1
|
Rouchidane Eyitayo A, Daury L, Priault M, Manon S. The membrane insertion of the pro-apoptotic protein Bax is a Tom22-dependent multi-step process: a study in nanodiscs. Cell Death Discov 2024; 10:335. [PMID: 39043635 PMCID: PMC11266675 DOI: 10.1038/s41420-024-02108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Membrane insertion of the pro-apoptotic protein Bax was investigated by setting up cell-free synthesis of full-length Bax in the presence of pre-formed nanodiscs. While Bax was spontaneously poorly inserted in nanodiscs, co-synthesis with the mitochondrial receptor Tom22 stimulated Bax membrane insertion. The initial interaction of Bax with the lipid bilayer exposed the hydrophobic GALLL motif in Hα1 leading to Bax precipitation through hydrophobic interactions. The same motif was recognized by Tom22, triggering conformational changes leading to the extrusion and the ensuing membrane insertion of the C-terminal hydrophobic Hα9. Tom22 was also required for Bax-membrane insertion after Bax was activated either by BH3-activators or by its release from Bcl-xL by WEHI-539. The effect of Tom22 was impaired by D154Y substitution in Bax-Hα7 and T174P substitution in Bax-Hα9, which are found in several tumors. Conversely, a R9E substitution promoted a spontaneous insertion of Bax in nanodiscs, in the absence of Tom22. Both Tom22-activated Bax and BaxR9E alone permeabilized liposomes to dextran-10kDa and formed ~5-nm-diameter pores in nanodiscs. The concerted regulation of Bax membrane insertion by Tom22 and BH3-activators is discussed.
Collapse
Affiliation(s)
| | - Laetitia Daury
- CNRS, Université de Bordeaux, UMR 5248, CBMN, Pessac, France
| | - Muriel Priault
- CNRS, Université de Bordeaux, UMR 5095, IBGC, Bordeaux, France
| | - Stéphen Manon
- CNRS, Université de Bordeaux, UMR 5095, IBGC, Bordeaux, France.
| |
Collapse
|
2
|
Bcl-2 Family Members and the Mitochondrial Import Machineries: The Roads to Death. Biomolecules 2022; 12:biom12020162. [PMID: 35204663 PMCID: PMC8961529 DOI: 10.3390/biom12020162] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
The localization of Bcl-2 family members at the mitochondrial outer membrane (MOM) is a crucial step in the implementation of apoptosis. We review evidence showing the role of the components of the mitochondrial import machineries (translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM)) in the mitochondrial localization of Bcl-2 family members and how these machineries regulate the function of pro- and anti-apoptotic proteins in resting cells and in cells committed into apoptosis.
Collapse
|
3
|
Drwesh L, Rapaport D. Biogenesis pathways of α-helical mitochondrial outer membrane proteins. Biol Chem 2021; 401:677-686. [PMID: 32017702 DOI: 10.1515/hsz-2019-0440] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/21/2020] [Indexed: 01/23/2023]
Abstract
Mitochondria harbor in their outer membrane (OM) proteins of different topologies. These proteins are encoded by the nuclear DNA, translated on cytosolic ribosomes and inserted into their target organelle by sophisticated protein import machineries. Recently, considerable insights have been accumulated on the insertion pathways of proteins into the mitochondrial OM. In contrast, little is known regarding the early cytosolic stages of their biogenesis. It is generally presumed that chaperones associate with these proteins following their synthesis in the cytosol, thereby keeping them in an import-competent conformation and preventing their aggregation and/or mis-folding and degradation. In this review, we outline the current knowledge about the biogenesis of different mitochondrial OM proteins with various topologies, and highlight the recent findings regarding their import pathways starting from early cytosolic events until their recognition on the mitochondrial surface that lead to their final insertion into the mitochondrial OM.
Collapse
Affiliation(s)
- Layla Drwesh
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Doan KN, Grevel A, Mårtensson CU, Ellenrieder L, Thornton N, Wenz LS, Opaliński Ł, Guiard B, Pfanner N, Becker T. The Mitochondrial Import Complex MIM Functions as Main Translocase for α-Helical Outer Membrane Proteins. Cell Rep 2021; 31:107567. [PMID: 32348752 DOI: 10.1016/j.celrep.2020.107567] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/19/2020] [Accepted: 04/02/2020] [Indexed: 01/08/2023] Open
Abstract
The mitochondrial outer membrane contains integral proteins with α-helical membrane anchors or a transmembrane β-barrel. The translocase of the outer membrane (TOM) cooperates with the sorting and assembly machinery (SAM) in the import of β-barrel proteins, whereas the mitochondrial import (MIM) complex inserts precursors of multi-spanning α-helical proteins. Single-spanning proteins constitute more than half of the integral outer membrane proteins; however, their biogenesis is poorly understood. We report that the yeast MIM complex promotes the insertion of proteins with N-terminal (signal-anchored) or C-terminal (tail-anchored) membrane anchors. The MIM complex exists in three dynamic populations. MIM interacts with TOM to accept precursor proteins from the receptor Tom70. Free MIM complexes insert single-spanning proteins that are imported in a Tom70-independent manner. Finally, coupling of MIM and SAM promotes early assembly steps of TOM subunits. We conclude that the MIM complex is a major and versatile protein translocase of the mitochondrial outer membrane.
Collapse
Affiliation(s)
- Kim Nguyen Doan
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Alexander Grevel
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christoph U Mårtensson
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Lars Ellenrieder
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nicolas Thornton
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Lena-Sophie Wenz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Łukasz Opaliński
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Bernard Guiard
- Centre de Génétique Moléculaire, CNRS, 91190 Gif-sur-Yvette, France
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
5
|
Contribution of Yeast Studies to the Understanding of BCL-2 Family Intracellular Trafficking. Int J Mol Sci 2021; 22:ijms22084086. [PMID: 33920941 PMCID: PMC8071328 DOI: 10.3390/ijms22084086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
BCL-2 family members are major regulators of apoptotic cell death in mammals. They form an intricate regulatory network that ultimately regulates the release of apoptogenic factors from mitochondria to the cytosol. The ectopic expression of mammalian BCL-2 family members in the yeast Saccharomyces cerevisiae, which lacks BCL-2 homologs, has been long established as a useful addition to the available models to study their function and regulation. In yeast, individual proteins can be studied independently from the whole interaction network, thus providing insight into the molecular mechanisms underlying their function in a living context. Furthermore, one can take advantage of the powerful tools available in yeast to probe intracellular trafficking processes such as mitochondrial sorting and interactions/exchanges between mitochondria and other compartments, such as the endoplasmic reticulum that are largely conserved between yeast and mammals. Yeast molecular genetics thus allows the investigation of the role of these processes on the dynamic equilibrium of BCL-2 family members between mitochondria and extramitochondrial compartments. Here we propose a model of dynamic regulation of BCL-2 family member localization, based on available evidence from ectopic expression in yeast.
Collapse
|
6
|
Lalier L, Mignard V, Joalland MP, Lanoé D, Cartron PF, Manon S, Vallette FM. TOM20-mediated transfer of Bcl2 from ER to MAM and mitochondria upon induction of apoptosis. Cell Death Dis 2021; 12:182. [PMID: 33589622 PMCID: PMC7884705 DOI: 10.1038/s41419-021-03471-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 12/20/2022]
Abstract
In this work, we have explored the subcellular localization of Bcl2, a major antiapoptotic protein. In U251 glioma cells, we found that Bcl2 is localized mainly in the ER and is translocated to MAM and mitochondria upon induction of apoptosis; this mitochondrial transfer was not restricted to the demonstrator cell line, even if cell-specific modulations exist. We found that the Bcl2/mitochondria interaction is controlled by TOM20, a protein that belongs to the protein import machinery of the mitochondrial outer membrane. The expression of a small domain of interaction of TOM20 with Bcl2 potentiates its anti-apoptotic properties, which suggests that the Bcl2–TOM20 interaction is proapoptotic. The role of MAM and TOM20 in Bcl2 apoptotic mitochondrial localization and function has been confirmed in a yeast model in which the ER–mitochondria encounter structure (ERMES) complex (required for MAM stability in yeast) has been disrupted. Bcl2–TOM20 interaction is thus an additional player in the control of apoptosis.
Collapse
Affiliation(s)
- Lisenn Lalier
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,LaBCT, ICO, Saint Herblain, France
| | - Vincent Mignard
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,LaBCT, ICO, Saint Herblain, France
| | - Marie-Pierre Joalland
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,LaBCT, ICO, Saint Herblain, France
| | - Didier Lanoé
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,LaBCT, ICO, Saint Herblain, France
| | - Pierre-François Cartron
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France.,LaBCT, ICO, Saint Herblain, France
| | - Stéphen Manon
- Institut de Biochimie et de Génétique Cellulaires, UMR 5095 CNRS & Université de Bordeaux, Bordeaux, France
| | - François M Vallette
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France. .,LaBCT, ICO, Saint Herblain, France.
| |
Collapse
|
7
|
Jiang H. Quality control pathways of tail-anchored proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118922. [PMID: 33285177 DOI: 10.1016/j.bbamcr.2020.118922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/14/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022]
Abstract
Tail-anchored (TA) proteins have an N-terminal domain in the cytosol and a C-terminal transmembrane domain anchored to a variety of organelle membranes. TA proteins are recognized by targeting factors at the transmembrane domain and C-terminal sequence and are guided to distinct membranes. The promiscuity of targeting sequences and the dysfunction of targeting pathways cause mistargeting of TA proteins. TA proteins are under surveillance by quality control pathways. For resident TA proteins at mitochondrial and ER membranes, intrinsic instability or stimuli induced degrons of the cytosolic and transmembrane domains are sensed by quality control factors to initiate degradation of TA proteins. These pathways are summarized as TA protein degradation-Cytosol (TAD-C) and TAD-Membrane (TAD-M) pathways. For mistargeted and a subset of solitary TA proteins at mitochondrial and peroxisomal membranes, a unique pathway has been revealed in recent years. Msp1/ATAD1 is an AAA-ATPase dually-localized to mitochondrial and peroxisomal membranes. It directly recognizes mistargeted and solitary TA proteins and dislocates them out of membrane. Dislocated substrates are subsequently ubiquitinated by the ER-resident Doa10 ubiquitin E3 ligase complex for degradation. We summarize and discuss the substrate recognition, dislocation and degradation mechanisms of the Msp1 pathway.
Collapse
Affiliation(s)
- Hui Jiang
- National Institute of Biological Sciences, Beijing 102206, China; Beijing Key Laboratory of Cell Biology for Animal Aging, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100871, China.
| |
Collapse
|
8
|
Gupta A, Becker T. Mechanisms and pathways of mitochondrial outer membrane protein biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148323. [PMID: 33035511 DOI: 10.1016/j.bbabio.2020.148323] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 11/29/2022]
Abstract
Outer membrane proteins integrate mitochondria into the cellular environment. They warrant exchange of small molecules like metabolites and ions, transport proteins into mitochondria, form contact sites to other cellular organelles for lipid exchange, constitute a signaling platform for apoptosis and inflammation and mediate organelle fusion and fission. The outer membrane contains two types of integral membrane proteins. Proteins with a transmembrane β-barrel structure and proteins with a single or multiple α-helical membrane spans. All outer membrane proteins are produced on cytosolic ribosomes and imported into the target organelle. Precursors of β-barrel and α-helical proteins are transported into the outer membrane via distinct import routes. The translocase of the outer membrane (TOM complex) transports β-barrel precursors across the outer membrane and the sorting and assembly machinery (SAM complex) inserts them into the target membrane. The mitochondrial import (MIM) complex constitutes the major integration site for α-helical embedded proteins. The import of some MIM-substrates involves TOM receptors, while others are imported in a TOM-independent manner. Remarkably, TOM, SAM and MIM complexes dynamically interact to import a large set of different proteins and to coordinate their assembly into protein complexes. Thus, protein import into the mitochondrial outer membrane involves a dynamic platform of protein translocases.
Collapse
Affiliation(s)
- Arushi Gupta
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Universität Bonn, Nussallee 11, 53115 Bonn, Germany.
| |
Collapse
|
9
|
Kreimendahl S, Rassow J. The Mitochondrial Outer Membrane Protein Tom70-Mediator in Protein Traffic, Membrane Contact Sites and Innate Immunity. Int J Mol Sci 2020; 21:E7262. [PMID: 33019591 PMCID: PMC7583919 DOI: 10.3390/ijms21197262] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/08/2023] Open
Abstract
Tom70 is a versatile adaptor protein of 70 kDa anchored in the outer membrane of mitochondria in metazoa, fungi and amoeba. The tertiary structure was resolved for the Tom70 of yeast, showing 26 α-helices, most of them participating in the formation of 11 tetratricopeptide repeat (TPR) motifs. Tom70 serves as a docking site for cytosolic chaperone proteins and co-chaperones and is thereby involved in the uptake of newly synthesized chaperone-bound proteins in mitochondrial biogenesis. In yeast, Tom70 additionally mediates ER-mitochondria contacts via binding to sterol transporter Lam6/Ltc1. In mammalian cells, TOM70 promotes endoplasmic reticulum (ER) to mitochondria Ca2+ transfer by association with the inositol-1,4,5-triphosphate receptor type 3 (IP3R3). TOM70 is specifically targeted by the Bcl-2-related protein MCL-1 that acts as an anti-apoptotic protein in macrophages infected by intracellular pathogens, but also in many cancer cells. By participating in the recruitment of PINK1 and the E3 ubiquitin ligase Parkin, TOM70 can be implicated in the development of Parkinson's disease. TOM70 acts as receptor of the mitochondrial antiviral-signaling protein (MAVS) and thereby participates in the corresponding system of innate immunity against viral infections. The protein encoded by Orf9b in the genome of SARS-CoV-2 binds to TOM70, probably compromising the synthesis of type I interferons.
Collapse
Affiliation(s)
| | - Joachim Rassow
- Institute for Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44801 Bochum, Germany;
| |
Collapse
|
10
|
Rada P, Makki A, Žárský V, Tachezy J. Targeting of tail-anchored proteins to Trichomonas vaginalis hydrogenosomes. Mol Microbiol 2019; 111:588-603. [PMID: 30506591 DOI: 10.1111/mmi.14175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2018] [Indexed: 01/17/2023]
Abstract
Tail-anchored (TA) proteins are membrane proteins that are found in all domains of life. They consist of an N-terminal domain that performs various functions and a single transmembrane domain (TMD) near the C-terminus. In eukaryotes, TA proteins are targeted to the membranes of mitochondria, the endoplasmic reticulum (ER), peroxisomes and in plants, chloroplasts. The targeting of these proteins to their specific destinations correlates with the properties of the C-terminal domain, mainly the TMD hydrophobicity and the net charge of the flanking regions. Trichomonas vaginalis is a human parasite that has adapted to oxygen-poor environment. This adaptation is reflected by the presence of highly modified mitochondria (hydrogenosomes) and the absence of peroxisomes. The proteome of hydrogenosomes is considerably reduced; however, our bioinformatic analysis predicted 120 putative hydrogenosomal TA proteins. Seven proteins were selected to prove their localization. The elimination of the net positive charge in the C-tail of the hydrogenosomal TA4 protein resulted in its dual localization to hydrogenosomes and the ER, causing changes in ER morphology. Domain mutation and swap experiments with hydrogenosomal (TA4) and ER (TAPDI) proteins indicated that the general principles for specific targeting are conserved across eukaryotic lineages, including T. vaginalis; however, there are also significant lineage-specific differences.
Collapse
Affiliation(s)
- Petr Rada
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, Vestec, 25242, Czech Republic
| | - Abhijith Makki
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, Vestec, 25242, Czech Republic
| | - Vojtěch Žárský
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, Vestec, 25242, Czech Republic
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, Vestec, 25242, Czech Republic
| |
Collapse
|
11
|
Zara V, Ferramosca A, Günnewig K, Kreimendahl S, Schwichtenberg J, Sträter D, Çakar M, Emmrich K, Guidato P, Palmieri F, Rassow J. Mimivirus-Encoded Nucleotide Translocator VMC1 Targets the Mitochondrial Inner Membrane. J Mol Biol 2018; 430:5233-5245. [PMID: 30261167 DOI: 10.1016/j.jmb.2018.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 01/08/2023]
Abstract
Mimivirus (Acanthamoeba polyphaga mimivirus) was the first giant DNA virus identified in an amoeba species. Its genome contains at least 979 genes. One of these, L276, encodes a nucleotide translocator with similarities to mitochondrial metabolite carriers, provisionally named viral mitochondrial carrier 1 (VMC1). In this study, we investigated the intracellular distribution of VMC1 upon expression in HeLa cells and in the yeast Saccharomyces cerevisiae. We found that VMC1 is specifically targeted to mitochondria and to the inner mitochondrial membrane. Newly synthesized VMC1 binds to the mitochondrial outer-membrane protein Tom70 and translocates through the import channel formed by the β-barrel protein Tom40. Derivatization of the four cysteine residues inside Tom40 by N-ethylmaleimide caused a delay in translocation but not a complete occlusion. Cell viability was not reduced by VMC1. Neither the mitochondrial membrane potential nor the intracellular production of reactive oxygen species was affected. Similar to endogenous metabolite carriers, mimivirus-encoded VMC1 appears to act as a specific translocator in the mitochondrial inner membrane. Due to its permeability for deoxyribonucleotides, VMC1 confers to the mitochondria an opportunity to contribute nucleotides for the replication of the large DNA genome of the virus.
Collapse
Affiliation(s)
- Vincenzo Zara
- Department of Environmental and Biological Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Alessandra Ferramosca
- Department of Environmental and Biological Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Kathrin Günnewig
- Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Sebastian Kreimendahl
- Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Jan Schwichtenberg
- Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Dina Sträter
- Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Mahmut Çakar
- Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Kerstin Emmrich
- Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Patrick Guidato
- Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Joachim Rassow
- Institute of Biochemistry and Pathobiochemistry, Ruhr-University Bochum, 44780 Bochum, Germany.
| |
Collapse
|
12
|
Characterization of the membrane-inserted C-terminus of cytoprotective BCL-XL. Protein Expr Purif 2016; 122:56-63. [PMID: 26923059 DOI: 10.1016/j.pep.2016.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/01/2016] [Accepted: 02/17/2016] [Indexed: 02/03/2023]
Abstract
BCL-XL is a dominant inhibitor of apoptosis and a significant anti-cancer drug target. Endogenous BCL-XL is integral to the mitochondrial outer membrane (MOM). BCL-XL reconstituted in detergent-free lipid bilayer nanodiscs is anchored to the nanodisc lipid bilayer membrane by tight association of its C-terminal tail, while the N-terminal head retains the canonical structure determined for water-soluble, tail-truncated BCL-XL, with the surface groove solvent-exposed and available for BH3 ligand binding. To better understand the conformation and dynamics of this key region of BCL-XL we have developed methods for isolating the membrane-embedded C-terminal tail from its N-terminal head and for preparing protein suitable for structural and biochemical studies. Here, we outline the methods for sample preparation and characterization and describe previously unreported structural and dynamics features. We show that the C-terminal tail of BCL-XL forms a transmembrane α-helix that retains a significant degree of conformational dynamics. We also show that the presence of the intact C-terminus destabilizes the soluble state of the protein, and that the small fraction of soluble recombinant protein produced in Escherichia coli is susceptible to proteolytic degradation of C-terminal residues beyond M218. This finding impacts the numerous previous studies where recombinant soluble BCL-XL was presumed to be full-length. Nevertheless, the majority of recombinant BCL-XL produced in E. coli is insoluble and protected from proteolysis. This protein retains the complete C-terminal tail and can be reconstituted in lipid bilayers in a folded and active state.
Collapse
|
13
|
Cooperation of protein machineries in mitochondrial protein sorting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1119-29. [DOI: 10.1016/j.bbamcr.2015.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 02/07/2023]
|
14
|
Höhr AIC, Straub SP, Warscheid B, Becker T, Wiedemann N. Assembly of β-barrel proteins in the mitochondrial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:74-88. [PMID: 25305573 DOI: 10.1016/j.bbamcr.2014.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 12/15/2022]
Abstract
Mitochondria evolved through endosymbiosis of a Gram-negative progenitor with a host cell to generate eukaryotes. Therefore, the outer membrane of mitochondria and Gram-negative bacteria contain pore proteins with β-barrel topology. After synthesis in the cytosol, β-barrel precursor proteins are first transported into the mitochondrial intermembrane space. Folding and membrane integration of β-barrel proteins depend on the mitochondrial sorting and assembly machinery (SAM) located in the outer membrane, which is related to the β-barrel assembly machinery (BAM) in bacteria. The SAM complex recognizes β-barrel proteins by a β-signal in the C-terminal β-strand that is required to initiate β-barrel protein insertion into the outer membrane. In addition, the SAM complex is crucial to form membrane contacts with the inner mitochondrial membrane by interacting with the mitochondrial contact site and cristae organizing system (MICOS) and shares a subunit with the endoplasmic reticulum-mitochondria encounter structure (ERMES) that links the outer mitochondrial membrane to the endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Alexandra I C Höhr
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Sebastian P Straub
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany; Abteilung Biochemie und Funktionelle Proteomik, Institut für Biologie II, Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany
| | - Nils Wiedemann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
15
|
Asmarinah A, Paradowska-Dogan A, Kodariah R, Tanuhardja B, Waliszewski P, Mochtar CA, Weidner W, Hinsch E, HINSCH ELVIRA. Expression of the Bcl-2 family genes and complexes involved in the mitochondrial transport in prostate cancer cells. Int J Oncol 2014; 45:1489-96. [PMID: 25177836 DOI: 10.3892/ijo.2014.2576] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 06/19/2014] [Indexed: 01/20/2023] Open
Abstract
Alteration of molecular pathways triggering apoptosis gives raise to various pathological tissue processes, such as tumorigenesis. The mitochondrial pathway is regulated by both the genes of the Bcl-2 family and the genes encoding mitochondrial transport molecules. Those proteins allow a release of cyctochrome c through the outer mitochondrial membrane. This release activates the caspase cascade resulting in death of cells. There are at least two main transport systems associated with the family of Bcl-2 proteins that are involved in transport of molecules through the outer mitochondrial membrane, i.e., the voltage dependent anion channels (VDACs) and translocases of the outer mitochondrial membrane proteins (TOMs). We investigated the expression of genes of the Bcl-2 family, i.e., pro-apoptotic Bak and Bid, and anti-apoptotic Bcl-2; VDAC gene, i.e., VDAC1, VDAC2 and VDAC3; and TOMM genes, i.e., TOMM20, TOMM22 and TOMM40. This study was performed at the mRNA and the protein level. Fourteen paraffin embedded prostate cancer tissues and five normal prostate tissues were analyzed by the quantitative PCR array and immunohistochemistry. We found a significant increase in both mRNA expression of the anti-apoptotic Bcl-2 gene and VDAC1 gene in prostate cancer tissue in comparison with their normal counterparts. Translation of the anti-apoptotic Bcl-2 and VDAC1 genes in prostate cancer tissue was slightly increased. We observed no significant differences in the mRNA expression of the pro-apoptotic Bak and Bid genes, VDAC2 or VDAC3 genes or the three TOMM genes in these tissues. The pro-apoptotic Bax protein was downtranslated significantly in secretory cells of prostate cancer as compared to normal prostate. We suggest that this protein is a good candidate as biomarker for prostate cancer.
Collapse
|
16
|
Cartron PF, Petit E, Bellot G, Oliver L, Vallette FM. Metaxins 1 and 2, two proteins of the mitochondrial protein sorting and assembly machinery, are essential for Bak activation during TNF alpha triggered apoptosis. Cell Signal 2014; 26:1928-34. [DOI: 10.1016/j.cellsig.2014.04.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/27/2014] [Indexed: 10/25/2022]
|
17
|
Functions of the C-terminal domains of apoptosis-related proteins of the Bcl-2 family. Chem Phys Lipids 2014; 183:77-90. [PMID: 24892727 DOI: 10.1016/j.chemphyslip.2014.05.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 02/06/2023]
Abstract
Bcl-2 family proteins are involved in cell homeostasis, where they regulate cell death. Some of these proteins are pro-apoptotic and others pro-survival. Moreover, many of them share a similar domain composition with several of the so-called BH domains, although some only have a BH3 domain. A C-terminal domain is present in all the multi-BH domain proteins and in some of the BH3-only ones. This C-terminal domain is hydrophobic or amphipathic, for which reason it was thought when they were discovered that they were membrane anchors. Although this is indeed one of their functions, it has since been observed that they may also serve as regulators of the function of some members of this family, such as Bax. They may also serve to recognize the target membrane of some of these proteins, which only after an apoptotic signal, are incorporated into a membrane. It has been shown that peptides that imitate the sequence of C-terminal domains can form pores and may serve as a model to design cytotoxic molecules.
Collapse
|
18
|
Lee J, Kim DH, Hwang I. Specific targeting of proteins to outer envelope membranes of endosymbiotic organelles, chloroplasts, and mitochondria. FRONTIERS IN PLANT SCIENCE 2014; 5:173. [PMID: 24808904 PMCID: PMC4010795 DOI: 10.3389/fpls.2014.00173] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/10/2014] [Indexed: 05/21/2023]
Abstract
Chloroplasts and mitochondria are endosymbiotic organelles thought to be derived from endosymbiotic bacteria. In present-day eukaryotic cells, these two organelles play pivotal roles in photosynthesis and ATP production. In addition to these major activities, numerous reactions, and cellular processes that are crucial for normal cellular functions occur in chloroplasts and mitochondria. To function properly, these organelles constantly communicate with the surrounding cellular compartments. This communication includes the import of proteins, the exchange of metabolites and ions, and interactions with other organelles, all of which heavily depend on membrane proteins localized to the outer envelope membranes. Therefore, correct and efficient targeting of these membrane proteins, which are encoded by the nuclear genome and translated in the cytosol, is critically important for organellar function. In this review, we summarize the current knowledge of the mechanisms of protein targeting to the outer membranes of mitochondria and chloroplasts in two different directions, as well as targeting signals and cytosolic factors.
Collapse
Affiliation(s)
- Junho Lee
- Cellular Systems Biology, Department of Life Sciences, Pohang University of Science and TechnologyPohang, South Korea
| | - Dae Heon Kim
- Cellular Systems Biology, Department of Life Sciences, Pohang University of Science and TechnologyPohang, South Korea
| | - Inhwan Hwang
- Cellular Systems Biology, Department of Life Sciences, Pohang University of Science and TechnologyPohang, South Korea
- Division of Integrative Biosciences and Bioengineering, Pohang University of Science and TechnologyPohang, South Korea
- *Correspondence: Inhwan Hwang, Cellular Systems Biology, Department of Life Sciences and Division of Integrative Biosciences and Bioengineering, Pohang University of Science and Technology, Hyojadong, Nam-Gu, Pohang 790-784, South Korea e-mail:
| |
Collapse
|
19
|
The Taz1p transacylase is imported and sorted into the outer mitochondrial membrane via a membrane anchor domain. EUKARYOTIC CELL 2013; 12:1600-8. [PMID: 24078306 DOI: 10.1128/ec.00237-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in the mitochondrial transacylase tafazzin, Taz1p, in Saccharomyces cerevisiae cause Barth syndrome, a disease of defective cardiolipin remodeling. Taz1p is an interfacial membrane protein that localizes to both the outer and inner membranes, lining the intermembrane space. Pathogenic point mutations in Taz1p that alter import and membrane insertion result in accumulation of monolysocardiolipin. In this study, we used yeast as a model to investigate the biogenesis of Taz1p. We show that to achieve this unique topology in mitochondria, Taz1p follows a novel import pathway in which it crosses the outer membrane via the translocase of the outer membrane and then uses the Tim9p-Tim10p complex of the intermembrane space to insert into the mitochondrial outer membrane. Taz1p is then transported to membranes of an intermediate density to reach a location in the inner membrane. Moreover, a pathogenic mutation within the membrane anchor (V224R) alters Taz1p import so that it bypasses the Tim9p-Tim10p complex and interacts with the translocase of the inner membrane, TIM23, to reach the matrix. Critical targeting information for Taz1p resides in the membrane anchor and flanking sequences, which are often mutated in Barth syndrome patients. These studies suggest that altering the mitochondrial import pathway of Taz1p may be important in understanding the molecular basis of Barth syndrome.
Collapse
|
20
|
Zhang Y, Iqbal S, O'Leary MFN, Menzies KJ, Saleem A, Ding S, Hood DA. Altered mitochondrial morphology and defective protein import reveal novel roles for Bax and/or Bak in skeletal muscle. Am J Physiol Cell Physiol 2013; 305:C502-11. [DOI: 10.1152/ajpcell.00058.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The function Bax and/or Bak in constituting a gateway for mitochondrial apoptosis in response to apoptotic stimuli has been unequivocally demonstrated. However, recent work has suggested that Bax/Bak may have unrecognized nonapoptotic functions related to mitochondrial function in nonstressful environments. Wild-type (WT) and Bax/Bak double knockout (DKO) mice were used to determine alternative roles for Bax and Bak in mitochondrial morphology and protein import in skeletal muscle. The absence of Bax and/or Bak altered mitochondrial dynamics by regulating protein components of the organelle fission and fusion machinery. Moreover, DKO mice exhibited defective mitochondrial protein import, both into the matrix and outer membrane compartments, which was consistent with our observations of impaired membrane potential and attenuated expression of protein import machinery (PIM) components in intermyofibrillar mitochondria. Furthermore, the cytosolic chaperones heat-shock protein 90 (Hsp90) and binding immunoglobulin protein (BiP) were markedly increased with the deletion of Bax/Bak, indicating that the cytosolic environment related to protein folding may be changed in DKO mice. Interestingly, endurance training fully restored the deficiency of protein import in DKO mice, likely via the upregulation of PIM components and through improved cytosolic chaperone protein expression. Thus our results emphasize novel roles for Bax and/or Bak in mitochondrial function and provide evidence, for the first time, of a curative function of exercise training in ameliorating a condition of defective mitochondrial protein import.
Collapse
Affiliation(s)
- Yuan Zhang
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education of China, Shanghai, China; and
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Sobia Iqbal
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Michael F. N. O'Leary
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Keir J. Menzies
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Ayesha Saleem
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education of China, Shanghai, China; and
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - David A. Hood
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada
| |
Collapse
|
21
|
Chen Z, Padmanabhan K, Rocha AM, Shpanskaya Y, Mihelcic JR, Scott K, Samatova NF. SPICE: discovery of phenotype-determining component interplays. BMC SYSTEMS BIOLOGY 2012; 6:40. [PMID: 22583800 PMCID: PMC3515406 DOI: 10.1186/1752-0509-6-40] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 04/17/2012] [Indexed: 01/17/2023]
Abstract
Background A latent behavior of a biological cell is complex. Deriving the underlying simplicity, or the fundamental rules governing this behavior has been the Holy Grail of systems biology. Data-driven prediction of the system components and their component interplays that are responsible for the target system’s phenotype is a key and challenging step in this endeavor. Results The proposed approach, which we call System Phenotype-related Interplaying Components Enumerator (Spice), iteratively enumerates statistically significant system components that are hypothesized (1) to play an important role in defining the specificity of the target system’s phenotype(s); (2) to exhibit a functionally coherent behavior, namely, act in a coordinated manner to perform the phenotype-specific function; and (3) to improve the predictive skill of the system’s phenotype(s) when used collectively in the ensemble of predictive models. Spice can be applied to both instance-based data and network-based data. When validated, Spice effectively identified system components related to three target phenotypes: biohydrogen production, motility, and cancer. Manual results curation agreed with the known phenotype-related system components reported in literature. Additionally, using the identified system components as discriminatory features improved the prediction accuracy by 10% on the phenotype-classification task when compared to a number of state-of-the-art methods applied to eight benchmark microarray data sets. Conclusion We formulate a problem—enumeration of phenotype-determining system component interplays—and propose an effective methodology (Spice) to address this problem. Spice improved identification of cancer-related groups of genes from various microarray data sets and detected groups of genes associated with microbial biohydrogen production and motility, many of which were reported in literature. Spice also improved the predictive skill of the system’s phenotype determination compared to individual classifiers and/or other ensemble methods, such as bagging, boosting, random forest, nearest shrunken centroid, and random forest variable selection method.
Collapse
Affiliation(s)
- Zhengzhang Chen
- Department of Computer Science, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Kriechbaumer V, Abell BM. Chloroplast envelope protein targeting fidelity is independent of cytosolic components in dual organelle assays. FRONTIERS IN PLANT SCIENCE 2012; 3:148. [PMID: 22783268 PMCID: PMC3384937 DOI: 10.3389/fpls.2012.00148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/14/2012] [Indexed: 05/22/2023]
Abstract
The general mechanisms of intracellular protein targeting are well established, and depend on a targeting sequence in the protein, which is recognized by a targeting factor. Once a membrane protein is delivered to the correct organelle its targeting sequence can be recognized by receptors and a translocase, leading to membrane insertion. However, the relative contribution of each step for generating fidelity and efficiency of the overall process has not been systematically addressed. Here, we use tail-anchored (TA) membrane proteins in cell-free competitive targeting assays to chloroplasts to show that targeting can occur efficiently and with high fidelity in the absence of all cytosolic components, suggesting that chloroplast envelope protein targeting is primarily dependent on events at the outer envelope. Efficiency of targeting was increased by the addition of complete cytosol, and by Hsp70 or Hsp90, depending on the protein, but none of these cytosolic components influenced the fidelity of targeting. Our results suggest that the main role of targeting factors in chloroplast localization is to increase targeting efficiency by maintaining recognition competency at the outer envelope.
Collapse
Affiliation(s)
| | - Ben M. Abell
- *Correspondence: Ben M. Abell, Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK. e-mail:
| |
Collapse
|
23
|
Abstract
Apoptosis is a process of programmed cell death that serves as a major mechanism for the precise regulation of cell numbers, and as a defense mechanism to remove unwanted and potentially dangerous cells. Studies in nematode, Drosophila and mammals have shown that, although regulation of the cell death machinery is somehow different from one species to another, it is controlled by homologous proteins and involves mitochondria. In mammals, activation of caspases (cysteine proteases that are the main executioners of apoptosis) is under the tight control of the Bcl-2 family proteins, named in reference to the first discovered mammalian cell death regulator. These proteins mainly act by regulating the release of caspases activators from mitochondria. Although for a long time the absence of mitochondrial changes was considered as a hallmark of apoptosis, mitochondria appear today as the central executioner of apoptosis. In this chapter, we present the current view on the mitochondrial pathway of apoptosis with a particular attention to new aspects of the regulation of the Bcl-2 proteins family control of mitochondrial membrane permeabilization: the mechanisms implicated in their mitochondrial targeting and activation during apoptosis, the function(s) of the oncosuppressive protein p53 at the mitochondria and the role of the processes of mitochondrial fusion and fission.
Collapse
|
24
|
Renault TT, Grandier-Vazeille X, Arokium H, Velours G, Camougrand N, Priault M, Teijido O, Dejean LM, Manon S. The cytosolic domain of human Tom22 modulates human Bax mitochondrial translocation and conformation in yeast. FEBS Lett 2011; 586:116-21. [DOI: 10.1016/j.febslet.2011.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 11/15/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
|
25
|
Becker T, Wenz LS, Krüger V, Lehmann W, Müller JM, Goroncy L, Zufall N, Lithgow T, Guiard B, Chacinska A, Wagner R, Meisinger C, Pfanner N. The mitochondrial import protein Mim1 promotes biogenesis of multispanning outer membrane proteins. ACTA ACUST UNITED AC 2011; 194:387-95. [PMID: 21825073 PMCID: PMC3153637 DOI: 10.1083/jcb.201102044] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Mim1 complex imports α-helical mitochondrial outer membrane proteins with multiple transmembrane segments. The mitochondrial outer membrane contains translocase complexes for the import of precursor proteins. The translocase of the outer membrane complex functions as a general preprotein entry gate, whereas the sorting and assembly machinery complex mediates membrane insertion of β-barrel proteins of the outer membrane. Several α-helical outer membrane proteins are known to carry multiple transmembrane segments; however, only limited information is available on the biogenesis of these proteins. We report that mitochondria lacking the mitochondrial import protein 1 (Mim1) are impaired in the biogenesis of multispanning outer membrane proteins, whereas overexpression of Mim1 stimulates their import. The Mim1 complex cooperates with the receptor Tom70 in binding of precursor proteins and promotes their insertion and assembly into the outer membrane. We conclude that the Mim1 complex plays a central role in the import of α-helical outer membrane proteins with multiple transmembrane segments.
Collapse
Affiliation(s)
- Thomas Becker
- Institute for Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The pro-apoptototic protein Bax (Bcl-2 Associated protein X) plays a central role in the mitochondria-dependent apoptotic pathway. In healthy mammalian cells, Bax is essentially cytosolic and inactive. Following a death signal, the protein is translocated to the outer mitochondrial membrane, where it promotes a permeabilization that favors the release of different apoptogenic factors, such as cytochrome c. The regulation of Bax translocation is associated to conformational changes that are under the control of different factors. The evidences showing the involvement of different Bax domains in its mitochondrial localization are presented. The interactions between Bax and its different partners are described in relation to their ability to promote (or prevent) Bax conformational changes leading to mitochondrial addressing and to the acquisition of the capacity to permeabilize the outer mitochondrial membrane.
Collapse
Affiliation(s)
- Thibaud T Renault
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, F-33000 Bordeaux, France
| | | |
Collapse
|
27
|
Kang BH, Xia F, Pop R, Dohi T, Socolovsky M, Altieri DC. Developmental control of apoptosis by the immunophilin aryl hydrocarbon receptor-interacting protein (AIP) involves mitochondrial import of the survivin protein. J Biol Chem 2011; 286:16758-67. [PMID: 21454573 DOI: 10.1074/jbc.m110.210120] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Survivin is a multifunctional protein with essential roles in cell division and inhibition of apoptosis, but the molecular underpinnings of its cytoprotective properties are poorly understood. Here we show that homozygous deletion of the aryl hydrocarbon receptor-interacting protein (AIP), a survivin-associated immunophilin, causes embryonic lethality in mice by embryonic day 13.5-14, increased apoptosis of Ter119(-)/CD71(-) early erythropoietic progenitors, and loss of survivin expression in its cytosolic and mitochondrial compartments in vivo. In import assays using recombinant proteins, AIP directly mediated the import of survivin to mitochondria, thus enabling its anti-apoptotic function, whereas a survivin 1-141 mutant that does not bind AIP was not imported to mitochondria and failed to inhibit apoptosis. AIP-directed mitochondrial import of survivin did not affect cell division, was independent of the organelle transmembrane potential, did not require the chaperone Heat Shock Protein 90 (Hsp90), and was inhibited by cytosolic factor(s) present in normal cells. shRNA knockdown of the mitochondrial import receptor Tom20 abolished mitochondrial import of survivin and sensitized tumor cells to apoptosis, whereas silencing of Tom70 had no effect. Therefore, an AIP-Tom20 recognition contributes to cell survival in development and cancer by mediating the mitochondrial import of survivin.
Collapse
Affiliation(s)
- Byoung Heon Kang
- Prostate Cancer Discovery and Development Program, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | |
Collapse
|
28
|
Dukanovic J, Rapaport D. Multiple pathways in the integration of proteins into the mitochondrial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:971-80. [DOI: 10.1016/j.bbamem.2010.06.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 06/22/2010] [Accepted: 06/23/2010] [Indexed: 11/25/2022]
|
29
|
Borgese N, Fasana E. Targeting pathways of C-tail-anchored proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:937-46. [DOI: 10.1016/j.bbamem.2010.07.010] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/09/2010] [Accepted: 07/10/2010] [Indexed: 10/19/2022]
|
30
|
Abell BM, Mullen RT. Tail-anchored membrane proteins: exploring the complex diversity of tail-anchored-protein targeting in plant cells. PLANT CELL REPORTS 2011; 30:137-51. [PMID: 20878326 DOI: 10.1007/s00299-010-0925-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 09/14/2010] [Indexed: 05/24/2023]
Abstract
Tail-anchored (TA) proteins are special class of integral membrane proteins that in recent years have received a considerable amount of attention due to their diverse cellular functions and unique targeting and insertion mechanisms. Defined by the presence of a single, hydrophobic membrane-spanning domain at or near their C terminus, TA proteins must be inserted into membranes post-translationally and are orientated such that their larger N-terminal domain (most often the functional domain) faces the cytosol, while their shorter C-terminal domain faces the interior of the organelle. The C-terminal domain of TA proteins also usually contains the information responsible for their selective targeting to the proper subcellular membrane, a process that, based primarily on studies with yeasts and mammals, appears to be highly complex due to the presence of multiple pathways. Within this context, we discuss here the biogenesis of plant TA proteins and the potential for hundreds of new TA proteins identified via bioinformatics screens to contribute to the already remarkable number of roles that this class of membrane proteins participates in throughout plant growth and development.
Collapse
Affiliation(s)
- Ben M Abell
- Biomedical Research Centre, Sheffield Hallam University, Howard Street, Sheffield, UK.
| | | |
Collapse
|
31
|
Lindsay J, Esposti MD, Gilmore AP. Bcl-2 proteins and mitochondria--specificity in membrane targeting for death. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:532-9. [PMID: 21056595 DOI: 10.1016/j.bbamcr.2010.10.017] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 10/22/2010] [Accepted: 10/27/2010] [Indexed: 01/10/2023]
Abstract
The localization and control of Bcl-2 proteins on mitochondria is essential for the intrinsic pathway of apoptosis. Anti-apoptotic Bcl-2 proteins reside on the outer mitochondrial membrane (OMM) and prevent apoptosis by inhibiting the activation of the pro-apoptotic family members Bax and Bak. The Bcl-2 subfamily of BH3-only proteins can either inhibit the anti-apoptotic proteins or directly activate Bax or Bak. How these proteins interact with each other, the mitochondrial surface and within the OMM are complex processes we are only beginning to understand. However, these interactions are fundamental for the transduction of apoptotic signals to mitochondria and the subsequent release of caspase activating factors into the cytosol. In this review we will discuss our knowledge of how Bcl-2 proteins are directed to mitochondria in the first place, a crucial but poorly understood aspect of their regulation. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
Affiliation(s)
- Jennefer Lindsay
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Life Sciences The University of Manchester, UK.
| | | | | |
Collapse
|
32
|
Chen ZX, Pervaiz S. Involvement of cytochrome c oxidase subunits Va and Vb in the regulation of cancer cell metabolism by Bcl-2. Cell Death Differ 2009; 17:408-20. [PMID: 19834492 DOI: 10.1038/cdd.2009.132] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Bcl-2 has been shown to promote survival of cancer cells by maintaining a slight pro-oxidant state through elevated mitochondrial respiration during basal conditions. On oxidative stress, Bcl-2 moderates mitochondrial respiration through cytochrome c oxidase (COX) activity to prevent an excessive buildup of reactive oxygen species (ROS) by-production from electron transport activities. However, the underlying molecular mechanism(s) of Bcl-2-mediated ROS regulation and its impact on carcinogenesis remain unclear. In this study, we show that Bcl-2 expression positively influences the targeting of nuclear-encoded COX Va and Vb to the mitochondria of cancer cells. In addition, evidence is presented in support of a protein-protein interaction between COX Va and Bcl-2, involving the BH2 domain of Bcl-2. Interestingly, episodes of serum withdrawal, glucose deprivation or hypoxia aimed at inducing early oxidative stress triggered Bcl-2-overexpressing cells to preserve mitochondrial levels of COX Va while depressing COX Vb, whereas the reverse was observed in mock-transfected cells. The unique manner in which Bcl-2 adjusted COX subunits during these physiological stress triggers had a profound impact on the resultant decrease in COX activity and maintenance of mitochondrial ROS levels, thus delineating a novel mechanism for the homeostatic role of Bcl-2 in the redox biology and metabolism of cancer cells.
Collapse
Affiliation(s)
- Z X Chen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | |
Collapse
|
33
|
Colin J, Garibal J, Mignotte B, Guénal I. The mitochondrial TOM complex modulates bax-induced apoptosis in Drosophila. Biochem Biophys Res Commun 2009; 379:939-43. [DOI: 10.1016/j.bbrc.2008.12.176] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 12/28/2008] [Indexed: 10/21/2022]
|
34
|
TOM-independent complex formation of Bax and Bak in mammalian mitochondria during TNFα-induced apoptosis. Cell Death Differ 2009; 16:697-707. [DOI: 10.1038/cdd.2008.194] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
35
|
Abstract
The default pathway of cell-surface T-cell receptor (TCR) complex formation, and the subsequent transport to the membrane, is thought to entail endoplasmic reticulum (ER) localization followed by proteasome degradation of the unassembled chains. We show herein an alternative pathway: short, incomplete peptide versions of TCRbeta naturally occur in the thymus. Such peptides, which have minimally lost the leader sequence or have been massively truncated, leaving only the very C terminus intact, are sorted preferentially to the mitochondrion. As a consequence of the mitochondrial localization, apoptotic cell death is induced. Structure function analysis showed that both the specific localization and induction of apoptosis depend on the transmembrane domain (TMD) and associated residues at the COOH-terminus of TCR. Truncated forms of TCR, such as the short peptides that we detected in the thymus, may be products of protein degradation within thymocytes. Alternatively, they may occur through the translation of truncated mRNAs resulting from unfruitful rearrangement or from germline transcription. It is proposed that mitochondria serve as a subcellular sequestration site for incomplete TCR molecules.
Collapse
|
36
|
Cartron PF, Bellot G, Oliver L, Grandier-Vazeille X, Manon S, Vallette FM. Bax inserts into the mitochondrial outer membrane by different mechanisms. FEBS Lett 2008; 582:3045-51. [DOI: 10.1016/j.febslet.2008.07.047] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 07/14/2008] [Accepted: 07/18/2008] [Indexed: 11/25/2022]
|
37
|
Kemper C, Habib SJ, Engl G, Heckmeyer P, Dimmer KS, Rapaport D. Integration of tail-anchored proteins into the mitochondrial outer membrane does not require any known import components. J Cell Sci 2008; 121:1990-8. [DOI: 10.1242/jcs.024034] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Tail-anchored proteins form a distinct class of membrane proteins that are found in all intracellular membranes exposed to the cytosol. These proteins have a single membrane insertion sequence at their C-terminus and display a large N-terminal portion to the cytosol. Despite their importance for various cellular processes, the mechanisms by which these proteins are recognized at and inserted into their corresponding target membrane remained largely unclear. Here we address this issue and investigate the biogenesis of tail-anchored proteins residing in the mitochondrial outer membrane. To that goal we developed a highly specific assay to monitor the membrane insertion of the model tail-anchored protein Fis1. Using this assay, we show that in contrast to all other import pathways in yeast mitochondria, none of the import components at the outer membrane is involved in the insertion process of Fis1. Both the steady-state levels of Fis1 and its in vitro insertion into isolated mitochondria were unaffected when mitochondria mutated in known import factors were analyzed. Fis1 was inserted into lipid vesicles, and importantly, elevated ergosterol contents in these vesicles inhibited this insertion. Collectively, these results suggest that Fis1 is inserted into mitochondria in a novel pathway where the unique lipid composition of the mitochondrial outer membrane contributes to the selectivity of the process. Thus, this work demonstrates a novel role for lipids in the biogenesis of mitochondrial protein.
Collapse
Affiliation(s)
- Christian Kemper
- Institut für Physiologische Chemie der Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Shukry J. Habib
- Institut für Physiologische Chemie der Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Gertraud Engl
- Interfakultäres Institut für Biochemie, Hoppe-Seyler-Str. 4, University of Tübingen, 72076 Tübingen, Germany
| | - Petra Heckmeyer
- Institut für Physiologische Chemie der Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Kai S. Dimmer
- Interfakultäres Institut für Biochemie, Hoppe-Seyler-Str. 4, University of Tübingen, 72076 Tübingen, Germany
| | - Doron Rapaport
- Interfakultäres Institut für Biochemie, Hoppe-Seyler-Str. 4, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
38
|
Walther DM, Rapaport D. Biogenesis of mitochondrial outer membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:42-51. [PMID: 18501716 DOI: 10.1016/j.bbamcr.2008.04.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 04/15/2008] [Accepted: 04/25/2008] [Indexed: 11/29/2022]
Abstract
Mitochondria are surrounded by two distinct membranes: the outer and the inner membrane. The mitochondrial outer membrane mediates numerous interactions between the mitochondrial metabolic and genetic systems and the rest of the eukaryotic cell. Proteins of this membrane are nuclear-encoded and synthesized as precursor proteins in the cytosol. They are targeted to the mitochondria and inserted into their target membrane via various pathways. This review summarizes our current knowledge of the sorting signals for this specific targeting and describes the mechanisms by which the mitochondrial import machineries recognize precursor proteins, mediate their membrane integration and facilitate assembly into functional complexes.
Collapse
Affiliation(s)
- Dirk M Walther
- Interfakultäres Institut für Biochemie, Hoppe-Seyler-Str. 4, University of Tübingen, 72076 Tübingen, Germany
| | | |
Collapse
|
39
|
Chapter 5 New Insights into the Mechanism of Precursor Protein Insertion into the Mitochondrial Membranes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 268:147-90. [DOI: 10.1016/s1937-6448(08)00805-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
|
40
|
Becker T, Pfannschmidt S, Guiard B, Stojanovski D, Milenkovic D, Kutik S, Pfanner N, Meisinger C, Wiedemann N. Biogenesis of the Mitochondrial TOM Complex. J Biol Chem 2008; 283:120-127. [DOI: 10.1074/jbc.m706997200] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
41
|
Arokium H, Ouerfelli H, Velours G, Camougrand N, Vallette FM, Manon S. Substitutions of Potentially Phosphorylatable Serine Residues of Bax Reveal How They May Regulate Its Interaction with Mitochondria. J Biol Chem 2007; 282:35104-12. [PMID: 17911107 DOI: 10.1074/jbc.m704891200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During apoptosis, the pro-apoptotic protein Bax relocalizes from the cytosol to the mitochondrial outer membrane. This relocalization is associated to major conformational changes, namely at the N- and C-terminal ends of the protein. Substitution of residues located at critical positions within the protein potentially stimulates or inhibits this process. In the present study, we investigated the hypothesis that phosphorylation of serine residues might trigger these conformational changes, with a focus on Ser(163) and Ser(184), which have been shown to be phosphorylatable by protein kinases GSK3beta and Akt/PKB, respectively, and on Ser(60), which is located in a consensus target sequence for PKA. Substitutions of these serine residues by alanine or aspartate were done in wild type or previously characterized Bax mutants, and the capacity of the resulting proteins to interact with mitochondria and to release cytochrome c was assayed in yeast, which provides a tool to study the function of Bax, independently of the rest of the apoptotic network. We conclude that sequential phosphorylation of these serine residues might participate in the triggering of the different conformational changes associated with Bax activation during apoptosis.
Collapse
Affiliation(s)
- Hubert Arokium
- CNRS, UMR5095, Université de Bordeaux 2, 1 Rue Camille Saint-Saëns, 33077 Bordeaux, France
| | | | | | | | | | | |
Collapse
|
42
|
Ko JK, Choi KH, Pan Z, Lin P, Weisleder N, Kim CW, Ma J. The tail-anchoring domain of Bfl1 and HCCS1 targets mitochondrial membrane permeability to induce apoptosis. J Cell Sci 2007; 120:2912-23. [PMID: 17666431 DOI: 10.1242/jcs.006197] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many Bcl2 family proteins target intracellular membranes by their C-terminal tail-anchor domain. Bfl1 is a bi-functional Bcl2 family protein with both anti- and pro-apoptotic activities and contains an amphipathic tail-anchoring peptide (ATAP; residues 147-175) with unique properties. Here we show that ATAP targets specifically to mitochondria, and induces caspase-dependent apoptosis that does not require Bax or Bak. Mutagenesis studies revealed that lysine residues flanking the ATAP sequence are involved in targeting of the peptide to the mitochondrial membrane, and charged residues that contribute to the amphipathic nature of ATAP are critical for its pro-apoptotic function. The ATAP sequence is present in another tumor suppressor gene, HCCS1, which contains an additional mitochondria-targeting signal (MTS) close to the ATAP. We propose that both ATAP and MTS could be used as therapeutic peptides to induce cell death in the treatment of cancer cells.
Collapse
Affiliation(s)
- Jae-Kyun Ko
- Department of Physiology and Biophysics, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Borgese N, Brambillasca S, Colombo S. How tails guide tail-anchored proteins to their destinations. Curr Opin Cell Biol 2007; 19:368-75. [PMID: 17629691 DOI: 10.1016/j.ceb.2007.04.019] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 04/18/2007] [Indexed: 11/28/2022]
Abstract
A large group of diverse, functionally important, and differently localized transmembrane proteins shares a particular membrane topology, consisting of a cytosolic N-terminal region, followed by a transmembrane domain close to the C-terminus. Because of their structure, these C-tail-anchored (TA) proteins must insert into all their target membranes by post-translational pathways. Recent work, based on the development of stringent and sensitive biochemical assays, has demonstrated that novel unexplored mechanisms underlie these post-translational targeting and membrane insertion pathways. Unravelling these pathways will shed light on the biosynthesis and regulation of an important group of membrane proteins and is likely to lead to new concepts in the field of membrane biogenesis.
Collapse
Affiliation(s)
- Nica Borgese
- National Research Council Institute for Neuroscience and Department of Medical Pharmacology, University of Milan, via Vanvitelli 32, 20129 Milano, Italy
| | | | | |
Collapse
|
44
|
A Three Stage Integrative Pathway Search (TIPS) framework to identify toxicity relevant genes and pathways. BMC Bioinformatics 2007; 8:202. [PMID: 17570844 PMCID: PMC1906836 DOI: 10.1186/1471-2105-8-202] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 06/14/2007] [Indexed: 03/31/2023] Open
Abstract
Background The ability to obtain profiles of gene expressions, proteins and metabolites with the advent of high throughput technologies has advanced the study of pathway and network reconstruction. Genome-wide network reconstruction requires either interaction measurements or large amount of perturbation data, often not available for mammalian cell systems. To overcome these shortcomings, we developed a Three Stage Integrative Pathway Search (TIPS©) approach to reconstruct context-specific active pathways involved in conferring a specific phenotype, from limited amount of perturbation data. The approach was tested on human liver cells to identify pathways that confer cytotoxicity. Results This paper presents a systems approach that integrates gene expression and cytotoxicity profiles to identify a network of pathways involved in free fatty acid (FFA) and tumor necrosis factor-α (TNF-α) induced cytotoxicity in human hepatoblastoma cells (HepG2/C3A). Cytotoxicity relevant genes were first identified and then used to reconstruct a network using Bayesian network (BN) analysis. BN inference was used subsequently to predict the effects of perturbing a gene on the other genes in the network and on the cytotoxicity. These predictions were subsequently confirmed through the published literature and further experiments. Conclusion The TIPS© approach is able to reconstruct active pathways that confer a particular phenotype by integrating gene expression and phenotypic profiles. A web-based version of TIPS© that performs the analysis described herein can be accessed at .
Collapse
|
45
|
Sanjuán Szklarz LK, Kozjak-Pavlovic V, Vögtle FN, Chacinska A, Milenkovic D, Vogel S, Dürr M, Westermann B, Guiard B, Martinou JC, Borner C, Pfanner N, Meisinger C. Preprotein Transport Machineries of Yeast Mitochondrial Outer Membrane Are not Required for Bax-induced Release of Intermembrane Space Proteins. J Mol Biol 2007; 368:44-54. [PMID: 17335847 DOI: 10.1016/j.jmb.2007.01.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 12/22/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
The mitochondrial outer membrane contains protein import machineries, the translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). It has been speculated that TOM or SAM are required for Bax-induced release of intermembrane space (IMS) proteins; however, experimental evidence has been scarce. We used isolated yeast mitochondria as a model system and report that Bax promoted an efficient release of soluble IMS proteins while preproteins were still imported, excluding an unspecific damage of mitochondria. Removal of import receptors by protease treatment did not inhibit the release of IMS proteins by Bax. Yeast mutants of each Tom receptor and the Tom40 channel were not impaired in Bax-induced protein release. We analyzed a large collection of mutants of mitochondrial outer membrane proteins, including SAM, fusion and fission components, but none of these components was required for Bax-induced protein release. The released proteins included complexes up to a size of 230 kDa. We conclude that Bax promotes efficient release of IMS proteins through the outer membrane of yeast mitochondria while the inner membrane remains intact. Inactivation of the known protein import and sorting machineries of the outer membrane does not impair the function of Bax at the mitochondria.
Collapse
Affiliation(s)
- Luiza K Sanjuán Szklarz
- Institut für Biochemie und Molekularbiologie, Zentrum für Biochemie und Molekulare Zellforschung, Universität Freiburg, Hermann-Herder-Strasse 7, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Henderson M, Hwang Y, Dyer J, Mullen R, Andrews D. The C-terminus of cytochrome b5 confers endoplasmic reticulum specificity by preventing spontaneous insertion into membranes. Biochem J 2007; 401:701-9. [PMID: 16984229 PMCID: PMC1770840 DOI: 10.1042/bj20060990] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The molecular mechanisms that determine the correct subcellular localization of proteins targeted to membranes by tail-anchor sequences are poorly defined. Previously, we showed that two isoforms of the tung oil tree [Vernicia (Aleurites) fordii] tail-anchored Cb5 (cytochrome b5) target specifically to ER (endoplasmic reticulum) membranes both in vivo and in vitro [Hwang, Pelitire, Henderson, Andrews, Dyer and Mullen (2004) Plant Cell 16, 3002-3019]. In the present study, we examine the targeting of various tung Cb5 fusion proteins and truncation mutants to purified intracellular membranes in vitro in order to assess the importance of the charged CTS (C-terminal sequence) in targeting to specific membranes. Removal of the CTS from tung Cb5 proteins resulted in efficient binding to both ER and mitochondria. Results from organelle competition, liposome-binding and membrane proteolysis experiments demonstrated that removal of the CTS results in spontaneous insertion of tung Cb5 proteins into lipid bilayers. Our results indicate that the CTSs from plant Cb5 proteins provide ER specificity by preventing spontaneous insertion into incorrect subcellular membranes.
Collapse
Affiliation(s)
- Matthew P. A. Henderson
- *Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada L8N 3Z5
| | - Yeen Ting Hwang
- †Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - John M. Dyer
- ‡US Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA 70124, U.S.A
| | - Robert T. Mullen
- †Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada N1G 2W1
| | - David W. Andrews
- *Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada L8N 3Z5
- To whom correspondence should be addressed (email )
| |
Collapse
|
47
|
Protein targeting to mitochondria of Saccharomyces cerevisiae and Neurospora crassa: in vitro and in vivo studies. Methods Mol Biol 2007; 390:151-66. [PMID: 17951686 DOI: 10.1007/978-1-59745-466-7_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Most studies on the biogenesis of mitochondrial proteins have been carried out using fungal mitochondria as a model system. In particular, baker's yeast, Saccharomyces cerevisiae, combines several experimental advantages, allowing both genetic and biochemical approaches and thus a combination of investigations in vivo and in vitro. However, the red bread mold Neurospora crassa has also been an important research tool. Isolated mitochondria can be used from both organisms for import experiments in a reconstituted system, using radiolabeled precursor proteins synthesized in reticulocyte lysate or purified preproteins. Assays are available for studies on the import pathways and localization of mitochondrial proteins and for the characterization of the components of the protein import machinery.
Collapse
|
48
|
Setoguchi K, Otera H, Mihara K. Cytosolic factor- and TOM-independent import of C-tail-anchored mitochondrial outer membrane proteins. EMBO J 2006; 25:5635-47. [PMID: 17110923 PMCID: PMC1698885 DOI: 10.1038/sj.emboj.7601438] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2006] [Accepted: 10/19/2006] [Indexed: 11/08/2022] Open
Abstract
C-tail-anchored (C-TA) proteins are anchored to specific organelle membranes by a single transmembrane segment (TMS) at the C-terminus, extruding the N-terminal functional domains into the cytoplasm in which the TMS and following basic segment function as the membrane-targeting signals. Here, we analyzed the import route of mitochondrial outer membrane (MOM) C-TA proteins, Bak, Bcl-XL, and Omp25, using digitonin-permeabilized HeLa cells, which provide specific and efficient import under competitive conditions. These experiments revealed that (i) C-TA proteins were imported to the MOM through a common pathway independent of the components of the preprotein translocase of the outer membrane, (ii) the C-TA protein-targeting signal functioned autonomously in the absence of cytoplasmic factors that specifically recognize the targeting signals and deliver the preproteins to the MOM, (iii) the function of a cytoplasmic chaperone was required if the cytoplasmic domains of the C-TA proteins assumed an import-incompetent conformation, and intriguingly, (iv) the MOM-targeting signal of Bak, in the context of the Bak molecule, required activation by the interaction of its cytoplasmic domain with VDAC2 before MOM targeting.
Collapse
Affiliation(s)
- Kiyoko Setoguchi
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Hidenori Otera
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Katsuyoshi Mihara
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka 812-8582, Japan. Tel.: +81 92 642 6176; Fax: +81 92 642 6183; E-mail:
| |
Collapse
|
49
|
Bellot G, Cartron PF, Er E, Oliver L, Juin P, Armstrong LC, Bornstein P, Mihara K, Manon S, Vallette FM. TOM22, a core component of the mitochondria outer membrane protein translocation pore, is a mitochondrial receptor for the proapoptotic protein Bax. Cell Death Differ 2006; 14:785-94. [PMID: 17096026 DOI: 10.1038/sj.cdd.4402055] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The association of Bax with mitochondria is an essential step in the implementation of apoptosis. By using a bacterial two-hybrid assay and crosslinking strategies, we have identified TOM22, a component of the translocase of the outer mitochondrial membrane (TOM), as a mitochondrial receptor of Bax. Peptide mapping showed that the interaction of Bax with TOM22 involved the first alpha helix of Bax and possibly two central alpha helices, which are homologous to the pore forming domains of some toxins. Antibodies directed against TOM22 or an antisense knockdown of the expression of TOM22 specifically inhibited the association of Bax with mitochondria and prevented Bax-dependent apoptosis. In yeast, a haploid strain for TOM22 exhibited a decreased expression of TOM22 and mitochondrial association of ectopically expressed human Bax. Our data provide a new perspective on the mechanism of association of Bax with mitochondria as it involves a classical import pathway.
Collapse
Affiliation(s)
- G Bellot
- INSERM U601, Université de Nantes, Faculté de Médecine, Nantes Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pavlidis P, Poirazi P. Individualized markers optimize class prediction of microarray data. BMC Bioinformatics 2006; 7:345. [PMID: 16842618 PMCID: PMC1569876 DOI: 10.1186/1471-2105-7-345] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Accepted: 07/14/2006] [Indexed: 11/17/2022] Open
Abstract
Background Identification of molecular markers for the classification of microarray data is a challenging task. Despite the evident dissimilarity in various characteristics of biological samples belonging to the same category, most of the marker – selection and classification methods do not consider this variability. In general, feature selection methods aim at identifying a common set of genes whose combined expression profiles can accurately predict the category of all samples. Here, we argue that this simplified approach is often unable to capture the complexity of a disease phenotype and we propose an alternative method that takes into account the individuality of each patient-sample. Results Instead of using the same features for the classification of all samples, the proposed technique starts by creating a pool of informative gene-features. For each sample, the method selects a subset of these features whose expression profiles are most likely to accurately predict the sample's category. Different subsets are utilized for different samples and the outcomes are combined in a hierarchical framework for the classification of all samples. Moreover, this approach can innately identify subgroups of samples within a given class which share common feature sets thus highlighting the effect of individuality on gene expression. Conclusion In addition to high classification accuracy, the proposed method offers a more individualized approach for the identification of biological markers, which may help in better understanding the molecular background of a disease and emphasize the need for more flexible medical interventions.
Collapse
Affiliation(s)
- Pavlos Pavlidis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Vassilika Vouton PO Box 1385, GR-71110, Heraklion, Crete, Greece
- Department of Biology, University of Crete, PO Box 2208, GR-71409, Heraklion, Crete, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology-Hellas (FORTH), Vassilika Vouton PO Box 1385, GR-71110, Heraklion, Crete, Greece
| |
Collapse
|