KC of a 23 nt sequence containing only the internal duplex and the apical loop of SL1 are available in the literature. No experimental high resolution structure of the complete native SL1 sequence has been reported so far, either for the monomer or for KC. The asymmetrical internal loop has been described from NMR studies of different monomeric hairpin sequences, leading to divergent results, which suggests its high flexibility. In this work, we built a SL1(35) KC model which was submitted to a 31 ns molecular dynamics simulation (MD). Our results allows to describe the internal dynamics of SL1(35) KC and the differences of behavior of the different parts of the dimer. Thus, we could show the stability of the interactions between the two apical loops and of the terminal duplexes, the destabilization of the internal duplexes and the high flexibility of the asymmetrical internal loops.
Collapse
Affiliation(s)
- S Mazier
- Centre de Biophysique Moleculaire, UPR no 4301 du CNRS, affiliated to the University of Orleans and to INSERM, CNRS - Rue Charles Sadron, 45071 Orleans cedex 2, France
| | | |
Collapse
|
28
|
Turner KB, Hagan NA, Fabris D. Understanding the isomerization of the HIV-1 dimerization initiation domain by the nucleocapsid protein. J Mol Biol 2007; 369:812-28. [PMID: 17466332 PMCID: PMC2475603 DOI: 10.1016/j.jmb.2007.03.065] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 03/20/2007] [Accepted: 03/23/2007] [Indexed: 10/23/2022]
Abstract
The specific binding of HIV-1 nucleocapsid (NC) to the hinge region of the kissing-loop (KL) dimer formed by stemloop 1 (SL1) can have significant consequences on its ability to isomerize into the corresponding extended duplex (ED) form. The binding determinants and the effects on the isomerization process were investigated in vitro by a concerted strategy involving ad hoc RNA mutants and electrospray ionization-Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry, which enabled us to characterize the stoichiometry and conformational state of all possible protein-RNA and RNA-RNA assemblies present simultaneously in solution. For the first time, NC-hinge interactions were observed in constructs including at least one unpaired guanine at the 5'-end of the loop-loop duplex, whereas no interactions were detected when the unpaired guanine was placed at its 3'-end. This binding mode is supported by the presence of a grip-like motif described by recent crystal structures, which is formed by the 5'-purines of both hairpins held together by mutual stacking interactions. Using tandem mass spectrometry, hinge interactions were clearly shown to reduce the efficiency of KL/ED isomerization without inducing its complete block. This outcome is consistent with the partial stabilization of the extra-helical grip by the bound protein, which can hamper the purine components from parting ways and initiate the strand exchange process. These findings confirm that the broad binding and chaperone activities of NC induce unique effects that are clearly dependent on the structural context of the cognate nucleic acid substrate. For this reason, the presence of multiple binding sites on the different forms assumed by SL1 can produce seemingly contrasting effects that contribute to a fine modulation of the two-step process of RNA dimerization and isomerization.
Collapse
Affiliation(s)
- Kevin B. Turner
- University of Maryland Baltimore County, Department of Chemistry and Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21228 USA, Tel. (410) 455-3053, Fax. (410) 455-2608,
| | - Nathan A. Hagan
- University of Maryland Baltimore County, Department of Chemistry and Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21228 USA, Tel. (410) 455-3053, Fax. (410) 455-2608,
| | - Daniele Fabris
- University of Maryland Baltimore County, Department of Chemistry and Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21228 USA, Tel. (410) 455-3053, Fax. (410) 455-2608,
| |
Collapse
|
29
|
Mujeeb A, Ulyanov NB, Georgantis S, Smirnov I, Chung J, Parslow TG, James TL. Nucleocapsid protein-mediated maturation of dimer initiation complex of full-length SL1 stemloop of HIV-1: sequence effects and mechanism of RNA refolding. Nucleic Acids Res 2007; 35:2026-34. [PMID: 17341460 PMCID: PMC1874624 DOI: 10.1093/nar/gkm097] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Specific binding of HIV-1 viral protein NCp7 to a unique 35-base RNA stem-loop SL1 is critical for formation and packaging of the genomic RNA dimer found within HIV-1 virions. NCp7 binding stimulates refolding of SL1 from a metastable kissing dimer (KD) into thermodynamically stable linear dimer (LD). Using UV melting, gel electrophoresis and heteronuclear NMR, we investigated effects of various site-specific mutations within the full-length SL1 on temperature- or NCp7-induced refolding in vitro. Refolding involved intramolecular melting of SL1 stems but not dissociation of the intermolecular KD interface. Refolding required only two NCp7 molecules per KD but was limited by the amount of NCp7 present, implying that the protein does not catalytically promote refolding. Efficient refolding depended strictly on the presence and, to a lesser degree, on sequence of a highly conserved G-rich internal loop that normally limits thermal stability of the SL1 stem. Adding two base pairs to the lower stem created a hyperstable SL1 mutant that failed to refold, even when bound by NCp7 at high stoichiometries. NMR analysis of these kinetically trapped mutant RNA–protein complexes indicated that NCp7 initiates refolding by dissociating base pairs in the upper stem of SL1. This study illuminates structural transitions critical for HIV-1 assembly and replication.
Collapse
Affiliation(s)
- Anwer Mujeeb
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158-2517, USA and Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nikolai B. Ulyanov
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158-2517, USA and Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Stefanos Georgantis
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158-2517, USA and Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ivan Smirnov
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158-2517, USA and Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Janet Chung
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158-2517, USA and Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Tristram G. Parslow
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158-2517, USA and Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Thomas L. James
- Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158-2517, USA and Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- *To whom correspondence should be addressed. +1-415 476-1916+1-415 502 8298
| |
Collapse
|
30
|
Sun X, Zhang Q, Al-Hashimi HM. Resolving fast and slow motions in the internal loop containing stem-loop 1 of HIV-1 that are modulated by Mg2+ binding: role in the kissing-duplex structural transition. Nucleic Acids Res 2007; 35:1698-713. [PMID: 17311812 PMCID: PMC1865058 DOI: 10.1093/nar/gkm020] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Stem loop 1 (SL1) is a highly conserved hairpin in the 5'-leader of the human immunodeficiency virus type I that forms a metastable kissing dimer that is converted during viral maturation into a stable duplex with the aid of the nucleocapsid (NC) protein. SL1 contains a highly conserved internal loop that promotes the kissing-duplex transition by a mechanism that remains poorly understood. Using NMR, we characterized internal motions induced by the internal loop in an SL1 monomer that may promote the kissing-duplex transition. This includes micro-to-millisecond secondary structural transitions that cause partial melting of three base-pairs above the internal loop making them key nucleation sites for exchanging strands and nanosecond rigid-body stem motions that can help bring strands into spatial register. We show that while Mg2+ binds to the internal loop and arrests these internal motions, it preserves and/or activates local mobility at internal loop residues G272 and G273 which are implicated in NC binding. By stabilizing SL1 without compromising the accessibility of G272 and G273 for NC binding, Mg2+ may increase the dependence of the kissing-duplex transition on NC binding thus preventing spontaneous transitions from taking place and ensuring that viral RNA and protein maturation occur in concert.
Collapse
|
31
|
Affiliation(s)
- Andrew M L Lever
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
32
|
Greatorex JS, Palmer EA, Pomerantz RJ, Dangerfield JA, Lever AML. Mutation of the Rev-binding loop in the human immunodeficiency virus 1 leader causes a replication defect characterized by altered RNA trafficking and packaging. J Gen Virol 2006; 87:3039-3044. [PMID: 16963763 DOI: 10.1099/vir.0.81658-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An internal RNA loop, located within the packaging signal of human immunodeficiency virus 1, that resembles the Rev-responsive element (RRE) closely was identified previously. Subsequent in vitro studies confirmed that the loop, termed loop A, could bind Rev protein specifically. Its proximity to the major splice donor has suggested a role for Rev-loop A interaction supplementary to or preceding that of the Rev-RRE interaction. To investigate this further in a replication-competent provirus, loop A was mutated to decrease its affinity for Rev. Impairing the Rev-loop A interaction led to reduced nuclear export of viral genomic RNA. RNA packaging decreased by approximately 30%. Viral protein production and export of virus particles appeared normal; however, the virus was severely replication-deficient. The loop A sequence, which is 98% conserved amongst viral isolates, is implicated in several cis-acting functions critical to virus viability.
Collapse
Affiliation(s)
- Jane S Greatorex
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - Elizabeth A Palmer
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| | - Roger J Pomerantz
- Center for Human Virology, Division of Infectious Diseases, Thomas Jefferson University, Philadelphia, PA 19107-5587, USA
| | - John A Dangerfield
- Christian Doppler Laboratory for Gene Therapeutic Vectors, Research Institute of Virology and Biomedicine, University for Veterinary Sciences, Vienna, Austria
| | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 2QQ, UK
| |
Collapse
|
33
|
Hagan NA, Fabris D. Dissecting the protein-RNA and RNA-RNA interactions in the nucleocapsid-mediated dimerization and isomerization of HIV-1 stemloop 1. J Mol Biol 2006; 365:396-410. [PMID: 17070549 PMCID: PMC1847390 DOI: 10.1016/j.jmb.2006.09.081] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 09/21/2006] [Accepted: 09/27/2006] [Indexed: 10/24/2022]
Abstract
The specific binding of HIV-1 nucleocapsid protein (NC) to the different forms assumed in vitro by the stemloop 1 (Lai variant) of the genome's packaging signal has been investigated using electrospray ionization-Fourier transform mass spectrometry (ESI-FTMS). The simultaneous observation of protein-RNA and RNA-RNA interactions in solution has provided direct information about the role of NC in the two-step model of RNA dimerization and isomerization. In particular, two distinct binding sites have been identified on the monomeric stemloop structure, corresponding to the apical loop and stem-bulge motifs. These sites share similar binding affinities that are intermediate between those of stemloop 3 (SL3) and the putative stemloop 4 (SL4) of the packaging signal. Binding to the apical loop, which contains the dimerization initiation site (DIS), competes directly with the annealing of self-complementary sequences to form a metastable kissing-loop (KL) dimer. In contrast, binding to the stem-bulge affects indirectly the monomer-dimer equilibrium by promoting the rearrangement of KL into the more stable extended duplex (ED) conformer. This process is mediated by the duplex-melting activity of NC, which destabilizes the intramolecular base-pairs surrounding the KL stem-bulges and enables their exchange to form the inter-strand pairs that define the ED structure. In this conformer, high-affinity binding takes place at stem-bulge sites that are identical to those present in the monomeric and KL forms. In this case, however, the NC-induced "breathing" does not result in dissociation of the double-stranded structure because of the large number of intermolecular base-pairs. The different binding modes manifested by conformer-specific mutants have shown that NC can also provide low affinity interactions with the bulged-out adenine bases flanking the DIS region of the ED conformer, thus supporting the hypothesis that these exposed nucleotides may constitute "base-grips" for protein contacts during the late stages of the viral lifecycle.
Collapse
Affiliation(s)
- Nathan A. Hagan
- University of Maryland Baltimore County, Department of Chemistry and Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21228 USA, Tel. (410) 455-3053, Fax (410) 455-2608,
| | - Daniele Fabris
- University of Maryland Baltimore County, Department of Chemistry and Biochemistry, 1000 Hilltop Circle, Baltimore, MD 21228 USA, Tel. (410) 455-3053, Fax (410) 455-2608,
| |
Collapse
|
34
|
Chen Y, Fender J, Legassie JD, Jarstfer MB, Bryan TM, Varani G. Structure of stem-loop IV of Tetrahymena telomerase RNA. EMBO J 2006; 25:3156-66. [PMID: 16778765 PMCID: PMC1500990 DOI: 10.1038/sj.emboj.7601195] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 05/15/2006] [Indexed: 12/21/2022] Open
Abstract
Conserved domains within the RNA component of telomerase provide the template for reverse transcription, recruit protein components to the holoenzyme and are required for enzymatic activity. Among the functionally essential domains in ciliate telomerase RNA is stem-loop IV, which strongly stimulates telomerase activity and processivity even when provided in trans. The NMR structure of Tetrahymena thermophila stem-loop IV shows a highly structured distal stem-loop linked to a conformationally flexible template-proximal region by a bulge that severely kinks the entire RNA. Through extensive structure-function studies, we identify residues that contribute to both these structural features and to enzymatic activity, with no apparent effect on the binding of TERT protein. We propose that the bending induced by the GA bulge and the flexibility of the template-proximal region allow positioning of the prestructured apical loop during the catalytic cycle.
Collapse
Affiliation(s)
- Yu Chen
- Department of Chemistry, University of Washington, Seattle WA, USA
| | - Jessica Fender
- Department of Chemistry, University of Washington, Seattle WA, USA
| | - Jason D Legassie
- Division of Medicinal Chemistry and Natural Products, University of North Carolina, Chapel Hill, NC, USA
| | - Michael B Jarstfer
- Division of Medicinal Chemistry and Natural Products, University of North Carolina, Chapel Hill, NC, USA
| | - Tracy M Bryan
- Children's Medical Research Institute, Westmead, NSW, Australia
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Seattle WA, USA
- Department of Biochemistry, University of Washington, Seattle WA, USA
- Departments of Chemistry & Biochemistry, University of Washington, Box 351700, Seattle, WA 98185-1700, USA. Tel: +1 206 543 7113; Fax: +1 206 685 8665; E-mail:
| |
Collapse
|
35
|
Abstract
Internal loops in RNA are important for folding and function. Consecutive noncanonical pairs can form in internal loops having at least two nucleotides on each side. Thermodynamic and structural insights into such internal loops should improve approximations for their stabilities and predictions of secondary and three-dimensional structures. Most natural internal loops are purine rich. A series of oligoribonucleotides that form purine-rich internal loops of 5-10 nucleotides, including kink-turn loops, were studied by UV melting, exchangeable proton and phosphorus NMR. Three consecutive GA pairs with the motif 5' Y GGA/3' R AAG or GGA R 3'/AAG Y 5' (i.e., 5' GGA 3'/3' AAG 5' closed on at least one side with a CG, UA, or UG pair with Y representing C or U and R representing A or G) stabilize internal loops having 6-10 nucleotides. Certain motifs with two consecutive GA pairs are also stabilizing. In internal loops with three or more nucleotides on each side, the motif 5' U G/3' G A has stability similar to 5' C G/3' G A. A revised model for predicting stabilities of internal loops with 6-10 nucleotides is derived by multiple linear regression. Loops with 2 x 3 nucleotides are predicted well by a previous thermodynamic model.
Collapse
Affiliation(s)
- Gang Chen
- Department of Chemistry, University of Rochester, Rochester, NY 14627
| | - Douglas H. Turner
- Department of Chemistry, University of Rochester, Rochester, NY 14627
- Center for Pediatric Biomedical Research and Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642
- To whom correspondence should be addressed. Phone: (585) 275-3207. Fax: (585) 276-0205.
| |
Collapse
|
36
|
Ulyanov NB, Mujeeb A, Du Z, Tonelli M, Parslow TG, James TL. NMR structure of the full-length linear dimer of stem-loop-1 RNA in the HIV-1 dimer initiation site. J Biol Chem 2006; 281:16168-77. [PMID: 16603544 DOI: 10.1074/jbc.m601711200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The packaging signal of HIV-1 RNA contains a stem-loop structure, SL1, which serves as the dimerization initiation site for two identical copies of the genome and is important for packaging of the RNA genome into the budding virion and for overall infectivity. SL1 spontaneously dimerizes via a palindromic hexanucleotide sequence in its apical loop, forming a metastable kissing dimer form. Incubation with nucleocapsid protein causes this form to refold to a thermodynamically stable mature linear dimer. Here, we present an NMR structure of the latter form of the full-length SL1 sequence of the Lai HIV-1 isolate. The structure was refined using nuclear Overhauser effect and residual dipolar coupling data. The structure presents a symmetric homodimer of two RNA strands of 35 nucleotides each; it includes five stems separated by four internal loops. The central palindromic stem is surrounded by two symmetric adenine-rich 1-2 internal loops, A-bulges. All three adenines in each A-bulge are stacked inside the helix, consistent with the solution structures of shorter SL1 constructs determined previously. The outer 4-base pair stems and, proximal to them, purine-rich 1-3 internal loops, or G-bulges, are the least stable parts of the molecule. The G-bulges display high conformational variability in the refined ensemble of structures, despite the availability of many structural restraints for this region. Nevertheless, most conformations share a similar structural motif: a guanine and an adenine from opposite strands form a GA mismatch stacked on the top of the neighboring stem. The two remaining guanines are exposed, one in the minor groove and another in the major groove side of the helix, consistent with secondary structure probing data for SL1. These guanines may be recognized by the nucleocapsid protein, which binds tightly to the G-bulge in vitro.
Collapse
Affiliation(s)
- Nikolai B Ulyanov
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA
| | | | | | | | | | | |
Collapse
|
37
|
Baba S, Takahashi KI, Noguchi S, Takaku H, Koyanagi Y, Yamamoto N, Kawai G. Solution RNA structures of the HIV-1 dimerization initiation site in the kissing-loop and extended-duplex dimers. J Biochem 2006; 138:583-92. [PMID: 16272570 DOI: 10.1093/jb/mvi158] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dimer formation of HIV-1 genomic RNA through its dimerization initiation site (DIS) is crucial to maintaining infectivity. Two types of dimers, the initially generated kissing-loop dimer and the subsequent product of the extended-duplex dimer, are formed in the stem-bulge-stem region with a loop including a self-complementary sequence. NMR chemical shift analysis of a 39mer RNA corresponding to DIS, DIS39, in the kissing-loop and extended-duplex dimers revealed that the three dimensional structures of the stem-bulge-stem region are extremely similar between the two types of dimers. Therefore, we designed two shorter RNA molecules, loop25 and bulge34, corresponding to the loop-stem region and the stem-bulge-stem region of DIS39, respectively. Based upon the chemical shift analysis, the conformation of the loop region of loop25 is identical to that of DIS39 for each of the two types of dimers. The conformation of bulge34 was also found to be the same as that of the corresponding region of DIS39. Thus, we determined the solution structures of loop25 in each of the two types of dimers as well as that of bulge34. Finally, the solution structures of DIS39 in the kissing-loop and extended-duplex dimers were determined by combining the parts of the structures. The solution structures of the two types of dimers were similar to each other in general with a difference found only in the A16 residue. The elucidation of the structures of DIS39 is important to understanding the molecular mechanism of the conformational dynamics of viral RNA molecules.
Collapse
Affiliation(s)
- Seiki Baba
- Department of Life and Environmental Sciences, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016
| | | | | | | | | | | | | |
Collapse
|
38
|
Brierley I, Dos Ramos FJ. Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV. Virus Res 2005; 119:29-42. [PMID: 16310880 PMCID: PMC7114087 DOI: 10.1016/j.virusres.2005.10.008] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 07/31/2005] [Accepted: 10/19/2005] [Indexed: 01/11/2023]
Abstract
Ribosomal frameshifting is a mechanism of gene expression used by several RNA viruses to express replicase enzymes. This article focuses on frameshifting in two human pathogens, the retrovirus human immunodeficiency virus type 1 (HIV-1) and the coronavirus responsible for severe acute respiratory syndrome (SARS). The nature of the frameshift signals of HIV-1 and the SARS–CoV will be described and the impact of this knowledge on models of frameshifting will be considered. The role of frameshifting in the replication cycle of the two pathogens and potential antiviral therapies targeting frameshifting will also be discussed.
Collapse
Affiliation(s)
- Ian Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | |
Collapse
|
39
|
Gaudin C, Mazauric MH, Traïkia M, Guittet E, Yoshizawa S, Fourmy D. Structure of the RNA signal essential for translational frameshifting in HIV-1. J Mol Biol 2005; 349:1024-35. [PMID: 15907937 DOI: 10.1016/j.jmb.2005.04.045] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 04/15/2005] [Accepted: 04/20/2005] [Indexed: 11/18/2022]
Abstract
Many pathogenic viruses use a programmed -1 translational frameshifting mechanism to regulate synthesis of their structural and enzymatic proteins. Frameshifting is vital for viral replication. A slippery sequence bound at the ribosomal A and P sites as well as a downstream stimulatory RNA structure are essential for frameshifting. Conflicting data have been reported concerning the structure of the downstream RNA signal in human immunodeficiency virus type 1 (HIV-1). Here, the solution structure of the HIV-1 frameshifting RNA signal was solved by heteronuclear NMR spectroscopy. This structure reveals a long hairpin fold with an internal three-nucleotide bulge. The internal loop introduces a bend between the lower and upper helical regions, a structural feature often seen in frameshifting pseudoknots. The NMR structure correlates with chemical probing data. The upper stem rich in conserved G-C Watson-Crick base-pairs is highly stable, whereas the bulge region and the lower stem are more flexible.
Collapse
Affiliation(s)
- Cyril Gaudin
- Laboratoire de RMN, ICSN-CNRS 1 ave de la terrasse, 91190 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
40
|
Paillart JC, Dettenhofer M, Yu XF, Ehresmann C, Ehresmann B, Marquet R. First snapshots of the HIV-1 RNA structure in infected cells and in virions. J Biol Chem 2004; 279:48397-403. [PMID: 15355993 DOI: 10.1074/jbc.m408294200] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
With the increasing interest of RNAs in regulating a range of cell biological processes, very little is known about the structure of RNAs in tissue culture cells. We focused on the 5'-untranslated region of the human immunodeficiency virus type 1 RNA genome, a highly conserved RNA region, which contains structural domains that regulate key steps in the viral replication cycle. Up until now, structural information only came from in vitro studies. Here, we developed chemical modification assays to test nucleotide accessibility directly in infected cells and viral particles, thus circumventing possible biases and artifacts linked to in vitro assays. The secondary structure of the 5'-untranslated region in infected cells points to the existence of the various stem-loop motifs associated to distinct functions, proposed from in vitro probing, mutagenesis, and phylogeny. However, compared with in vitro data, subtle differences were observed in the dimerization initiation site hairpin, and none of the proposed long range interactions were observed between the functional domains. Moreover, no global RNA rearrangement was observed; structural differences between infected cells and viral particles were limited to the primer binding site, which became protected against chemical modification upon tRNA(3) (Lys) annealing in virions and to the main packaging signal. In addition, our data suggested that the genomic RNA could already dimerize in the cytoplasm of infected cells. Taken together, our results provided the first analysis of the dynamic of RNA structure of the human immunodeficiency virus type 1 RNA genome during virus assembly ex vivo.
Collapse
Affiliation(s)
- Jean-Christophe Paillart
- Unité Propre de Recherche 9002 du CNRS conventionnée à l'Université Louis Pasteur, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg cedex, France.
| | | | | | | | | | | |
Collapse
|
41
|
Logan AC, Haas DL, Kafri T, Kohn DB. Integrated self-inactivating lentiviral vectors produce full-length genomic transcripts competent for encapsidation and integration. J Virol 2004; 78:8421-36. [PMID: 15280451 PMCID: PMC479072 DOI: 10.1128/jvi.78.16.8421-8436.2004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To make human immunodeficiency virus type 1 (HIV-1)-based vectors safer for use in the research and clinical setting, a significant modification to the HIV-1 genome has been the deletion of promoter and enhancer elements from the U3 region of the long terminal repeat (LTR). Vectors containing this deletion are thought to have no LTR-directed transcription and are called self-inactivating (SIN) lentivectors. Using four distinct approaches, we show that SIN lentivectors continue to have promoter activity near the 5' LTR, which is responsible for the production of full-length vector transcripts. To verify that transcripts derived from the LTR in SIN lentivectors are competent for encapsidation and integration, we transduced a lentiviral packaging cell line with a SIN lentivector and then observed the production of viable vector particles containing full-length SIN lentivector genomes. We have also attempted to identify sequences in the SIN lentivector which are responsible for transcriptional activation at the 5' LTR. Using different segments of the vector LTR and leader region in a promoter assay, we have determined that the residual promoter activity is contained entirely within the leader region and that, although this element is downstream of the transcription initiation site, it is capable of initiating transcription from the 5' end of R in the LTR. Mutation of leader region binding sites for the transcriptional activators downstream binding factor 1 (DBF1) and SP1 reduces transcription from the SIN LTR by up to 80%. Knowledge of the potential for mobilization of HIV-1-derived SIN lentivectors will be important for the design of future gene therapy trials with such vectors.
Collapse
Affiliation(s)
- Aaron C Logan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
42
|
Greatorex J. The retroviral RNA dimer linkage: different structures may reflect different roles. Retrovirology 2004; 1:22. [PMID: 15317659 PMCID: PMC516450 DOI: 10.1186/1742-4690-1-22] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 08/18/2004] [Indexed: 11/16/2022] Open
Abstract
Retroviruses are unique among virus families in having dimeric genomes. The RNA sequences and structures that link the two RNA molecules vary, and these differences provide clues as to the role of this feature in the viral lifecycles. This review draws upon examples from different retroviral families. Differences and similarities in both secondary and tertiary structure are discussed. The implication of varying roles for the dimer linkage in related viruses is considered.
Collapse
Affiliation(s)
- Jane Greatorex
- Division of Infectious Diseases, Dept. of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK.
| |
Collapse
|
43
|
Lever AML, Strappe PM, Zhao J. Lentiviral vectors. J Biomed Sci 2004; 11:439-49. [PMID: 15153778 DOI: 10.1007/bf02256092] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2004] [Accepted: 02/23/2004] [Indexed: 02/02/2023] Open
Abstract
Vectors based on lentiviruses have reached a state of development such that clinical studies using these agents as gene delivery vehicles have now begun. They have particular advantages for certain in vitro and in vivo applications especially the unique capability of integrating genetic material into the genome of non-dividing cells. Their rapid progress into clinical use reflects in part the huge body of knowledge which has accumulated about HIV in the last 20 years. Despite this, many aspects of viral assembly on which the success of these vectors depends are rather poorly understood. Sufficient is known however to be able to produce a safe and reproducible high titre vector preparation for effective transduction of growth-arrested tissues such as neural tissue, muscle and liver.
Collapse
Affiliation(s)
- Andrew M L Lever
- University of Cambridge, Department of Medicine, Addenbrooke's Hospital, Cambridge, UK.
| | | | | |
Collapse
|
44
|
Jakobsen MR, Damgaard CK, Andersen ES, Podhajska A, Kjems J. A genomic selection strategy to identify accessible and dimerization blocking targets in the 5'-UTR of HIV-1 RNA. Nucleic Acids Res 2004; 32:e67. [PMID: 15107482 PMCID: PMC407842 DOI: 10.1093/nar/gnh064] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Defining target sites for antisense oligonucleotides in highly structured RNA is a non-trivial exercise that has received much attention. Here we describe a novel and simple method to generate a library composed of all 20mer oligoribonucleotides that are sense- and antisense to any given sequence or genome and apply the method to the highly structured HIV-1 leader RNA. Oligoribonucleotides that interact strongly with folded HIV-1 RNA and potentially inhibit its dimerization were identified through iterative rounds of affinity selection by native gel electrophoresis. We identified five distinct regions in the HIV-1 RNA that were particularly prone to antisense annealing and a structural comparison between these sites suggested that the 3'-end of the antisense RNA preferentially interacts with single-stranded loops in the target RNA, whereas the 5'-end binds within double-stranded regions. The selected RNA species and corresponding DNA oligonucleotides were assayed for HIV-1 RNA binding, ability to block reverse transcription and/or potential to interfere with dimerization. All the selected oligonucleotides bound rapidly and strongly to the HIV-1 leader RNA in vitro and one oligonucleotide was capable of disrupting RNA dimers efficiently. The library selection methodology we describe here is rapid, inexpensive and generally applicable to any other RNA or RNP complex. The length of the oligonucleotide in the library is similar to antisense molecules generally applied in vivo and therefore likely to define targets relevant for HIV-1 therapy.
Collapse
Affiliation(s)
- Martin R Jakobsen
- Department of Molecular Biology, University of Aarhus, C.F. Møllers Allé, Building 130, DK-8000 Aarhus C, Denmark
| | | | | | | | | |
Collapse
|
45
|
Schroeder SJ, Fountain MA, Kennedy SD, Lukavsky PJ, Puglisi JD, Krugh TR, Turner DH. Thermodynamic stability and structural features of the J4/5 loop in a Pneumocystis carinii group I intron. Biochemistry 2004; 42:14184-96. [PMID: 14640686 DOI: 10.1021/bi0301587] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The J4/5 loop of the group I intron in the mouse-derived fungal pathogen Pneumocystis carinii is the docking site for the first step of the RNA-catalyzed self-splicing reaction and thus is a model of a potential drug target. This purine-rich asymmetric internal loop, 5'GGAAG/3'UAGU, is also thermodynamically more stable than other internal loops with two GU closing pairs and three nucleotides opposite two nucleotides. The results from optical melting, nuclear magnetic resonance spectroscopy, and functional group substitution experiments suggest that the GU closing pairs form and that sheared GA pairs form in the internal loop. The NMR spectra show evidence of conformational dynamics, and several GA pairings are possible. Thus, this dynamic loop presents several possible structures for potential binding of drugs that target group I self-splicing introns. The results also contribute to understanding the structural and dynamic basis for the function and thermodynamic stability of this loop.
Collapse
Affiliation(s)
- Susan J Schroeder
- Department of Chemistry, University of Rochester, Rochester, New York 14627-0216, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Russell RS, Roldan A, Detorio M, Hu J, Wainberg MA, Liang C. Effects of a single amino acid substitution within the p2 region of human immunodeficiency virus type 1 on packaging of spliced viral RNA. J Virol 2004; 77:12986-95. [PMID: 14645555 PMCID: PMC296066 DOI: 10.1128/jvi.77.24.12986-12995.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus type 1 encapsidates two copies of viral genomic RNA in the form of a dimer. The dimerization process initiates via a 6-nucleotide palindrome that constitutes the loop of a viral RNA stem-loop structure (i.e., stem loop 1 [SL1], also termed the dimerization initiation site [DIS]) located within the 5' untranslated region of the viral genome. We have now shown that deletion of the entire DIS sequence virtually eliminated viral replication but that this impairment was overcome by four second-site mutations located within the matrix (MA), capsid (CA), p2, and nucleocapsid (NC) regions of Gag. Interestingly, defective viral RNA dimerization caused by the DeltaDIS deletion was not significantly corrected by these compensatory mutations, which did, however, allow the mutated viruses to package wild-type levels of this DIS-deleted viral RNA while excluding spliced viral RNA from encapsidation. Further studies demonstrated that the compensatory mutation T12I located within p2, termed MP2, sufficed to prevent spliced viral RNA from being packaged into the DeltaDIS virus. Consistently, the DeltaDIS-MP2 virus displayed significantly higher levels of infectiousness than did the DeltaDIS virus. The importance of position T12 in p2 was further demonstrated by the identification of four point mutations,T12D, T12E, T12G, and T12P, that resulted in encapsidation of spliced viral RNA at significant levels. Taken together, our data demonstrate that selective packaging of viral genomic RNA is influenced by the MP2 mutation and that this represents a major mechanism for rescue of viruses containing the DeltaDIS deletion.
Collapse
Affiliation(s)
- Rodney S Russell
- McGill AIDS Centre, Lady Davis Institute-Jewish General Hospital, Montreal, Quebec, Canada H3T 1E2
| | | | | | | | | | | |
Collapse
|
47
|
Gallego J, Greatorex J, Zhang H, Yang B, Arunachalam S, Fang J, Seamons J, Lea S, Pomerantz RJ, Lever AML. Rev binds specifically to a purine loop in the SL1 region of the HIV-1 leader RNA. J Biol Chem 2003; 278:40385-91. [PMID: 12851400 DOI: 10.1074/jbc.m301041200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The leader RNA sequence of human immunodeficiency virus type 1 (HIV-1) consists of a complex series of stem loop structures that are critical for viral replication. Three-dimensional structural analysis by NMR of one of these structures, the SL1 stem loop of the packaging signal region, revealed a highly conserved purine rich loop with a structure nearly identical to the Rev-binding loop of the Rev response element. Using band-shift assays, surface plasmon resonance, and further NMR analysis, we demonstrate that this loop binds Rev. HIV-1 appears to have a second Rev-binding site close to the major splice donor site that may have an additional role in the viral life cycle.
Collapse
Affiliation(s)
- Jose Gallego
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Yuan Y, Kerwood DJ, Paoletti AC, Shubsda MF, Borer PN. Stem of SL1 RNA in HIV-1: structure and nucleocapsid protein binding for a 1 x 3 internal loop. Biochemistry 2003; 42:5259-69. [PMID: 12731867 DOI: 10.1021/bi034084a] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 5'-leader of HIV-1 RNA controls many viral functions. Nucleocapsid (NC) domains of gag-precursor proteins select genomic RNA for packaging by binding several sites in the leader. One is likely to be a stem defect in SL1 that can adopt either a 1 x 3 internal loop, SL1i (including G247, A271, G272, G273) or a 1 x 1 internal loop (G247 x G273) near a two-base bulge (A269-G270). It is likely that these two conformations are both present and exchange readily. A 23mer RNA construct described here models SL1i and cannot slip into the alternate form. It forms a 1:1 complex with NCp7, which interacts most strongly at G247 and G272 (K(d) = 140 nM). This demonstrates that a linear G-X-G sequence is unnecessary for high-affinity binding. The NMR-based structure shows an easily broken G247:A271 base pair. G247 stacks on both of its immediate neighbors and A271 on its 5'-neighbor; G272 and G273 are partially ordered. A bend in the helix axis between the SL1 stems on either side of the internal loop is probable. An important step in maturation of the virus is the transition from an apical loop-loop interaction to a dimer involving intermolecular interactions along the full length of SL1. A bend in the stem may be important in relieving strain and ensuring that the strands do not become entangled during the transition. A stem defect with special affinity for NCp7 may accelerate the rate of the dimer transformation. This complex could become an important target for anti-HIV drug development, where a drug could exert its action near a high-energy intermediate on the pathway for maturation of the dimer.
Collapse
MESH Headings
- Base Sequence
- Capsid/chemistry
- Capsid/metabolism
- Capsid Proteins
- DNA, Viral/metabolism
- Dimerization
- Gene Products, gag/chemistry
- Gene Products, gag/metabolism
- Genome, Viral
- HIV Infections/virology
- HIV-1/genetics
- Humans
- Models, Structural
- Molecular Sequence Data
- Nuclear Magnetic Resonance, Biomolecular
- Nucleic Acid Conformation
- RNA, Spliced Leader/chemistry
- RNA, Viral/chemistry
- RNA, Viral/metabolism
- Viral Proteins
- Virus Assembly
- gag Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- YiQiong Yuan
- Department of Chemistry, Graduate Program in Structural Biology, Biochemistry, and Biophysics, Syracuse University, Syracuse, New York 13244-4100, USA
| | | | | | | | | |
Collapse
|
49
|
Abbink TEM, Berkhout B. A novel long distance base-pairing interaction in human immunodeficiency virus type 1 RNA occludes the Gag start codon. J Biol Chem 2003; 278:11601-11. [PMID: 12458192 DOI: 10.1074/jbc.m210291200] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 5'-untranslated region (5'-UTR) is the most conserved part of the HIV-1 RNA genome, and it contains regulatory motifs that mediate various steps in the viral life cycle. Previous work showed that the 5'-terminal 290 nucleotides of HIV-1 RNA adopt two mutually exclusive secondary structures, long distance interaction (LDI) and branched multiple hairpin (BMH). BMH has multiple hairpins, including the dimer initiation signal (DIS) hairpin that mediates RNA dimerization. LDI contains a long distance base-pairing interaction that occludes the DIS region. Consequently, the two conformations differ in their ability to form RNA dimers. In this study, we have presented evidence that the full-length 5'-UTR also adopts the LDI and BMH conformations. The downstream 290-352 region, including the Gag start codon, folds differently in the context of the LDI and BMH structures. These nucleotides form an extended hairpin structure in the LDI conformation, but the same sequences create a novel long distance interaction with upstream U5 sequences in the BMH conformation. The presence of this U5-AUG duplex was confirmed by computer-assisted RNA structure prediction, biochemical analyses, and a phylogenetic survey of different virus isolates. The U5-AUG duplex may influence translation of the Gag protein because it occludes the start codon of the Gag open reading frame.
Collapse
Affiliation(s)
- Truus E M Abbink
- Department of Human Retrovirology, Academic Medical Center, University of Amsterdam, 1100 DE Amsterdam, The Netherlands
| | | |
Collapse
|
50
|
Lawrence DC, Stover CC, Noznitsky J, Wu Z, Summers MF. Structure of the intact stem and bulge of HIV-1 Psi-RNA stem-loop SL1. J Mol Biol 2003; 326:529-42. [PMID: 12559920 DOI: 10.1016/s0022-2836(02)01305-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Psi-RNA packaging signal of the human immunodeficiency virus type-1 (HIV-1) genome contains a 35 nucleotide stem-loop, termed SL1, which is important for efficient genome packaging during virus assembly and for reverse transcription during infectivity. The predicted secondary structure of SL1 consists of an upper stem with a GC-rich loop that facilitates dimerization, a lower stem, and an intervening bulge (G5, A24-G25-G26) that is both strictly conserved and essential for efficient packaging of the viral genome. The structure of the upper stem in both the kissing and duplex dimer forms have been determined recently. Here, we report the structure of an engineered form of SL1 (SL1(m)) that contains a GAGA tetraloop substituted for the GC-rich loop. This construct does not aggregate and remains monomeric at concentrations up to 1mM, enabling structural studies of the intact stems and bulge. The structure was refined using 1H-13C residual dipolar couplings. The upper stem (C6-G12, C17-G23) is in close agreement with X-ray structures of kissing and duplex dimer forms of related oligoribonucleotides, and nucleotides C1-G4 and C27-G30 form the expected A-helical lower stem. Residues G5 and A24 of the predicted bulge form a G-A mismatch that stacks with the upper stem, and residues G25 and G26 stack between the G-A mismatch and the lower stem in a manner that produces a hole in the center of the bulge and a 25(+/-4) degrees bend between the upper and lower stems. SL1(m) exhibits relatively poor affinity for the HIV-1 nucleocapsid protein, suggesting that the bulge plays other roles in genome packaging.
Collapse
Affiliation(s)
- Dana C Lawrence
- Howard Hughes Medical Institute and Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250-5398, USA
| | | | | | | | | |
Collapse
|