1
|
Uversky VN, Kulkarni P. Intrinsically disordered proteins: Chronology of a discovery. Biophys Chem 2021; 279:106694. [PMID: 34607199 DOI: 10.1016/j.bpc.2021.106694] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Intrinsic disorder is a new reality that appears to penetrate every corner of modern protein science. It is difficult to imagine that only 20 years ago the situation was completely different, and almost nobody had heard about 'structure-less' but functional proteins. As a matter of fact, for many at that time, this idea was completely heretical when viewed in light of the then dominating lock-and-key model describing the protein structure-function relationship, where a unique amino acid sequence defines a unique crystal-like 3D structure that serves as a prerequisite for a unique function of a protein. It seems like the entire field of protein intrinsic disorder has magically emerged at the turn of the century due to a revelation to a small group of researchers. Although this may very well be true, literature shows that the first observations contradicting the lock-and-key view of protein functionality started to appear almost immediately after this model was proposed. The goal of this article is to provide a brief chronology (though admittedly a subjective one) of the events in the field of protein science that eventually culminated in the discovery of the protein intrinsic disorder phenomenon. The entire process represents a good example of the "dwarf standing on the shoulders of giants" (Latin: nanos gigantum humeris insidentes) metaphor, where the truth is discovered by building on previous discoveries.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Institutskiy pereulok, 9, Dolgoprudny, 141700 Moscow region, Russia.
| | - Prakash Kulkarni
- Department of Medical Oncology, City of Hope National Medical Center, 1500 Duarte Rd, Duarte, CA, United States
| |
Collapse
|
2
|
Abstract
To identify the translocation components in cells, and to understand how they function in protein transport and membrane insertion, a variety of techniques have been used such as genetics, biochemistry, structural biology and single molecule methods. In particular, site-directed crosslinking between the client proteins and components of the translocation machineries have contributed significantly in the past and will do so in the future. One advantage of this technology is that it can be applied in vivo as well as in vitro and a comparison of the two approaches can be made. Also, the in vivo techniques allow time-dependent protocols which are essential for studying cellular pathways. Protein purification and reconstitution into proteoliposomes are the gold standard for studying membrane-based transport and translocation systems. With these biochemically defined approaches the function of each component in protein transport can be addressed individually with a plethora of biophysical techniques. Recently, the use of nanodiscs for reconstitution has added another extension of this reductionistic approach. Fluorescence based studies, cryo-microscopy and NMR spectroscopy have significantly added to our understanding how proteins move into and across membranes and will do this also in future.
Collapse
Affiliation(s)
- Andreas Kuhn
- Institute of Microbiology and Molecular Biology, University of Hohenheim, 70599, Stuttgart, Germany.
| |
Collapse
|
3
|
Parker MS, Balasubramaniam A, Sallee FR, Parker SL. The Expansion Segments of 28S Ribosomal RNA Extensively Match Human Messenger RNAs. Front Genet 2018; 9:66. [PMID: 29563925 PMCID: PMC5850279 DOI: 10.3389/fgene.2018.00066] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 02/15/2018] [Indexed: 11/26/2022] Open
Abstract
Eukaryote ribosomal RNAs (rRNAs) have expanded in the course of phylogeny by addition of nucleotides in specific insertion areas, the expansion segments. These number about 40 in the larger (25–28S) rRNA (up to 2,400 nucleotides), and about 12 in the smaller (18S) rRNA (<700 nucleotides). Expansion of the larger rRNA shows a clear phylogenetic increase, with a dramatic rise in mammals and especially in hominids. Substantial portions of expansion segments in this RNA are not bound to ribosomal proteins, and may engage extraneous interactants, including messenger RNAs (mRNAs). Studies on the ribosome-mRNA interaction have focused on proteins of the smaller ribosomal subunit, with some examination of 18S rRNA. However, the expansion segments of human 28S rRNA show much higher density and numbers of mRNA matches than those of 18S rRNA, and also a higher density and match numbers than its own core parts. We have studied that with frequent and potentially stable matches containing 7–15 nucleotides. The expansion segments of 28S rRNA average more than 50 matches per mRNA even assuming only 5% of their sequence as available for such interaction. Large expansion segments 7, 15, and 27 of 28S rRNA also have copious long (≥10-nucleotide) matches to most human mRNAs, with frequencies much higher than in other 28S rRNA parts. Expansion segments 7 and 27 and especially segment 15 of 28S rRNA show large size increase in mammals compared to other metazoans, which could reflect a gain of function related to interaction with non-ribosomal partners. The 28S rRNA expansion segment 15 shows very high increments in size, guanosine, and cytidine nucleotide content and mRNA matching in mammals, and especially in hominids. With these segments (but not with other 28S rRNA or any 18S rRNA expansion segments) the density and number of matches are much higher in 5′-terminal than in 3′-terminal untranslated mRNA regions, which may relate to mRNA mobilization via 5′ termini. Matches in the expansion segments 7, 15, and 27 of human 28S rRNA appear as candidates for general interaction with mRNAs, especially those associated with intracellular matrices such as the endoplasmic reticulum.
Collapse
Affiliation(s)
- Michael S Parker
- Department of Microbiology and Molecular Cell Sciences, University of Memphis, Memphis, TN, United States
| | | | - Floyd R Sallee
- Department of Psychiatry, University of Cincinnati School of Medicine, Cincinnati, OH, United States
| | - Steven L Parker
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
4
|
LaBonte ML. Blobel and Sabatini's "Beautiful Idea": Visual Representations of the Conception and Refinement of the Signal Hypothesis. JOURNAL OF THE HISTORY OF BIOLOGY 2017; 50:797-833. [PMID: 28130697 DOI: 10.1007/s10739-016-9462-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In 1971, Günter Blobel and David Sabatini proposed a novel and quite speculative schematic model to describe how proteins might reach the proper cellular location. According to their proposal, proteins destined to be secreted from the cell contain a "signal" to direct their release. Despite the fact that Blobel and Sabatini presented their signal hypothesis as a "beautiful idea" not grounded in experimental evidence, they received criticism from other scientists who opposed such speculation. Following the publication of the 1971 model, Blobel persisted in conducting experiments and revising the model to incorporate new data. In fact, over the period of 1975-1984, Blobel and colleagues published five subsequent schematic models of the signal hypothesis, each revised based on new laboratory evidence. I propose that the original 1971 model can be viewed as an epistemic creation. Additionally, analysis of the subsequent schematic diagrams over the period of 1975-1984 allows one to track Blobel's changing conception of an epistemic object over time. Furthermore, the entire series of schematic diagrams presented by Blobel from 1971 to 1984 allow one to visualize the initial conception and subsequent reworking of a scientific theory. In 1999, Blobel was awarded the Nobel Prize in Physiology or Medicine for his work on the signal hypothesis, which was ultimately supported by experimental evidence gathered after the speculative model was published.
Collapse
Affiliation(s)
- Michelle Lynne LaBonte
- The Department of the History of Science, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
5
|
Abstract
Translation of the genetic code on the ribosome into protein is a process of extraordinary complexity, and understanding its mechanism has remained one of the major challenges even though x-ray structures have been available since 2000. In the past two decades, single-particle cryo-electron microscopy has contributed a major share of information on structure, binding modes, and conformational changes of the ribosome during its work cycle, but the contributions of this technique in the translation field have recently skyrocketed after the introduction of a new recording medium capable of detecting individual electrons. As many examples in the recent literature over the past three years show, the impact of this development on the advancement of knowledge in this field has been transformative and promises to be lasting.
Collapse
Affiliation(s)
- Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Columbia University, New York, NY, USA
| |
Collapse
|
6
|
Miyaguchi K. Direct imaging electron microscopy (EM) methods in modern structural biology: overview and comparison with X-ray crystallography and single-particle cryo-EM reconstruction in the studies of large macromolecules. Biol Cell 2014; 106:323-45. [PMID: 25040059 DOI: 10.1111/boc.201300081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 07/01/2014] [Indexed: 11/28/2022]
Abstract
Determining the structure of macromolecules is important for understanding their function. The fine structure of large macromolecules is currently studied primarily by X-ray crystallography and single-particle cryo-electron microscopy (EM) reconstruction. Before the development of these techniques, macromolecular structure was often examined by negative-staining, rotary-shadowing and freeze-etching EM, which are categorised here as 'direct imaging EM methods'. In this review, the results are summarised by each of the above techniques and compared with respect to four macromolecules: the ryanodine receptor, cadherin, rhodopsin and the ribosome-translocon complex (RTC). The results of structural analysis of the ryanodine receptor and cadherin are consistent between each technique. The results obtained for rhodopsin vary to some extent within each technique and between the different techniques. Finally, the results for RTC are inconsistent between direct imaging EM and other analytical techniques, especially with respect to the space within RTC, the reasons for which are discussed. Then, the role of direct imaging EM methods in modern structural biology is discussed. Direct imaging methods should support and verify the results obtained by other analytical methods capable of solving three-dimensional molecular architecture, and they should still be used as a primary tool for studying macromolecule structure in vivo.
Collapse
Affiliation(s)
- Katsuyuki Miyaguchi
- Shinsapporokeiaikai Hospital, 5-5-35 Ooyachihigashi, Atsubetsuku, Sapporo, 004-0041, Japan
| |
Collapse
|
7
|
Parker MS, Sah R, Balasubramaniam A, Sallee FR, Park EA, Parker SL. On the expansion of ribosomal proteins and RNAs in eukaryotes. Amino Acids 2014; 46:1589-604. [PMID: 24633358 DOI: 10.1007/s00726-014-1704-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 02/18/2014] [Indexed: 01/11/2023]
Abstract
While the ribosome constitution is similar in all biota, there is a considerable increase in size of both ribosomal proteins (RPs) and RNAs in eukaryotes as compared to archaea and bacteria. This is pronounced in the large (60S) ribosomal subunit (LSU). In addition to enlargement (apparently maximized already in lower eukarya), the RP changes include increases in fraction, segregation and clustering of basic residues, and decrease in hydrophobicity. The acidic fraction is lower in eukaryote as compared to prokaryote RPs. In all eukaryote groups tested, the LSU RPs have significantly higher content of basic residues and homobasic segments than the SSU RPs. The vertebrate LSU RPs have much higher sequestration of basic residues than those of bacteria, archaea and even of the lower eukarya. The basic clusters are highly aligned in the vertebrate, but less in the lower eukarya, and only within families in archaea and bacteria. Increase in the basicity of RPs, besides helping transport to the nucleus, should promote stability of the assembled ribosome as well as the association with translocons and other intracellular matrix proteins. The size and GC nucleotide bias of the expansion segments of large LSU rRNAs also culminate in the vertebrate, and should support ribosome association with the endoplasmic reticulum and other intracellular networks. However, the expansion and nucleotide bias of eukaryote LSU rRNAs do not clearly correlate with changes in ionic parameters of LSU ribosomal proteins.
Collapse
Affiliation(s)
- Michael S Parker
- Department of Microbiology and Molecular Cell Sciences, University of Memphis, Memphis, TN, 38152, USA
| | | | | | | | | | | |
Collapse
|
8
|
Farquhar MG. A Man for All Seasons: Reflections on the Life and Legacy of George Palade. Annu Rev Cell Dev Biol 2012; 28:1-28. [DOI: 10.1146/annurev-cellbio-101011-155813] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marilyn G. Farquhar
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093;
| |
Collapse
|
9
|
Chen Q, Jagannathan S, Reid DW, Zheng T, Nicchitta CV. Hierarchical regulation of mRNA partitioning between the cytoplasm and the endoplasmic reticulum of mammalian cells. Mol Biol Cell 2011; 22:2646-58. [PMID: 21613539 PMCID: PMC3135488 DOI: 10.1091/mbc.e11-03-0239] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
This study reveals that mRNAs are partitioned between the cytosol and endoplasmic reticulum (ER) compartments in a hierarchical manner and identifies a prominent role for the ER in global protein synthesis. Two modes of mRNA association with the ER are defined: ribosome dependent and ribosome independent. The mRNA transcriptome is currently thought to be partitioned between the cytosol and endoplasmic reticulum (ER) compartments by binary selection; mRNAs encoding cytosolic/nucleoplasmic proteins are translated on free ribosomes, and mRNAs encoding topogenic signal-bearing proteins are translated on ER-bound ribosomes, with ER localization being conferred by the signal-recognition particle pathway. In subgenomic and genomic analyses of subcellular mRNA partitioning, we report an overlapping subcellular distribution of cytosolic/nucleoplasmic and topogenic signal-encoding mRNAs, with mRNAs of both cohorts displaying noncanonical subcellular partitioning patterns. Unexpectedly, the topogenic signal-encoding mRNA transcriptome was observed to partition in a hierarchical, cohort-specific manner. mRNAs encoding resident proteins of the endomembrane system were clustered at high ER-enrichment values, whereas mRNAs encoding secretory pathway cargo were broadly represented on free and ER-bound ribosomes. Two distinct modes of mRNA association with the ER were identified. mRNAs encoding endomembrane-resident proteins were bound via direct, ribosome-independent interactions, whereas mRNAs encoding secretory cargo displayed predominantly ribosome-dependent modes of ER association. These data indicate that mRNAs are partitioned between the cytosol and ER compartments via a hierarchical system of intrinsic and encoded topogenic signals and identify mRNA cohort-restricted modes of mRNA association with the ER.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
10
|
Abstract
The signal hypothesis, formulated by Günter Blobel and David Sabatini in 1971, and elaborated by Blobel and his colleagues between 1975 and 1980, fundamentally expanded our view of cells by introducing the concept of topogenic signals. Cells were no longer just morphological entities with compartmentalized biochemical functions; they were now active participants in the creation and perpetuation of their own form and identity, the decoders of linear genetic information into three dimensions.
Collapse
Affiliation(s)
- Karl S Matlin
- Department of Surgery, The University of Chicago, 5841 South Maryland Avenue, MC 5032, SBRI J557, Chicago, Illinois 60637-1470, USA.
| |
Collapse
|
11
|
Mäenpää PH. Fructose and liver protein synthesis. ACTA MEDICA SCANDINAVICA. SUPPLEMENTUM 2009; 542:115-8. [PMID: 4516485 DOI: 10.1111/j.0954-6820.1972.tb05325.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Lizotte E, Tremblay A, Allen BG, Fiset C. Isolation and characterization of subcellular protein fractions from mouse heart. Anal Biochem 2005; 345:47-54. [PMID: 16125124 DOI: 10.1016/j.ab.2005.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 06/15/2005] [Accepted: 07/01/2005] [Indexed: 11/21/2022]
Abstract
In this study, we report different protocols used to obtain highly enriched and well-characterized protein fractions that could be used to determine the subcellular localization of proteins. Different protein fractions (total, cytosolic, total membrane, sarcolemmal, and nuclear) were isolated from mouse heart by a combination of either polytron homogenization or liquid nitrogen pulverization followed by density gradient centrifugation. Triton X-100 was used in specific fractions to help in the solubilization of proteins obtained with fractionation protocols. Following the isolation, enzymatic assays and Western blot analysis were used to evaluate the enrichment and/or cross-contamination of these protein fractions. Glucose-6-phosphate dehydrogenase, Na+/K+-ATPase, mitochondrial Ca2+-ATPase, sarco-endoplasmic reticulum Ca2+-ATPase, glucose-regulated protein, and nucleoporin P62 were used as specific markers for the cytosol, sarcolemma, mitochondria, sarco-endoplasmic reticulum, endoplasmic reticulum, and nucleus, respectively. The results show that we obtained enriched protein fractions with little to no cross-contamination. These purification protocols allow us to obtain different protein fractions that could be used in a wide variety of studies.
Collapse
Affiliation(s)
- Eric Lizotte
- Research Center, Montreal Heart Institute, and Faculty of Pharmacy, Montreal University, Montreal, Que., Canada H3C 3J7
| | | | | | | |
Collapse
|
13
|
Abstract
In this review I describe the several stages of my research career, all of which were driven by a desire to understand the basic mechanisms responsible for the complex and beautiful organization of the eukaryotic cell. I was originally trained as an electron microscopist in Argentina, and my first major contribution was the introduction of glutaraldehyde as a fixative that preserved the fine structure of cells, which opened the way for cytochemical studies at the EM level. My subsequent work on membrane-bound ribosomes illuminated the process of cotranslational translocation of polypeptides across the ER membrane and led to the formulation, with Gunter Blobel, of the signal hypothesis. My later studies with many talented colleagues contributed to an understanding of ER structure and function and aspects of the mechanisms that generate and maintain the polarity of epithelial cells. For this work my laboratory introduced the now widely adopted Madin-Darby canine kidney (MDCK) cell line, and demonstrated the polarized budding of envelope viruses from those cells, providing a powerful new system that further advanced the field of protein traffic.
Collapse
Affiliation(s)
- David D Sabatini
- New York University School of Medicine, New York, NY 10016-6497, USA.
| |
Collapse
|
14
|
Sardet C, Nishida H, Prodon F, Sawada K. Maternal mRNAs of PEM and macho 1, the ascidian muscle determinant, associate and move with a rough endoplasmic reticulum network in the egg cortex. Development 2003; 130:5839-49. [PMID: 14573512 DOI: 10.1242/dev.00805] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Localization of maternal mRNAs in the egg cortex is an essential feature of polarity in embryos of Drosophila, Xenopus and ascidians. In ascidians, maternal mRNAs such as macho 1, a determinant of primary muscle-cell fate, belong to a class of postplasmic RNAs that are located along the animal-vegetal gradient in the egg cortex. Between fertilization and cleavage, these postplasmic RNAs relocate in two main phases. They further concentrate and segregate in small posterior blastomeres into a cortical structure, the centrosome-attracting body (CAB), which is responsible for unequal cleavages.
By using high-resolution, fluorescent, in situ hybridization in eggs,zygotes and embryos of Halocynthia roretzi, we showed that macho 1 and HrPEM are localized on a reticulated structure situated within 2 μm of the surface of the unfertilized egg, and within 8 μm of the surface the vegetal region and then posterior region of the zygote. By isolating cortices from eggs and zygotes we demonstrated that this reticulated structure is a network of cortical rough endoplasmic reticulum (cER) that is tethered to the plasma membrane. The postplasmic RNAs macho 1 and HrPEM were located on the cER network and could be detached from it. We also show that macho 1 and HrPEM accumulated in the CAB and the cER network. We propose that these postplasmic RNAs relocalized after fertilization by following the microfilament- and microtubule-driven translocations of the cER network to the poles of the zygote. We also suggest that the RNAs segregate and concentrate in posterior blastomeres through compaction of the cER to form the CAB. A multimedia BioClip `Polarity inside the egg cortex' tells the story and can be downloaded at www.bioclips.com/bioclip.html
Collapse
Affiliation(s)
- Christian Sardet
- BioMarCell, UMR 7009, CNRS/UPMC, Station Zoologique, Observatoire Océanologique, Villefranche sur Mer, 06230, France.
| | | | | | | |
Collapse
|
15
|
Abstract
As a pioneer molecular cell biologist, highly skilled in both morphological and biochemical approaches, David Sabatini was a key figure in laying the foundation for the field of intracellular protein trafficking with his seminal studies on cotranslational translocation of nascent polypeptides in the endoplasmic reticulum and the intracellular sorting of plasma membrane proteins in polarized epithelial cells.
Collapse
Affiliation(s)
- Milton Adesnik
- Dept of Cell Biology, New York University School of Medicine, 550 First Ave, Room MSB 698B, New York, NY 10016, USA.
| |
Collapse
|
16
|
Seiser RM, Nicchitta CV. The fate of membrane-bound ribosomes following the termination of protein synthesis. J Biol Chem 2000; 275:33820-7. [PMID: 10931837 DOI: 10.1074/jbc.m004462200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Contemporary models for protein translocation in the mammalian endoplasmic reticulum (ER) identify the termination of protein synthesis as the signal for ribosome release from the ER membrane. We have utilized morphometric and biochemical methods to assess directly the fate of membrane-bound ribosomes following the termination of protein synthesis. In these studies, tissue culture cells were treated with cycloheximide to inhibit elongation, with pactamycin to inhibit initiation, or with puromycin to induce premature chain termination, and ribosome-membrane interactions were subsequently analyzed. It was found that following the termination of protein synthesis, the majority of ribosomal particles remained membrane-associated. Analysis of the subunit structure of the membrane-bound ribosomal particles remaining after termination was conducted by negative stain electron microscopy and sucrose gradient sedimentation. By both methods of analysis, the termination of protein synthesis on membrane-bound ribosomes was accompanied by the release of small ribosomal subunits from the ER membrane; the majority of the large subunits remained membrane-bound. On the basis of these results, we propose that large ribosomal subunit release from the ER membrane is regulated independently of protein translocation.
Collapse
Affiliation(s)
- R M Seiser
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
17
|
Potter MD, Nicchitta CV. Ribosome-independent regulation of translocon composition and Sec61alpha conformation. J Biol Chem 2000; 275:2037-45. [PMID: 10636907 DOI: 10.1074/jbc.275.3.2037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, the contributions of membrane-bound ribosomes to the regulation of endoplasmic reticulum translocon composition and Sec61alpha conformation were examined. Following solubilization of rough microsomes (RM) with digitonin, ribosomes co-sedimented in complexes containing the translocon proteins Sec61alpha, ribophorin I, and TRAPalpha, and endoplasmic reticulum phospholipids. Complexes of similar composition were identified in digitonin extracts of ribosome-free membranes, indicating that the ribosome does not define the composition of the digitonin-soluble translocon. Whereas in digitonin solution a highly electrostatic ribosome-translocon junction is observed, no stable interactions between ribosomes and Sec61alpha, ribophorin I, or TRAPalpha were observed following solubilization of RM with lipid-derived detergents at physiological salt concentrations. Sec61alpha was found to exist in at least two conformational states, as defined by mild proteolysis. A protease-resistant form was observed in RM and detergent-solubilized RM. Removal of peripheral proteins and ribosomes markedly enhanced the sensitivity of Sec61alpha to proteolysis, yet the readdition of inactive ribosomes to salt-washed membranes yielded only modest reductions in protease sensitivity. Addition of sublytic concentrations of detergents to salt-washed RM markedly decreased the protease sensitivity of Sec61alpha, indicating that a protease-resistant conformation of Sec61alpha can be conferred in a ribosome-independent manner.
Collapse
Affiliation(s)
- M D Potter
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
18
|
Affiliation(s)
- D D Sabatini
- Dept of Cell Biology, New York University School of Medicine, New York, NY 10016-6497, USA.
| |
Collapse
|
19
|
Raden D, Gilmore R. Signal recognition particle-dependent targeting of ribosomes to the rough endoplasmic reticulum in the absence and presence of the nascent polypeptide-associated complex. Mol Biol Cell 1998; 9:117-30. [PMID: 9436995 PMCID: PMC25226 DOI: 10.1091/mbc.9.1.117] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/1997] [Accepted: 10/21/1997] [Indexed: 02/05/2023] Open
Abstract
Proteins with RER-specific signal sequences are cotranslationally translocated across the rough endoplasmic reticulum through a proteinaceous channel composed of oligomers of the Sec61 complex. The Sec61 complex also binds ribosomes with high affinity. The dual function of the Sec61 complex necessitates a mechanism to prevent signal sequence-independent binding of ribosomes to the translocation channel. We have examined the hypothesis that the signal recognition particle (SRP) and the nascent polypeptide-associated complex (NAC), respectively, act as positive and negative regulatory factors to mediate the signal sequence-specific attachment of the ribosome-nascent chain complex (RNC) to the translocation channel. Here, SRP-independent translocation of a nascent secretory polypeptide was shown to occur in the presence of endogenous wheat germ or rabbit reticulocyte NAC. Furthermore, SRP markedly enhanced RNC binding to the translocation channel irrespective of the presence of NAC. Binding of RNCs, but not SRP-RNCs, to the Sec61 complex is competitively inhibited by 80S ribosomes. Thus, the SRP-dependent targeting pathway provides a mechanism for delivery of RNCs to the translocation channel that is not inhibited by the nonselective interaction between the ribosome and the Sec61 complex.
Collapse
Affiliation(s)
- D Raden
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester 01655-0103, USA
| | | |
Collapse
|
20
|
Nicchitta CV, Zheng T. Regulation of the ribosome-membrane junction at early stages of presecretory protein translocation in the mammalian endoplasmic reticulum. J Cell Biol 1997; 139:1697-708. [PMID: 9412465 PMCID: PMC2132637 DOI: 10.1083/jcb.139.7.1697] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A series of fusion protein constructs were designed to investigate the contribution of secretory nascent chains to regulation of the ribosome-membrane junction in the mammalian endoplasmic reticulum. As a component of these studies, the membrane topology of the signal sequence was determined at stages of protein translocation immediately after targeting and before signal sequence cleavage. Truncated translation products were used to delimit the analysis to defined stages of translocation. In a study of secretory protein precursors, formation of a protease-resistant ribosome-membrane junction, currently thought to define the pathway of the translocating nascent chain, was observed to be precursor- and stage-dependent. Analysis of the binding of early intermediates indicated that the nascent chain was bound to the membrane independent of the ribosome, and that the binding was predominately electrostatic. The membrane topology of the signal sequence was determined as a function of the stage of translocation, and was found to be identical for all assayed intermediates. Unexpectedly, the hydrophobic core of the signal sequence was observed to be accessible to the cytosolic face of the membrane at stages of translocation immediately after targeting as well as stages before signal sequence cleavage. Removal of the ribosome from bound intermediates did not disrupt subsequent translocation, suggesting that the active state of the protein-conducting channel is maintained in the absence of the bound ribosome. A model describing a potential mode of regulation of the ribosome-membrane junction by the nascent chain is presented.
Collapse
Affiliation(s)
- C V Nicchitta
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
21
|
Murphy EC, Zheng T, Nicchitta CV. Identification of a novel stage of ribosome/nascent chain association with the endoplasmic reticulum membrane. J Biophys Biochem Cytol 1997; 136:1213-26. [PMID: 9087438 PMCID: PMC2132505 DOI: 10.1083/jcb.136.6.1213] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protein translocation in the mammalian endoplasmic reticulum (ER) occurs cotranslationally and requires the binding of translationally active ribosomes to components of the ER membrane. Three candidate ribosome receptors, p180, p34, and Sec61p, have been identified in binding studies with inactive ribosomes, suggesting that ribosome binding is mediated through a receptor-ligand interaction. To determine if the binding of nascent chain-bearing ribosomes is regulated in a manner similar to inactive ribosomes, we have investigated the ribosome/nascent chain binding event that accompanies targeting. In agreement with previous reports, indicating that Sec61p displays the majority of the ER ribosome binding activity, we observed that Sec61p is shielded from proteolytic digestion by native, bound ribosomes. The binding of active, nascent chain bearing ribosomes to the ER membrane is, however, insensitive to the ribosome occupancy state of Sec61p. To determine if additional, Sec61p independent, stages of the ribosome binding reaction could be identified, ribosome/nascent chain binding was assayed as a function of RM concentration. At limiting RM concentrations, a protease resistant ribosome-membrane junction was formed, yet the nascent chain was salt extractable and cross-linked to Sec61p with low efficiency. At nonlimiting RM concentrations, bound nascent chains were protease and salt resistant and cross-linked to Sec61p with higher efficiency. On the basis of these and other data, we propose that ribosome binding to the ER membrane is a multi-stage process comprised of an initial, Sec61p independent binding event, which precedes association of the ribosome/nascent chain complex with Sec61p.
Collapse
Affiliation(s)
- E C Murphy
- Duke University Medical Center, Department of Cell Biology, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
22
|
Van Dijken P, Bergsma JC, Van Haastert PJ. Phospholipase-C-independent inositol 1,4,5-trisphosphate formation in Dictyostelium cells. Activation of a plasma-membrane-bound phosphatase by receptor-stimulated Ca2+ influx. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:113-9. [PMID: 9063453 DOI: 10.1111/j.1432-1033.1997.00113.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dictyostelium cells have enzyme activities that generate the inositol polyphosphate Ins(1,4,5)P3 from Ins(1,3,4,5,6)P5 via the intermediates Ins(1,3,4,5)P4 and Ins(1,4,5,6)P4. These enzyme activities could explain why cells with a deletion of the single phospholipase C gene (plc- cells) possess nearly normal Ins(1,4,5)P3 levels. In this study the regulation and the subcellular localization of the enzyme activities was investigated. The enzyme activities performing the different reaction steps from Ins(1,3,4,5,6)P5 to Ins(1,4,5)P3 are probably due to a single enzyme. Indications for this are the previously shown similar Ca2+ dependencies of the various reaction steps. Furthermore, the activities mediating the complete conversion of Ins(1,3,4,5,6)P5 to Ins(1,4,5)P3 co-purify after subcellular fractionation, solubilization, and chromatography of the proteins. Subcellular fractionation studies demonstrate that the enzyme is localized mainly at the inner face of the plasma membrane. The enzyme activity could not be stimulated in vitro by guanosine 5'-(3-thio)triphosphate, a procedure known to activate G-protein-coupled enzymes in Dictyostelium. Still, in plc- cells the level of Ins(1,4,5)P3 was increased significantly after stimulation with high concentrations of the extracellular ligand cAMP. This stimulation is most likely due to the influx of Ca2+ because no increase of Ins(1,4,5)P3 could be detected in the absence of extracellular Ca2+. The results demonstrate the existence of a new receptor-controlled route for the formation of Ins(1,4,5)P3 that is independent of phospholipase C.
Collapse
Affiliation(s)
- P Van Dijken
- Department of Biochemistry, University of Groningen, The Netherlands
| | | | | |
Collapse
|
23
|
Nicchitta CV, Murphy EC, Haynes R, Shelness GS. Stage- and ribosome-specific alterations in nascent chain-Sec61p interactions accompany translocation across the ER membrane. J Cell Biol 1995; 129:957-70. [PMID: 7744967 PMCID: PMC2120490 DOI: 10.1083/jcb.129.4.957] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Near-neighbor interactions between translocating nascent chains and Sec61p were investigated by chemical cross-linking. At stages of translocation before signal sequence cleavage, nascent chains could be cross-linked to Sec61p at high (60-80%) efficiencies. Cross-linking occurred through the signal sequence and the mature portion of wild-type and signal cleavage mutant nascent chains. At later stages of translocation, as represented through truncated translocation intermediates, cross-linking to Sec61p was markedly reduced. Dissociation of the ribosome into its large and small subunits after assembly of the precursor into the translocon, but before cross-linking, resulted in a dramatic reduction in subsequent cross-linking yield, indicating that at early stages of translocation, nascent chain-Sec61p interactions are in part mediated through interactions of the ribosome with components of the ER membrane, such as Sec61p. Dissociation of the ribosome was, however, without effect on subsequent translocation. These results are discussed with respect to a model in which Sec61p performs a function essential for the initiation of protein translocation.
Collapse
Affiliation(s)
- C V Nicchitta
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27705, USA
| | | | | | | |
Collapse
|
24
|
Christensen AK. Negatively-stained polysomes on rough microsome vesicles viewed by electron microscopy: further evidence regarding the orientation of attached ribosomes. Cell Tissue Res 1994; 276:439-44. [PMID: 8062339 DOI: 10.1007/bf00343942] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Rough microsomes, derived from rough endoplasmic reticulum of rat liver, were studied by electron microscopy after negative staining, to seek further information about the orientation of ribosomal small and large subunits in bound polysomes. Rough microsomal vesicles were fixed with 2% formaldehyde, centrifuged onto electron-microscopic grid membranes, and were then negatively-stained with 2% phosphotungstic acid. In these preparations, viewed with the electron microscope, flattened rough microsomal vesicles with bound polysomes were sometimes discernible, and the individual ribosomes in the polysomes occasionally showed small and large subunits. The small subunits were uniformly oriented toward the inside of the polysomal curve. The large and small subunits appeared to be alongside one another on the membrane, consistent with the orientation that has been described by Unwin and his co-workers. The boundary between the small and large subunits occurred at approximately the same level in the ribosome where inter-ribosomal strands have been described previously in surface views of bound polysomes in positively-stained electron-microscopic tissue sections. This further confirms the identity of the strands as messenger RNA.
Collapse
Affiliation(s)
- A K Christensen
- Department of Anatomy and Cell Biology, University of Michigan Medical School, Ann Arbor 48109-0616
| |
Collapse
|
25
|
Santolini E, Migliaccio G, La Monica N. Biosynthesis and biochemical properties of the hepatitis C virus core protein. J Virol 1994; 68:3631-41. [PMID: 8189501 PMCID: PMC236867 DOI: 10.1128/jvi.68.6.3631-3641.1994] [Citation(s) in RCA: 307] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The biosynthesis and biochemical properties of the putative nucleocapsid protein of hepatitis C virus (HCV) were investigated. RNA transcripts for cell-free translation were prepared from truncated form of the cDNA construct encoding the structural proteins of HCV. Processing of the translation products was dependent on microsomal membranes and signal recognition particle, suggesting that release of the 21-kDa core protein from the polyprotein precursor is mediated solely by the signal peptidase of the endoplasmic reticulum (ER) and is achieved by the removal of a putative signal sequence of approximately 18 residues located at its C terminus. The core protein was found to bind membranes in vitro and in transfected cells, as shown by centrifugation analysis of in vitro translation products and transfected-cell lysates. Immunofluorescence of transfected cells showed that the core protein colocalized with the E2 glycoprotein as well as with a cellular ER membrane marker. The nucleocapsid protein expressed by in vitro translation in rabbit reticulocyte lysates cosedimented with the large ribosomal subunit in sucrose gradients. The ribosome binding domain was mapped to the N-terminal region of the core protein. Moreover, the same region was shown to bind RNA in vitro, suggesting that cosedimentation of core protein with ribosomes may be mediated by the RNA binding of the nucleocapsid protein of HCV. These studies indicate that the HCV core protein is a cytoplasmic protein associated with the ER membranes and possesses RNA binding activity.
Collapse
Affiliation(s)
- E Santolini
- Instituto di Ricerche di Biologia Molecolare, P. Angeletti Pomezia, Rome, Italy
| | | | | |
Collapse
|
26
|
Lingappa JR, Martin RL, Wong ML, Ganem D, Welch WJ, Lingappa VR. A eukaryotic cytosolic chaperonin is associated with a high molecular weight intermediate in the assembly of hepatitis B virus capsid, a multimeric particle. J Cell Biol 1994; 125:99-111. [PMID: 7908022 PMCID: PMC2120005 DOI: 10.1083/jcb.125.1.99] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have established a system for assembly of hepatitis B virus capsid, a homomultimer of the viral core polypeptide, using cell-free transcription-linked translation. The mature particles that are produced are indistinguishable from authentic viral capsids by four criteria: velocity sedimentation, buoyant density, protease resistance, and electron microscopic appearance. Production of unassembled core polypeptides can be uncoupled from production of capsid particles by decreasing core mRNA concentration. Addition of excess unlabeled core polypeptides allows the chase of the unassembled polypeptides into mature capsids. Using this cell-free system, we demonstrate that assembly of capsids proceeds by way of a novel high molecular weight intermediate. Upon isolation, the high molecular weight intermediate is productive of mature capsids when energy substrates are manipulated. A 60-kD protein related to the chaperonin t-complex polypeptide 1 (TCP-1) is found in association with core polypeptides in two different assembly intermediates, but is not associated with either the initial unassembled polypeptides or with the final mature capsid product. These findings implicate TCP-1 or a related chaperonin in viral assembly and raise the possibility that eukaryotic cytosolic chaperonins may play a distinctive role in multimer assembly apart from their involvement in assisting monomer folding.
Collapse
Affiliation(s)
- J R Lingappa
- Department of Physiology, University of California at San Francisco 94143
| | | | | | | | | | | |
Collapse
|
27
|
Chuck SL, Lingappa VR. Pause transfer: a topogenic sequence in apolipoprotein B mediates stopping and restarting of translocation. Cell 1992; 68:9-21. [PMID: 1370657 DOI: 10.1016/0092-8674(92)90202-n] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Previously, we described the stepwise translocation of a large amino-terminal fragment of apolipoprotein B (apo B15) in which the nascent secretory chain translocates through a series of distinct, nonintegrated transmembrane intermediates with large domains exposed to the cytoplasm. Thus, apo B15 appears to stop and restart translocation at several points. We have identified a sequence of amino acids in apo B15 that confers this behavior on a heterologous chimeric protein. In addition, we dissect pausing into two distinct steps, stopping and restarting, thereby trapping otherwise transient intermediates. Finally, we demonstrate the function of a second "pause transfer" sequence over 200 amino acids downstream in apo B15 that restarts translocation posttranslationally, suggesting that multiple pause transfer sequences are involved in the biogenesis of apolipoprotein B.
Collapse
Affiliation(s)
- S L Chuck
- Department of Microbiology and Immunology, University of California, San Francisco 94143-0444
| | | |
Collapse
|
28
|
Terasaki M, Henson J, Begg D, Kaminer B, Sardet C. Characterization of sea urchin egg endoplasmic reticulum in cortical preparations. Dev Biol 1991; 148:398-401. [PMID: 1936574 DOI: 10.1016/0012-1606(91)90348-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The cortical endoplasmic reticulum (ER) of sea urchin eggs was localized on isolated egg cortices by staining with aqueous suspensions of the dicarbocyanine "DiI." Immunofluorescence localization of a calsequestrin-like protein was essentially identical; this is consistent with a role for the ER in calcium regulation. The ER often encircles cortical granules, making it well-suited for initiating fusion and propagating the calcium wave. Thiazole orange and Hoechst dye 33258 at pH 2 stain ribosomes bound to the ER, providing evidence that the cortical ER is rough ER. High chloride concentrations were found to disrupt ER continuity.
Collapse
Affiliation(s)
- M Terasaki
- Marine Biological Laboratory, Woods Hole, Massachusetts
| | | | | | | | | |
Collapse
|
29
|
Hobbs MC, Delarge MH, Baydoun EA, Brett CT. Differential distribution of a glucuronyltransferase, involved in glucuronoxylan synthesis, within the Golgi apparatus of pea (Pisum sativum var. Alaska). Biochem J 1991; 277 ( Pt 3):653-8. [PMID: 1651698 PMCID: PMC1151292 DOI: 10.1042/bj2770653] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The subcellular location of a glucuronyltransferase (GT) involved in glucuronoxylan synthesis in pea (Pisum sativum) has been investigated. Most of the GT activity was found in the Golgi fraction, but activity was also detected in the plasma-membrane fraction. Separation of Golgi membranes on a shallow continuous sucrose density gradient resulted in three distinct subfractions, with GT activity being confined to Golgi membranes of a density similar to that of smooth endoplasmic reticulum. The differential distribution of GT within the Golgi stack indicates that glucuronoxylan synthesis occurs in specific cisternae and that there is functional compartmentalization of the Golgi with respect to hemicellulose biosynthesis.
Collapse
Affiliation(s)
- M C Hobbs
- Department of Botany, University of Glasgow, Scotland, U.K
| | | | | | | |
Collapse
|
30
|
Nicchitta C, Migliaccio G, Blobel G. Reconstitution of secretory protein translocation from detergent-solubilized rough microsomes. Methods Cell Biol 1991; 34:263-85. [PMID: 1943804 DOI: 10.1016/s0091-679x(08)61685-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- C Nicchitta
- Laboratory of Cell Biology, Howard Hughes Medical Institute, Rockefeller University, New York, New York 10021
| | | | | |
Collapse
|
31
|
Ragge K, Arnold HH, Tümmler M, Knapp B, Hundt E, Lingelbach K. In vitro biosynthesis and membrane translocation of the serine rich protein of Plasmodium falciparum. Mol Biochem Parasitol 1990; 42:93-100. [PMID: 2122249 DOI: 10.1016/0166-6851(90)90116-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The serine-rich protein (SERP) of Plasmodium falciparum is found within the parasitophorous vacuole. Exons 1 and 2 of the SERP gene were combined to a continuous open reading frame and expressed in a cell free translation/translocation system to study translocation of the protein across membranes. The protein was found to be translocated co-translationally across canine pancreatic microsomes. This process required the presence of the signal recognition particle, and it was accompanied by cleavage of a signal peptide. We conclude that the authentic SERP is exported from the parasite cell via the endoplasmic reticulum.
Collapse
Affiliation(s)
- K Ragge
- Fraunhofer Institute of Toxicology, Gene Technology Group, Hamburg, F.R.G
| | | | | | | | | | | |
Collapse
|
32
|
Behal A, Prakash K, D'Eustachio P, Adesnik M, Sabatini DD, Kreibich G. Structure and chromosomal location of the rat ribophorin I gene. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39065-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
33
|
Connolly T, Collins P, Gilmore R. Access of proteinase K to partially translocated nascent polypeptides in intact and detergent-solubilized membranes. J Cell Biol 1989; 108:299-307. [PMID: 2537313 PMCID: PMC2115410 DOI: 10.1083/jcb.108.2.299] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We have used proteinase K as a probe to detect cytoplasmically and luminally exposed segments of nascent polypeptides undergoing transport across mammalian microsomal membranes. A series of translocation intermediates consisting of discrete-sized nascent chains was prepared by including microsomal membranes in cell-free translations of mRNAs lacking termination codons. The truncated mRNAs were derived from preprolactin and the G protein of vesicular stomatitis virus and encoded nascent chains ranging between 64 and 200 amino acid residues long. Partially translocated nascent chains of 100 amino acid residues or less were insensitive to protease digestion from the external surface of the membrane while longer nascent chains were susceptible to digestion by externally added protease. We conclude that the increased protease sensitivity of larger nascent chains is due to the exposure of a segment of the nascent polypeptide on the cytoplasmic face of the membrane. In contrast, low molecular weight nascent chains were remarkably resistant to protease digestion even after detergent solubilization of the membrane. The protease resistant behaviour of detergent solubilized nascent chains could be abolished by release of the polypeptide from the ribosome or by the addition of protein denaturants. We propose that the protease resistance of partially translocated nascent chains can be ascribed to components of the translocation apparatus that remain bound to the nascent chain after detergent solubilization of the membrane.
Collapse
Affiliation(s)
- T Connolly
- Department of Biochemistry, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | | | | |
Collapse
|
34
|
Wilson C, Connolly T, Morrison T, Gilmore R. Integration of membrane proteins into the endoplasmic reticulum requires GTP. J Biophys Biochem Cytol 1988; 107:69-77. [PMID: 2839521 PMCID: PMC2115162 DOI: 10.1083/jcb.107.1.69] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We have examined the requirement for ribonucleotides and ribonucleotide triphosphate hydrolysis during early events in the membrane integration of two membrane proteins: the G protein of vesicular stomatitis virus and the hemagglutinin-neuraminidase (HN) glycoprotein of Newcastle disease virus. Both proteins contain a single transmembrane-spanning segment but are integrated in the membrane with opposite orientations. The G protein has an amino-terminal signal sequence and a stop-transfer sequence located near the carboxy terminus. The HN glycoprotein has a single sequence near the amino terminus that functions as both a signal-sequence and a transmembrane-spanning segment. Membrane insertion was explored using a cell-free system directed by transcribed mRNAs encoding amino-terminal segments of the two proteins. Ribosome-bound nascent polypeptides were assembled, ribonucleotides were removed by gel filtration chromatography, and the ribosomes were incubated with microsomal membranes under conditions of defined ribonucleotide content. Nascent chain insertion into the membrane required the presence of both the signal recognition particle and a functional signal recognition particle receptor. In the absence of ribonucleotides, insertion of nascent membrane proteins was not detected. GTP or nonhydrolyzable GTP analogues promoted efficient insertion, while ATP was comparatively ineffective. Surprisingly, the majority of the HN nascent chain remained ribosome associated after puromycin treatment. Ribosome-associated HN nascent chains remained competent for membrane insertion, while free HN chains were not competent. We conclude that a GTP binding protein performs an essential function during ribosome-dependent insertion of membrane proteins into the endoplasmic reticulum that is unrelated to protein synthesis.
Collapse
Affiliation(s)
- C Wilson
- Department of Biochemistry, University of Massachusetts Medical School, Worcester 01655
| | | | | | | |
Collapse
|
35
|
Transport of Proteins into and across the Endoplasmic Reticulum Membrane. PROTEIN TRANSFER AND ORGANELLE BIOGENESIS 1988. [PMCID: PMC7155617 DOI: 10.1016/b978-0-12-203460-2.50005-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
Kisilevsky R, Gore J. A comparison of accessibility of ribosomal proteins on free and membrane-bound ribosomes: the ribosomal proteins potentially involved in ribosome-membrane binding. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 910:282-91. [PMID: 3676326 DOI: 10.1016/0167-4781(87)90121-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The relative accessibility of rat liver ribosomal proteins to reductive methylation was examined using membrane-bound and free ribosomes. Comparisons indicated that 12-13 large ribosomal proteins are masked by ribosomal association with membranes. These consisted of L8, L10, L17, L26-28, L31 and L36, and probably also include L4, L5, L7 and L29. These proteins seem to surround a region centered about L3 and may partly define a ribosomal channel through which the nascent peptide emerges. Approx. 10-20% of the large ribosomal subunit surface area is shielded by the membrane.
Collapse
Affiliation(s)
- R Kisilevsky
- Department of Pathology, Queen's University, Kingston, Canada
| | | |
Collapse
|
37
|
Reinhart MP, Billheimer JT, Faust JR, Gaylor JL. Subcellular localization of the enzymes of cholesterol biosynthesis and metabolism in rat liver. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)47983-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
38
|
Connolly T, Gilmore R. Formation of a functional ribosome-membrane junction during translocation requires the participation of a GTP-binding protein. J Biophys Biochem Cytol 1986; 103:2253-61. [PMID: 3097028 PMCID: PMC2114577 DOI: 10.1083/jcb.103.6.2253] [Citation(s) in RCA: 172] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The requirement for ribonucleotides and ribonucleotide hydrolysis was examined at several distinct points during translocation of a secretory protein across the endoplasmic reticulum. We monitored binding of in vitro-assembled polysomes to microsomal membranes after removal of ATP and GTP. Ribonucleotides were not required for the initial low salt-insensitive attachment of the ribosome to the membrane. However, without ribonucleotides the nascent secretory chains were sensitive to protease digestion and were readily extracted from the membrane with either EDTA or 0.5 M KOAc. In contrast, nascent chains resisted extraction with either EDTA or 0.5 M KOAc and were insensitive to protease digestion after addition of GTP or nonhydrolyzable GTP analogues. Translocation of the nascent secretory polypeptide was detected only when ribosome binding was conducted in the presence of GTP. Thus, translocation-competent binding of the ribosome to the membrane requires the participation of a novel GTP-binding protein in addition to the signal recognition particle and the signal recognition particle receptor. The second event we examined was translocation and processing of a truncated secretory polypeptide. Membrane-bound polysomes bearing an 86-residue nascent chain were generated by translation of a truncated preprolactin mRNA. Ribonucleotide-independent translocation of the polypeptide was detected by cleavage of the 30-residue signal sequence after puromycin termination. Nascent chain transport, per se, is apparently dependent upon neither ribonucleotide hydrolysis nor continued elongation of the polypeptide once a functional ribosome-membrane junction has been established.
Collapse
|
39
|
Hortsch M, Avossa D, Meyer DI. Characterization of secretory protein translocation: ribosome-membrane interaction in endoplasmic reticulum. J Cell Biol 1986; 103:241-53. [PMID: 3087996 PMCID: PMC2113795 DOI: 10.1083/jcb.103.1.241] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Secretory proteins are synthesized on ribosomes bound to the membrane of the endoplasmic reticulum (ER). After the selection of polysomes synthesizing secretory proteins and their direction to the membrane of the ER via signal recognition particle (SRP) and docking protein respectively, the polysomes become bound to the ER membrane via an unknown, protein-mediated mechanism. To identify proteins involved in protein translocation, beyond the (SRP-docking protein-mediated) recognition step, controlled proteolysis was used to functionally inactivate rough microsomes that had previously been depleted of docking protein. As the membranes were treated with increasing levels of protease, they lost their ability to be functionally reconstituted with the active cytoplasmic fragment of docking protein (DPf). This functional inactivation did not correlate with a loss of either signal peptidase activity, nor with the ability of the DPf to reassociate with the membrane. It did correlate, however, with a loss of the ability of the microsomes to bind ribosomes. Ribophorins are putative ribosome-binding proteins. Immunoblots developed with monoclonal antibodies against canine ribophorins I and II demonstrated that no correlation exists between the protease-induced inability to bind ribosomes and the integrity of the ribophorins. Ribophorin I was 85% resistant and ribophorin II 100% resistant to the levels of protease needed to totally eliminate ribosome binding. Moreover, no direct association was found between ribophorins and ribosomes; upon detergent solubilization at low salt concentrations, ribophorins could be sedimented in the presence or absence of ribosomes. Finally, the alkylating agent N-ethylmaleimide was shown to be capable of inhibiting translocation (beyond the SRP-docking protein-mediated recognition step), but had no affect on the ability of ribosomes to bind to ER membranes. We conclude that potentially two additional proteinaceous components, as yet unidentified, are involved in protein translocation. One is protease sensitive and possibly involved in ribosome binding, the other is N-ethylmaleimide sensitive and of unknown function.
Collapse
|
40
|
Hortsch M, Meyer DI. Transfer of secretory proteins through the membrane of the endoplasmic reticulum. INTERNATIONAL REVIEW OF CYTOLOGY 1986; 102:215-42. [PMID: 3021646 DOI: 10.1016/s0074-7696(08)61276-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
41
|
Translocation of secretory proteins across the microsomal membrane occurs through an environment accessible to aqueous perturbants. Cell 1985; 42:497-505. [PMID: 2992801 DOI: 10.1016/0092-8674(85)90107-2] [Citation(s) in RCA: 243] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have characterized the association of a nascent secretory protein with the microsomal membrane at two distinct stages in cell-free synthesis and translocation. Stage one corresponded to a nascent chain of approximately 70 residues generated via elongation arrest by the signal recognition particle (SRP). Binding to microsomal membranes occurred independently of chain elongation and required SRP receptor. Following binding, the 70-mer remained attached to the membrane after extraction of the ribosome. However, protein denaturants (4 M urea or alkaline pH) extracted the 70-mer from the membrane. Stage two of synthesis corresponded to nascent chains of approximately 158 residues generated by oligonucleotide-mediated hybrid arrest of translation. Again, these partially translocated nascent chains were extracted by 4 M urea. Therefore, the initial interaction of the signal sequence with the membrane as well as subsequent chain conductance occur in a microenvironment that is accessible to aqueous reagents. Thus, both processes probably require integral membrane proteins.
Collapse
|
42
|
Mierendorf RC, Cardelli JA, Dimond RL. Pathways involved in targeting and secretion of a lysosomal enzyme in Dictyostelium discoideum. J Cell Biol 1985; 100:1777-87. [PMID: 3988807 PMCID: PMC2113895 DOI: 10.1083/jcb.100.5.1777] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In Dictyostelium discoideum, the lysosomal enzyme alpha-mannosidase is first synthesized as an N-glycosylated precursor of Mr 140,000. After a 20-30-min lag period, up to 30% of the precursor molecules are rapidly secreted, whereas the rest remain cellular and are proteolytically processed (t 1/2 = 8 min) to mature subunits of Mr 58,000 and 60,000. The secreted precursor is modified more extensively than the cellular form, as is revealed by differences in size, charge, and sensitivity to endoglycosidase H. Subcellular fractionation has shown that, following synthesis in the rough endoplasmic reticulum, the precursor is transported to a low density membrane fraction that contains Golgi membranes. Proteolytic processing takes place in these vesicles, since newly cleaved mature enzyme, but no precursor, co-fractionates with lysosomes. Under conditions that disrupt vesicular membranes, the precursor remains associated with the membrane fraction, whereas the newly processed mature enzyme is soluble. Proteolytic cleavage of the precursor thus coincides with the release of the mature enzyme into the lumen of a lysosomal compartment. These findings suggest a possible mechanism for lysosomal targeting that involves the specific association of enzyme precursors with Golgi membranes.
Collapse
|
43
|
Amar-Costesec A, Todd JA, Kreibich G. Segregation of the polypeptide translocation apparatus to regions of the endoplasmic reticulum containing ribophorins and ribosomes. I. Functional tests on rat liver microsomal subfractions. J Biophys Biochem Cytol 1984; 99:2247-53. [PMID: 6501423 PMCID: PMC2113578 DOI: 10.1083/jcb.99.6.2247] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A preparation of rat liver microsomes containing 70% of the total cellular endoplasmic reticulum (ER) membranes was subfractionated by isopycnic density centrifugation. Twelve subfractions of different ribosome content ranging in density from 1.06 to 1.29 were obtained and analyzed with respect to marker enzymes, RNA, and protein content, as well as the capacity of these membranes to bind 80S ribosomes in vitro. After removal of native polysomes from these microsomal subfractions by puromycin in a buffer of high ionic strength their capacity to rebind 80S ribosomes approached levels found in the corresponding native membranes before ribosome stripping. This indicates that in vitro rebinding of ribosomes occurs to the same sites occupied in the cell by membrane-bound polysomes. Microsomes in the microsomal subfractions were also tested for their capacity to effect the translocation of nascent secretory proteins into the microsomal lumen utilizing a rabbit reticulocyte translation system programmed with mRNA coding for the precursor of human placental lactogen. Membranes from microsomes with the higher isopycnic density and a high ribosome content showed the highest translocation activity, whereas membranes derived from smooth microsomes had only a very low translocation activity. These results indicate the membranes of the rough and smooth portions of the endoplasmic reticulum are functionally differentiated so that sites for ribosome binding and the translocation of nascent polypeptides are segregated to the rough domain of the organelle.
Collapse
|
44
|
Abstract
The three-dimensional organization of cortices isolated from unfertilized and fertilized Strongylocentrotus purpuratus eggs has been examined by several techniques of light and electron microscopy. It has been found that when moderate shear forces are used, the isolated unfertilized egg cortex, in addition to cortical granules, contains acidic vesicles and an elaborate network of rough endoplasmic reticulum. This network provides a physical link between the cell surface and several kinds of cytoplasmic organelles (mitochondria, yolk granules, acidic vesicles) which are retained as part of the isolated cortex when gentle shear forces are applied. Furthermore a good visualization of actin in the cortex is provided: it is present as short filaments and mostly within the stubby microvilli of the egg. Finally, it has been noted that plaques exist on the inside face of the plasma membrane ready to assemble into typical clathrin coats that prefigure the burst of coated vesicle endocytosis that takes place after fertilization. The cortex isolated soon after fertilization is shown to contain coated pits and a scaffolding of filaments (mostly actin) in which many acidic vesicles are embedded.
Collapse
|
45
|
Mori K, Kawasaki T, Yamashina I. Subcellular distribution of the mannan-binding protein and its endogenous inhibitors in rat liver. Arch Biochem Biophys 1984; 232:223-33. [PMID: 6742851 DOI: 10.1016/0003-9861(84)90538-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The subcellular distribution of the mannan-binding protein from rat liver, a lectin specific for mannose and N-acetylglucosamine, was studied. Approximately 75% of the binding activity of the homogenate was recovered in microsomes, approximately 76% of which was accounted for by rough microsomes. Rough microsomes had the highest specific activity of binding, followed by the Golgi apparatus and smooth microsomes, whereas plasma membranes, lysosomes, mitochondria, and the soluble fraction had little or no binding activity. A topographical survey indicated that the binding protein was localized exclusively on the cisternal surface of microsomal vesicles. Thus, the binding protein of microsomal vesicles was protected from protease digestion and was released from the vesicles by mild detergent treatment. Competitive inhibitors, which presumably represent endogenous ligands of the binding protein, were found among subcellular fractions. More than 50% of the inhibitory activity of the homogenate was recovered in rough microsomes, while the highest specific activity of inhibition was found in lysosomes. The Ki values estimated for rough microsomes and lysosomes were 25.9 and 8.67 micrograms/ml, respectively. The distribution profiles of inhibitors were correlated roughly with those of the binding protein, resulting in masking of the binding activity in organelles up to the level of 86%. On the basis of the known localization and topology of the binding protein and endogenous inhibitors (ligands), possible physiological functions of the binding protein relevant to the transport of biosynthetic intermediates of glycoproteins from the rough endoplasmic reticulum to the Golgi apparatus and from the Golgi apparatus to lysosomes were discussed.
Collapse
|
46
|
Abstract
Biochemical and electron microscopic analyses of heat-shocked suspension cultures of Peruvian tomato (Lycopersicon peruvianum) revealed that a considerable part of the dominant small heat shock proteins (hsps) with an Mr of approximately 17,000 are structural proteins of newly forming granular aggregates in the cytoplasm (heat shock granules), whose formation strictly depends on heat shock conditions (37 to 40 degrees C) and the presence or simultaneous synthesis of hsps. However, under certain conditions, e.g., in preinduced cultures maintained at 25 degrees C, hsps also accumulate as soluble proteins without concomitant assembly of heat shock granules. Similar heat shock-induced cytoplasmic aggregates were also observed in other cell cultures and heat-shocked tomato leaves and corn coleoptiles.
Collapse
|
47
|
Borgeson CE, Bowman BJ. Isolation and characterization of the Neurospora crassa endoplasmic reticulum. J Bacteriol 1983; 156:362-8. [PMID: 6311800 PMCID: PMC215090 DOI: 10.1128/jb.156.1.362-368.1983] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The endoplasmic reticulum from Neurospora crassa was identified by monitoring the activity of the putative enzyme marker phosphatidylcholine glyceride transferase. After differential centrifugation of a cell homogenate, phosphatidylcholine glyceride transferase activity initially copurified with plasma membrane H+-ATPase. However, isopycnic centrifugation of the whole-cell homogenate on a linear sucrose gradient separated the two enzyme activities into different fractions. The lighter membrane fraction exhibited characteristics that have been associated with the endoplasmic reticulum in other organisms: (i) the inclusion of magnesium caused this light membrane fraction to shift to a higher density on the gradient; (ii) it was highly enriched in cytochrome c reductase, an endoplasmic reticulum marker in other systems; and (iii) the morphology of the light fraction with and without added magnesium was clearly distinguishable from that of the plasma membrane fraction by electron microscopy. A reinvestigation of the location of chitin synthetase confirmed its association with the plasma membrane fraction even after separation of the lighter fractions.
Collapse
|
48
|
Nover L, Scharf KD, Neumann D. Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol Cell Biol 1983; 3:1648-55. [PMID: 6633535 PMCID: PMC370018 DOI: 10.1128/mcb.3.9.1648-1655.1983] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Biochemical and electron microscopic analyses of heat-shocked suspension cultures of Peruvian tomato (Lycopersicon peruvianum) revealed that a considerable part of the dominant small heat shock proteins (hsps) with an Mr of approximately 17,000 are structural proteins of newly forming granular aggregates in the cytoplasm (heat shock granules), whose formation strictly depends on heat shock conditions (37 to 40 degrees C) and the presence or simultaneous synthesis of hsps. However, under certain conditions, e.g., in preinduced cultures maintained at 25 degrees C, hsps also accumulate as soluble proteins without concomitant assembly of heat shock granules. Similar heat shock-induced cytoplasmic aggregates were also observed in other cell cultures and heat-shocked tomato leaves and corn coleoptiles.
Collapse
|
49
|
Jolicoeur C, Noël J, Brakier-Gingras L. The 60S ribosomal subunit is altered in the skeletal muscle of dystrophic hamsters. Biochem Biophys Res Commun 1983; 115:153-8. [PMID: 6615523 DOI: 10.1016/0006-291x(83)90982-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Polysomes from the skeletal muscle of normal and dystrophic hamsters were dissociated into ribosomal subunits by treatment with puromycin and the subunits from both strains were reassociated in all possible combinations. When their protein synthesis activity was assayed in a poly(U)-directed cell-free system at a low magnesium concentration, the reassociated ribosomes from dystrophic hamsters were less active than the ribosomes from control animals. The ribosomal defect is a property of the 60S subunit and is due to a ribosomal component rather than to abnormal binding of a non-ribosomal protein.
Collapse
|
50
|
Haaparanta T, Gustafsson JA, Glaumann H. Isolation of mitochondria, lysosomes, and microsomes from the rat ventral prostate with a note on inverted microsomal vesicles. Arch Biochem Biophys 1983; 223:458-67. [PMID: 6859872 DOI: 10.1016/0003-9861(83)90610-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A procedure is presented for the isolation of lysosomes, mitochondria, and microsomes from the rat ventral prostate with relatively good yield. Homogenization was performed with a Polytron homogenizer or in combination with the Potter-Elvehjem device. Reasonably pure mitochondria and lysosomes could only be obtained using a Metrizamide gradient, whereas it was possible to prepare pure microsomal fractions by differential centrifugation in sucrose. The purity of the lysosomes and mitochondria was 90 and 85%, respectively, as judged by the presence of different marker enzymes. These findings were confirmed by ultrastructural analyses. Electron micrographs of the isolated lysosomes showed intact lysosomes surrounded by a single membrane. The lysosomes contained intramatrical vesicles with lipid-like material. Vesicles derived from the endoplasmic reticulum in the microsomal fraction ranged from 70 to 90% depending on the centrifugal force used to sediment the mitochondrial fraction. Electron micrographs of the microsomal fraction showed that about 40% of the vesicles were inverted and turned "inside-out", i.e., having their ribosomes attached to the inside of the vesicles. By fractionation of ethylenediaminetetraacetate treated microsomes on a sucrose gradient a partially purified fraction was isolated which consisted of 65% of inverted microsomes.
Collapse
|