1
|
George MAR, Dopfer O. Microhydrated clusters of a pharmaceutical drug: infrared spectra and structures of amantadineH +(H 2O) n. Phys Chem Chem Phys 2023; 25:5529-5549. [PMID: 36723361 DOI: 10.1039/d2cp04556g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Solvation of pharmaceutical drugs has an important effect on their structure and function. Analysis of infrared photodissociation spectra of amantadineH+(H2O)n=1-4 clusters in the sensitive OH, NH, and CH stretch range by quantum chemical calculations (B3LYP-D3/cc-pVTZ) provides a first impression of the interaction of this pharmaceutically active cation with water at the molecular level. The size-dependent frequency shifts reveal detailed information about the acidity of the protons of the NH3+ group of N-protonated amantadineH+ (AmaH+) and the strength of the NH⋯O and OH⋯O hydrogen bonds (H-bonds) of the hydration network. The preferred cluster growth begins with sequential hydration of the NH3+ group by NH⋯O ionic H-bonds (n = 1-3), followed by the extension of the solvent network through OH⋯O H-bonds. However, smaller populations of cluster isomers with an H-bonded solvent network and free N-H bonds are already observed for n ≥ 2, indicating the subtle competition between noncooperative ion hydration and cooperative H-bonding. Interestingly, cyclic water ring structures are identified for n ≥ 3, each with two NH⋯O and two OH⋯O H-bonds. Despite the increasing destabilization of the N-H proton donor bonds upon gradual hydration, no proton transfer to the (H2O)n solvent cluster is observed up to n = 4. In addition to ammonium cluster ions, a small population of microhydrated iminium isomers is also detected, which is substantially lower for the hydrophilic H2O than for the hydrophobic Ar environment.
Collapse
Affiliation(s)
| | - Otto Dopfer
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| |
Collapse
|
2
|
George MAR, Dopfer O. Opening of the Diamondoid Cage upon Ionization Probed by Infrared Spectra of the Amantadine Cation Solvated by Ar, N 2 , and H 2 O. Chemistry 2022; 28:e202200577. [PMID: 35611807 PMCID: PMC9400954 DOI: 10.1002/chem.202200577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Indexed: 01/18/2023]
Abstract
Radical cations of diamondoids, a fundamental class of very stable cyclic hydrocarbon molecules, play an important role in their functionalization reactions and the chemistry of the interstellar medium. Herein, we characterize the structure, energy, and intermolecular interaction of clusters of the amantadine radical cation (Ama+ , 1-aminoadamantane) with solvent molecules of different interaction strength by infrared photodissociation (IRPD) spectroscopy of mass-selected Ama+ Ln clusters, with L=Ar (n≤3) and L=N2 and H2 O (n=1), and dispersion-corrected density functional theory calculations (B3LYP-D3/cc-pVTZ). Three isomers of Ama+ generated by electron ionization are identified by the vibrational properties of their rather different NH2 groups. The ligands bind preferentially to the acidic NH2 protons, and the strength of the NH…L ionic H-bonds are probed by the solvation-induced red-shifts in the NH stretch modes. The three Ama+ isomers include the most abundant canonical cage isomer (I) produced by vertical ionization, which is separated by appreciable barriers from two bicyclic distonic iminium ions obtained from cage-opening (primary radical II) and subsequent 1,2 H-shift (tertiary radical III), the latter of which is the global minimum on the Ama+ potential energy surface. The effect of solvation on the energetics of the potential energy profile revealed by the calculations is consistent with the observed relative abundance of the three isomers. Comparison to the adamantane cation indicates that substitution of H by the electron-donating NH2 group substantially lowers the barriers for the isomerization reaction.
Collapse
Affiliation(s)
| | - Otto Dopfer
- Institut für Optik und Atomare PhysikTechnische Universität BerlinHardenbergstr. 3610623BerlinGermany
| |
Collapse
|
3
|
Ilkhani H, Zhong CJ, Hepel M. Magneto-Plasmonic Nanoparticle Grid Biosensor with Enhanced Raman Scattering and Electrochemical Transduction for the Development of Nanocarriers for Targeted Delivery of Protected Anticancer Drugs. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1326. [PMID: 34069804 PMCID: PMC8157304 DOI: 10.3390/nano11051326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/25/2022]
Abstract
Safe administration of highly cytotoxic chemotherapeutic drugs is a challenging problem in cancer treatment due to the adverse side effects and collateral damage to non-tumorigenic cells. To mitigate these problems, promising new approaches, based on the paradigm of controlled targeted drug delivery (TDD), and utilizing drug nanocarriers with biorecognition ability to selectively target neoplastic cells, are being considered in cancer therapy. Herein, we report on the design and testing of a nanoparticle-grid based biosensing platform to aid in the development of new targeted drug nanocarriers. The proposed sensor grid consists of superparamagnetic gold-coated core-shell Fe2Ni@Au nanoparticles, further functionalized with folic acid targeting ligand, model thiolated chemotherapeutic drug doxorubicin (DOX), and a biocompatibility agent, 3,6-dioxa-octanethiol (DOOT). The employed dual transduction method based on electrochemical and enhanced Raman scattering detection has enabled efficient monitoring of the drug loading onto the nanocarriers, attaching to the sensor surface, as well as the drug release under simulated intracellular conditions. The grid's nanoparticles serve here as the model nanocarriers for new TDD systems under design and optimization. The superparamagnetic properties of the Fe2Ni@Au NPs aid in nanoparticles' handling and constructing a dense sensor grid with high plasmonic enhancement of the Raman signals due to the minimal interparticle distance.
Collapse
Affiliation(s)
- Hoda Ilkhani
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
- Central New Mexico Community College, Albuquerque, NM 87106, USA
| | - Chuan-Jian Zhong
- Department of Chemistry, Binghamton University, Binghamton, NY 13902, USA;
| | - Maria Hepel
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
| |
Collapse
|
4
|
George MAR, Buttenberg F, Förstel M, Dopfer O. Microhydration of substituted diamondoid radical cations of biological relevance: infrared spectra of amantadine +-(H 2O) n = 1-3 clusters. Phys Chem Chem Phys 2020; 22:28123-28139. [PMID: 33290468 DOI: 10.1039/d0cp05299j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydration of biomolecules and pharmaceutical compounds has a strong impact on their structure, reactivity, and function. Herein, we explore the microhydration structure around the radical cation of the widespread pharmaceutical drug amantadine (C16H15NH2, Ama) by infrared photodissociation (IRPD) spectroscopy of mass-selected Ama+Wn = 1-3 clusters (W = H2O) recorded in the NH, CH, and OH stretch range of the cation ground electronic state. Analysis of the size-dependent frequency shifts by dispersion-corrected density functional theory calculations (B3LYP-D3/cc-pVTZ) provides detailed information about the acidity of the protons of the NH2 group of Ama+ and the structure and strength of the NHO and OHO hydrogen bonds (H-bonds) of the hydration network. The preferred sequential cluster growth begins with hydration of the two acidic NH protons of the NH2 group (n = 1-2) and continues with an extension of the H-bonded hydration network by forming an OHO H-bond of the third W to one ligand in the first hydration subshell (n = 3), like in the W2 dimer. For n = 2, a minor population corresponds to Ama+W2 structures with a W2 unit attached to Ama+via a NHW2 H-bond. Although the N-H proton donor bonds are progressively destabilized by gradual microhydration, no proton transfer to the Wn solvent cluster is observed in the investigated size range (n ≤ 3). Besides the microhydration structure, we also obtain a first impression of the structure and IR spectrum of bare Ama+, as well as the effects of both ionization and hydration on the structure of the adamantyl cage. Comparison of Ama+ with aliphatic and aromatic primary amine radical cations reveals differences in the acidity of the NH2 group and the resulting interaction with W caused by substitution of the cycloalkyl cage.
Collapse
|
5
|
Espinosa-Bustos C, Canales C, Ramírez G, Jaque P, Salas CO. Unveiling interactions between DNA and cytotoxic 2-arylpiperidinyl-1,4-naphthoquinone derivatives: A combined electrochemical and computational study. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2018.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
6
|
Polyethylene glycol gold-nanoparticles: Facile nanostructuration of doxorubicin and its complex with DNA molecules for SERS detection. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2015.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Ilkhani H, Hughes T, Li J, Zhong CJ, Hepel M. Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA. Biosens Bioelectron 2016; 80:257-264. [PMID: 26851584 DOI: 10.1016/j.bios.2016.01.068] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 12/31/2022]
Abstract
Widely used anti-cancer treatments involving chemotherapeutic drugs result in cancer cell damage due to their strong interaction with DNA. In this work, we have developed laboratory biosensors for screening chemotherapeutic drugs and to aid in the assessment of DNA modification/damage caused by these drugs. The sensors utilize surface-enhanced Raman scattering (SERS) spectroscopy and electrochemical methods to monitor sensory film modification and observe the drug-DNA reactivity. The self-assembled monolayer protected gold-disk electrode (AuDE) was coated with a reduced graphene oxide (rGO), decorated with plasmonic gold-coated Fe2Ni@Au magnetic nanoparticles functionalized with double-stranded DNA (dsDNA), a sequence of the breast cancer gene BRCA1. The nanobiosensors AuDE/SAM/rGO/Fe2Ni@Au/dsDNA were then subjected to the action of a model chemotherapeutic drug, doxorubicin (DOX), to assess the DNA modification and its dose dependence. The designed novel nanobiosensors offer SERS/electrochemical transduction, enabling chemically specific and highly sensitive analytical signals generation. The SERS measurements have corroborated the DOX intercalation into the DNA duplex whereas the electrochemical scans have indicated that the DNA modification by DOX proceeds in a concentration dependent manner, with limit of detection LOD=8 µg/mL (S/N=3), with semilog linearity over 3 orders of magnitude. These new biosensors are sensitive to agents that interact with DNA and facilitate the analysis of functional groups for determination of the binding mode. The proposed nanobiosensors can be applied in the first stage of the drug development for testing the interactions of new drugs with DNA before the drug efficacy can be assessed in more expensive testing in vitro and in vivo.
Collapse
Affiliation(s)
- Hoda Ilkhani
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
| | - Taylor Hughes
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
| | - Jing Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Chuan Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Maria Hepel
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA.
| |
Collapse
|
8
|
A computational approach to the resonance Raman spectrum of doxorubicin in aqueous solution. Theor Chem Acc 2016. [DOI: 10.1007/s00214-015-1781-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Radi AE, Nassef HM, Attallah MI. Investigation of antimalarial drug pyrimethamine and its interaction with dsDNA by electrochemical and spectroscopic techniques. ANALYTICAL METHODS 2015; 7:4159-4167. [DOI: 10.1039/c5ay00774g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The electrochemical behavior of the antimalarial drug pyrimethamine (PMT) was examined at a screen printed carbon electrode (SPCE) in different aqueous supporting electrolytes using cyclic voltammetry (CV) and differential pulse voltammetry (DPV).
Collapse
Affiliation(s)
- Abd-Elgawad Radi
- Department of Chemistry
- Faculty of Science
- Dumyat University
- 34517 Dumyat
- Egypt
| | - Hossam M. Nassef
- Department of Chemistry
- Faculty of Science
- Dumyat University
- 34517 Dumyat
- Egypt
| | | |
Collapse
|
10
|
Radi AE, El-Naggar AE, Nassef HM. Electrochemical and Spectral studies on the Interaction of the Antiparasitic Drug Nitazoxanide with DNA. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.02.092] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Kleeblatt J, Ehlert S, Hölzer J, Sklorz M, Rittgen J, Baumgärtel P, Schubert JK, Zimmermann R. Investigation of the photoionization properties of pharmaceutically relevant substances by resonance-enhanced multiphoton ionization spectroscopy and single-photon ionization spectroscopy using synchrotron radiation. APPLIED SPECTROSCOPY 2013; 67:860-872. [PMID: 23876725 DOI: 10.1366/13-06988] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The photoionization properties of the pharmaceutically relevant substances amantadine, diazepam, dimethyltryptamine, etomidate, ketamine, mescaline, methadone, and propofol were determined. At beamline U125/2-10m-NIM of the BESSY II synchrotron facility (Berlin, Germany) vacuum ultraviolet (VUV) photoionization spectra were recorded in the energy range 7.1 to 11.9 eV (174.6 to 104.2 nm), showing the hitherto unknown ionization energies and fragmentation appearance energies of the compounds under investigation. Furthermore, (1+1)-resonance-enhanced multiphoton ionization (REMPI) spectra of selected compounds (amantadine, diazepam, etomidate, ketamine, and propofol) were recorded by a continuous scan in the energy range between 3.6 and 5.7 eV (345 to 218 nm) using a tunable optical parametric oscillator (spectral resolution: 0.1 nm) laser system. The resulting REMPI wavelength spectra of these compounds are discussed and put into context with already known UV absorption data. Time-of-flight mass spectrometry was used for ion detection in both experiments. Finally, the implications of the obtained physical-chemical results for potential analytical applications are discussed. In this context, fast detection approaches for the considered compounds from breath gas using photoionization mass spectrometry and a rapid pre-concentration step (e.g., needle trap device) are of interest.
Collapse
Affiliation(s)
- Juliane Kleeblatt
- Joint Mass Spectrometry Center, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock, Germany; Comprehensive Molecular Analytics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Tang M, Li Q, Xiao L, Li Y, Jensen JL, Liou TG, Zhou A. Toxicity effects of short term diesel exhaust particles exposure to human small airway epithelial cells (SAECs) and human lung carcinoma epithelial cells (A549). Toxicol Lett 2012; 215:181-92. [PMID: 23124088 PMCID: PMC7920584 DOI: 10.1016/j.toxlet.2012.10.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 10/22/2012] [Accepted: 10/24/2012] [Indexed: 11/28/2022]
Abstract
In this study, confocal Raman spectroscopy, atomic force microscope (AFM) and multiplex ELISA were applied to analyze the biophysical responses (biomechanics and biospectroscopy) of normal human primary small airway epithelial cells (SAECs) and human lung carcinoma epithelial A549 cells to in vitro short term DEP exposure (up to 2h). Raman spectra revealed the specific cellular biomolecular changes in cells induced by DEP compared to unexposed control cells. Principal component analysis was successfully applied to analyze spectral differences between control and treated groups from multiple individual cells, and indicated that cell nuclei are more sensitive than other cell locations. AFM measurements indicated that 2h of DEP exposure induced a significant decrease in cell elasticity and a dramatic change in membrane surface adhesion force. Cytokine and chemokine production measured by multiplex ELISA demonstrated DEP-induced inflammatory responses in both cell types.
Collapse
Affiliation(s)
- Mingjie Tang
- Department of Biological Engineering, Utah State University, Logan, UT, USA
| | - Qifei Li
- Department of Biological Engineering, Utah State University, Logan, UT, USA
| | - Lifu Xiao
- Department of Biological Engineering, Utah State University, Logan, UT, USA
| | - Yanping Li
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Judy L. Jensen
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Theodore G. Liou
- Division of Respiratory, Critical Care and Occupational Pulmonary Medicine, Department of Medicine, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Anhong Zhou
- Department of Biological Engineering, Utah State University, Logan, UT, USA
| |
Collapse
|
13
|
Cui F, Huo R, Hui G, Lv X, Jin J, Zhang G, Xing W. Study on the interaction between aglycon of daunorubicin and calf thymus DNA by spectroscopy. J Mol Struct 2011. [DOI: 10.1016/j.molstruc.2011.06.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Raman spectroscopic investigation on the interaction of malignanthepatocytes with doxorubicin. Biophys Chem 2009; 140:57-61. [DOI: 10.1016/j.bpc.2008.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 11/17/2008] [Indexed: 11/24/2022]
|
15
|
|
16
|
The Study of Doxorubicin and its Complex with DNA by SERS and UV-resonance Raman Spectroscopy. B KOREAN CHEM SOC 2004. [DOI: 10.5012/bkcs.2004.25.8.1211] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
He X, Li D, Liang A, Lin B. Interaction between netropsin and double-stranded DNA in capillary zone electrophoresis and affinity capillary electrophoresis. J Chromatogr A 2002; 982:285-91. [PMID: 12489885 DOI: 10.1016/s0021-9673(02)01592-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Capillary zone electrophoresis (CZE) and affinity capillary electrophoresis (ACE) were applied to study the interaction between netropsin and a 14mer double-stranded DNA (dsDNA). The use of a polyacrylamide coated capillary can suppress the electroosmotic flow (EOF) and the adsorption of DNA onto the wall. Better analysis of the DNA was achieved in a coated capillary upon Tris-acetate. In CZE, the peak width broadened due to the affinity interaction between dsDNA and netropsin. In ACE, o-toluic acid, a negatively charged molecule was used as the indicator to monitor the changes of EOF when netropsin was added to the running buffer. The 14mer dsDNA showed different mobilities upon various concentrations of netropsin due to the affinity interaction between the dsDNA and netropsin. The binding constants of this interaction were (1.07 +/- 0.10) x 10(5) M(-1) calculated from CZE and (4.75 +/- 0.30) x 10(4) M(-1) from ACE using a Scatchard plot. The binding stoichiometry was 1:1 calculated from CZE which was superior to ACE in this study.
Collapse
Affiliation(s)
- Xinya He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | | | | | | |
Collapse
|