1
|
Nafaee ZH, Hajdu B, Hunyadi-Gulyás É, Gyurcsik B. Hydrolytic Mechanism of a Metalloenzyme Is Modified by the Nature of the Coordinated Metal Ion. Molecules 2023; 28:5511. [PMID: 37513383 PMCID: PMC10386286 DOI: 10.3390/molecules28145511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The nuclease domain of colicin E7 cleaves double-strand DNA non-specifically. Zn2+ ion was shown to be coordinated by the purified NColE7 as its native metal ion. Here, we study the structural and catalytic aspects of the interaction with Ni2+, Cu2+ and Cd2+ non-endogenous metal ions and the consequences of their competition with Zn2+ ions, using circular dichroism spectroscopy and intact protein mass spectrometry. An R447G mutant exerting decreased activity allowed for the detection of nuclease action against pUC119 plasmid DNA via agarose gel electrophoresis in the presence of comparable metal ion concentrations. It was shown that all of the added metal ions could bind to the apoprotein, resulting in a minor secondary structure change, but drastically shifting the charge distribution of the protein. Zn2+ ions could not be replaced by Ni2+, Cu2+ and Cd2+. The nuclease activity of the Ni2+-bound enzyme was extremely high in comparison with the other metal-bound forms, and could not be inhibited by the excess of Ni2+ ions. At the same time, this activity was significantly decreased in the presence of equivalent Zn2+, independent of the order of addition of each component of the mixture. We concluded that the Ni2+ ions promoted the DNA cleavage of the enzyme through a more efficient mechanism than the native Zn2+ ions, as they directly generate the nucleophilic OH- ion.
Collapse
Affiliation(s)
- Zeyad H Nafaee
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
- College of Pharmacy, University of Babylon, Hillah 51001, Iraq
| | - Bálint Hajdu
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Béla Gyurcsik
- Department of Inorganic, Organic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary
| |
Collapse
|
2
|
Ivanovaitė ŠRN, Paksaitė J, Kopu Stas A, Karzaitė G, Rutkauskas D, Silanskas A, Sasnauskas G, Zaremba M, Jones SK, Tutkus M. smFRET Detection of Cis and Trans DNA Interactions by the BfiI Restriction Endonuclease. J Phys Chem B 2023. [PMID: 37452775 PMCID: PMC10388346 DOI: 10.1021/acs.jpcb.3c03269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Protein-DNA interactions are fundamental to many biological processes. Proteins must find their target site on a DNA molecule to perform their function, and mechanisms for target search differ across proteins. Especially challenging phenomena to monitor and understand are transient binding events that occur across two DNA target sites, whether occurring in cis or trans. Type IIS restriction endonucleases rely on such interactions. They play a crucial role in safeguarding bacteria against foreign DNA, including viral genetic material. BfiI, a type IIS restriction endonuclease, acts upon a specific asymmetric sequence, 5-ACTGGG-3, and precisely cuts both upper and lower DNA strands at fixed locations downstream of this sequence. Here, we present two single-molecule Förster resonance energy-transfer-based assays to study such interactions in a BfiI-DNA system. The first assay focuses on DNA looping, detecting both "Phi"- and "U"-shaped DNA looping events. The second assay only allows in trans BfiI-target DNA interactions, improving the specificity and reducing the limits on observation time. With total internal reflection fluorescence microscopy, we directly observe on- and off-target binding events and characterize BfiI binding events. Our results show that BfiI binds longer to target sites and that BfiI rarely changes conformations during binding. This newly developed assay could be employed for other DNA-interacting proteins that bind two targets and for the dsDNA substrate BfiI-PAINT, a useful strategy for DNA stretch assays and other super-resolution fluorescence microscopy studies.
Collapse
Affiliation(s)
- Ša Ru Nė Ivanovaitė
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Savanorių 231, Vilnius LT-02300, Lithuania
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Justė Paksaitė
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Aurimas Kopu Stas
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Savanorių 231, Vilnius LT-02300, Lithuania
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Giedrė Karzaitė
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Savanorių 231, Vilnius LT-02300, Lithuania
| | - Danielis Rutkauskas
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Savanorių 231, Vilnius LT-02300, Lithuania
| | - Arunas Silanskas
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Giedrius Sasnauskas
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Mindaugas Zaremba
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| | - Stephen K Jones
- VU LSC-EMBL Partnership for Genome Editing Technologies, Life Sciences Center, Vilnius University, Vilnius LT-10257, Lithuania
| | - Marijonas Tutkus
- Department of Molecular Compound Physics, Center for Physical Sciences and Technology, Savanorių 231, Vilnius LT-02300, Lithuania
- Vilnius University, Life Sciences Center, Institute of Biotechnology, Saulėtekio av. 7, Vilnius LT-10257, Lithuania
| |
Collapse
|
3
|
Tumuluri VS, Rajgor V, Xu SY, Chouhan OP, Saikrishnan K. Mechanism of DNA cleavage by the endonuclease SauUSI: a major barrier to horizontal gene transfer and antibiotic resistance in Staphylococcus aureus. Nucleic Acids Res 2021; 49:2161-2178. [PMID: 33533920 PMCID: PMC7913695 DOI: 10.1093/nar/gkab042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/11/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Acquisition of foreign DNA by Staphylococcus aureus, including vancomycin resistance genes, is thwarted by the ATP-dependent endonuclease SauUSI. Deciphering the mechanism of action of SauUSI could unravel the reason how it singularly plays a major role in preventing horizontal gene transfer (HGT) in S. aureus. Here, we report a detailed biochemical and structural characterization of SauUSI, which reveals that in the presence of ATP, the enzyme can cleave DNA having a single or multiple target site/s. Remarkably, in the case of multiple target sites, the entire region of DNA flanked by two target sites is shred into smaller fragments by SauUSI. Crystal structure of SauUSI reveals a stable dimer held together by the nuclease domains, which are spatially arranged to hydrolyze the phosphodiester bonds of both strands of the duplex. Thus, the architecture of the dimeric SauUSI facilitates cleavage of either single-site or multi-site DNA. The structure also provides insights into the molecular basis of target recognition by SauUSI. We show that target recognition activates ATP hydrolysis by the helicase-like ATPase domain, which powers active directional movement (translocation) of SauUSI along the DNA. We propose that a pile-up of multiple translocating SauUSI molecules against a stationary SauUSI bound to a target site catalyzes random double-stranded breaks causing shredding of the DNA between two target sites. The extensive and irreparable damage of the foreign DNA by shredding makes SauUSI a potent barrier against HGT.
Collapse
Affiliation(s)
| | - Vrunda Rajgor
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Shuang-Yong Xu
- New England Biolabs Inc., Research Department, Ipswich, MA 01938, USA
| | - Om Prakash Chouhan
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| | - Kayarat Saikrishnan
- Department of Biology, Indian Institute of Science Education and Research, Pune 411008, India
| |
Collapse
|
4
|
Tutkus M, Rakickas T, Kopu Stas A, Ivanovaitė ŠN, Venckus O, Navikas V, Zaremba M, Manakova E, Valiokas RN. Fixed DNA Molecule Arrays for High-Throughput Single DNA-Protein Interaction Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5921-5930. [PMID: 30955328 DOI: 10.1021/acs.langmuir.8b03424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The DNA Curtains assay is a recently developed experimental platform for protein-DNA interaction studies at the single-molecule level that is based on anchoring and alignment of DNA fragments. The DNA Curtains so far have been made by using chromium barriers and fluid lipid bilayer membranes, which makes such a specialized assay technically challenging and relatively unstable. Herein, we report on an alternative strategy for DNA arraying for analysis of individual DNA-protein interactions. It relies on stable DNA tethering onto nanopatterned protein templates via high affinity molecular recognition. We describe fabrication of streptavidin templates (line features as narrow as 200 nm) onto modified glass coverslips by combining surface chemistry, atomic force microscopy (AFM), and soft lithography techniques with affinity-driven assembly. We have employed such chips for arraying single- and double-tethered DNA strands, and we characterized the obtained molecular architecture: we evaluated the structural characteristics and specific versus nonspecific binding of fluorescence-labeled DNA using AFM and total internal reflection fluorescence microscopy. We demonstrate the feasibility of our DNA molecule arrays for short single-tethered as well as for lambda single- and double-tethered DNA. The latter type of arrays proved very suitable for localization of single DNA-protein interactions employing restriction endonucleases. The presented molecular architecture and facile method of fabrication of our nanoscale platform does not require clean room equipment, and it offers advanced functional studies of DNA machineries and the development of future nanodevices.
Collapse
Affiliation(s)
| | | | - Aurimas Kopu Stas
- Vilnius University, Life Sciences Center, Institute of Biotechnology , Sauletekio av. 7 , Vilnius LT-10257 , Lithuania
| | | | | | | | - Mindaugas Zaremba
- Vilnius University, Life Sciences Center, Institute of Biotechnology , Sauletekio av. 7 , Vilnius LT-10257 , Lithuania
| | - Elena Manakova
- Vilnius University, Life Sciences Center, Institute of Biotechnology , Sauletekio av. 7 , Vilnius LT-10257 , Lithuania
| | | |
Collapse
|
5
|
Xiong L, Liu S, Chen S, Xiao Y, Zhu B, Gao Y, Zhang Y, Chen B, Luo J, Deng Z, Chen X, Wang L, Chen S. A new type of DNA phosphorothioation-based antiviral system in archaea. Nat Commun 2019; 10:1688. [PMID: 30975999 PMCID: PMC6459918 DOI: 10.1038/s41467-019-09390-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/07/2019] [Indexed: 01/21/2023] Open
Abstract
Archaea and Bacteria have evolved different defence strategies that target virtually all steps of the viral life cycle. The diversified virion morphotypes and genome contents of archaeal viruses result in a highly complex array of archaea-virus interactions. However, our understanding of archaeal antiviral activities lags far behind our knowledges of those in bacteria. Here we report a new archaeal defence system that involves DndCDEA-specific DNA phosphorothioate (PT) modification and the PbeABCD-mediated halt of virus propagation via inhibition of DNA replication. In contrast to the breakage of invasive DNA by DndFGH in bacteria, DndCDEA-PbeABCD does not degrade or cleave viral DNA. The PbeABCD-mediated PT defence system is widespread and exhibits extensive interdomain and intradomain gene transfer events. Our results suggest that DndCDEA-PbeABCD is a new type of PT-based virus resistance system, expanding the known arsenal of defence systems as well as our understanding of host-virus interactions.
Collapse
Affiliation(s)
- Lei Xiong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Siyi Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Si Chen
- School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, 430023, Wuhan, China
| | - Yao Xiao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Bochen Zhu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Yali Gao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Yujing Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Beibei Chen
- College of Life Sciences, Wuhan University, 430071, Wuhan, China
| | - Jie Luo
- Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
| | - Xiangdong Chen
- College of Life Sciences, Wuhan University, 430071, Wuhan, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China
- Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, 430071, Wuhan, China.
- Taihe Hospital, Hubei University of Medicine, 442000, Shiyan, Hubei, China.
- Brain Center, Zhongnan Hospital, Wuhan University, 430071, Wuhan, China.
| |
Collapse
|
6
|
Sasnauskas G, Tamulaitienė G, Tamulaitis G, Čalyševa J, Laime M, Rimšelienė R, Lubys A, Siksnys V. UbaLAI is a monomeric Type IIE restriction enzyme. Nucleic Acids Res 2017; 45:9583-9594. [PMID: 28934493 PMCID: PMC5766183 DOI: 10.1093/nar/gkx634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 01/11/2023] Open
Abstract
Type II restriction endonucleases (REases) form a large and highly diverse group of enzymes. Even REases specific for a common recognition site often vary in their oligomeric structure, domain organization and DNA cleavage mechanisms. Here we report biochemical and structural characterization of the monomeric restriction endonuclease UbaLAI, specific for the pseudosymmetric DNA sequence 5'-CC/WGG-3' (where W = A/T, and '/' marks the cleavage position). We present a 1.6 Å co-crystal structure of UbaLAI N-terminal domain (UbaLAI-N) and show that it resembles the B3-family domain of EcoRII specific for the 5'-CCWGG-3' sequence. We also find that UbaLAI C-terminal domain (UbaLAI-C) is closely related to the monomeric REase MvaI, another enzyme specific for the 5'-CCWGG-3' sequence. Kinetic studies of UbaLAI revealed that it requires two recognition sites for optimal activity, and, like other type IIE enzymes, uses one copy of a recognition site to stimulate cleavage of a second copy. We propose that during the reaction UbaLAI-N acts as a handle that tethers the monomeric UbaLAI-C domain to the DNA, thereby helping UbaLAI-C to perform two sequential DNA nicking reactions on the second recognition site during a single DNA-binding event. A similar reaction mechanism may be characteristic to other monomeric two-domain REases.
Collapse
Affiliation(s)
- Giedrius Sasnauskas
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Giedrė Tamulaitienė
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Gintautas Tamulaitis
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Jelena Čalyševa
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Miglė Laime
- Thermo Fisher Scientific Baltics, V. A. Graiciuno str. 8, LT-02241, Vilnius, Lithuania
| | - Renata Rimšelienė
- Thermo Fisher Scientific Baltics, V. A. Graiciuno str. 8, LT-02241, Vilnius, Lithuania
| | - Arvydas Lubys
- Thermo Fisher Scientific Baltics, V. A. Graiciuno str. 8, LT-02241, Vilnius, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
7
|
Zaremba M, Siksnys V. An Engineered SS Bridge Blocks the Conformational Change Required for the Nuclease Activity of BfiI. Biochemistry 2015; 54:5340-7. [PMID: 26261897 DOI: 10.1021/acs.biochem.5b00437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The type IIS restriction endonuclease BfiI is a homodimer, and each monomer is composed of the N-terminal catalytic and C-terminal DNA recognition domains connected by a 28-residue linker segment. In the crystal in the absence of cognate DNA, BfiI exists in a "closed" conformation, in which an interdomain linker occludes a putative DNA binding surface at the catalytic domain and sterically hinders access to the active site. Cognate DNA binding presumably triggers a conformational change from the inactive "closed" state to the catalytically competent "open" state. Here we show that the disulfide SS bridge engineered at the domain interface locks the enzyme in the "closed" state. In the "closed" SS-linked state, BfiI binds cognate DNA with the same affinity as the wild-type enzyme but does not cut it, indicating that cross-linking introduces a restraint on the conformational transition, which couples DNA recognition and cleavage. Disruption of the interdomain SS bridge by the reducing agent restores the DNA cleavage ability of BfiI.
Collapse
Affiliation(s)
- Mindaugas Zaremba
- Institute of Biotechnology, Vilnius University , Graiciuno 8, Vilnius LT-02241, Lithuania
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University , Graiciuno 8, Vilnius LT-02241, Lithuania
| |
Collapse
|
8
|
Zaremba M, Toliusis P, Grigaitis R, Manakova E, Silanskas A, Tamulaitiene G, Szczelkun MD, Siksnys V. DNA cleavage by CgII and NgoAVII requires interaction between N- and R-proteins and extensive nucleotide hydrolysis. Nucleic Acids Res 2014; 42:13887-96. [PMID: 25429977 PMCID: PMC4267653 DOI: 10.1093/nar/gku1236] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/31/2014] [Accepted: 11/10/2014] [Indexed: 01/07/2023] Open
Abstract
The stress-sensitive restriction-modification (RM) system CglI from Corynebacterium glutamicum and the homologous NgoAVII RM system from Neisseria gonorrhoeae FA1090 are composed of three genes: a DNA methyltransferase (M.CglI and M.NgoAVII), a putative restriction endonuclease (R.CglI and R.NgoAVII, or R-proteins) and a predicted DEAD-family helicase/ATPase (N.CglI and N.NgoAVII or N-proteins). Here we report a biochemical characterization of the R- and N-proteins. Size-exclusion chromatography and SAXS experiments reveal that the isolated R.CglI, R.NgoAVII and N.CglI proteins form homodimers, while N.NgoAVII is a monomer in solution. Moreover, the R.CglI and N.CglI proteins assemble in a complex with R2N2 stoichiometry. Next, we show that N-proteins have ATPase activity that is dependent on double-stranded DNA and is stimulated by the R-proteins. Functional ATPase activity and extensive ATP hydrolysis (∼170 ATP/s/monomer) are required for site-specific DNA cleavage by R-proteins. We show that ATP-dependent DNA cleavage by R-proteins occurs at fixed positions (6-7 nucleotides) downstream of the asymmetric recognition sequence 5'-GCCGC-3'. Despite similarities to both Type I and II restriction endonucleases, the CglI and NgoAVII enzymes may employ a unique catalytic mechanism for DNA cleavage.
Collapse
Affiliation(s)
- Mindaugas Zaremba
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Paulius Toliusis
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Rokas Grigaitis
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Elena Manakova
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Arunas Silanskas
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Giedre Tamulaitiene
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Mark D Szczelkun
- DNA-Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Virginijus Siksnys
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| |
Collapse
|
9
|
Tamulaitiene G, Silanskas A, Grazulis S, Zaremba M, Siksnys V. Crystal structure of the R-protein of the multisubunit ATP-dependent restriction endonuclease NgoAVII. Nucleic Acids Res 2014; 42:14022-30. [PMID: 25429979 PMCID: PMC4267654 DOI: 10.1093/nar/gku1237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The restriction endonuclease (REase) NgoAVII is composed of two proteins, R.NgoAVII and N.NgoAVII, and shares features of both Type II restriction enzymes and Type I/III ATP-dependent restriction enzymes (see accompanying paper Zaremba et al., 2014). Here we present crystal structures of the R.NgoAVII apo-protein and the R.NgoAVII C-terminal domain bound to a specific DNA. R.NgoAVII is composed of two domains: an N-terminal nucleolytic PLD domain; and a C-terminal B3-like DNA-binding domain identified previously in BfiI and EcoRII REases, and in plant transcription factors. Structural comparison of the B3-like domains of R.NgoAVII, EcoRII, BfiI and the plant transcription factors revealed a conserved DNA-binding surface comprised of N- and C-arms that together grip the DNA. The C-arms of R.NgoAVII, EcoRII, BfiI and plant B3 domains are similar in size, but the R.NgoAVII N-arm which makes the majority of the contacts to the target site is much longer. The overall structures of R.NgoAVII and BfiI are similar; however, whilst BfiI has stand-alone catalytic activity, R.NgoAVII requires an auxiliary cognate N.NgoAVII protein and ATP hydrolysis in order to cleave DNA at the target site. The structures we present will help formulate future experiments to explore the molecular mechanisms of intersubunit crosstalk that control DNA cleavage by R.NgoAVII and related endonucleases.
Collapse
Affiliation(s)
- Giedre Tamulaitiene
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Arunas Silanskas
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Saulius Grazulis
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Mindaugas Zaremba
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | - Virginijus Siksnys
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| |
Collapse
|
10
|
Pingoud A, Wilson GG, Wende W. Type II restriction endonucleases--a historical perspective and more. Nucleic Acids Res 2014; 42:7489-527. [PMID: 24878924 PMCID: PMC4081073 DOI: 10.1093/nar/gku447] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 12/17/2022] Open
Abstract
This article continues the series of Surveys and Summaries on restriction endonucleases (REases) begun this year in Nucleic Acids Research. Here we discuss 'Type II' REases, the kind used for DNA analysis and cloning. We focus on their biochemistry: what they are, what they do, and how they do it. Type II REases are produced by prokaryotes to combat bacteriophages. With extreme accuracy, each recognizes a particular sequence in double-stranded DNA and cleaves at a fixed position within or nearby. The discoveries of these enzymes in the 1970s, and of the uses to which they could be put, have since impacted every corner of the life sciences. They became the enabling tools of molecular biology, genetics and biotechnology, and made analysis at the most fundamental levels routine. Hundreds of different REases have been discovered and are available commercially. Their genes have been cloned, sequenced and overexpressed. Most have been characterized to some extent, but few have been studied in depth. Here, we describe the original discoveries in this field, and the properties of the first Type II REases investigated. We discuss the mechanisms of sequence recognition and catalysis, and the varied oligomeric modes in which Type II REases act. We describe the surprising heterogeneity revealed by comparisons of their sequences and structures.
Collapse
Affiliation(s)
- Alfred Pingoud
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| | - Geoffrey G Wilson
- New England Biolabs Inc., 240 County Road, Ipswich, MA 01938-2723, USA
| | - Wolfgang Wende
- Institute of Biochemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 58, D-35392 Giessen, Germany
| |
Collapse
|
11
|
Horton JR, Borgaro JG, Griggs RM, Quimby A, Guan S, Zhang X, Wilson GG, Zheng Y, Zhu Z, Cheng X. Structure of 5-hydroxymethylcytosine-specific restriction enzyme, AbaSI, in complex with DNA. Nucleic Acids Res 2014; 42:7947-59. [PMID: 24895434 PMCID: PMC4081097 DOI: 10.1093/nar/gku497] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AbaSI, a member of the PvuRts1I-family of modification-dependent restriction endonucleases, cleaves deoxyribonucleic acid (DNA) containing 5-hydroxymethylctosine (5hmC) and glucosylated 5hmC (g5hmC), but not DNA containing unmodified cytosine. AbaSI has been used as a tool for mapping the genomic locations of 5hmC, an important epigenetic modification in the DNA of higher organisms. Here we report the crystal structures of AbaSI in the presence and absence of DNA. These structures provide considerable, although incomplete, insight into how this enzyme acts. AbaSI appears to be mainly a homodimer in solution, but interacts with DNA in our structures as a homotetramer. Each AbaSI subunit comprises an N-terminal, Vsr-like, cleavage domain containing a single catalytic site, and a C-terminal, SRA-like, 5hmC-binding domain. Two N-terminal helices mediate most of the homodimer interface. Dimerization brings together the two catalytic sites required for double-strand cleavage, and separates the 5hmC binding-domains by ∼70 Å, consistent with the known activity of AbaSI which cleaves DNA optimally between symmetrically modified cytosines ∼22 bp apart. The eukaryotic SET and RING-associated (SRA) domains bind to DNA containing 5-methylcytosine (5mC) in the hemi-methylated CpG sequence. They make contacts in both the major and minor DNA grooves, and flip the modified cytosine out of the helix into a conserved binding pocket. In contrast, the SRA-like domain of AbaSI, which has no sequence specificity, contacts only the minor DNA groove, and in our current structures the 5hmC remains intra-helical. A conserved, binding pocket is nevertheless present in this domain, suitable for accommodating 5hmC and g5hmC. We consider it likely, therefore, that base-flipping is part of the recognition and cleavage mechanism of AbaSI, but that our structures represent an earlier, pre-flipped stage, prior to actual recognition.
Collapse
Affiliation(s)
- John R Horton
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA
| | - Janine G Borgaro
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Rose M Griggs
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA
| | - Aine Quimby
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Shengxi Guan
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA
| | | | - Yu Zheng
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Zhenyu Zhu
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, 1510 Clifton Road, Atlanta, Georgia 30322, USA
| |
Collapse
|
12
|
Golovenko D, Manakova E, Zakrys L, Zaremba M, Sasnauskas G, Gražulis S, Siksnys V. Structural insight into the specificity of the B3 DNA-binding domains provided by the co-crystal structure of the C-terminal fragment of BfiI restriction enzyme. Nucleic Acids Res 2014; 42:4113-22. [PMID: 24423868 PMCID: PMC3973309 DOI: 10.1093/nar/gkt1368] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The B3 DNA-binding domains (DBDs) of plant transcription factors (TF) and DBDs of EcoRII and BfiI restriction endonucleases (EcoRII-N and BfiI-C) share a common structural fold, classified as the DNA-binding pseudobarrel. The B3 DBDs in the plant TFs recognize a diverse set of target sequences. The only available co-crystal structure of the B3-like DBD is that of EcoRII-N (recognition sequence 5'-CCTGG-3'). In order to understand the structural and molecular mechanisms of specificity of B3 DBDs, we have solved the crystal structure of BfiI-C (recognition sequence 5'-ACTGGG-3') complexed with 12-bp cognate oligoduplex. Structural comparison of BfiI-C-DNA and EcoRII-N-DNA complexes reveals a conserved DNA-binding mode and a conserved pattern of interactions with the phosphodiester backbone. The determinants of the target specificity are located in the loops that emanate from the conserved structural core. The BfiI-C-DNA structure presented here expands a range of templates for modeling of the DNA-bound complexes of the B3 family of plant TFs.
Collapse
Affiliation(s)
- Dmitrij Golovenko
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graičiūno 8, LT-02241, Vilnius, Lithuania
| | | | | | | | | | | | | |
Collapse
|
13
|
Zemlyanskaya EV, Degtyarev SK. Substrate specificity and properties of methyl-directed site-specific DNA endonucleases. Mol Biol 2013. [DOI: 10.1134/s0026893313060186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Jeong E, Jo H, Kim TG, Ban C. Characterization of multi-functional properties and conformational analysis of MutS2 from Thermotoga maritima MSB8. PLoS One 2012; 7:e34529. [PMID: 22545085 PMCID: PMC3335848 DOI: 10.1371/journal.pone.0034529] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/01/2012] [Indexed: 11/18/2022] Open
Abstract
The MutS2 homologues have received attention because of their unusual activities that differ from those of MutS. In this work, we report on the functional characteristics and conformational diversities of Thermotoga maritima MutS2 (TmMutS2). Various biochemical features of the protein were demonstrated via diverse techniques such as scanning probe microscopy (SPM), ATPase assays, analytical ultracentrifugation, DNA binding assays, size chromatography, and limited proteolytic analysis. Dimeric TmMutS2 showed the temperature-dependent ATPase activity. The non-specific nicking endonuclease activities of TmMutS2 were inactivated in the presence of nonhydrolytic ATP (ADPnP) and enhanced by the addition of TmMutL. In addition, TmMutS2 suppressed the TmRecA-mediated DNA strand exchange reaction in a TmMutL-dependent manner. We also demonstrated that small-angle X-ray scattering (SAXS) analysis of dimeric TmMutS2 exhibited nucleotide- and DNA-dependent conformational transitions. Particularly, TmMutS2-ADPnP showed the most compressed form rather than apo-TmMutS2 and the TmMutS2-ADP complex, in accordance with the results of biochemical assays. In the case of the DNA-binding complexes, the stretched conformation appeared in the TmMutS2-four-way junction (FWJ)-DNA complex. Convergences of biochemical- and SAXS analysis provided abundant information for TmMutS2 and clarified ambiguous experimental results.
Collapse
Affiliation(s)
- Euiyoung Jeong
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Gyungbuk, South Korea
| | - Hunho Jo
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Gyungbuk, South Korea
| | - Tae Gyun Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Gyungbuk, South Korea
| | - Changill Ban
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Gyungbuk, South Korea
- * E-mail:
| |
Collapse
|
15
|
Belkebir A, Azeddoug H. Characterization of LlaKI, a New Metal Ion-Independent Restriction Endonuclease from Lactococcus lactis KLDS4. ISRN BIOCHEMISTRY 2012; 2012:287230. [PMID: 25969755 PMCID: PMC4392985 DOI: 10.5402/2012/287230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/05/2012] [Indexed: 11/23/2022]
Abstract
Requirement of divalent cations for DNA cleavage is a general feature of type II restriction enzymes with the exception of few members of this group. A new type II restriction endonuclease has been partially purified from Lactococcus lactis KLDS4. The enzyme was denoted as LlaKI and showed to recognize and cleave the same site as FokI. The enzyme displayed a denatured molecular weight of 50 kDa and behaved as a dimer in solution as evidenced by the size exclusion chromatography. To investigate the role of divalent cations in DNA cleavage by LlaKI, digestion reactions were carried out at different Mg(2+), Mn(2+), and Ca(2+) concentrations. Unlike most of type II restriction endonucleases, LlaKI did not require divalent metal ions to cleave DNA and is one of the few metal-independent restriction endonucleases found in bacteria. The enzyme showed near-maximal levels of activity in 10 mM Tris-HCl pH 7.9, 50 mM NaCl, 10 mM MgCl2, and 1 mM dithiothreitol at 30°C. The presence of DNA modification was also determined and was correlated with the correspondent restriction enzyme.
Collapse
Affiliation(s)
- Abdelkarim Belkebir
- Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences, Université Hassan II-Ain Chock Casablanca, km 8, route d'El Jadida BP 5366, Casablanca, Morocco
| | - Houssine Azeddoug
- Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences, Université Hassan II-Ain Chock Casablanca, km 8, route d'El Jadida BP 5366, Casablanca, Morocco
| |
Collapse
|
16
|
Selvy PE, Lavieri RR, Lindsley CW, Brown HA. Phospholipase D: enzymology, functionality, and chemical modulation. Chem Rev 2011; 111:6064-119. [PMID: 21936578 PMCID: PMC3233269 DOI: 10.1021/cr200296t] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paige E Selvy
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37064, USA
| | | | | | | |
Collapse
|
17
|
Sasnauskas G, Kostiuk G, Tamulaitis G, Siksnys V. Target site cleavage by the monomeric restriction enzyme BcnI requires translocation to a random DNA sequence and a switch in enzyme orientation. Nucleic Acids Res 2011; 39:8844-56. [PMID: 21771860 PMCID: PMC3203586 DOI: 10.1093/nar/gkr588] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Endonucleases that generate double-strand breaks in DNA often possess two identical subunits related by rotational symmetry, arranged so that the active sites from each subunit act on opposite DNA strands. In contrast to many endonucleases, Type IIP restriction enzyme BcnI, which recognizes the pseudopalindromic sequence 5′-CCSGG-3′ (where S stands for C or G) and cuts both DNA strands after the second C, is a monomer and possesses a single catalytic center. We show here that to generate a double-strand break BcnI nicks one DNA strand, switches its orientation on DNA to match the polarity of the second strand and then cuts the phosphodiester bond on the second DNA strand. Surprisingly, we find that an enzyme flip required for the second DNA strand cleavage occurs without an excursion into bulk solution, as the same BcnI molecule acts processively on both DNA strands. We provide evidence that after cleavage of the first DNA strand, BcnI remains associated with the nicked intermediate and relocates to the opposite strand by a short range diffusive hopping on DNA.
Collapse
Affiliation(s)
- Giedrius Sasnauskas
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | | | |
Collapse
|
18
|
Shen BW, Xu D, Chan SH, Zheng Y, Zhu Z, Xu SY, Stoddard BL. Characterization and crystal structure of the type IIG restriction endonuclease RM.BpuSI. Nucleic Acids Res 2011; 39:8223-36. [PMID: 21724614 PMCID: PMC3185434 DOI: 10.1093/nar/gkr543] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A type IIG restriction endonuclease, RM.BpuSI from Bacillus pumilus, has been characterized and its X-ray crystal structure determined at 2.35Å resolution. The enzyme is comprised of an array of 5-folded domains that couple the enzyme's N-terminal endonuclease domain to its C-terminal target recognition and methylation activities. The REase domain contains a PD-x15-ExK motif, is closely superimposable against the FokI endonuclease domain, and coordinates a single metal ion. A helical bundle domain connects the endonuclease and methyltransferase (MTase) domains. The MTase domain is similar to the N6-adenine MTase M.TaqI, while the target recognition domain (TRD or specificity domain) resembles a truncated S subunit of Type I R–M system. A final structural domain, that may form additional DNA contacts, interrupts the TRD. DNA binding and cleavage must involve large movements of the endonuclease and TRD domains, that are probably tightly coordinated and coupled to target site methylation status.
Collapse
Affiliation(s)
- Betty W Shen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N. A3-025, Seattle, WA 98109, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Xu SY, Corvaglia AR, Chan SH, Zheng Y, Linder P. A type IV modification-dependent restriction enzyme SauUSI from Staphylococcus aureus subsp. aureus USA300. Nucleic Acids Res 2011; 39:5597-610. [PMID: 21421560 PMCID: PMC3141236 DOI: 10.1093/nar/gkr098] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A gene encoding a putative DNA helicase from Staphylococcus aureus USA300 was cloned and expressed in Escherichia coli. The protein was purified to over 90% purity by chromatography. The purified enzyme, SauUSI, predominantly cleaves modified DNA containing 5mC and 5-hydroxymethylcytosine. Cleavage of 5mC-modified plasmids indicated that the sites S5mCNGS (S = C or G) are preferentially digested. The endonuclease activity requires the presence of adenosine triphosphate (ATP) or dATP whereas the non-hydrolyzable γ-S-ATP does not support activity. SauUSI activity was inhibited by ethylenediaminetetraacetic acid. It is most active in Mg++ buffers. No companion methylase gene was found near the SauUSI restriction gene. The absence of a cognate methylase and cleavage of modified DNA indicate that SauUSI belongs to type IV restriction endonucleases, a group that includes EcoK McrBC and Mrr. SauUSI belongs to a family of highly similar homologs found in other sequenced S. aureus, S. epidermidis and S. carnosus genomes. More distant SauUSI orthologs can be found in over 150 sequenced bacterial/archaea genomes. Finally, we demonstrated the biological function of the type IV REase in restricting 5mC-modified plasmid DNA by transformation into clinical S. aureus strain SA564, and in restricting phage λ infection when the endonuclease is expressed in E. coli.
Collapse
Affiliation(s)
- Shuang-Yong Xu
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA.
| | | | | | | | | |
Collapse
|
20
|
Kostiuk G, Sasnauskas G, Tamulaitiene G, Siksnys V. Degenerate sequence recognition by the monomeric restriction enzyme: single mutation converts BcnI into a strand-specific nicking endonuclease. Nucleic Acids Res 2011; 39:3744-53. [PMID: 21227928 PMCID: PMC3089477 DOI: 10.1093/nar/gkq1351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Unlike orthodox Type II restriction endonucleases that are homodimers and interact with the palindromic 4–8-bp DNA sequences, BcnI is a monomer which has a single active site but cuts both DNA strands within the 5′-CC↓CGG-3′/3′-GGG↓CC-5′ target site (‘↓’ designates the cleavage position). Therefore, after cutting the first strand, the BcnI monomer must re-bind to the target site in the opposite orientation; but in this case, it runs into a different central base because of the broken symmetry of the recognition site. Crystal-structure analysis shows that to accept both the C:G and G:C base pairs at the center of its target site, BcnI employs two symmetrically positioned histidines H77 and H219 that presumably change their protonation state depending on the binding mode. We show here that a single mutation of BcnI H77 or H219 residues restricts the cleavage activity of the enzyme to either the 5′-CCCGG-3′ or the 5′-CCGGG-3′ strand, thereby converting BcnI into a strand-specific nicking endonuclease. This is a novel approach for engineering of monomeric restriction enzymes into strand-specific nucleases.
Collapse
Affiliation(s)
- Georgij Kostiuk
- Institute of Biotechnology, Vilnius University, Graiciuno 8, LT 02241, Vilnius, Lithuania
| | | | | | | |
Collapse
|
21
|
Abstract
Nucleases cleave the phosphodiester bonds of nucleic acids and may be endo or exo, DNase or RNase, topoisomerases, recombinases, ribozymes, or RNA splicing enzymes. In this review, I survey nuclease activities with known structures and catalytic machinery and classify them by reaction mechanism and metal-ion dependence and by their biological function ranging from DNA replication, recombination, repair, RNA maturation, processing, interference, to defense, nutrient regeneration or cell death. Several general principles emerge from this analysis. There is little correlation between catalytic mechanism and biological function. A single catalytic mechanism can be adapted in a variety of reactions and biological pathways. Conversely, a single biological process can often be accomplished by multiple tertiary and quaternary folds and by more than one catalytic mechanism. Two-metal-ion-dependent nucleases comprise the largest number of different tertiary folds and mediate the most diverse set of biological functions. Metal-ion-dependent cleavage is exclusively associated with exonucleases producing mononucleotides and endonucleases that cleave double- or single-stranded substrates in helical and base-stacked conformations. All metal-ion-independent RNases generate 2',3'-cyclic phosphate products, and all metal-ion-independent DNases form phospho-protein intermediates. I also find several previously unnoted relationships between different nucleases and shared catalytic configurations.
Collapse
|
22
|
Chan SH, Stoddard BL, Xu SY. Natural and engineered nicking endonucleases--from cleavage mechanism to engineering of strand-specificity. Nucleic Acids Res 2010; 39:1-18. [PMID: 20805246 PMCID: PMC3017599 DOI: 10.1093/nar/gkq742] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Restriction endonucleases (REases) are highly specific DNA scissors that have facilitated the development of modern molecular biology. Intensive studies of double strand (ds) cleavage activity of Type IIP REases, which recognize 4–8 bp palindromic sequences, have revealed a variety of mechanisms of molecular recognition and catalysis. Less well-studied are REases which cleave only one of the strands of dsDNA, creating a nick instead of a ds break. Naturally occurring nicking endonucleases (NEases) range from frequent cutters such as Nt.CviPII (^CCD; ^ denotes the cleavage site) to rare-cutting homing endonucleases (HEases) such as I-HmuI. In addition to these bona fida NEases, individual subunits of some heterodimeric Type IIS REases have recently been shown to be natural NEases. The discovery and characterization of more REases that recognize asymmetric sequences, particularly Types IIS and IIA REases, has revealed recognition and cleavage mechanisms drastically different from the canonical Type IIP mechanisms, and has allowed researchers to engineer highly strand-specific NEases. Monomeric LAGLIDADG HEases use two separate catalytic sites for cleavage. Exploitation of this characteristic has also resulted in useful nicking HEases. This review aims at providing an overview of the cleavage mechanisms of Types IIS and IIA REases and LAGLIDADG HEases, the engineering of their nicking variants, and the applications of NEases and nicking HEases.
Collapse
|
23
|
Zaremba M, Owsicka A, Tamulaitis G, Sasnauskas G, Shlyakhtenko LS, Lushnikov AY, Lyubchenko YL, Laurens N, van den Broek B, Wuite GJL, Siksnys V. DNA synapsis through transient tetramerization triggers cleavage by Ecl18kI restriction enzyme. Nucleic Acids Res 2010; 38:7142-54. [PMID: 20571089 PMCID: PMC2978343 DOI: 10.1093/nar/gkq560] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To cut DNA at their target sites, restriction enzymes assemble into different oligomeric structures. The Ecl18kI endonuclease in the crystal is arranged as a tetramer made of two dimers each bound to a DNA copy. However, free in solution Ecl18kI is a dimer. To find out whether the Ecl18kI dimer or tetramer represents the functionally important assembly, we generated mutants aimed at disrupting the putative dimer–dimer interface and analysed the functional properties of Ecl18kI and mutant variants. We show by atomic force microscopy that on two-site DNA, Ecl18kI loops out an intervening DNA fragment and forms a tetramer. Using the tethered particle motion technique, we demonstrate that in solution DNA looping is highly dynamic and involves a transient interaction between the two DNA-bound dimers. Furthermore, we show that Ecl18kI cleaves DNA in the synaptic complex much faster than when acting on a single recognition site. Contrary to Ecl18kI, the tetramerization interface mutant R174A binds DNA as a dimer, shows no DNA looping and is virtually inactive. We conclude that Ecl18kI follows the association model for the synaptic complex assembly in which it binds to the target site as a dimer and then associates into a transient tetrameric form to accomplish the cleavage reaction.
Collapse
Affiliation(s)
- Mindaugas Zaremba
- Institute of Biotechnology, Graiciuno 8, LT-02241, Vilnius, Lithuania
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The endonucleases from the Type IIB restriction–modification systems differ from all other restriction enzymes. The Type IIB enzymes cleave both DNA strands at specified locations distant from their recognition sequences, like Type IIS nucleases, but they are unique in that they do so on both sides of the site, to liberate the site from the remainder of the DNA on a short duplex. The fact that these enzymes cut DNA at specific locations mark them as Type II systems, as opposed to the Type I enzymes that cut DNA randomly, but in terms of gene organization and protein assembly, most Type IIB restriction–modification systems have more in common with Type I than with other Type II systems. Our current knowledge of the Type IIB systems is reviewed in the present paper.
Collapse
|
25
|
Sasnauskas G, Zakrys L, Zaremba M, Cosstick R, Gaynor JW, Halford SE, Siksnys V. A novel mechanism for the scission of double-stranded DNA: BfiI cuts both 3'-5' and 5'-3' strands by rotating a single active site. Nucleic Acids Res 2010; 38:2399-410. [PMID: 20047964 PMCID: PMC2853115 DOI: 10.1093/nar/gkp1194] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Metal-dependent nucleases that generate double-strand breaks in DNA often possess two symmetrically-equivalent subunits, arranged so that the active sites from each subunit act on opposite DNA strands. Restriction endonuclease BfiI belongs to the phospholipase D (PLD) superfamily and does not require metal ions for DNA cleavage. It exists as a dimer but has at its subunit interface a single active site that acts sequentially on both DNA strands. The active site contains two identical histidines related by 2-fold symmetry, one from each subunit. This symmetrical arrangement raises two questions: first, what is the role and the contribution to catalysis of each His residue; secondly, how does a nuclease with a single active site cut two DNA strands of opposite polarities to generate a double-strand break. In this study, the roles of active-site histidines in catalysis were dissected by analysing heterodimeric variants of BfiI lacking the histidine in one subunit. These variants revealed a novel mechanism for the scission of double-stranded DNA, one that requires a single active site to not only switch between strands but also to switch its orientation on the DNA.
Collapse
|
26
|
Bellamy SRW, Kovacheva YS, Zulkipli IH, Halford SE. Differences between Ca2+ and Mg2+ in DNA binding and release by the SfiI restriction endonuclease: implications for DNA looping. Nucleic Acids Res 2009; 37:5443-53. [PMID: 19596810 PMCID: PMC2760798 DOI: 10.1093/nar/gkp569] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many enzymes acting on DNA require Mg(2+) ions not only for catalysis but also to bind DNA. Binding studies often employ Ca(2+) as a substitute for Mg(2+), to promote DNA binding whilst disallowing catalysis. The SfiI endonuclease requires divalent metal ions to bind DNA but, in contrast to many systems where Ca(2+) mimics Mg(2+), Ca(2+) causes SfiI to bind DNA almost irreversibly. Equilibrium binding by wild-type SfiI cannot be conducted with Mg(2+) present as the DNA is cleaved so, to study the effect of Mg(2+) on DNA binding, two catalytically-inactive mutants were constructed. The mutants bound DNA in the presence of either Ca(2+) or Mg(2+) but, unlike wild-type SfiI with Ca(2+), the binding was reversible. With both mutants, dissociation was slow with Ca(2+) but was in one case much faster with Mg(2+). Hence, Ca(2+) can affect DNA binding differently from Mg(2+). Moreover, SfiI is an archetypal system for DNA looping; on DNA with two recognition sites, it binds to both sites and loops out the intervening DNA. While the dynamics of looping cannot be measured with wild-type SfiI and Ca(2+), it becomes accessible with the mutant and Mg(2+).
Collapse
Affiliation(s)
- Stuart R W Bellamy
- The DNA-Protein Interactions Unit, Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
27
|
Jakubauskas A, Sasnauskas G, Giedriene J, Janulaitis A. Domain organization and functional analysis of type IIS restriction endonuclease Eco31I. Biochemistry 2008; 47:8546-56. [PMID: 18642930 DOI: 10.1021/bi800660u] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type IIS restriction endonuclease Eco31I harbors a single HNH active site and cleaves both DNA strands close to its recognition sequence, 5'-GGTCTC(1/5). A two-domain organization of Eco31I was determined by limited proteolysis. Analysis of proteolytic fragments revealed that the N-terminal domain of Eco31I is responsible for the specific DNA binding, while the C-terminal domain contains the HNH nuclease-like active site. Gel-shift and gel-filtration experiments revealed that a monomer of the N-terminal domain of Eco31I is able to bind a single copy of cognate DNA. However, in contrast to other studied type IIS enzymes, the isolated catalytic domain of Eco31I was inactive. Steady-state and transient kinetic analysis of Eco31I reactions was inconsistent with dimerization of Eco31I on DNA. Thus, we propose that Eco31I interacts with individual copies of its recognition sequence in its monomeric form and presumably remains a monomer as it cleaves both strands of double-stranded DNA. The domain organization and reaction mechanism established for Eco31I should be common for a group of evolutionary related type IIS restriction endonucleases Alw26I, BsaI, BsmAI, BsmBI and Esp3I that recognize DNA sequences bearing the common pentanucleotide 5'-GTCTC.
Collapse
|
28
|
Sasnauskas G, Connolly BA, Halford SE, Siksnys V. Template-directed addition of nucleosides to DNA by the BfiI restriction enzyme. Nucleic Acids Res 2008; 36:3969-77. [PMID: 18515343 PMCID: PMC2475615 DOI: 10.1093/nar/gkn343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Restriction endonucleases catalyse DNA cleavage at specific sites. The BfiI endonuclease cuts DNA to give staggered ends with 1-nt 3'-extensions. We show here that BfiI can also fill in the staggered ends: while cleaving DNA, it can add a 2'-deoxynucleoside to the reaction product to yield directly a blunt-ended DNA. We propose that nucleoside incorporation proceeds through a two-step reaction, in which BfiI first cleaves the DNA to make a covalent enzyme-DNA intermediate and then resolves it by a nucleophilic attack of the 3'-hydroxyl group of the incoming nucleoside, to yield a transesterification product. We demonstrate that base pairing of the incoming nucleoside with the protruding DNA end serves as a template for the incorporation and governs the yield of the elongated product. The efficiency of the template-directed process has been exploited by using BfiI for the site-specific modification of DNA 5'-termini with an amino group using a 5'-amino-5'-deoxythymidine.
Collapse
|
29
|
Gasiunas G, Sasnauskas G, Tamulaitis G, Urbanke C, Razaniene D, Siksnys V. Tetrameric restriction enzymes: expansion to the GIY-YIG nuclease family. Nucleic Acids Res 2007; 36:938-49. [PMID: 18086711 PMCID: PMC2241918 DOI: 10.1093/nar/gkm1090] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The GIY-YIG nuclease domain was originally identified in homing endonucleases and enzymes involved in DNA repair and recombination. Many of the GIY-YIG family enzymes are functional as monomers. We show here that the Cfr42I restriction endonuclease which belongs to the GIY-YIG family and recognizes the symmetric sequence 5′-CCGC/GG-3′ (‘/’ indicates the cleavage site) is a tetramer in solution. Moreover, biochemical and kinetic studies provided here demonstrate that the Cfr42I tetramer is catalytically active only upon simultaneous binding of two copies of its recognition sequence. In that respect Cfr42I resembles the homotetrameric Type IIF restriction enzymes that belong to the distinct PD-(E/D)XK nuclease superfamily. Unlike the PD-(E/D)XK enzymes, the GIY-YIG nuclease Cfr42I accommodates an extremely wide selection of metal-ion cofactors, including Mg2+, Mn2+, Co2+, Zn2+, Ni2+, Cu2+ and Ca2+. To our knowledge, Cfr42I is the first tetrameric GIY-YIG family enzyme. Similar structural arrangement and phenotypes displayed by restriction enzymes of the PD-(E/D)XK and GIY-YIG nuclease families point to the functional significance of tetramerization.
Collapse
Affiliation(s)
- Giedrius Gasiunas
- Institute of Biotechnology, Graiciuno 8, LT-02241 Vilnius, Lithuania
| | | | | | | | | | | |
Collapse
|
30
|
Mones L, Kulhánek P, Florián J, Simon I, Fuxreiter M. Probing the two-metal ion mechanism in the restriction endonuclease BamHI. Biochemistry 2007; 46:14514-23. [PMID: 18020376 DOI: 10.1021/bi701630s] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The choreography of restriction endonuclease catalysis is a long-standing paradigm in molecular biology. Bivalent metal ions are required almost for all PD..D/ExK type enzymes, but the number of cofactors essential for the DNA backbone scission remained ambiguous. On the basis of crystal structures and biochemical data for various restriction enzymes, three models have been developed that assign critical roles for one, two, or three metal ions during the phosphodiester hydrolysis. To resolve this apparent controversy, we investigated the mechanism of BamHI catalysis using quantum mechanical/molecular mechanical simulation techniques and determined the activation barriers of three possible pathways that involve a Glu-113 or a neighboring water molecule as a general base or an external nucleophile that penetrated from bulk solution. The extrinsic mechanism was found to be the most favorable with an activation free energy of 23.4 kcal/mol, in reasonable agreement with the experimental data. On the basis of the effect of the individual metal ions on the activation barrier, metal ion A was concluded to be pivotal for the reaction, while the enzyme lacking metal ion B still has moderate efficiency. Thus, we propose that the catalytic scheme of BamHI does not involve a general base for nucleophile generation and requires one obligatory metal ion for catalysis that stabilizes the attacking nucleophile and coordinates it throughout the nucleophilic attack. Such a model may also explain the variation in the number of metal ions in the crystal structures and thus could serve as a framework for a unified catalytic scheme of type II restriction endonucleases.
Collapse
Affiliation(s)
- Letif Mones
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | |
Collapse
|
31
|
Chan SH, Bao Y, Ciszak E, Laget S, Xu SY. Catalytic domain of restriction endonuclease BmrI as a cleavage module for engineering endonucleases with novel substrate specificities. Nucleic Acids Res 2007; 35:6238-48. [PMID: 17855396 PMCID: PMC2094064 DOI: 10.1093/nar/gkm665] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Creating endonucleases with novel sequence specificities provides more possibilities to manipulate DNA. We have created a chimeric endonuclease (CH-endonuclease) consisting of the DNA cleavage domain of BmrI restriction endonuclease and C.BclI, a controller protein of the BclI restriction-modification system. The purified chimeric endonuclease, BmrI198-C.BclI, cleaves DNA at specific sites in the vicinity of the recognition sequence of C.BclI. Double-strand (ds) breaks were observed at two sites: 8 bp upstream and 18 bp within the C-box sequence. Using DNA substrates with deletions of C-box sequence, we show that the chimeric endonuclease requires the 5' half of the C box only for specific cleavage. A schematic model is proposed for the mode of protein-DNA binding and DNA cleavage. The present study demonstrates that the BmrI cleavage domain can be used to create combinatorial endonucleases that cleave DNA at specific sequences dictated by the DNA-binding partner. The resulting endonucleases will be useful in vitro and in vivo to create ds breaks at specific sites and generate deletions.
Collapse
Affiliation(s)
| | | | | | | | - Shuang-yong Xu
- *To whom correspondence should be addressed. +1 978 380 7287+1 978 921 1350
| |
Collapse
|
32
|
Identification of a single HNH active site in type IIS restriction endonuclease Eco31I. J Mol Biol 2007; 370:157-69. [PMID: 17499273 DOI: 10.1016/j.jmb.2007.04.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 04/17/2007] [Accepted: 04/18/2007] [Indexed: 10/23/2022]
Abstract
Type IIS restriction endonuclease Eco31I is a "short-distance cutter", which cleaves DNA strands close to its recognition sequence, 5'-GGTCTC(1/5). Previously, it has been proposed that related endonucleases recognizing a common sequence core GTCTC possess two active sites for cleavage of both strands in the DNA substrate. Here, we present bioinformatic identification and experimental evidence for a single nuclease active site. We identified a short region of homology between Eco31I and HNH nucleases, constructed a three-dimensional model of the putative catalytic domain and validated our predictions by random and site-specific mutagenesis. The restriction mechanism of Eco31I is suggested by analogy to the mechanisms of phage T4 endonuclease VII and homing endonuclease I-PpoI. We propose that residues D311 and N334 coordinate the cofactor. H312 acts as a general base-activating water molecule for the nucleophilic attack. K337 together with R340 and D345 are located in close proximity to the active center and are essential for correct folding of catalytic motif, while D345 together with R264 and D273 could be directly involved in DNA binding. We also predict that the Eco31I catalytic domain contains a putative Zn-binding site, which is essential for its structural integrity. Our results suggest that the HNH-like active site is involved in the cleavage of both strands in the DNA substrate. On the other hand, analysis of site-specific mutants in the region, previously suggested to harbor the second active site, revealed its irrelevance to the nuclease activity. Thus, our data argue against the earlier prediction and indicate the presence of a single conserved active site in type IIS restriction endonucleases that recognize common sequence core GTCTC.
Collapse
|
33
|
Sukackaite R, Lagunavicius A, Stankevicius K, Urbanke C, Venclovas Č, Siksnys V. Restriction endonuclease BpuJI specific for the 5'-CCCGT sequence is related to the archaeal Holliday junction resolvase family. Nucleic Acids Res 2007; 35:2377-89. [PMID: 17392342 PMCID: PMC1874659 DOI: 10.1093/nar/gkm164] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Type IIS restriction endonucleases (REases) recognize asymmetric DNA sequences and cleave both DNA strands at fixed positions downstream of the recognition site. REase BpuJI recognizes the asymmetric sequence 5′-CCCGT, however it cuts at multiple sites in the vicinity of the target sequence. We show that BpuJI is a dimer, which has two DNA binding surfaces and displays optimal catalytic activity when bound to two recognition sites. BpuJI is cleaved by chymotrypsin into an N-terminal domain (NTD), which lacks catalytic activity but binds specifically to the recognition sequence as a monomer, and a C-terminal domain (CTD), which forms a dimer with non-specific nuclease activity. Fold recognition approach reveals that the CTD of BpuJI is structurally related to archaeal Holliday junction resolvases (AHJR). We demonstrate that the isolated catalytic CTD of BpuJI possesses end-directed nuclease activity and preferentially cuts 3 nt from the 3′-terminus of blunt-ended DNA. The nuclease activity of the CTD is repressed in the apo-enzyme and becomes activated upon specific DNA binding by the NTDs. This leads to a complicated pattern of specific DNA cleavage in the vicinity of the target site. Bioinformatics analysis identifies the AHJR-like domain in the putative Type III enzymes and functionally uncharacterized proteins.
Collapse
Affiliation(s)
- Rasa Sukackaite
- Institute of Biotechnology, Graičiūno 8, LT-02241 Vilnius, Lithuania and Strukturanalyse, Medizinische Hochschule Hannover, Carl Neuberg Strasse 1, D-30632 Hannover, Germany
| | - Arunas Lagunavicius
- Institute of Biotechnology, Graičiūno 8, LT-02241 Vilnius, Lithuania and Strukturanalyse, Medizinische Hochschule Hannover, Carl Neuberg Strasse 1, D-30632 Hannover, Germany
| | - Kornelijus Stankevicius
- Institute of Biotechnology, Graičiūno 8, LT-02241 Vilnius, Lithuania and Strukturanalyse, Medizinische Hochschule Hannover, Carl Neuberg Strasse 1, D-30632 Hannover, Germany
| | - Claus Urbanke
- Institute of Biotechnology, Graičiūno 8, LT-02241 Vilnius, Lithuania and Strukturanalyse, Medizinische Hochschule Hannover, Carl Neuberg Strasse 1, D-30632 Hannover, Germany
| | - Česlovas Venclovas
- Institute of Biotechnology, Graičiūno 8, LT-02241 Vilnius, Lithuania and Strukturanalyse, Medizinische Hochschule Hannover, Carl Neuberg Strasse 1, D-30632 Hannover, Germany
| | - Virginijus Siksnys
- Institute of Biotechnology, Graičiūno 8, LT-02241 Vilnius, Lithuania and Strukturanalyse, Medizinische Hochschule Hannover, Carl Neuberg Strasse 1, D-30632 Hannover, Germany
- *To whom correspondence should be addressed.
| |
Collapse
|
34
|
Bist P, Madhusoodanan UK, Rao DN. A Mutation in the Mod Subunit of EcoP15I Restriction Enzyme Converts the DNA Methyltransferase to a Site-specific Endonuclease. J Biol Chem 2007; 282:3520-30. [PMID: 17148461 DOI: 10.1074/jbc.m603250200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A closer inspection of the amino acid sequence of EcoP15I DNA methyltransferase revealed a region of similarity to the PDXn(D/E)XK catalytic site of type II restriction endonucleases, except for methionine in EcoP15I DNA methyltransferase instead of proline. Substitution of methionine at position 357 by proline converts EcoP15I DNA methyltransferase to a site-specific endonuclease. EcoP15I-M357P DNA methyltransferase specifically binds to the recognition sequence 5'-CAGCAG-3' and cleaves DNA asymmetrically EcoP151-M357P.DNA methyltransferase specifically binds to the recognition sequence 5'-CAGCAG-3' and cleaves DNA asymmetrically, 5'-CAGCAG(N)(10)-3', as indicated by the arrows, in presence of magnesium ions.
Collapse
Affiliation(s)
- Pradeep Bist
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
35
|
Sasnauskas G, Connolly BA, Halford SE, Siksnys V. Site-specific DNA transesterification catalyzed by a restriction enzyme. Proc Natl Acad Sci U S A 2007; 104:2115-20. [PMID: 17267608 PMCID: PMC1785359 DOI: 10.1073/pnas.0608689104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most restriction endonucleases use Mg2+ to hydrolyze phosphodiester bonds at specific DNA sites. We show here that BfiI, a metal-independent restriction enzyme from the phospholipase D superfamily, catalyzes both DNA hydrolysis and transesterification reactions at its recognition site. In the presence of alcohols such as ethanol or glycerol, it attaches the alcohol covalently to the 5' terminus of the cleaved DNA. Under certain conditions, the terminal 3'-OH of one DNA strand can attack the target phosphodiester bond in the other strand to create a DNA hairpin. Transesterification reactions on DNA with phosphorothioate linkages at the target bond proceed with retention of stereoconfiguration at the phosphorus, indicating, uniquely for a restriction enzyme, a two-step mechanism. We propose that BfiI first makes a covalent enzyme-DNA intermediate, and then it resolves it by a nucleophilic attack of water or an alcohol, to yield hydrolysis or transesterification products, respectively.
Collapse
Affiliation(s)
| | - Bernard A. Connolly
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne NE2 4HH, United Kingdom; and
| | - Stephen E. Halford
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Virginijus Siksnys
- *Institute of Biotechnology, Graiciuno 8, Vilnius, LT-02241, Lithuania
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Marshall JJ, Gowers DM, Halford SE. Restriction endonucleases that bridge and excise two recognition sites from DNA. J Mol Biol 2007; 367:419-31. [PMID: 17266985 PMCID: PMC1892151 DOI: 10.1016/j.jmb.2006.12.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 12/22/2006] [Accepted: 12/28/2006] [Indexed: 11/28/2022]
Abstract
Most restriction endonucleases bridge two target sites before cleaving DNA: examples include all of the translocating Type I and Type III systems, and many Type II nucleases acting at their sites. A subset of Type II enzymes, the IIB systems, recognise bipartite sequences, like Type I sites, but cut specified phosphodiester bonds near their sites, like Type IIS enzymes. However, they make two double-strand breaks, one either side of the site, to release the recognition sequence on a short DNA fragment; 34 bp long in the case of the archetype, BcgI. It has been suggested that BcgI needs to interact with two recognition sites to cleave DNA but whether this is a general requirement for Type IIB enzymes had yet to be established. Ten Type IIB nucleases were tested against DNA substrates with one or two copies of the requisite sequences. With one exception, they all bridged two sites before cutting the DNA, usually in concerted reactions at both sites. The sites were ideally positioned in cis rather than in trans and were bridged through 3-D space, like Type II enzymes, rather than along the 1-D contour of the DNA, as seen with Type I enzymes. The standard mode of action for the restriction enzymes that excise their recognition sites from DNA thus involves concurrent action at two DNA sites.
Collapse
|
37
|
Kriukiene E. Domain organization and metal ion requirement of the Type IIS restriction endonuclease MnlI. FEBS Lett 2006; 580:6115-22. [PMID: 17055493 DOI: 10.1016/j.febslet.2006.09.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 09/22/2006] [Accepted: 09/28/2006] [Indexed: 11/26/2022]
Abstract
A two-domain structure of the Type IIS restriction endonuclease MnlI has been identified by limited proteolysis. An N-terminal domain of the enzyme mediates the sequence-specific interaction with DNA, whereas a monomeric C-terminal domain resembles bacterial colicin nucleases in its requirement for alkaline earth as well as transition metal ions for double- and single-stranded DNA cleavage activities. The results indicate that the fusion of the non-specific HNH-type nuclease to the DNA binding domain had transformed MnlI into a Mg(2+)-, Ni(2+)-, Co(2+)-, Mn(2+)-, Zn(2+)-, Ca(2+)-dependent sequence-specific enzyme. Nevertheless, MnlI retains a residual single-stranded DNA cleavage activity controlled by its C-terminal colicin-like nuclease domain.
Collapse
Affiliation(s)
- Edita Kriukiene
- Institute of Biotechnology, Graiciuno 8, Vilnius LT-02241, Lithuania.
| |
Collapse
|
38
|
Zaremba M, Sasnauskas G, Urbanke C, Siksnys V. Allosteric communication network in the tetrameric restriction endonuclease Bse634I. J Mol Biol 2006; 363:800-12. [PMID: 16987525 DOI: 10.1016/j.jmb.2006.08.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2006] [Revised: 08/03/2006] [Accepted: 08/17/2006] [Indexed: 11/20/2022]
Abstract
Restriction endonuclease Bse634I is a homotetramer arranged as a dimer of two primary dimers. Bse634I displays its maximum catalytic efficiency upon binding of two copies of cognate DNA, one per each primary dimer. The catalytic activity of Bse634I on a single DNA copy is down-regulated due to the cross-talking interactions between the primary dimers. The mechanism of signal propagation between the individual active sites of Bse634I remains unclear. To identify communication pathways involved in the catalytic activity regulation of Bse634I tetramer we mutated a selected set of amino acid residues at the dimer-dimer interface and analysed the oligomeric state and catalytic properties of the mutant proteins. We demonstrate that alanine replacement of N262 and V263 residues located in the loop at the tetramerisation interface did not inhibit tetramer assembly but dramatically altered the catalytic properties of Bse634I despite of the distal location from the active site. Kinetic analysis using cognate hairpin oligonucleotide and one and two-site plasmids as substrates allowed us to identify two types of communication signals propagated through the dimer-dimer interface in the Bse634I tetramer: the inhibitory, or "stopper" and the activating, or "sync" signal. We suggest that the interplay between the two signals determines the catalytic and regulatory properties of the Bse634I and mutant proteins.
Collapse
Affiliation(s)
- Mindaugas Zaremba
- Institute of Biotechnology, Graiciuno 8, Vilnius, LT-02241, Lithuania
| | | | | | | |
Collapse
|
39
|
A genetic dissection of the LlaJI restriction cassette reveals insights on a novel bacteriophage resistance system. BMC Microbiol 2006. [PMID: 16646963 DOI: 10.1186/1471-2108-6-40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Restriction/modification systems provide the dual function of protecting host DNA against restriction by methylation of appropriate bases within their recognition sequences, and restriction of foreign invading un-methylated DNA, such as promiscuous plasmids or infecting bacteriphage. The plasmid-encoded LlaJI restriction/modification system from Lactococcus lactis recognizes an asymmetric, complementary DNA sequence, consisting of 5'GACGC'3 in one strand and 5'GCGTC'3 in the other and provides a prodigious barrier to bacteriophage infection. LlaJI is comprised of four similarly oriented genes, encoding two 5mC-MTases (M1.LlaJI and M2.LlaJI) and two subunits responsible for restriction activity (R1.LlaJI and R2.LlaJI). Here we employ a detailed genetic analysis of the LlaJI restriction determinants in an attempt to characterize mechanistic features of this unusual hetero-oligomeric endonuclease. RESULTS Detailed bioinformatics analysis confirmed the presence of a conserved GTP binding and hydrolysis domain within the C-terminal half of the R1.LlaJI amino acid sequence whilst the N-terminal half appeared to be entirely unique. This domain architecture was homologous with that of the "B" subunit of the GTP-dependent, methyl-specific McrBC endonuclease from E.coli K-12. R1.LlaJI did not appear to contain a catalytic centre, whereas this conserved motif; PD....D/EXK, was clearly identified within the amino acid sequence for R2.LlaJI. Both R1.LlaJI and R2.LlaJI were found to be absolutely required for detectable LlaJI activity in vivo. The LlaJI restriction subunits were purified and examined in vitro, which allowed the assignment of R1.LlaJI as the sole specificity determining subunit, whilst R2.LlaJI is believed to mediate DNA cleavage. CONCLUSION The hetero-subunit structure of LlaJI, wherein one subunit mediates DNA binding whilst the other subunit is predicted to catalyze strand hydrolysis distinguishes LlaJI from previously characterized restriction-modification systems. Furthermore, this distinction is accentuated by the fact that whilst LlaJI behaves as a conventional Type IIA system in vivo, in that it restricts un-methylated DNA, it resembles the Type IV McrBC endonuclease, an enzyme specific for methylated DNA. A number of similar restriction determinants were identified in the database and it is likely LlaJI together with these homologous systems, comprise a new subtype of the Type II class incorporating features of Type II and Type IV systems.
Collapse
|
40
|
O'Driscoll J, Heiter DF, Wilson GG, Fitzgerald GF, Roberts R, Sinderen DV. A genetic dissection of the LlaJI restriction cassette reveals insights on a novel bacteriophage resistance system. BMC Microbiol 2006; 6:40. [PMID: 16646963 PMCID: PMC1459862 DOI: 10.1186/1471-2180-6-40] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Accepted: 04/28/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Restriction/modification systems provide the dual function of protecting host DNA against restriction by methylation of appropriate bases within their recognition sequences, and restriction of foreign invading un-methylated DNA, such as promiscuous plasmids or infecting bacteriphage. The plasmid-encoded LlaJI restriction/modification system from Lactococcus lactis recognizes an asymmetric, complementary DNA sequence, consisting of 5'GACGC'3 in one strand and 5'GCGTC'3 in the other and provides a prodigious barrier to bacteriophage infection. LlaJI is comprised of four similarly oriented genes, encoding two 5mC-MTases (M1.LlaJI and M2.LlaJI) and two subunits responsible for restriction activity (R1.LlaJI and R2.LlaJI). Here we employ a detailed genetic analysis of the LlaJI restriction determinants in an attempt to characterize mechanistic features of this unusual hetero-oligomeric endonuclease. RESULTS Detailed bioinformatics analysis confirmed the presence of a conserved GTP binding and hydrolysis domain within the C-terminal half of the R1.LlaJI amino acid sequence whilst the N-terminal half appeared to be entirely unique. This domain architecture was homologous with that of the "B" subunit of the GTP-dependent, methyl-specific McrBC endonuclease from E.coli K-12. R1.LlaJI did not appear to contain a catalytic centre, whereas this conserved motif; PD....D/EXK, was clearly identified within the amino acid sequence for R2.LlaJI. Both R1.LlaJI and R2.LlaJI were found to be absolutely required for detectable LlaJI activity in vivo. The LlaJI restriction subunits were purified and examined in vitro, which allowed the assignment of R1.LlaJI as the sole specificity determining subunit, whilst R2.LlaJI is believed to mediate DNA cleavage. CONCLUSION The hetero-subunit structure of LlaJI, wherein one subunit mediates DNA binding whilst the other subunit is predicted to catalyze strand hydrolysis distinguishes LlaJI from previously characterized restriction-modification systems. Furthermore, this distinction is accentuated by the fact that whilst LlaJI behaves as a conventional Type IIA system in vivo, in that it restricts un-methylated DNA, it resembles the Type IV McrBC endonuclease, an enzyme specific for methylated DNA. A number of similar restriction determinants were identified in the database and it is likely LlaJI together with these homologous systems, comprise a new subtype of the Type II class incorporating features of Type II and Type IV systems.
Collapse
Affiliation(s)
- Jonathan O'Driscoll
- Department of Microbiology, University College Cork, Western Road, Cork, Ireland
| | - Daniel F Heiter
- New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA
| | | | - Gerald F Fitzgerald
- Department of Microbiology, University College Cork, Western Road, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Western Road, Cork, Ireland
- Biotransfer Unit, University College Cork, Western Road, Cork, Ireland
| | - Richard Roberts
- New England Biolabs, 240 County Road, Ipswich, MA 01938-2723, USA
| | - Douwe van Sinderen
- Department of Microbiology, University College Cork, Western Road, Cork, Ireland
- Alimentary Pharmabiotic Centre, University College Cork, Western Road, Cork, Ireland
| |
Collapse
|
41
|
Catto LE, Ganguly S, Milsom SE, Welsh AJ, Halford SE. Protein assembly and DNA looping by the FokI restriction endonuclease. Nucleic Acids Res 2006; 34:1711-20. [PMID: 16556912 PMCID: PMC1410913 DOI: 10.1093/nar/gkl076] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The FokI restriction endonuclease recognizes an asymmetric DNA sequence and cuts both strands at fixed positions upstream of the site. The sequence is contacted by a single monomer of the protein, but the monomer has only one catalytic centre and forms a dimer to cut both strands. FokI is also known to cleave DNA with two copies of its site more rapidly than DNA with one copy. To discover how FokI acts at a single site and how it acts at two sites, its reactions were examined on a series of plasmids with either one recognition site or with two sites separated by varied distances, sometimes in the presence of a DNA-binding defective mutant of FokI. These experiments showed that, to cleave DNA with one site, the monomer bound to that site associates via a weak protein–protein interaction with a second monomer that remains detached from the recognition sequence. Nevertheless, the second monomer catalyses phosphodiester bond hydrolysis at the same rate as the DNA-bound monomer. On DNA with two sites, two monomers of FokI interact strongly, as a result of being tethered to the same molecule of DNA, and sequester the intervening DNA in a loop.
Collapse
Affiliation(s)
| | | | | | | | - Stephen E. Halford
- To whom correspondence should be addressed. Tel: +44 117 928 7429; Fax: +44 117 928 8274;
| |
Collapse
|
42
|
Li GY, Zhang Y, Chan MCY, Mal TK, Hoeflich KP, Inouye M, Ikura M. Characterization of Dual Substrate Binding Sites in the Homodimeric Structure of Escherichia coli mRNA Interferase MazF. J Mol Biol 2006; 357:139-50. [PMID: 16413577 DOI: 10.1016/j.jmb.2005.12.035] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 12/08/2005] [Accepted: 12/09/2005] [Indexed: 10/25/2022]
Abstract
MazF and MazE constitute a so-called addiction module that is critical for bacterial growth arrest and eventual cell death in response to stress. The MazF toxin was recently shown to possess mRNA interferase (MIase) activity, and acts as a protein synthesis inhibitor by cleaving cellular mRNA. As a cognate regulator, the short-lived antitoxin, MazE, inhibits MazF MIase activity and hence maintains the delicate homeostasis between these two components. In the present study, we have shown that the MazF homodimer contains two symmetric binding sites, each of which is capable of interacting with a MazE C-terminal peptide, MazEp(54-77). The slow exchange phenomenon between free and peptide-bound MazF on the NMR timescale indicates relatively high affinities for MazEp(54-77) at both sites (Kd,K'd < 10(-7) M). However, the observed sequential binding behavior suggests a negative cooperativity between the two sites (Kd < K'd). A 13 base single-stranded DNA, employed as an uncleavable RNA substrate analog, can also bind to both sites on the MazF homodimer with moderate affinity (Kd approximately 10(-5) -10(-6) M). Chemical shift perturbation data deduced from NMR experiments indicates that the two binding sites for the MazEp peptide coincided with those for the single-stranded DNA competitive inhibitor. These dual substrate-binding sites are located on the concave interface of the MazF homodimer, consisting of a highly basic region underneath the S1-S2 loop and two hydrophobic regions containing the H1 helix of one subunit and the S3-S4 loop of the opposing subunit. We show that the MazF homodimer is a bidentate endoribonuclease equipped with two identical binding sites for mRNA processing and that a single MazE molecule occupying one of the binding sites can affect the conformation of both sites, hence efficiently hindering the activity of MazF.
Collapse
Affiliation(s)
- Guang-Yao Li
- Division of Signaling Biology, Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, Toronto, Ont., Canada M5G 2M9
| | | | | | | | | | | | | |
Collapse
|
43
|
Tamulaitis G, Sasnauskas G, Mucke M, Siksnys V. Simultaneous binding of three recognition sites is necessary for a concerted plasmid DNA cleavage by EcoRII restriction endonuclease. J Mol Biol 2006; 358:406-19. [PMID: 16529772 DOI: 10.1016/j.jmb.2006.02.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2005] [Revised: 02/08/2006] [Accepted: 02/09/2006] [Indexed: 11/28/2022]
Abstract
According to the current paradigm type IIE restriction endonucleases are homodimeric proteins that simultaneously bind to two recognition sites but cleave DNA at only one site per turnover: the other site acts as an allosteric locus, activating the enzyme to cleave DNA at the first. Structural and biochemical analysis of the archetypal type IIE restriction enzyme EcoRII suggests that it has three possible DNA binding interfaces enabling simultaneous binding of three recognition sites. To test if putative synapsis of three binding sites has any functional significance, we have studied EcoRII cleavage of plasmids containing a single, two and three recognition sites under both single turnover and steady state conditions. EcoRII displays distinct reaction patterns on different substrates: (i) it shows virtually no activity on a single site plasmid; (ii) it yields open-circular DNA form nicked at one strand as an obligatory intermediate acting on a two-site plasmid; (iii) it cleaves concertedly both DNA strands at a single site during a single turnover on a three site plasmid to yield linear DNA. Cognate oligonucleotide added in trans increases the reaction velocity and changes the reaction pattern for the EcoRII cleavage of one and two-site plasmids but has little effect on the three-site plasmid. Taken together the data indicate that EcoRII requires simultaneous binding of three rather than two recognition sites in cis to achieve concerted DNA cleavage at a single site. We show that the orthodox type IIP enzyme PspGI which is an isoschisomer of EcoRII, cleaves different plasmid substrates with equal rates. Data provided here indicate that type IIE restriction enzymes EcoRII and NaeI follow different mechanisms. We propose that other type IIE restriction enzymes may employ the mechanism suggested here for EcoRII.
Collapse
|
44
|
Tamulaitis G, Mucke M, Siksnys V. Biochemical and mutational analysis ofEcoRII functional domains reveals evolutionary links between restriction enzymes. FEBS Lett 2006; 580:1665-71. [PMID: 16497303 DOI: 10.1016/j.febslet.2006.02.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Revised: 01/16/2006] [Accepted: 02/07/2006] [Indexed: 11/23/2022]
Abstract
The archetypal Type IIE restriction endonuclease EcoRII is a dimer that has a modular structure. DNA binding studies indicate that the isolated C-terminal domain dimer has an interface that binds a single cognate DNA molecule whereas the N-terminal domain is a monomer that also binds a single copy of cognate DNA. Hence, the full-length EcoRII contains three putative DNA binding interfaces: one at the C-terminal domain dimer and two at each of the N-terminal domains. Mutational analysis indicates that the C-terminal domain shares conserved active site architecture and DNA binding elements with the tetrameric restriction enzyme NgoMIV. Data provided here suggest possible evolutionary relationships between different subfamilies of restriction enzymes.
Collapse
|
45
|
Sapranauskas R, Lubys A. Random gene dissection: a tool for the investigation of protein structural organization. Biotechniques 2005; 39:395-402. [PMID: 16206911 DOI: 10.2144/05393rr01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To investigate the domain structure of proteins and the function of individual domains, proteins are usually subjected to limited proteolysis, followed by isolation of protein fragments and determination of their functions. We have developed an approach we call random gene dissection (RGD) for the identification of functional protein domains and their interdomain regions as well as their in vivo complementing fragments. The approach was tested on a two-domain protein, the type IIS restriction endonuclease BfiI. The collection of BfiI insertional mutants was screened for those that are endonucleolytically active and thus induce the SOS DNA repair response. Sixteen isolated mutants of the wild-type specificity contained insertions that were dispersed in a relatively large region of the target recognition domain. They split the gene into two complementing parts that separately were unable to induce the SOS DNA repair response. In contrast, all 19 mutants of relaxed specificity contained the cassette inserted into a very narrow interdomain region that connects BfiI domains responsible for DNA recognition and for cleavage. As expected, only the N-terminal fragment of BfiI was required to induce SOS response. Our results demonstrate that RGD can be used as a general method to identify complementing fragments and functional domains in enzymes.
Collapse
|
46
|
Grazulis S, Manakova E, Roessle M, Bochtler M, Tamulaitiene G, Huber R, Siksnys V. Structure of the metal-independent restriction enzyme BfiI reveals fusion of a specific DNA-binding domain with a nonspecific nuclease. Proc Natl Acad Sci U S A 2005; 102:15797-802. [PMID: 16247004 PMCID: PMC1266039 DOI: 10.1073/pnas.0507949102] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Among all restriction endonucleases known to date, BfiI is unique in cleaving DNA in the absence of metal ions. BfiI represents a different evolutionary lineage of restriction enzymes, as shown by its crystal structure at 1.9-A resolution. The protein consists of two structural domains. The N-terminal catalytic domain is similar to Nuc, an EDTA-resistant nuclease from the phospholipase D superfamily. The C-terminal DNA-binding domain of BfiI exhibits a beta-barrel-like structure very similar to the effector DNA-binding domain of the Mg(2+)-dependent restriction enzyme EcoRII and to the B3-like DNA-binding domain of plant transcription factors. BfiI presumably evolved through domain fusion of a DNA-recognition element to a nonspecific nuclease akin to Nuc and elaborated a mechanism to limit DNA cleavage to a single double-strand break near the specific recognition sequence. The crystal structure suggests that the interdomain linker may act as an autoinhibitor controlling BfiI catalytic activity in the absence of a specific DNA sequence. A psi-blast search identified a BfiI homologue in a Mesorhizobium sp. BNC1 bacteria strain, a plant symbiont isolated from an EDTA-rich environment.
Collapse
Affiliation(s)
- Saulius Grazulis
- Laboratory of Protein-DNA Interaction, Institute of Biotechnology, Graiciuno 8, LT-02241 Vilnius, Lithuania.
| | | | | | | | | | | | | |
Collapse
|
47
|
Kriukiene E, Lubiene J, Lagunavicius A, Lubys A. MnlI—The member of H-N-H subtype of Type IIS restriction endonucleases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1751:194-204. [PMID: 16024301 DOI: 10.1016/j.bbapap.2005.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2005] [Revised: 06/09/2005] [Accepted: 06/10/2005] [Indexed: 10/25/2022]
Abstract
The Type IIS restriction endonuclease MnlI recognizes the non-palindromic nucleotide sequence 5'-CCTC(N)7/6 downward arrow and cleaves DNA strands as indicated by the arrow. The genes encoding MnlI restriction-modification system were cloned and sequenced. It comprises N6-methyladenine and C5-methylcytosine methyltransferases and the restriction endonuclease. Biochemical studies revealed that MnlI restriction endonuclease cleaves double- and single-stranded DNA, and that it prefers different metal ions for hydrolysis of these substrates. Mg2+ ions were shown to be required for the specific cleavage of double-stranded DNA, whereas Ni2+ and some other transition metal ions were preferred for nonspecific cleavage of single-stranded DNA. The C-terminal part of MnlI restriction endonuclease revealed an intriguing similarity with the H-N-H type nucleolytic domain of bacterial toxins, Colicin E7 and Colicin E9. Alanine replacements in the conserved sequence motif 306Rx3ExHHx14Nx8H greatly reduced specific activity of MnlI, and some mutations even completely inactivated the enzyme. However, none of these mutations had effect on MnlI binding to the specific DNA, and on its oligomerisation state as well. We interpret the presented experimental evidence as a suggestion that the motif 306Rx3ExHHx14Nx8H represents the active site of MnlI. Consequentially, MnlI seems to be the member of Type IIS with the active site of the H-N-H type.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution/genetics
- Bacteriophage lambda/genetics
- Catalysis
- Cations, Divalent/chemistry
- Chromatography, Gel
- Cloning, Molecular
- DNA Restriction-Modification Enzymes/genetics
- DNA Restriction-Modification Enzymes/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Single-Stranded/chemistry
- DNA, Single-Stranded/metabolism
- Deoxyribonucleases, Type II Site-Specific/chemistry
- Deoxyribonucleases, Type II Site-Specific/genetics
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Kinetics
- Molecular Sequence Data
- Molecular Weight
- Moraxella/enzymology
- Moraxella/genetics
- Mutagenesis, Site-Directed
- Mutation
- Open Reading Frames/genetics
- Protein Binding
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- Substrate Specificity/genetics
Collapse
Affiliation(s)
- Edita Kriukiene
- Institute of Biotechnology, Graiciuno 8, Vilnius LT-02241, Lithuania
| | | | | | | |
Collapse
|
48
|
Wood KM, Daniels LE, Halford SE. Long-range communications between DNA sites by the dimeric restriction endonuclease SgrAI. J Mol Biol 2005; 350:240-53. [PMID: 15923010 DOI: 10.1016/j.jmb.2005.04.053] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 04/21/2005] [Accepted: 04/25/2005] [Indexed: 10/25/2022]
Abstract
The SgrAI endonuclease displays its maximal activity on DNA with two copies of its recognition sequence, cleaving both sites concertedly. While most restriction enzymes that act concurrently at two sites are tetramers, SgrAI is a dimer in solution. Its reaction at two cognate sites involves the association of two DNA-bound dimers. SgrAI can also bridge cognate and secondary sites, the latter being certain sequences that differ from the cognate by one base-pair. The mechanisms for cognate-cognate and cognate-secondary communications were examined for sites in the following topological relationships: in cis, on plasmids with two sites in a single DNA molecule; on catenanes containing two interlinked rings of DNA with one site in each ring; and in trans, on oligoduplexes carrying either a single site or the DNA termini generated by SgrAI. Both cognate-cognate and cognate-secondary interactions occur through 3-D space and not by 1-D tracking along the DNA. Both sorts of communication arise more readily when the sites are tethered to each other, either in cis on the same molecule of DNA or by the interlinking of catenane rings, than when released from the tether. However, the dimer bound to an oligoduplex carrying either a cognate or a secondary site could be activated to cleave that duplex by interacting with a second dimer bound to the recognition site, provided both duplexes are at least 30 base-pairs long: the second dimer could alternatively be bound to the two duplexes that correspond to the products of DNA cleavage by SgrAI.
Collapse
Affiliation(s)
- Katie M Wood
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | |
Collapse
|
49
|
Bellamy SRW, Milsom SE, Scott DJ, Daniels LE, Wilson GG, Halford SE. Cleavage of individual DNA strands by the different subunits of the heterodimeric restriction endonuclease BbvCI. J Mol Biol 2005; 348:641-53. [PMID: 15826661 DOI: 10.1016/j.jmb.2005.02.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 02/11/2005] [Accepted: 02/18/2005] [Indexed: 11/26/2022]
Abstract
BbvCI cleaves an asymmetric DNA sequence, 5'-CC downward arrow TCAGC-3'/5'-GC downward arrow TGAGG-3', as indicated. While many Type II restriction enzymes consist of identical subunits, BbvCI has two different subunits: R(1), which acts at GC downward arrow TGAGG; and R(2), which acts at CC downward arrow TCAGC. Some mutants of BbvCI with defects in one subunit, either R(1)(-)R(2)(+) or R(1)(+)R(2)(-), cleave only one strand, that attacked by the native subunit. In analytical ultracentrifugation at various concentrations of protein, wild-type and mutant BbvCI enzymes aggregated extensively, but are R(1)R(2) heterodimers at the concentrations used in DNA cleavage reactions. On a plasmid with one recognition site, wild-type BbvCI cleaved both strands before dissociating from the DNA, while the R(1)(-)R(2)(+) and R(1)(+)R(2)(-) mutants acted almost exclusively on their specified strands, albeit at relatively slow rates. During the wild-type reaction, the DNA is cleaved initially in one strand, mainly that targeted by the R(1) subunit. The other strand is then cleaved slowly by R(2) before the enzyme dissociates from the DNA. Hence, the nicked form accumulates as a transient intermediate. This behaviour differs from that of many other restriction enzymes, which cut both strands at equal rates. However, the activities of the R(1)(+) and R(2)(+) subunits in the wild-type enzyme can differ from their activities in the R(1)(+)R(2)(-) and R(1)(-)R(2)(+) mutants. Each active site in BbvCI therefore influences the other.
Collapse
Affiliation(s)
- Stuart R W Bellamy
- Department of Biochemistry, School of Medical Sciences, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| | | | | | | | | | | |
Collapse
|
50
|
Yang Z, Horton JR, Maunus R, Wilson GG, Roberts RJ, Cheng X. Structure of HinP1I endonuclease reveals a striking similarity to the monomeric restriction enzyme MspI. Nucleic Acids Res 2005; 33:1892-901. [PMID: 15805123 PMCID: PMC1074309 DOI: 10.1093/nar/gki337] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HinP1I, a type II restriction endonuclease, recognizes and cleaves a palindromic tetranucleotide sequence (G↓CGC) in double-stranded DNA, producing 2 nt 5′ overhanging ends. Here, we report the structure of HinP1I crystallized as one protein monomer in the crystallographic asymmetric unit. HinP1I displays an elongated shape, with a conserved catalytic core domain containing an active-site motif of SDX18QXK and a putative DNA-binding domain. Without significant sequence homology, HinP1I displays striking structural similarity to MspI, an endonuclease that cleaves a similar palindromic DNA sequence (C↓CGG) and binds to that sequence crystallographically as a monomer. Almost all the structural elements of MspI can be matched in HinP1I, including both the DNA recognition and catalytic elements. Examining the protein–protein interactions in the crystal lattice, HinP1I could be dimerized through two helices located on the opposite side of the protein to the active site, generating a molecule with two active sites and two DNA-binding surfaces opposite one another on the outer surfaces of the dimer. A possible functional link between this unusual dimerization mode and the tetrameric restriction enzymes is discussed.
Collapse
Affiliation(s)
| | | | - Robert Maunus
- New England Biolabs32 Tozer Road, Beverly, MA 01915, USA
| | | | | | - Xiaodong Cheng
- To whom correspondence should be addressed. Tel: +1 404 727 8491; Fax: +1 404 727 3746;
| |
Collapse
|