1
|
Calixto AR, Moreira C, Pabis A, Kötting C, Gerwert K, Rudack T, Kamerlin SCL. GTP Hydrolysis Without an Active Site Base: A Unifying Mechanism for Ras and Related GTPases. J Am Chem Soc 2019; 141:10684-10701. [PMID: 31199130 DOI: 10.1021/jacs.9b03193] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
GTP hydrolysis is a biologically crucial reaction, being involved in regulating almost all cellular processes. As a result, the enzymes that catalyze this reaction are among the most important drug targets. Despite their vital importance and decades of substantial research effort, the fundamental mechanism of enzyme-catalyzed GTP hydrolysis by GTPases remains highly controversial. Specifically, how do these regulatory proteins hydrolyze GTP without an obvious general base in the active site to activate the water molecule for nucleophilic attack? To answer this question, we perform empirical valence bond simulations of GTPase-catalyzed GTP hydrolysis, comparing solvent- and substrate-assisted pathways in three distinct GTPases, Ras, Rab, and the Gαi subunit of a heterotrimeric G-protein, both in the presence and in the absence of the corresponding GTPase activating proteins. Our results demonstrate that a general base is not needed in the active site, as the preferred mechanism for GTP hydrolysis is a conserved solvent-assisted pathway. This pathway involves the rate-limiting nucleophilic attack of a water molecule, leading to a short-lived intermediate that tautomerizes to form H2PO4- and GDP as the final products. Our fundamental biochemical insight into the enzymatic regulation of GTP hydrolysis not only resolves a decades-old mechanistic controversy but also has high relevance for drug discovery efforts. That is, revisiting the role of oncogenic mutants with respect to our mechanistic findings would pave the way for a new starting point to discover drugs for (so far) "undruggable" GTPases like Ras.
Collapse
Affiliation(s)
- Ana R Calixto
- Department of Chemistry-BMC , Uppsala University , Box 576, S-751 23 Uppsala , Sweden
| | - Cátia Moreira
- Department of Chemistry-BMC , Uppsala University , Box 576, S-751 23 Uppsala , Sweden
| | - Anna Pabis
- Department of Cell and Molecular Biology , Uppsala University , BMC Box 596, S-751 24 , Uppsala , Sweden
| | - Carsten Kötting
- Department of Biophysics , Ruhr University Bochum , 44801 Bochum , Germany
| | - Klaus Gerwert
- Department of Biophysics , Ruhr University Bochum , 44801 Bochum , Germany
| | - Till Rudack
- Department of Biophysics , Ruhr University Bochum , 44801 Bochum , Germany
| | - Shina C L Kamerlin
- Department of Chemistry-BMC , Uppsala University , Box 576, S-751 23 Uppsala , Sweden
| |
Collapse
|
2
|
Structural motifs in the RGS RZ subfamily combine to attenuate interactions with Gα subunits. Biochem Biophys Res Commun 2018; 503:2736-2741. [DOI: 10.1016/j.bbrc.2018.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/03/2018] [Indexed: 11/20/2022]
|
3
|
Kolodny R, Kosloff M. From Protein Structure to Function via Computational Tools and Approaches. Isr J Chem 2013. [DOI: 10.1002/ijch.201200078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
4
|
Anand B, Majumdar S, Prakash B. Structural basis unifying diverse GTP hydrolysis mechanisms. Biochemistry 2013; 52:1122-30. [PMID: 23293872 DOI: 10.1021/bi3014054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Central to biological processes is the regulation rendered by GTPases. Until recently, the GTP hydrolysis mechanism, exemplified by Ras-family (and G-α) GTPases, was thought to be universal. This mechanism utilizes a conserved catalytic Gln supplied "in cis" from the GTPase and an arginine finger "in trans" from a GAP (GTPase activating protein) to stabilize the transition state. However, intriguingly different mechanisms are operative in structurally similar GTPases. MnmE and dynamin like cation-dependent GTPases lack the catalytic Gln and instead employ a Glu/Asp/Ser situated elsewhere and in place of the arginine finger use a K(+) or Na(+) ion. In contrast, Rab33 possesses the Gln but does not utilize it for catalysis; instead, the GAP supplies both a catalytic Gln and an arginine finger in trans. Deciphering the underlying principles that unify seemingly unrelated mechanisms is central to understanding how diverse mechanisms evolve. Here, we recognize that steric hindrance between active site residues is a criterion governing the mechanism employed by a given GTPase. The Arf-ArfGAP structure is testimony to this concept of spatial (in)compatibility of active site residues. This understanding allows us to predict an as yet unreported hydrolysis mechanism and clarifies unexplained observations about catalysis by Rab11 and the need for HAS-GTPases to employ a different mechanism. This understanding would be valuable for experiments in which abolishing GTP hydrolysis or generating constitutively active forms of a GTPase is important.
Collapse
Affiliation(s)
- Baskaran Anand
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | | | | |
Collapse
|
5
|
Accessing protein conformational ensembles using room-temperature X-ray crystallography. Proc Natl Acad Sci U S A 2011; 108:16247-52. [PMID: 21918110 DOI: 10.1073/pnas.1111325108] [Citation(s) in RCA: 463] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Modern protein crystal structures are based nearly exclusively on X-ray data collected at cryogenic temperatures (generally 100 K). The cooling process is thought to introduce little bias in the functional interpretation of structural results, because cryogenic temperatures minimally perturb the overall protein backbone fold. In contrast, here we show that flash cooling biases previously hidden structural ensembles in protein crystals. By analyzing available data for 30 different proteins using new computational tools for electron-density sampling, model refinement, and molecular packing analysis, we found that crystal cryocooling remodels the conformational distributions of more than 35% of side chains and eliminates packing defects necessary for functional motions. In the signaling switch protein, H-Ras, an allosteric network consistent with fluctuations detected in solution by NMR was uncovered in the room-temperature, but not the cryogenic, electron-density maps. These results expose a bias in structural databases toward smaller, overpacked, and unrealistically unique models. Monitoring room-temperature conformational ensembles by X-ray crystallography can reveal motions crucial for catalysis, ligand binding, and allosteric regulation.
Collapse
|
6
|
Kosloff M, Travis AM, Bosch DE, Siderovski DP, Arshavsky VY. Integrating energy calculations with functional assays to decipher the specificity of G protein-RGS protein interactions. Nat Struct Mol Biol 2011; 18:846-53. [PMID: 21685921 PMCID: PMC3130846 DOI: 10.1038/nsmb.2068] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 04/07/2011] [Indexed: 11/09/2022]
Abstract
The diverse Regulator of G protein Signaling (RGS) family sets the timing of G protein signaling. To understand how the structure of RGS proteins determines their common ability to inactivate G proteins and their selective G protein recognition, we combined structure-based energy calculations with biochemical measurements of RGS activity. We found a previously unidentified group of variable 'Modulatory' residues that reside at the periphery of the RGS domain-G protein interface and fine-tune G protein recognition. Mutations of Modulatory residues in high-activity RGS proteins impaired RGS function, whereas redesign of low-activity RGS proteins in critical Modulatory positions yielded complete gain of function. Therefore, RGS proteins combine a conserved core interface with peripheral Modulatory residues to selectively optimize G protein recognition and inactivation. Finally, we show that our approach can be extended to analyze interaction specificity across other large protein families.
Collapse
Affiliation(s)
- Mickey Kosloff
- Duke Eye Center, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | |
Collapse
|
7
|
Zhang T, Faraggi E, Zhou Y. Fluctuations of backbone torsion angles obtained from NMR-determined structures and their prediction. Proteins 2011; 78:3353-62. [PMID: 20818661 DOI: 10.1002/prot.22842] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protein molecules exhibit varying degrees of flexibility throughout their three-dimensional structures. Protein structural flexibility is often characterized by fluctuations in the Cartesian coordinate space. On the other hand, the protein backbone can be mostly defined by two torsion angles ϕ and ψ only. We introduce a new flexibility descriptor, backbone torsion-angle fluctuation derived from the variation of backbone torsion angles from different NMR models. The torsion-angle fluctuations correlate with mean-squared spatial fluctuations derived from the same collection of NMR models. We developed a neural-network based real-value predictor based on sequence information only. The predictor achieved ten-fold cross-validated correlation coefficients of 0.59 and 0.60, and mean absolute errors of 22.7° and 24.3° for the angle fluctuation of ϕ and ψ, respectively. This predictor is expected to be useful for function prediction and protein structure prediction when predicted torsion angles are used as restraints. Both sequence- and structure-based prediction of torsion-angle fluctuation will be available at http://sparks.informatics.iupui.edu within the SPINE-X package.
Collapse
Affiliation(s)
- Tuo Zhang
- School of Informatics, Indiana University Purdue University, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
8
|
Abstract
Purines are critical cofactors in the enzymatic reactions that create and maintain living organisms. In humans, there are approximately 3,266 proteins that utilize purine cofactors and these proteins constitute the so-called purinome. The human purinome encompasses a wide-ranging functional repertoire and many of these proteins are attractive drug targets. For example, it is estimated that 30% of modern drug discovery projects target protein kinases and that modulators of small G-proteins comprise more than 50% of currently marketed drugs. Given the importance of purine-binding proteins to drug discovery, the following review will discuss the forces that mediate protein:purine recognition, the factors that determine druggability of a protein target, and the process of structure-based drug design. A review of purine recognition in representatives of the various purine-binding protein families, as well as the challenges faced in targeting members of the purinome in drug discovery campaigns will also be given.
Collapse
Affiliation(s)
- Jeremy M Murray
- Department of Protein Engineering, Genentech, Inc., South San Francisco, CA, USA
| | | |
Collapse
|
9
|
The GAP arginine finger movement into the catalytic site of Ras increases the activation entropy. Proc Natl Acad Sci U S A 2008; 105:6260-5. [PMID: 18434546 DOI: 10.1073/pnas.0712095105] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Members of the Ras superfamily of small G proteins play key roles in signal transduction pathways, which they control by GTP hydrolysis. They are regulated by GTPase activating proteins (GAPs). Mutations that prevent hydrolysis cause severe diseases including cancer. A highly conserved "arginine finger" of GAP is a key residue. Here, we monitor the GTPase reaction of the Ras.RasGAP complex at high temporal and spatial resolution by time-resolved FTIR spectroscopy at 260 K. After triggering the reaction, we observe as the first step a movement of the switch-I region of Ras from the nonsignaling "off" to the signaling "on" state with a rate of 3 s(-1). The next step is the movement of the "arginine finger" into the active site of Ras with a rate of k(2) = 0.8 s(-1). Once the arginine points into the binding pocket, cleavage of GTP is fast and the protein-bound P(i) intermediate forms. The switch-I reversal to the "off" state, the release of P(i), and the movement of arginine back into an aqueous environment is observed simultaneously with k(3) = 0.1 s(-1), the rate-limiting step. Arrhenius plots for the partial reactions show that the activation energy for the cleavage reaction is lowered by favorable positive activation entropy. This seems to indicate that protein-bound structured water molecules are pushed by the "arginine finger" movement out of the binding pocket into the bulk water. The proposed mechanism shows how the high activation barrier for phosphoryl transfer can be reduced by splitting into partial reactions separated by a P(i)-intermediate.
Collapse
|
10
|
Kötting C, Kallenbach A, Suveyzdis Y, Eichholz C, Gerwert K. Surface change of Ras enabling effector binding monitored in real time at atomic resolution. Chembiochem 2007; 8:781-7. [PMID: 17385754 DOI: 10.1002/cbic.200600552] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Ras, the prototype of the Ras superfamily, acts as a molecular switch for cell growth. External growth signals induce a GDP-to-GTP exchange. This modifies the Ras surface (Ras(on)GTP) and enables effector binding, which then activates signal-transduction pathways. GTP hydrolysis, catalysed by Ras and GAP, returns the signal to "off" (Ras(off)GDP). Oncogenic mutations in Ras prevent this hydrolysis, and thereby cause uncontrolled cell growth. In the Ras(off)-to-Ras(on) transition, the Ras surface is changed by a movement of the switch I loop that controls effector binding. We monitored this surface change at atomic resolution in real time by time-resolved FTIR (trFTIR) spectroscopy. In the transition from Ras(off) to Ras(on) a GTP-bound intermediate is now identified, in which effector binding is still prevented (Ras(off)GTP). The loop movement from Ras(off)GTP to Ras(on)GTP was directly monitored by the C=O vibration of Thr35. The structural change creates a binding site with a rate constant of 5 s(-1) at 260 K. A small molecule that shifted the equilibrium from the Ras(on)GTP state towards the Ras(off)GTP state would prevent effector binding, even if hydrolysis were blocked by oncogenic mutations. We present a spectroscopic fingerprint of both states that can be used as an assay in drug screening for such small molecules.
Collapse
Affiliation(s)
- Carsten Kötting
- Lehrstuhl für Biophysik, Ruhr-Universität Bochum, 44780 Bochum, Germany.
| | | | | | | | | |
Collapse
|
11
|
Reddick LE, Vaughn MD, Wright SJ, Campbell IM, Bruce BD. In vitro comparative kinetic analysis of the chloroplast Toc GTPases. J Biol Chem 2007; 282:11410-26. [PMID: 17261588 DOI: 10.1074/jbc.m609491200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A unique aspect of protein transport into plastids is the coordinate involvement of two GTPases in the translocon of the outer chloroplast membrane (Toc). There are two subfamilies in Arabidopsis, the small GTPases (Toc33 and Toc34) and the large acidic GTPases (Toc90, Toc120, Toc132, and Toc159). In chloroplasts, Toc34 and Toc159 are implicated in precursor binding, yet mechanistic details are poorly understood. How the GTPase cycle is modulated by precursor binding is complex and in need of careful dissection. To this end, we have developed novel in vitro assays to quantitate nucleotide binding and hydrolysis of the Toc GTPases. Here we present the first systematic kinetic characterization of four Toc GTPases (cytosolic domains of atToc33, atToc34, psToc34, and the GTPase domain of atToc159) to permit their direct comparison. We report the KM, Vmax, and Ea values for GTP hydrolysis and the Kd value for nucleotide binding for each protein. We demonstrate that GTP hydrolysis by psToc34 is stimulated by chloroplast transit peptides; however, this activity is not stimulated by homodimerization and is abolished by the R133A mutation. Furthermore, we show peptide stimulation of hydrolytic rates are not because of accelerated nucleotide exchange, indicating that transit peptides function as GTPase-activating proteins and not guanine nucleotide exchange factors in modulating the activity of psToc34. Finally, by using the psToc34 structure, we have developed molecular models for atToc33, atToc34, and atToc159G. By combining these models with the measured enzymatic properties of the Toc GTPases, we provide new insights of how the chloroplast protein import cycle may be regulated.
Collapse
Affiliation(s)
- L Evan Reddick
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville 37996, USA
| | | | | | | | | |
Collapse
|
12
|
Kötting C, Blessenohl M, Suveyzdis Y, Goody RS, Wittinghofer A, Gerwert K. A phosphoryl transfer intermediate in the GTPase reaction of Ras in complex with its GTPase-activating protein. Proc Natl Acad Sci U S A 2006; 103:13911-6. [PMID: 16968776 PMCID: PMC1599887 DOI: 10.1073/pnas.0604128103] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Indexed: 11/18/2022] Open
Abstract
The hydrolysis of nucleoside triphosphates by enzymes is used as a regulation mechanism in key biological processes. Here, the GTP hydrolysis of the protein complex of Ras with its GTPase-activating protein is monitored at atomic resolution in a noncrystalline state by time-resolved FTIR spectroscopy. At 900 ms, after the attack of water at the gamma-phosphate, there appears a H2PO4- intermediate that is shown to be hydrogen-bonded in an eclipsed conformation to the beta-phosphate of GDP. The H2PO4- intermediate is in a position where it can either reform GTP or be released from the protein in 7 s in the rate-limiting step of the GTPase reaction. We propose that such an intermediate also occurs in other GTPases and ATPases.
Collapse
Affiliation(s)
| | | | | | - Roger S. Goody
- Institut für Physiologische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany; and
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
| | - Alfred Wittinghofer
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, D-44227 Dortmund, Germany
| | | |
Collapse
|
13
|
Abstract
Structural flexibility has been associated with various biological processes such as molecular recognition and catalytic activity. In silico studies of protein flexibility have attempted to characterize and predict flexible regions based on simple principles. B-values derived from experimental data are widely used to measure residue flexibility. Here, we present the most comprehensive large-scale analysis of B-values. We used this analysis to develop a neural network-based method that predicts flexible-rigid residues from amino acid sequence. The system uses both global and local information (i.e., features from the entire protein such as secondary structure composition, protein length, and fraction of surface residues, and features from a local window of sequence-consecutive residues). The most important local feature was the evolutionary exchange profile reflecting sequence conservation in a family of related proteins. To illustrate its potential, we applied our method to 4 different case studies, each of which related our predictions to aspects of function. The first 2 were the prediction of regions that undergo conformational switches upon environmental changes (switch II region in Ras) and the prediction of surface regions, the rigidity of which is crucial for their function (tunnel in propeller folds). Both were correctly captured by our method. The third study established that residues in active sites of enzymes are predicted by our method to have unexpectedly low B-values. The final study demonstrated how well our predictions correlated with NMR order parameters to reflect motion. Our method had not been set up to address any of the tasks in those 4 case studies. Therefore, we expect that this method will assist in many attempts at inferring aspects of function.
Collapse
Affiliation(s)
- Avner Schlessinger
- CUBIC, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
14
|
Time-resolved FTIR studies provide activation free energy, activation enthalpy and activation entropy for GTPase reactions. Chem Phys 2004. [DOI: 10.1016/j.chemphys.2004.06.051] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
15
|
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel in the ATP binding cassette (ABC) transporter family. Like other ABC transporters, it can hydrolyze ATP. Yet while ATP hydrolysis influences channel gating, it has long seemed puzzling that CFTR would require this reaction because anions flow passively through CFTR. Moreover, no other ion channel is known to require the large energy of ATP hydrolysis to gate. We found that CFTR also has adenylate kinase activity (ATP + AMP <=> ADP + ADP) that regulates gating. When functioning as an adenylate kinase, CFTR showed positive cooperativity for ATP suggesting its two nucleotide binding domains may dimerize. Thus, channel activity could be regulated by two different enzymatic reactions, ATPase and adenylate kinase, that share a common ATP binding site in the second nucleotide binding domain. At physiologic nucleotide concentrations, adenylate kinase activity, rather than ATPase activity may control gating, and therefore involve little energy consumption.
Collapse
Affiliation(s)
- Christoph Randak
- Howard Hughes Medical Institute, Department of Internal Medicine and Physiology, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|