1
|
Lee S, Jo K, Choi YS, Jung S. Tracking bioactive peptides and their origin proteins during the in vitro digestion of meat and meat products. Food Chem 2024; 454:139845. [PMID: 38820629 DOI: 10.1016/j.foodchem.2024.139845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/02/2024]
Abstract
Existing reviews address bioactive peptides of meat proteins; however, comprehensive reviews summarizing the released sequences and their corresponding parent meat proteins in the digesta are limited. This review explores the bioactive peptides released during the in vitro gastrointestinal (GI) digestion of meat, connecting with parent proteins. The primary bioactivities of meat-derived peptides include angiotensin-converting enzyme (ACE) and dipeptidyl peptidase (DPP)-IV inhibition and antioxidant effects. Myofibrillar, sarcoplasmic, and stromal proteins play a significant role in peptide release during digestion. The release of bioactive peptides varies according to the parent protein and cryptides had short chains, non-toxicity, and great bioavailability and GI absorption scores. Moreover, the structural stability and bioactivities of peptides can be influenced by the digestive properties and amino acid composition of parent proteins. Investigating the properties and origins of bioactive peptides provides insights for enhancing the nutritional quality of meat and understanding its potential health benefits.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
2
|
Watabe S, Mizusawa N, Hosaka K, Ishizaki S, Peng L, Nagata K, Ueki N. Molecular Localization of Health-Promoting Peptides Derived from Fish Protein Hydrolyzates on Fish Muscle Proteins. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:843-852. [PMID: 38886255 DOI: 10.1007/s10126-024-10331-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024]
Abstract
The four previously reported health-promoting dipeptides, valine-tyrosine, lysine-tryptophan, methionine-phenylalanine, and arginine-isoleucine, found in the fish muscle hydrolyzates, were mainly located in the myosin subfragment-1 heavy chain, whereas the health-promoting tripeptide, alanine-lysine-lysine, was found in the fibrous rod consisting of the myosin subfragment-2 and light meromyosin with a regular coiled-coil structure of α-helix, irrespective of the fish species. Furthermore, the localization of these peptides either in the random coil, β-sheet, or α-helix was also examined in the three-dimensional image, showing no specific tendency. Surprisingly, the same trend was observed even for the mammalian rabbit fast muscle myosin heavy chain. Since a trade-off between myofibrillar ATPase and structural stability has been reported for fish living at low environmental temperatures, it is speculated that fish muscle proteins, when ingested, are easily digested by various proteases in the human digestive tract and provide various health-promoting peptides also in vivo. While fish actin contained only two dipeptides, methionine-phenylalanine and valine-tyrosine, glyceraldehyde 3-phosphate dehydrogenase, one of the major components of fish muscle water-soluble protein, contained all of the four dipeptides and one tripeptide mentioned above.
Collapse
Affiliation(s)
- Shugo Watabe
- Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan.
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan.
- Fish Protein Laboratory, Suzuhiro Kamaboko Honten Co., Ltd., Odawara, Kanagawa, 250-0862, Japan.
| | - Nanami Mizusawa
- Kitasato University School of Marine Biosciences, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Kenta Hosaka
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Shoichiro Ishizaki
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato, Tokyo, 108-8477, Japan
| | - Lu Peng
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Koji Nagata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo, 113-8657, Japan
| | - Nobuhiko Ueki
- Fish Protein Laboratory, Suzuhiro Kamaboko Honten Co., Ltd., Odawara, Kanagawa, 250-0862, Japan
| |
Collapse
|
3
|
Zhang G, Bi X, Wang R, Yin Z, Zheng Y, Peng X, Jia N, Liu D. Effects of catechin on the stability of myofibrillar protein-soybean oil emulsion and the adsorbed properties of myosin at the oil-water interface. Food Chem 2024; 442:138478. [PMID: 38278102 DOI: 10.1016/j.foodchem.2024.138478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
The effects of different concentrations of catechin on the stability of myofibrillar protein-soybean oil emulsions and the related mechanisms were investigated. Adding 10 μmol/g catechin had no obvious effects on the emulsion stability and myosin structure, but 50, 100 and 200 μmol/g catechin decreased the emulsion stability. The microstructure observations showed that 10 μmol/g catechin caused a dense and uniform emulsion to form, whereas 50, 100 and 200 μmol/g catechin induced the merging of oil droplets. The addition of 50, 100 and 200 μmol/g catechin caused a decline in both the total sulfhydryl content and surface hydrophobicity, suggesting protein aggregation, which decreased the adsorption capacity of myosin and the elasticity of interfacial film. These results suggested that higher concentrations of catechin were detrimental to the emulsifying properties of myosin and that the dose should be considered when it is used as an antioxidant.
Collapse
Affiliation(s)
- Guangyao Zhang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China
| | - Xinxin Bi
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China
| | - Rongrong Wang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China
| | - Zhiwan Yin
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China
| | - Yue Zheng
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai, Shandong 264005, China
| | - Na Jia
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China.
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
4
|
Yang F, Zhu Y, Li X, Xiang F, Deng M, Zhang W, Song W, Sun H, Tang C. Identification of Protein-Phenol Adducts in Meat Proteins: A Molecular Probe Technology Study. Foods 2023; 12:4225. [PMID: 38231694 DOI: 10.3390/foods12234225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024] Open
Abstract
Plant polyphenols with a catechol structure can form covalent adducts with meat proteins, which affects the quality and processing of meat products. However, there is a lack of fast and effective methods of characterizing these adducts and understanding their mechanisms. This study aimed to investigate the covalent interaction between myofibrillar protein (MP) and caffeic acid (CA), a plant polyphenol with a catechol structure, using molecular probe technology. The CA-MP adducts were separated via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and detected via Western blot and LC-MS/MS analyses. The Western blot analysis revealed that various specific adducts were successfully enriched and identified as bands around 220 kDa, 45 kDa, and two distinct bands between 95 and 130 kDa. Combined with the LC-MS/MS analysis, a total of 51 peptides were identified to be CA-adducted, corresponding to 31 proteins. More than 80% of the adducted peptides carried one adducted site, and the rest carried two adducted sites. The adducted sites were located on cysteine (C/Cys), histidine (H/His), arginine (R/Arg), lysine (K/Lys), proline (P/Pro), and N-terminal (N-Term) residues. Results showed that the covalent interaction of CA and MP was highly selective for the R side chain of amino acids. Moreover, the adducts were more likely to form via C-N bonding than C-S bonding. This study provides new insights into the covalent interaction of plant polyphenols and meat proteins, which has important implications for the rational use of plant polyphenols in the meat processing industry.
Collapse
Affiliation(s)
- Fenhong Yang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingying Zhu
- Engineering Research Center of Magnetic Resonance Analysis Technology, Department of Food Nutrition and Test, Suzhou Vocational University, Suzhou 210005, China
| | - Xiaohan Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengtao Xiang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Moru Deng
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Song
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Sun
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Changbo Tang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, Ministry of Agriculture, Key Lab of Meat Processing and Quality Control, Ministry of Education, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Roberts MD, McCarthy JJ, Hornberger TA, Phillips SM, Mackey AL, Nader GA, Boppart MD, Kavazis AN, Reidy PT, Ogasawara R, Libardi CA, Ugrinowitsch C, Booth FW, Esser KA. Mechanisms of mechanical overload-induced skeletal muscle hypertrophy: current understanding and future directions. Physiol Rev 2023; 103:2679-2757. [PMID: 37382939 PMCID: PMC10625844 DOI: 10.1152/physrev.00039.2022] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved. This review first provides a historical account of how mechanistic research into skeletal muscle hypertrophy has progressed. A comprehensive list of mechanisms associated with skeletal muscle hypertrophy is then outlined, and areas of disagreement involving these mechanisms are presented. Finally, future research directions involving many of the discussed mechanisms are proposed.
Collapse
Affiliation(s)
- Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - John J McCarthy
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky, United States
| | - Troy A Hornberger
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin, United States
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | - Abigail L Mackey
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery, Copenhagen University Hospital-Bispebjerg and Frederiksberg, and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Gustavo A Nader
- Department of Kinesiology and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States
| | - Marni D Boppart
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Andreas N Kavazis
- School of Kinesiology, Auburn University, Auburn, Alabama, United States
| | - Paul T Reidy
- Department of Kinesiology, Nutrition and Health, Miami University, Oxford, Ohio, United States
| | - Riki Ogasawara
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Cleiton A Libardi
- MUSCULAB-Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Karyn A Esser
- Department of Physiology and Aging, College of Medicine, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
6
|
Nag S, Gollapudi SK, Del Rio CL, Spudich JA, McDowell R. Mavacamten, a precision medicine for hypertrophic cardiomyopathy: From a motor protein to patients. SCIENCE ADVANCES 2023; 9:eabo7622. [PMID: 37506209 DOI: 10.1126/sciadv.abo7622] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/23/2023] [Indexed: 07/30/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is a primary myocardial disorder characterized by left ventricular hypertrophy, hyperdynamic contraction, and impaired relaxation of the heart. These functional derangements arise directly from altered sarcomeric function due to either mutations in genes encoding sarcomere proteins, or other defects such as abnormal energetics. Current treatment options do not directly address this causal biology but focus on surgical and extra-sarcomeric (sarcolemmal) pharmacological symptomatic relief. Mavacamten (formerly known as MYK-461), is a small molecule designed to regulate cardiac function at the sarcomere level by selectively but reversibly inhibiting the enzymatic activity of myosin, the fundamental motor of the sarcomere. This review summarizes the mechanism and translational progress of mavacamten from proteins to patients, describing how the mechanism of action and pharmacological characteristics, involving both systolic and diastolic effects, can directly target pathophysiological derangements within the cardiac sarcomere to improve cardiac structure and function in HCM. Mavacamten was approved by the Food and Drug Administration in April 2022 for the treatment of obstructive HCM and now goes by the commercial name of Camzyos. Full information about the risks, limitations, and side effects can be found at www.accessdata.fda.gov/drugsatfda_docs/label/2022/214998s000lbl.pdf.
Collapse
Affiliation(s)
- Suman Nag
- MyoKardia Inc., a wholly owned subsidiary of Bristol Myers Squibb, Brisbane, CA 94005, USA
| | - Sampath K Gollapudi
- MyoKardia Inc., a wholly owned subsidiary of Bristol Myers Squibb, Brisbane, CA 94005, USA
| | - Carlos L Del Rio
- MyoKardia Inc., a wholly owned subsidiary of Bristol Myers Squibb, Brisbane, CA 94005, USA
- Cardiac Consulting, 1630 S Delaware St. #56426, San Mateo, CA 94403, USA
| | | | - Robert McDowell
- MyoKardia Inc., a wholly owned subsidiary of Bristol Myers Squibb, Brisbane, CA 94005, USA
| |
Collapse
|
7
|
Zhang L, Pu D, Zhang J, Hao Z, Zhao X, Sun B, Zhang Y. Identification of Novel Umami Peptides in Chicken Breast Soup through a Sensory-Guided Approach and Molecular Docking to the T1R1/T1R3 Taste Receptor. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7803-7811. [PMID: 37189274 DOI: 10.1021/acs.jafc.3c01251] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Ultrafiltration combined with nanoliquid chromatography quadrupole time-of-flight mass spectrometry (nano-LC-QTOF-MS) and sensory evaluation was used to separate and identify umami peptides in chicken breast soup. Fifteen peptides with umami propensity scores of >588 were identified from the fraction (molecular weight ≤1 kDa) using nano-LC-QTOF-MS, and their concentrations ranged from 0.02 ± 0.01 to 6.94 ± 0.41 μg/L in chicken breast soup. AEEHVEAVN, PKESEKPN, VGNEFVTKG, GIQKELQF, FTERVQ, and AEINKILGN were considered as umami peptides according to sensory analysis results (detection threshold: 0.18-0.91 mmol/L). The measurement of point of subjective equality showed that these six umami peptides (2.00 g/L) were equivalent to 0.53-0.66 g/L of monosodium glutamate (MSG) in terms of umami intensity. Notably, the sensory evaluation results showed that the peptide of AEEHVEAVN significantly enhanced the umami intensity of the MSG solution and chicken soup models. The molecular docking results showed that the serine residues were the most frequently observed binding sites in T1R1/T1R3. The binding site Ser276 particularly contributed to the formation of the umami peptide-T1R1 complexes. The acidic glutamate residues observed in the umami peptides were also involved in their binding to the T1R1 and T1R3 subunits.
Collapse
Affiliation(s)
- Lili Zhang
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Dandan Pu
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Jingcheng Zhang
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Zhilin Hao
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Xixuan Zhao
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| | - Yuyu Zhang
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
- Food Laboratory of Zhongyuan, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
8
|
Hammert WB, Kataoka R, Yamada Y, Seffrin A, Kang A, Seob Song J, Wong V, Spitz RW, Loenneke JP. The Potential Role of the Myosin Head for Strength Gain in Hypertrophied Muscle. Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
9
|
Hettige P, Tahir U, Nishikawa KC, Gage MJ. Transcriptomic profiles of muscular dystrophy with myositis (mdm) in extensor digitorum longus, psoas, and soleus muscles from mice. BMC Genomics 2022; 23:657. [PMID: 36115951 PMCID: PMC9482285 DOI: 10.1186/s12864-022-08873-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022] Open
Abstract
Background Titinopathies are inherited muscular diseases triggered by genetic mutations in the titin gene. Muscular dystrophy with myositis (mdm) is one such disease caused by a LINE repeat insertion, leading to exon skipping and an 83-amino acid residue deletion in the N2A-PEVK region of mouse titin. This region has been implicated in a number of titin—titin ligand interactions, hence are important for myocyte signaling and health. Mice with this mdm mutation develop a severe and progressive muscle degeneration. The range of phenotypic differences observed in mdm mice shows that the deletion of this region induces a cascade of transcriptional changes extending to numerous signaling pathways affected by the titin filament. Previous research has focused on correlating phenotypic differences with muscle function in mdm mice. These studies have provided understanding of the downstream physiological effects resulting from the mdm mutation but only provide insights on processes that can be physiologically observed and measured. We used differential gene expression (DGE) to compare the transcriptomes of extensor digitorum longus (EDL), psoas and soleus muscles from wild-type and mdm mice to develop a deeper understand of these tissue-specific responses. Results The overall expression pattern observed shows a well-differentiated transcriptional signature in mdm muscles compared to wild type. Muscle-specific clusters observed within the mdm transcriptome highlight the level of variability of each muscle to the deletion. Differential gene expression and weighted gene co-expression network analysis showed a strong directional response in oxidative respiration-associated mitochondrial genes, which aligns with the poor shivering and non-shivering thermogenesis previously observed. Sln, which is a marker associated with shivering and non-shivering thermogenesis, showed the strongest expression change in fast-fibered muscles. No drastic changes in MYH expression levels were reported, which indicated an absence of major fiber-type switching events. Overall expression shifts in MYH isoforms, MARPs, and extracellular matrix associated genes demonstrated the transcriptional complexity associated with mdm mutation. The expression alterations in mitochondrial respiration and metabolism related genes in the mdm muscle dominated over other transcriptomic changes, and likely account for the late stage cellular responses in the mdm muscles. Conclusions We were able to demonstrate that the complex nature of mdm mutation extends beyond a simple rearrangement in titin gene. EDL, psoas and soleus exemplify unique response modes observed in skeletal muscles with mdm mutation. Our data also raises the possibility that failure to maintain proper energy homeostasis in mdm muscles may contribute to the pathogenesis of the degenerative phenotype in mdm mice. Understanding the full disease-causing molecular cascade is difficult using bulk RNA sequencing techniques due to intricate nature of the disease. The development of the mdm phenotype is temporally and spatially regulated, hence future studies should focus on single fiber level investigations. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08873-2.
Collapse
|
10
|
Dominant-negative p53-overexpression in skeletal muscle induces cell death and fiber atrophy in rats. Cell Death Dis 2022; 13:716. [PMID: 35977948 PMCID: PMC9385859 DOI: 10.1038/s41419-022-05160-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 01/21/2023]
Abstract
The tumor suppressor p53 is thought to play a key role in the maintenance of cell size and homeostasis, but relatively little is known about its role in skeletal muscle. Based on its ability to suppress cell growth, we hypothesized that inhibiting the function of wild-type p53 through the overexpression of a dominant-negative p53 mutant (DDp53) could result in muscle fiber hypertrophy. To test this hypothesis, we electroporated adult rat tibialis anterior muscles with DDp53 and collected the tissue three weeks later. We confirmed successful overexpression of DDp53 on a histological and biochemical level and found pronounced changes to muscle architecture, metabolism, and molecular signaling. Muscle mass, fiber cross-sectional area, and fiber diameter significantly decreased with DDp53 overexpression. We found histopathological changes in DDp53 transfected muscle which were accompanied by increased levels of proteins that are associated with membrane damage and repair. In addition, DDp53 decreased oxidative phosphorylation complex I and V protein levels, and despite its negative effects on muscle mass and fiber size, caused an increase in muscle protein synthesis as assessed via the SUnSET technique. Interestingly, the increase in muscle protein synthesis was concomitant with a decrease in phospho-S6K1 (Thr389). Furthermore, the muscle wasting in the DDp53 electroporated leg was accompanied by a decrease in global protein ubiquitination and an increase in proteasome activity. In conclusion, overexpression of a dominant-negative p53 mutant in skeletal muscle results in decreased muscle mass, myofiber size, histological muscle damage, a metabolic phenotype, and perturbed homeostasis between muscle protein synthesis and degradation.
Collapse
|
11
|
Ahsan F, Mahmood T, Wani TA, Zargar S, Siddiqui MH, Usmani S, Shamim A, Wahajuddin M. Effectual Endeavors of Silk Protein Sericin against Isoproterenol Induced Cardiac Toxicity and Hypertrophy in Wistar Rats. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071063. [PMID: 35888151 PMCID: PMC9317748 DOI: 10.3390/life12071063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/24/2023]
Abstract
The silkworm cocoon has been used in the treatment of various ailments in different Asian countries. This research was designed to evaluate the effect of sericin on myocardial necrosis and hypertrophy in isoproterenol-challenged rats. The rats were administered with sericin (500 and 1000 mg/kg, p.o.) for 28 days, followed by administration of isoprenaline (85 mg/kg, s.c.) on the 29th and 30th days. The cardioprotective activity was assessed by various physical, enzymatic, and histopathological parameters along with apoptotic marker expression. The cardioprotective effect showed that pre-treatment of rats with sericin significantly increased the non-enzymatic antioxidants marker in serum and heart tissue (glutathione, vitamin E, and vitamin C). The results were the same in enzymatic antioxidant marker, mitochondrial enzymes, and protein. The grading of heart, heart/body weight ratio, gross morphology, cardiac markers, oxidative stress markers in serum and heart tissue, glucose, serum lipid profiling and Lysosomal hydrolases, heart apoptotic markers such as MHC expression by western blot, apoptosis by flow cytometry, total myocardial collagen content, fibrosis estimation, myocyte size were significantly decreased when compared with isoproterenol (ISG) group however histopathological studies showed normal architecture of heart in both control and treated rats. The pharmacological study reflects that sericin on both doses i.e., 500 mg/kg and 1000 mg/kg have potent cardioprotective action against the experimental model which was confirmed by various physical, biochemical, and histopathological parameters evaluated further research is required to examine the molecular mechanism of cardioprotective effect of sericin.
Collapse
Affiliation(s)
- Farogh Ahsan
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow 226026, India; (F.A.); (S.U.); (A.S.)
| | - Tarique Mahmood
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow 226026, India; (F.A.); (S.U.); (A.S.)
- Correspondence: ; Tel.: +91-9918681701
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia;
| | - Mohammed Haris Siddiqui
- Department of Bioengineering, Integral University, Dasauli, Kursi Road, Lucknow 226026, India;
| | - Shazia Usmani
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow 226026, India; (F.A.); (S.U.); (A.S.)
| | - Arshiya Shamim
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow 226026, India; (F.A.); (S.U.); (A.S.)
| | - Muhammad Wahajuddin
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK;
| |
Collapse
|
12
|
Insight Into the Effect of Carnosine on the Dispersibility of Myosin Under a Low-salt Condition and its Mechanism. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
13
|
Shang S, Wu B, Fu B, Jiang P, Liu Y, Qi L, Du M, Dong X. Enzyme treatment-induced tenderization of puffer fish meat and its relation to physicochemical changes of myofibril protein. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Fang M, Xiong S, Yin T, Hu Y, Liu R, Du H, Liu Y, You J. In vivo digestion and absorption characteristics of surimi gels with different degrees of cross-linking induced by transglutaminase (TGase). Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.107007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
van de Locht M, Borsboom TC, Winter JM, Ottenheijm CAC. Troponin Variants in Congenital Myopathies: How They Affect Skeletal Muscle Mechanics. Int J Mol Sci 2021; 22:ijms22179187. [PMID: 34502093 PMCID: PMC8430961 DOI: 10.3390/ijms22179187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
The troponin complex is a key regulator of muscle contraction. Multiple variants in skeletal troponin encoding genes result in congenital myopathies. TNNC2 has been implicated in a novel congenital myopathy, TNNI2 and TNNT3 in distal arthrogryposis (DA), and TNNT1 and TNNT3 in nemaline myopathy (NEM). Variants in skeletal troponin encoding genes compromise sarcomere function, e.g., by altering the Ca2+ sensitivity of force or by inducing atrophy. Several potential therapeutic strategies are available to counter the effects of variants, such as troponin activators, introduction of wild-type protein through AAV gene therapy, and myosin modulation to improve muscle contraction. The mechanisms underlying the pathophysiological effects of the variants in skeletal troponin encoding genes are incompletely understood. Furthermore, limited knowledge is available on the structure of skeletal troponin. This review focusses on the physiology of slow and fast skeletal troponin and the pathophysiology of reported variants in skeletal troponin encoding genes. A better understanding of the pathophysiological effects of these variants, together with enhanced knowledge regarding the structure of slow and fast skeletal troponin, will direct the development of treatment strategies.
Collapse
|
16
|
Xia C, Wen P, Yuan Y, Yu X, Chen Y, Xu H, Cui G, Wang J. Effect of roasting temperature on lipid and protein oxidation and amino acid residue side chain modification of beef patties. RSC Adv 2021; 11:21629-21641. [PMID: 35478790 PMCID: PMC9034085 DOI: 10.1039/d1ra03151a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/18/2021] [Indexed: 12/23/2022] Open
Abstract
Beef is rich in nutrients and is one of the most important ingredients in the world. But in the process of cooking and heating, the nutrients of beef will change to varying degrees. How temperature affects the oxidation of lipids and proteins in beef, and the modification of amino acid residues is unclear. This study intended to heat beef at different roasting temperatures (150 °C, 190 °C, 230 °C, 270 °C, 310 °C), measure parameter including colour, peroxide value (PV), thiobarbituric acid-reactive substances (TBARS), thiol and carbonyl content, protein solubility, tryptophan and Schiff base content, protein molecular weight distribution and modification of amino acid residues to discussed the effects of different temperatures on the lipid and protein oxidation of beef patties, as well as the modification of amino acid residues. The results showed that the values of L* and b* increased with the temperature increased, and the values of a* decreased. With the increase of temperature, the lipid oxidation indexes PV and TBARS, Schiff base and carbonyl content also increased, and the thiol content and protein solubility decreased significantly (p < 0.001). SDS-PAGE showed that the band of myosin heavy chain (MHC, 220 kDa) was significantly degraded, while the band of actin (42 kDa) was still clearly visible. The analysis of UPLC-MS/MS results found that the aromatic amino acid residues in all samples were oxidized to a certain extent, especially tryptophan. Other oxidative modifications, including α-amiooadipic acid (AAA), hydroxyethyl lysine (CEL) and malondialdehyde (MDA), were only present in roasted samples and not in raw meat. The results suggested that lipid oxidation and protein oxidation were closely related to colour parameters. The oxidation of proteins and lipids was aggravated at higher temperature. Amino acid side chains were also modified at high temperature, and this change was particularly evident in aromatic amino acids. These results provided new insights for the oxidation of proteins and lipids of beef and the modification level of amino acid residues under high temperature conditions, which will help us to improve the cooking quality of meat foods.
Collapse
Affiliation(s)
- Chao Xia
- College of Food Science and Engineering, Yangzhou University Yangzhou 225127 China
| | - Pingping Wen
- College of Food Science and Engineering, Yangzhou University Yangzhou 225127 China
| | - Yaming Yuan
- College of Food Science and Engineering, Yangzhou University Yangzhou 225127 China
| | - Xiaofan Yu
- College of Food Science and Engineering, Yangzhou University Yangzhou 225127 China
| | - Yijing Chen
- College of Food Science and Engineering, Yangzhou University Yangzhou 225127 China
- Yangzhou Fangguang Food Co. Ltd. Yangzhou 225008 China
| | - Huiqing Xu
- College of Food Science and Engineering, Yangzhou University Yangzhou 225127 China
| | - Guiyou Cui
- College of Food Science and Engineering, Yangzhou University Yangzhou 225127 China
| | - Jun Wang
- College of Food Science and Engineering, Yangzhou University Yangzhou 225127 China
| |
Collapse
|
17
|
Wang Q, Sun Y, Shao J, Lv B, Yu Z, Zhao S, Li C. Tetrasodium pyrophosphate promotes light meromyosin crosslinking by microbial transglutaminase. Food Chem 2020; 346:128910. [PMID: 33460961 DOI: 10.1016/j.foodchem.2020.128910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 10/22/2022]
Abstract
Phosphates are commonly included in meat processing, where oxidation is inevitable, to improve water binding. This present study attempted to reveal the interactive roles of protein oxidation and tetrasodium pyrophosphate (TSPP) on the crosslinking pattern of myosin mediated by transglutaminase (TGase). Mild oxidation at 1 mM H2O2 facilitated the TGase-initiated crosslinking, with the dominate crosslinking site shifted from S1 (in nonoxidized myosin) to Rod. The introduction of TSPP alleviated the oxidation stress on proteins, and was conductive to the crosslinking reaction notably at the LMM domain. The crosslinking sites in untreated myosin were identified as Gln-613 (S1) and Gln-1498 (LMM) by amino-acid sequence analysis, while strongly oxidation resulted in the loss of Gln-1498. Contrastively, four new reactive crosslinking sites were generated by TSPP, one (Gln-558/Gln-567) located on S1 and three (Gln-1362, Gln-1374, and Gln-1423/Gln-1426) on LMM. Yet, Gln-1362 was eliminated under strong oxidation at 50 mM H2O2.
Collapse
Affiliation(s)
- Qingling Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yue Sun
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Junhua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Bowen Lv
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Ze Yu
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Sihan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Chunqiang Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
18
|
Pinheiro RSB, Ramos PRR, de O. Roça R, Bezerra LR, Francisco CL, Oliveira RL. Differences between cattle and buffalo in the water-soluble proteins of the Longissimus muscle as shown by electrophoretic techniques. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an19239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Fraudulent information about food is an old and widespread problem, particularly regarding products with high economic value, such as meat and meat products. The motivation for food fraud is economic, but it can have serious impacts on public health, thus creating a food security problem. Approximately 90% of buffalo meat is marketed as beef in various regions where the consumption of buffalo meat is considered unusual.
Aims
To determine the electrophoretic profile of the raw Longissimus dorsi of cattle and buffalo species and to test the hypothesis that electrophoresis techniques can be used to distinguish meat from cattle from buffalo meat.
Methods
Fourteen 10-g samples of Longissimus dorsi (12th and 13th rib) tissue were taken from each animal of both species after slaughter. The meat of each species was analysed by native polyacrylamide gel electrophoresis (NATIVE PAGE) and by denaturing and non-denaturing sodium dodecyl sulfate (SDS)–PAGE. Differences (P < 0.05) were observed between water-soluble cattle and buffalo muscle proteins in both NATIVE PAGE (relative mobilities and percentages of protein bands) and non-denaturing and denaturing SDS–PAGE (molecular weights in kDa and optical density index).
Key results
With the NATIVE PAGE technique, 10 protein bands were observed in the gel, and three of these bands exhibited differences between species (P ≤ 0.05). The non-denaturing and denaturing SDS–PAGE techniques yielded significantly different protein bands in the gel. The electrophoretic profiles of some cattle and buffalo muscle proteins are distinct; therefore, raw meat flesh samples of these animal species can be distinguished using these electrophoresis techniques.
Conclusions
Each of the three electrophoresis techniques used can distinguish meat from different animal species; however, when there is doubt about the animal species, the use of more than one electrophoretic technique is recommended, so as to obtain more reliable results.
Implications
The use of electrophoresis techniques to differentiate cattle and buffalo meat is promising. This technique could be used in cases of suspected food fraud, such as the replacement of beef with buffalo or vice versa, with reliable results that will be accepted by supervisory bodies.
Collapse
|
19
|
Zhao X, Han G, Wen R, Xia X, Chen Q, Kong B. Influence of lard-based diacylglycerol on rheological and physicochemical properties of thermally induced gels of porcine myofibrillar protein at different NaCl concentrations. Food Res Int 2020; 127:108723. [DOI: 10.1016/j.foodres.2019.108723] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 01/25/2023]
|
20
|
Park MY, Ryu YC, Kim CN, Ko KB, Kim JM. Evaluation of Myosin Heavy Chain Isoforms in Biopsied Longissimus Thoracis Muscle for Estimation of Meat Quality Traits in Live Pigs. Animals (Basel) 2019; 10:ani10010009. [PMID: 31861524 PMCID: PMC7022759 DOI: 10.3390/ani10010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/28/2019] [Accepted: 12/11/2019] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Pork quality has become an important parameter in the industry. Traditional pork quality was assessed postmortem. It is considered that the determination of meat quality in live pigs is beneficial in order to obtain better pork quality and to reduce cost in production. In the present study, myosin heavy chain (MHC) isoforms in both of the pre- and postmortem longissimus thoracis muscle were evaluated as novel parameters for meat quality estimation in pork by correlation and clustering analysis. MHC isoforms in live pigs could be applied in a practical and useful method to predict meat quality in pork. Abstract Estimating meat quality prior to slaughter will be beneficial for the rapid identification of specific traits or poor quality pork compared to a conventional assessment at postmortem. In this study, we identified and quantified myosin heavy chain (MHC) isoforms from a biopsied longissimus thoracis muscle of pigs, and determined their correlation with postmortem muscle fiber characteristics and meat quality. MHC slow and fast isoforms proportions from biopsied samples correlated with postmortem percentage of type I and type IIB muscle fibers, respectively (p < 0.05). The percentage of the biopsied MHC slow isoform showed a positive correlation with pH at 45 min postmortem, and negative correlations with filter-paper fluid uptake and drip loss in pork (p < 0.05). Furthermore, clustering the pigs into three groups based on the biopsied MHC isoform proportions was not only significantly associated with muscle fiber number and proportions of muscle fiber area, but also correlated with pH at 45 min postmortem and the National Pork Producers Council color score (p < 0.05). Collectively, our findings indicate that the biopsied MHC isoforms serve as parameter for estimating meat quality, with the association between the higher proportion of MHC slow isoforms and pH at 45 min postmortem in particular being indicative of better pork quality.
Collapse
Affiliation(s)
- Min Young Park
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Ansung-si Gyeonggi-do 17546, Korea;
| | - Youn-Chul Ryu
- Division of Biotechnology, SARI, Jeju National University, Jeju-do 63243, Korea; (Y.-C.R.); (C.-N.K.); (K.-B.K.)
| | - Chung-Nam Kim
- Division of Biotechnology, SARI, Jeju National University, Jeju-do 63243, Korea; (Y.-C.R.); (C.-N.K.); (K.-B.K.)
| | - Kyung-Bo Ko
- Division of Biotechnology, SARI, Jeju National University, Jeju-do 63243, Korea; (Y.-C.R.); (C.-N.K.); (K.-B.K.)
| | - Jun-Mo Kim
- Department of Animal Science and Technology, College of Biotechnology and Natural Resources, Chung-Ang University, Ansung-si Gyeonggi-do 17546, Korea;
- Correspondence: ; Tel.: +82-31-670-3053
| |
Collapse
|
21
|
Li C, Xiong YL. Mild oxidation promotes myosin S2 cross-linking by microbial transglutaminase. Food Chem 2019; 287:390-397. [DOI: 10.1016/j.foodchem.2019.02.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/05/2019] [Accepted: 02/19/2019] [Indexed: 11/26/2022]
|
22
|
Ojima K. Myosin: Formation and maintenance of thick filaments. Anim Sci J 2019; 90:801-807. [PMID: 31134719 PMCID: PMC6618170 DOI: 10.1111/asj.13226] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/27/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022]
Abstract
Skeletal muscle consists of bundles of myofibers containing millions of myofibrils, each of which is formed of longitudinally aligned sarcomere structures. Sarcomeres are the minimum contractile unit, which mainly consists of four components: Z‐bands, thin filaments, thick filaments, and connectin/titin. The size and shape of the sarcomere component is strictly controlled. Surprisingly, skeletal muscle cells not only synthesize a series of myofibrillar proteins but also regulate the assembly of those proteins into the sarcomere structures. However, authentic sarcomere structures cannot be reconstituted by combining purified myofibrillar proteins in vitro, therefore there must be an elaborate mechanism ensuring the correct formation of myofibril structure in skeletal muscle cells. This review discusses the role of myosin, a main component of the thick filament, in thick filament formation and the dynamics of myosin in skeletal muscle cells. Changes in the number of myofibrils in myofibers can cause muscle hypertrophy or atrophy. Therefore, it is important to understand the fundamental mechanisms by which myofibers control myofibril formation at the molecular level to develop approaches that effectively enhance muscle growth in animals.
Collapse
Affiliation(s)
- Koichi Ojima
- Muscle Biology Research Unit, Division of Animal Products Research, National Institute of Livestock and Grassland Science, NARO, Tsukuba, Japan
| |
Collapse
|
23
|
Haun CT, Vann CG, Roberts BM, Vigotsky AD, Schoenfeld BJ, Roberts MD. A Critical Evaluation of the Biological Construct Skeletal Muscle Hypertrophy: Size Matters but So Does the Measurement. Front Physiol 2019; 10:247. [PMID: 30930796 PMCID: PMC6423469 DOI: 10.3389/fphys.2019.00247] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is highly adaptable and has consistently been shown to morphologically respond to exercise training. Skeletal muscle growth during periods of resistance training has traditionally been referred to as skeletal muscle hypertrophy, and this manifests as increases in muscle mass, muscle thickness, muscle area, muscle volume, and muscle fiber cross-sectional area (fCSA). Delicate electron microscopy and biochemical techniques have also been used to demonstrate that resistance exercise promotes ultrastructural adaptations within muscle fibers. Decades of research in this area of exercise physiology have promulgated a widespread hypothetical model of training-induced skeletal muscle hypertrophy; specifically, fCSA increases are accompanied by proportional increases in myofibrillar protein, leading to an expansion in the number of sarcomeres in parallel and/or an increase in myofibril number. However, there is ample evidence to suggest that myofibrillar protein concentration may be diluted through sarcoplasmic expansion as fCSA increases occur. Furthermore, and perhaps more problematic, are numerous investigations reporting that pre-to-post training change scores in macroscopic, microscopic, and molecular variables supporting this model are often poorly associated with one another. The current review first provides a brief description of skeletal muscle composition and structure. We then provide a historical overview of muscle hypertrophy assessment. Next, current-day methods commonly used to assess skeletal muscle hypertrophy at the biochemical, ultramicroscopic, microscopic, macroscopic, and whole-body levels in response to training are examined. Data from our laboratory, and others, demonstrating correlations (or the lack thereof) between these variables are also presented, and reasons for comparative discrepancies are discussed with particular attention directed to studies reporting ultrastructural and muscle protein concentration alterations. Finally, we critically evaluate the biological construct of skeletal muscle hypertrophy, propose potential operational definitions, and provide suggestions for consideration in hopes of guiding future research in this area.
Collapse
Affiliation(s)
- Cody T Haun
- Department of Exercise Science, LaGrange College, LaGrange, GA, United States
| | | | - Brandon M Roberts
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew D Vigotsky
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, United States
| | - Brad J Schoenfeld
- Department of Health Sciences, CUNY Lehman College, Bronx, NY, United States
| | | |
Collapse
|
24
|
Greaser ML, Warren CM. Electrophoretic Separation of Very Large Molecular Weight Proteins in SDS Agarose. Methods Mol Biol 2019; 1855:203-210. [PMID: 30426419 DOI: 10.1007/978-1-4939-8793-1_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Very large proteins (subunit sizes, >200 kDa) are difficult to electrophoretically separate on polyacrylamide gels. A SDS vertical agarose gel system has been developed that has vastly improved resolving power for very large proteins. Proteins with molecular masses between 200 and 4000 kDa can be clearly separated. Inclusion of a reducing agent in the upper reservoir buffer and use of a large pore-sized agarose have been found to be key technical procedures for obtaining optimum protein migration and resolution.
Collapse
Affiliation(s)
- Marion L Greaser
- Muscle Biology Laboratory, University of Wisconsin-Madison, Madison, WI, USA.
| | - Chad M Warren
- Department of Physiology and Biophysics and Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
25
|
Miskiewicz EI, MacPhee DJ. Lysis Buffer Choices Are Key Considerations to Ensure Effective Sample Solubilization for Protein Electrophoresis. Methods Mol Biol 2019; 1855:61-72. [PMID: 30426406 DOI: 10.1007/978-1-4939-8793-1_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The efficient extraction of proteins of interest from cells and tissues can be challenging. Here we demonstrate the differences in extraction of the focal adhesion protein Kindlin-2 and the transcriptional repressor Snail from choriocarcinoma cells using NP-40 and RIPA lysis buffer. We also show the use of a more denaturing urea/thiourea lysis buffer for solubilization, by comparing its effectiveness with the often utilized RIPA lysis buffer for solubilization of heat shock proteins (HSP) B1 and B5 and the cytoplasmic adapter protein integrin-linked kinase (ILK) from smooth muscle. Overall, the results demonstrate the importance of optimizing lysis buffers for specific protein solubilization prior to finalizing the experimental workflow.
Collapse
Affiliation(s)
- Ewa I Miskiewicz
- One Reproductive Health Research Group, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Daniel J MacPhee
- One Reproductive Health Research Group, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
26
|
Li X, Wang Y, Sun Y, Pan D, Cao J. The effect of ultrasound treatments on the tenderizing pathway of goose meat during conditioning. Poult Sci 2018; 97:2957-2965. [DOI: 10.3382/ps/pey143] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/21/2018] [Indexed: 11/20/2022] Open
|
27
|
Promoter-mediated diversification of transcriptional bursting dynamics following gene duplication. Proc Natl Acad Sci U S A 2018; 115:8364-8369. [PMID: 30061408 DOI: 10.1073/pnas.1800943115] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
During the evolution of gene families, functional diversification of proteins often follows gene duplication. However, many gene families expand while preserving protein sequence. Why do cells maintain multiple copies of the same gene? Here we have addressed this question for an actin family with 17 genes encoding an identical protein. The genes have divergent flanking regions and are scattered throughout the genome. Surprisingly, almost the entire family showed similar developmental expression profiles, with their expression also strongly coupled in single cells. Using live cell imaging, we show that differences in gene expression were apparent over shorter timescales, with family members displaying different transcriptional bursting dynamics. Strong "bursty" behaviors contrasted steady, more continuous activity, indicating different regulatory inputs to individual actin genes. To determine the sources of these different dynamic behaviors, we reciprocally exchanged the upstream regulatory regions of gene family members. This revealed that dynamic transcriptional behavior is directly instructed by upstream sequence, rather than features specific to genomic context. A residual minor contribution of genomic context modulates the gene OFF rate. Our data suggest promoter diversification following gene duplication could expand the range of stimuli that regulate the expression of essential genes. These observations contextualize the significance of transcriptional bursting.
Collapse
|
28
|
The effect of CaCl 2 marination on the tenderizing pathway of goose meat during conditioning. Food Res Int 2017; 102:487-492. [PMID: 29195976 DOI: 10.1016/j.foodres.2017.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 11/22/2022]
Abstract
In order to figure out the effect of CaCl2 on the tenderizing pathway of goose meat, breast muscles of thirty-two Eastern Zhejiang White Geese were divided into three treatments: the control, 150 and 300mM CaCl2. Shear force, myofibrillar fraction index (MFI), actin filaments and F-actin, G-actin and tropomodulins (Tmods) levels were investigated during 168h. Results showed that 300mM treatment had lower shear force at 48, 96 and 168h and higher MFI at 24, 48, 96 and 168h than the control. The rate of actin filaments disruption, the decrease of F-actin, the degradation of Tmods, the increase of G-actin in 300mM treatment was faster than 150mM treatment; the rate in the control was the slowest among treatments. CaCl2 accelerated the transformation of F-actin into G-actin. We concluded that CaCl2 tenderized goose meat by depolymerizing actin filaments and cleaving Tmods.
Collapse
|
29
|
Wette SG, Smith HK, Lamb GD, Murphy RM. Characterization of muscle ankyrin repeat proteins in human skeletal muscle. Am J Physiol Cell Physiol 2017; 313:C327-C339. [PMID: 28615162 DOI: 10.1152/ajpcell.00077.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 12/23/2022]
Abstract
Muscle ankyrin repeat proteins (MARPs) are a family of titin-associated, stress-response molecules and putative transducers of stretch-induced signaling in skeletal muscle. In cardiac muscle, cardiac ankyrin repeat protein (CARP) and diabetes-related ankyrin repeat protein (DARP) reportedly redistribute from binding sites on titin to the nucleus following a prolonged stretch. However, it is unclear whether ankyrin repeat domain protein 2 (Ankrd 2) shows comparable stretch-induced redistribution to the nucleus. We measured the following in rested human skeletal muscle: 1) the absolute amount of MARPs and 2) the distribution of Ankrd 2 and DARP in both single fibers and whole muscle preparations. In absolute amounts, Ankrd 2 is the most abundant MARP in human skeletal muscle, there being ~3.1 µmol/kg, much greater than DARP and CARP (~0.11 and ~0.02 µmol/kg, respectively). All DARP was found to be tightly bound at cytoskeletal (or possibly nuclear) sites. In contrast, ~70% of the total Ankrd 2 is freely diffusible in the cytosol [including virtually all of the phosphorylated (p)Ankrd 2-Ser99 form], ~15% is bound to non-nuclear membranes, and ~15% is bound at cytoskeletal sites, likely at the N2A region of titin. These data are not consistent with the proposal that Ankrd 2, per se, or pAnkrd 2-Ser99 mediates stretch-induced signaling in skeletal muscle, dissociating from titin and translocating to the nucleus, because the majority of these forms of Ankrd 2 are already free in the cytosol. It will be necessary to show that the titin-associated Ankrd 2 is modified by stretch in some as-yet-unidentified way, distinct from the diffusible pool, if it is to act as a stretch-sensitive signaling molecule.
Collapse
Affiliation(s)
- Stefan G Wette
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Heather K Smith
- Department of Exercise Sciences, The University of Auckland, Auckland, New Zealand
| | - Graham D Lamb
- School of Life Sciences, La Trobe University, Melbourne, Victoria, Australia; and
| | - Robyn M Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia;
| |
Collapse
|
30
|
Tang CB, Zhang WG, Wang YS, Xing LJ, Xu XL, Zhou GH. Identification of Rosmarinic Acid-Adducted Sites in Meat Proteins in a Gel Model under Oxidative Stress by Triple TOF MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6466-76. [PMID: 27486909 DOI: 10.1021/acs.jafc.6b02438] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Triple TOF MS/MS was used to identify adducts between rosmarinic acid (RosA)-derived quinones and meat proteins in a gel model under oxidative stress. Seventy-five RosA-modified peptides responded to 67 proteins with adduction of RosA. RosA conjugated with different amino acids in proteins, and His, Arg, and Lys adducts with RosA were identified for the first time in meat. A total of 8 peptides containing Cys, 14 peptides containing His, 48 peptides containing Arg, 64 peptides containing Lys, and 5 peptides containing N-termini that which participated in adduction reaction with RosA were identified, respectively. Seventy-seven adduction sites were subdivided into all adducted proteins including 2 N-terminal adduction sites, 3 Cys adduction sites, 4 His adduction sites, 29 Arg adduction sites, and 39 Lys adduction sites. Site occupancy analyses showed that approximately 80.597% of the proteins carried a single RosA-modified site, 14.925% retained two sites, 1.492% contained three sites, and the rest 2.985% had four or more sites. Large-scale triple TOF MS/MS mapping of RosA-adducted sites reveals the adduction regulations of quinone and different amino acids as well as the adduction ratios, which clarify phenol-protein adductions and pave the way for industrial meat processing and preservation.
Collapse
Affiliation(s)
- Chang-Bo Tang
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Animal Products Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, China
- Department of Food Nutrition and Detection, College of Education and Humanity, Suzhou Vocational University , Suzhou 215104, China
| | - Wan-Gang Zhang
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Animal Products Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, China
| | - Yao-Song Wang
- College of Light Industry Science and Engineering, Nanjing Forestry University , Nanjing 210037, China
| | - Lu-Juan Xing
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Animal Products Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, China
| | - Xing-Lian Xu
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Animal Products Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, China
| | - Guang-Hong Zhou
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Animal Products Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, China
| |
Collapse
|
31
|
Omecamtiv Mecarbil, a Cardiac Myosin Activator, Increases Ca2+ Sensitivity in Myofilaments With a Dilated Cardiomyopathy Mutant Tropomyosin E54K. J Cardiovasc Pharmacol 2016; 66:347-53. [PMID: 26065842 DOI: 10.1097/fjc.0000000000000286] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Apart from transplant, there are no satisfactory therapies for the severe depression in contractility in familial dilated cardiomyopathy (DCM). Current heart failure treatments that act by increasing contractility involve signaling cascades that alter calcium homeostasis and induce arrhythmias. Omecamtiv mecarbil is a promising new inotropic agent developed for heart failure that may circumvent such limitations. Omecamtiv is a direct cardiac myosin activator that promotes and prolongs the strong myosin-actin binding conformation to increase the duration of systolic elastance. We tested the effect of omecamtiv on Ca(2+) sensitivity of myofilaments of a DCM mouse model containing a tropomyosin E54K mutation. We compared tension and ATPase activity of detergent-extracted myofilaments with and without treatment with 316 nM omecamtiv at varying pCa values. When transgenic myofilaments were treated with omecamtiv, the pCa50 for activation of tension increased from 5.70 ± 0.02 to 5.82 ± 0.02 and ATPase activity increased from 5.73 ± 0.06 to 6.07 ± 0.04. This significant leftward shift restored Ca(2+) sensitivity to levels no longer significantly different from controls. Proteomic studies lacked changes in sarcomeric protein phosphorylation. Our data demonstrate that omecamtiv can potentially augment cardiac contractility in DCM by increasing Ca(2+) sensitivity. The use of direct myosin activators addresses functional defects without incurring the adverse side effects of Ca(2+)-dependent treatments.
Collapse
|
32
|
McDaniel J, Davuluri G, Hill EA, Moyer M, Runkana A, Prayson R, van Lunteren E, Dasarathy S. Hyperammonemia results in reduced muscle function independent of muscle mass. Am J Physiol Gastrointest Liver Physiol 2016; 310:G163-70. [PMID: 26635319 PMCID: PMC4971815 DOI: 10.1152/ajpgi.00322.2015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/14/2015] [Indexed: 01/31/2023]
Abstract
The mechanism of the nearly universal decreased muscle strength in cirrhosis is not known. We evaluated whether hyperammonemia in cirrhosis causes contractile dysfunction independent of reduced skeletal muscle mass. Maximum grip strength and muscle fatigue response were determined in cirrhotic patients and controls. Blood and muscle ammonia concentrations and grip strength normalized to lean body mass were measured in the portacaval anastomosis (PCA) and sham-operated pair-fed control rats (n = 5 each). Ex vivo contractile studies in the soleus muscle from a separate group of Sprague-Dawley rats (n = 7) were performed. Skeletal muscle force of contraction, rate of force development, and rate of relaxation were measured. Muscles were also subjected to a series of pulse trains at a range of stimulation frequencies from 20 to 110 Hz. Cirrhotic patients had lower maximum grip strength and greater muscle fatigue than control subjects. PCA rats had a 52.7 ± 13% lower normalized grip strength compared with control rats, and grip strength correlated with the blood and muscle ammonia concentrations (r(2) = 0.82). In ex vivo muscle preparations following a single pulse, the maximal force, rate of force development, and rate of relaxation were 12.1 ± 3.5 g vs. 6.2 ± 2.1 g; 398.2 ± 100.4 g/s vs. 163.8 ± 97.4 g/s; -101.2 ± 22.2 g/s vs. -33.6 ± 22.3 g/s in ammonia-treated compared with control muscle preparation, respectively (P < 0.001 for all comparisons). Tetanic force, rate of force development, and rate of relaxation were depressed across a range of stimulation from 20 to 110 Hz. These data provide the first direct evidence that hyperammonemia impairs skeletal muscle strength and increased muscle fatigue and identifies a potential therapeutic target in cirrhotic patients.
Collapse
Affiliation(s)
- John McDaniel
- 1Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio; ,2Department of Exercise Science, Kent State University Kent, Ohio;
| | | | | | - Michelle Moyer
- 1Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio;
| | - Ashok Runkana
- 3Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio; ,4Department of Medicine, Cleveland Clinic, Cleveland, Ohio;
| | - Richard Prayson
- 5Department of Pathology, Cleveland Clinic, Cleveland, Ohio;
| | - Erik van Lunteren
- 1Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio; ,6Case Western Reserve University Cleveland, Ohio
| | - Srinivasan Dasarathy
- Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio; Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio; and
| |
Collapse
|
33
|
Tarigopula M, Davis RT, Mungai PT, Ryba DM, Wieczorek DF, Cowan CL, Violin JD, Wolska BM, Solaro RJ. Cardiac myosin light chain phosphorylation and inotropic effects of a biased ligand, TRV120023, in a dilated cardiomyopathy model. Cardiovasc Res 2015; 107:226-34. [PMID: 26045475 DOI: 10.1093/cvr/cvv162] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/17/2015] [Indexed: 01/06/2023] Open
Abstract
AIMS Therapeutic approaches to treat familial dilated cardiomyopathy (DCM), which is characterized by depressed sarcomeric tension and susceptibility to Ca(2+)-related arrhythmias, have been generally unsuccessful. Our objective in the present work was to determine the effect of the angiotensin II type 1 receptor (AT1R) biased ligand, TRV120023, on contractility of hearts of a transgenic mouse model of familial DCM with mutation in tropomyosin at position 54 (TG-E54K). Our rationale is based on previous studies, which have supported the hypothesis that biased G-protein-coupled receptor ligands, signalling via β-arrestin, increase cardiac contractility with no effect on Ca(2+) transients. Our previous work demonstrated that the biased ligand TRV120023 is able to block angiotensin-induced hypertrophy, while promoting an increase in sarcomere Ca(2+) response. METHODS AND RESULTS We tested the hypothesis that the depression in cardiac function associated with DCM can be offset by infusion of the AT1R biased ligand, TRV120023. We intravenously infused saline, TRV120023, or the unbiased ligand, losartan, for 15 min in TG-E54K and non-transgenic mice to obtain left ventricular pressure-volume relations. Hearts were analysed for sarcomeric protein phosphorylation. Results showed that the AT1R biased ligand increases cardiac performance in TG-E54K mice in association with increased myosin light chain-2 phosphorylation. CONCLUSION Treatment of mice with an AT1R biased ligand, acting via β-arrestin signalling, is able to induce an increase in cardiac contractility associated with an increase in ventricular myosin light chain-2 phosphorylation. AT1R biased ligands may prove to be a novel inotropic approach in familial DCM.
Collapse
Affiliation(s)
- Madhusudhan Tarigopula
- Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, 835 S. Wolcott Avenue, Chicago, IL 60612-7342, USA
| | - Robert T Davis
- Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, 835 S. Wolcott Avenue, Chicago, IL 60612-7342, USA
| | - Paul T Mungai
- Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, 835 S. Wolcott Avenue, Chicago, IL 60612-7342, USA
| | - David M Ryba
- Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, 835 S. Wolcott Avenue, Chicago, IL 60612-7342, USA
| | - David F Wieczorek
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | | | | | - Beata M Wolska
- Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, 835 S. Wolcott Avenue, Chicago, IL 60612-7342, USA Department of Medicine, Division of Cardiology, University of Illinois, Chicago, IL, USA
| | - R John Solaro
- Department of Physiology and Biophysics and Center for Cardiovascular Research, College of Medicine, University of Illinois, 835 S. Wolcott Avenue, Chicago, IL 60612-7342, USA
| |
Collapse
|
34
|
Utter MS, Warren CM, Solaro RJ. Impact of anesthesia and storage on posttranslational modifications of cardiac myofilament proteins. Physiol Rep 2015; 3:3/5/e12393. [PMID: 25952935 PMCID: PMC4463824 DOI: 10.14814/phy2.12393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Although high fidelity measurements of posttranslational modifications (PTMs) of cardiac myofilament proteins exist, important issues remain regarding basic techniques of sample acquisition and storage. We investigated the effects of anesthetic regimen and sample storage conditions on PTMs of major ventricular sarcomeric proteins. Mice were anesthetized with pentobarbital (Nembutal), ketamine/xylazine mixture (Ket/Xyl), or tribromoethanol (Avertin), and the ventricular tissue was prepared and stored for 1, 7, 30, 60, or 90 days at −80°C. Myofilament protein phosphorylation and glutathionylation were analyzed by Pro-Q Diamond stain and Western blotting, respectively. With up to 7 days of storage, phosphorylation of troponin T was stable for samples from mice anesthetized with either Nembutal or Ket/Xyl but not Avertin; while myosin-binding protein C (MyBP-C) phosphorylation was reduced at 7 days with Nembutal and Ket/Xyl, though generally not significant until 90 days. Tropomyosin and regulatory myosin light chain phosphorylation were stable for up to 7 days regardless of the anesthetic regimen employed. In the case of Troponin I, by 7 days of storage there was a significant fall in phosphorylation across all anesthetics. Storage of samples from 30 to 90 days resulted in a general decrease in myofilament phosphorylation independent of the anesthetic. S-glutathionylation of MyBP-C presented a trend in reduced glutathionylation from days 30–90 in all anesthetics, with only day 90 being statistically significant. Our findings suggest that there are alterations in PTMs of major myofilament proteins from both storage and anesthetic selection, and that storage beyond 30 days will likely result in distortion of data.
Collapse
Affiliation(s)
- Megan S Utter
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Chad M Warren
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - R John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
35
|
Greaser ML, Warren CM. Method for resolution and western blotting of very large proteins using agarose electrophoresis. Methods Mol Biol 2015; 1312:285-91. [PMID: 26044011 DOI: 10.1007/978-1-4939-2694-7_30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Proteins larger than 200 kDa are difficult to separate electrophoretically using polyacrylamide gels, and their transfer during western blotting is typically incomplete. A vertical SDS agarose gel system was developed that has vastly improved resolving power for very large proteins. Complete transfer of proteins as large as titin (Mr 3,000-3,700 kDa) onto blots can be achieved. The addition of a sulfhydryl reducing agent in the upper reservoir buffer and transfer buffer markedly improves the blotting of large proteins.
Collapse
Affiliation(s)
- Marion L Greaser
- Muscle Biology Laboratory, University of Wisconsin-Madison, 1805 Linden Drive, Madison, WI, 53706, USA,
| | | |
Collapse
|
36
|
Peach M, Marsh N, Miskiewicz EI, MacPhee DJ. Solubilization of proteins: the importance of lysis buffer choice. Methods Mol Biol 2015; 1312:49-60. [PMID: 26043989 DOI: 10.1007/978-1-4939-2694-7_8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The efficient extraction of proteins of interest from cells and tissues is not always straightforward. Here we demonstrate the differences in extraction of the focal adhesion protein Kindlin-2 from choriocarcinoma cells using NP-40 and RIPA lysis buffer. Furthermore, we demonstrate the use of a more denaturing urea/thiourea lysis buffer for solubilization, by comparing its effectiveness for solubilization of small heat-shock proteins from smooth muscle with the often utilized RIPA lysis buffer. Overall, the results demonstrate the importance of establishing the optimal lysis buffer for specific protein solubilization within the experimental workflow.
Collapse
Affiliation(s)
- Mandy Peach
- Division of BioMedical Sciences, Health Sciences Centre, Rm 5335, 300 Prince Philip Drive, St. John's, NL, Canada, A1B 3V6
| | | | | | | |
Collapse
|
37
|
Bowker BC, Zhuang H, Buhr RJ. Impact of carcass scalding and chilling on muscle proteins and meat quality of broiler breast fillets. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Alegre-Cebollada J, Kosuri P, Giganti D, Eckels E, Rivas-Pardo JA, Hamdani N, Warren CM, Solaro RJ, Linke WA, Fernández JM. S-glutathionylation of cryptic cysteines enhances titin elasticity by blocking protein folding. Cell 2014; 156:1235-1246. [PMID: 24630725 DOI: 10.1016/j.cell.2014.01.056] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 10/17/2013] [Accepted: 01/24/2014] [Indexed: 12/16/2022]
Abstract
The giant elastic protein titin is a determinant factor in how much blood fills the left ventricle during diastole and thus in the etiology of heart disease. Titin has been identified as a target of S-glutathionylation, an end product of the nitric-oxide-signaling cascade that increases cardiac muscle elasticity. However, it is unknown how S-glutathionylation may regulate the elasticity of titin and cardiac tissue. Here, we show that mechanical unfolding of titin immunoglobulin (Ig) domains exposes buried cysteine residues, which then can be S-glutathionylated. S-glutathionylation of cryptic cysteines greatly decreases the mechanical stability of the parent Ig domain as well as its ability to fold. Both effects favor a more extensible state of titin. Furthermore, we demonstrate that S-glutathionylation of cryptic cysteines in titin mediates mechanochemical modulation of the elasticity of human cardiomyocytes. We propose that posttranslational modification of cryptic residues is a general mechanism to regulate tissue elasticity.
Collapse
Affiliation(s)
| | - Pallav Kosuri
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Graduate Program in Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - David Giganti
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Edward Eckels
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Columbia College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | - Nazha Hamdani
- Department of Cardiovascular Physiology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Chad M Warren
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - R John Solaro
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Wolfgang A Linke
- Department of Cardiovascular Physiology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Julio M Fernández
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
39
|
Yu X, Llave Y, Fukuoka M, Sakai N. Estimation of color changes in fish surface at the beginning of grilling based on the degree of protein denaturation. J FOOD ENG 2014. [DOI: 10.1016/j.jfoodeng.2013.12.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
40
|
Abstract
Skeletal muscle contractile function declines with age and age-associated diseases. Although muscle atrophy undoubtedly contributes to this decrease, recent findings suggest that reduced myofilament protein content and function also may participate. Based on these data, we propose that age- and disease-related alterations in myofilament proteins represent one molecular mechanism contributing to the development of physical disability.
Collapse
|
41
|
Kim YHB, Warner RD, Rosenvold K. Influence of high pre-rigor temperature and fast pH fall on muscle proteins and meat quality: a review. ANIMAL PRODUCTION SCIENCE 2014. [DOI: 10.1071/an13329] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The impacts of accelerated pH decline combined with high muscle temperature on post-mortem muscle metabolism and subsequent meat quality attributes have been extensively studied. Traditionally, this phenomenon has been observed in pork muscles, primarily due to the relatively fast post-mortem glycolysis rate and its relationships to stress susceptibility of pigs before slaughter. However, the protein-denaturing condition of high temperature/rapid pH fall and subsequent PSE (pale, soft and exudative)-like abnormal meat quality characteristics have been observed in muscles from other species such as beef, lamb, venison and even poultry. Various pre-rigor conditions including the application of electrical stimulation, hot-boning, and/or pre-rigor carcass chilling temperatures in various muscles, in conjunction with carcass stretching/hanging methods, can also contribute to muscle-protein denaturation pre-rigor. This review considers the influence of a faster than normal pH fall at a higher than normal pre-rigor temperature on glycolysis, post-mortem muscle proteins and subsequently meat quality attributes. Gaps in current knowledge are identified and recommendations made for additional research.
Collapse
|
42
|
Ishiwatari N, Fukuoka M, Sakai N. Effect of protein denaturation degree on texture and water state of cooked meat. J FOOD ENG 2013. [DOI: 10.1016/j.jfoodeng.2013.03.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Complex tropomyosin and troponin T isoform expression patterns in orbital and global fibers of adult dog and rat extraocular muscles. J Muscle Res Cell Motil 2013; 34:211-31. [PMID: 23700265 DOI: 10.1007/s10974-013-9346-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/02/2013] [Indexed: 12/12/2022]
Abstract
We reported marked differences in the myosin heavy and light chain (MHC and MLC) isoform composition of fast and slow fibers between the global and orbital layers of dog extraocular muscles. Many dog extraocular fibers, especially orbital fibers, have MHC and MLC isoform patterns that are distinct from those in limb skeletal muscles. Additional observations suggested possible differences in the tropomyosin (Tm) and troponin T (TnT) isoform composition of global and orbital fibers. Therefore, we tested, using SDS-PAGE and immunoblotting, whether differences in Tm and TnT isoform expression do, in fact, exist between global and orbital layers of dog and rat EOMs and to compare expression patterns among identified fast and slow single fibers from both muscle layers. The Tm isoforms expressed in global fast and slow fibers are the same as in limb fast (α-Tm and β-Tm) and slow (γ-Tm and β-Tm) fibers, respectively. Orbital slow orbital fibers, on the other hand, each co-express all three sarcomeric Tm isoforms (α, β and γ). The results indicate that fast global and orbital fibers express only fast isoforms of TnT, but the relative amounts of the individual isoforms are different from those in limb fast muscle fibers and an abundant fast TnT isoform in the orbital layer was not detected in fast limb muscles. Slow fibers in both layers express slow TnT isoforms and the relative amounts also differ from those in limb slow fibers. Unexpectedly, significant amounts of cardiac TnT isoforms were also detected in slow fibers, especially in the orbital layer in both species. TnI and TnC isoform patterns are the same as in fast and slow fibers in limb muscles. These results expand the understanding of the elaborate diversity in contractile protein isoform expression in mammalian extraocular muscle fibers and suggest that major differences in calcium-activation properties exist among these fibers, based upon Tm and TnT isoform expression patterns.
Collapse
|
44
|
Bowker B, Zhuang H. Relationship between muscle exudate protein composition and broiler breast meat quality. Poult Sci 2013; 92:1385-92. [DOI: 10.3382/ps.2012-02806] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
45
|
Effect of low voltage electrical stimulation on the distribution of cathepsin D and the palatability of the Longissimus dorsi from Holstein veal calves fed a corn or barley diet. Meat Sci 2012; 21:203-18. [PMID: 22054898 DOI: 10.1016/0309-1740(87)90090-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/1987] [Revised: 09/17/1987] [Accepted: 11/05/1987] [Indexed: 11/22/2022]
Abstract
Forty male Holstein veal calves (45 kg) were weaned on milk replacer given once or twice daily and fed either a corn or a barley diet until slaughter at 215 kg liveweight. Carcasses from half of the animals on each diet were assigned to low-voltage electrical stimulation (LVES), the other half served as controls. LVES accelerated the pH drop of the meat (P<0·01) and resulted in a more rapid liberation of cathepsin D (P < 0·01) in the soluble fraction of the longissimus dorsi homogenate. Despite the faster liberation of cathepsin D, meat samples from the LVES group were tougher than those of controls (P < 0·01). Meat colour measured by reflectance was not affected by the post-mortem treatments but ageing for six days significantly decreased the reflectance measurements (P < 0·01). The meat flavor was more pronounced for controls and for barley fed animals (P < 0·01). SDS-polyacrylamide gel electrophoresis of the myofibrillar proteins demonstrated that meat ageing favored the degradation of troponin-T (TN-T) and the appearance of a new banding pattern in the 25-35 kdalton region. Compared with controls ES had a tendency to decrease the rate of degradation of TN-T although no difference in the banding patterns could be observed after 6 days of ageing.
Collapse
|
46
|
Stafford WF, Lee E, Graceffa P. Equilibrium self-association of tropomyosin. FEBS Lett 2012; 586:3840-2. [PMID: 23022558 DOI: 10.1016/j.febslet.2012.08.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/27/2012] [Accepted: 08/28/2012] [Indexed: 01/14/2023]
Abstract
It has recently been reported that tropomyosin exists exclusively as a dimer in physiological salt conditions. It is shown in the present work using analytical ultracentrifugation that, on the contrary, tropomyosin is in equilibrium between monomer, dimer and tetramer with a weak tendency to dimerize and tetramerize. Such a finding has consequences for the assembly of the tropomyosin-actin complex.
Collapse
Affiliation(s)
- Walter F Stafford
- Boston Biomedical Research Institute, Watertown, MA 02472, United States
| | | | | |
Collapse
|
47
|
Greising SM, Gransee HM, Mantilla CB, Sieck GC. Systems biology of skeletal muscle: fiber type as an organizing principle. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 4:457-73. [PMID: 22811254 DOI: 10.1002/wsbm.1184] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Skeletal muscle force generation and contraction are fundamental to countless aspects of human life. The complexity of skeletal muscle physiology is simplified by fiber type classification where differences are observed from neuromuscular transmission to release of intracellular Ca(2+) from the sarcoplasmic reticulum and the resulting recruitment and cycling of cross-bridges. This review uses fiber type classification as an organizing and simplifying principle to explore the complex interactions between the major proteins involved in muscle force generation and contraction.
Collapse
Affiliation(s)
- Sarah M Greising
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
48
|
Little SC, Biesiadecki BJ, Kilic A, Higgins RSD, Janssen PML, Davis JP. The rates of Ca2+ dissociation and cross-bridge detachment from ventricular myofibrils as reported by a fluorescent cardiac troponin C. J Biol Chem 2012; 287:27930-40. [PMID: 22718768 DOI: 10.1074/jbc.m111.337295] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The rate-limiting step of cardiac muscle relaxation has been proposed to reside in the myofilament. Both the rates of cross-bridge detachment and Ca(2+) dissociation from troponin C (TnC) have been hypothesized to rate-limit myofilament inactivation. In this study we used a fluorescent TnC to measure both the rate of Ca(2+) dissociation from TnC and the rate of cross-bridge detachment from several different species of ventricular myofibrils. The fluorescently labeled TnC was sensitive to both Ca(2+) dissociation and cross-bridge detachment at low Ca(2+) (presence of EGTA), allowing for a direct comparison between the two proposed rates of myofilament inactivation. Unlike Ca(2+) dissociation from TnC, cross-bridge detachment varied in myofibrils from different species and was rate-limited by ADP release. At subphysiological temperatures (<20 °C), the rate of Ca(2+) dissociation from TnC was faster than the rate of cross-bridge detachment in the presence of ADP. These results support the hypothesis that cross-bridge detachment rate-limits relaxation. However, Ca(2+) dissociation from TnC was not as temperature-sensitive as cross-bridge detachment. At a near physiological temperature (35 °C) and ADP, the rate of cross-bridge detachment may actually be faster than the rate of Ca(2+) dissociation. This provides evidence that there may not be a simple, single rate-limiting step of myofilament inactivation.
Collapse
Affiliation(s)
- Sean C Little
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
49
|
Protein electrophoresis in agarose gels for separating high molecular weight proteins. Methods Mol Biol 2012; 869:111-8. [PMID: 22585481 DOI: 10.1007/978-1-61779-821-4_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Very large proteins (subunit sizes >200 kDa) are difficult to electrophoretically separate on polyacrylamide gels. A SDS vertical agarose gel system has been developed that has vastly improved resolving power for very large proteins. Proteins with molecular masses between 200 and 4,000 kDa can be clearly separated. Inclusion of a reducing agent in the upper reservoir buffer has been found to be a key technical procedure for obtaining optimum resolution.
Collapse
|
50
|
Monasky MM, Taglieri DM, Patel BG, Chernoff J, Wolska BM, Ke Y, Solaro RJ. p21-activated kinase improves cardiac contractility during ischemia-reperfusion concomitant with changes in troponin-T and myosin light chain 2 phosphorylation. Am J Physiol Heart Circ Physiol 2011; 302:H224-30. [PMID: 22037191 DOI: 10.1152/ajpheart.00612.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
p21-activated kinase 1 (Pak1) is a serine/threonine kinase that activates protein phosphatase 2a, resulting in the dephosphorylation of cardiac proteins and increased myofilament Ca(2+) sensitivity. Emerging evidence indirectly indicates a role for Pak1 in ischemia-reperfusion (I/R), but direct evidence is lacking. We hypothesize that activation of the Pak1 signaling pathway is a cardioprotective mechanism that prevents or reverses the detrimental effects of ischemic injury by inducing posttranslational modifications in myofilament proteins that ultimately improve cardiac contractility following ischemic insult. In the present study, we subjected ex vivo hearts from wild-type (WT) and Pak1-knockout (KO) mice to 20 min of global cardiac ischemia followed by 30 min of reperfusion. In the absence of Pak1, there was an exacerbation of the increased end-diastolic pressure and reduced left ventricular developed pressure occurring after I/R injury. ProQ analysis revealed an increase in troponin-T phosphorylation at baseline in Pak1-KO hearts compared with WT. Significantly decreased myosin light chain 2 (MLC2) phosphorylation in Pak1-KO hearts compared with WT after I/R injury was confirmed by Western immunoblotting. These data indicate that Pak1-KO hearts have reduced recovery of myocardial performance after global I/R injury concomitant with changes in troponin-T and MLC2 phosphorylation. Finally, a protein-protein association between Pak1 and MLC2, and Pak1 and troponin-T, was determined by coimmunoprecipitation. Thus, results of our study provide a basis for targeting a novel pathway, including Pak1, in the therapies for patients with ischemic events.
Collapse
Affiliation(s)
- Michelle M Monasky
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 60612-7342, USA
| | | | | | | | | | | | | |
Collapse
|