1
|
Xu J, Li Y, Yang X, Li H, Xiao X, You J, Li H, Zheng L, Yi C, Li Z, Huang Y. Quercetin inhibited LPS-induced cytokine storm by interacting with the AKT1-FoxO1 and Keap1-Nrf2 signaling pathway in macrophages. Sci Rep 2024; 14:20913. [PMID: 39245773 PMCID: PMC11381534 DOI: 10.1038/s41598-024-71569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
Cytokine storm (CS) emerges as an exacerbated inflammatory response triggered by various factors such as pathogens and excessive immunotherapy, posing a significant threat to life if left unchecked. Quercetin, a monomer found in traditional Chinese medicine, exhibits notable anti-inflammatory and antiviral properties. This study endeavors to explore whether quercetin intervention could mitigate CS through a combination of network pharmacology analysis and experimental validation. First, common target genes and potential mechanisms affected by quercetin and CS were identified through network pharmacology, and molecular docking experiments confirmed quercetin and core targets. Subsequently, in vitro experiments of Raw264.7 cells stimulated by lipopolysaccharide (LPS) showed that quercetin could effectively inhibit the overexpression of pro-inflammatory mediators and regulate the AKT1-FoxO1 signaling pathway. At the same time, quercetin can reduce ROS through the Keap1-Nrf2 signaling pathway. In addition, in vivo studies of C57BL/6 mice injected with LPS further confirmed quercetin's inhibitory effect on CS. In conclusion, this investigation elucidated novel target genes and signaling pathways implicated in the therapeutic effects of quercetin on CS. Moreover, it provided compelling evidence supporting the efficacy of quercetin in reversing LPS-induced CS, primarily through the regulation of the AKT1-FoxO1 and Keap1-Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Jingyi Xu
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, No.17, Section3, Renmin South Road, Chengdu, 610044, People's Republic of China
| | - Yue Li
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, No.17, Section3, Renmin South Road, Chengdu, 610044, People's Republic of China
| | - Xi Yang
- Department of Medical Oncology, West China Hospital, Cancer Center, Sichuan University, No.37 Guoxue Lane, Chengdu, 610041, China
| | - Hong Li
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, No.17, Section3, Renmin South Road, Chengdu, 610044, People's Republic of China
| | - Xi Xiao
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, No.17, Section3, Renmin South Road, Chengdu, 610044, People's Republic of China
| | - Jia You
- Department of Medical Oncology, West China Hospital, Cancer Center, Sichuan University, No.37 Guoxue Lane, Chengdu, 610041, China
| | - Huawei Li
- Department of Integrated Traditional Chinese and Western Medicine, School of Medicine, Cancer Hospital, University of Electronic Science and Technology of China, Chengdu, 610041, China
| | - Lingnan Zheng
- Department of Medical Oncology, West China Hospital, Cancer Center, Sichuan University, No.37 Guoxue Lane, Chengdu, 610041, China
| | - Cheng Yi
- Department of Medical Oncology, West China Hospital, Cancer Center, Sichuan University, No.37 Guoxue Lane, Chengdu, 610041, China.
| | - Zhaojun Li
- Department of Radiation Oncology, Hainan Affiliated Hospital of Hainan Medical University (Hainan General Hospital), No.31, Longhua Road, Haikou, 570100, China.
| | - Ying Huang
- West China School of Basic Medical Science and Forensic Medicine, Sichuan University, No.17, Section3, Renmin South Road, Chengdu, 610044, People's Republic of China.
| |
Collapse
|
2
|
Antimicrobial Activity and Protective Effect of Tuscan Bee Pollens on Oxidative and Endoplasmic Reticulum Stress in Different Cell-Based Models. Foods 2021; 10:foods10061422. [PMID: 34207468 PMCID: PMC8235197 DOI: 10.3390/foods10061422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
Bee pollen is an apiary product of great interest owing to its high nutritional and therapeutic properties. This study aimed to assess the cellular antioxidant activity and the antihemolytic effect of Castanea, Rubus, and Cistus bee pollens on human erythrocytes. We also tested the antimicrobial potential of each sample on selected Gram-negative and Gram-positive bacteria. Finally, the effect of Castanea bee pollen, showing the best phytochemical profile, was analyzed on human microvascular endothelial cells exposed to thapsigargin, used as endoplasmic reticulum (ER) stressor. Our results showed good biological activities of all bee pollen samples that, under oxidative conditions, significantly improved the erythrocytes’ antioxidant activity and limited cell lyses. Castanea and Cistus showed comparable antihemolytic activities, with higher % hemolysis inhibition than Rubus. All samples exerted antimicrobial activity with different selectivity among all the tested microorganisms with minimal inhibitory concentration values ranging from 5 to 10 mg/mL. Finally, Castanea bee pollen was effective in reducing gene over-expression and oxidation process arising from thapsigargin treatment, with a maximum protective effect at 10 µg/mL. In conclusion, bee pollen represents a potential natural antibacterial and a good nutraceutical product useful in the prevention of free radical and ER stress-associated diseases.
Collapse
|
3
|
Darden DB, Kelly LS, Fenner BP, Moldawer LL, Mohr AM, Efron PA. Dysregulated Immunity and Immunotherapy after Sepsis. J Clin Med 2021; 10:jcm10081742. [PMID: 33920518 PMCID: PMC8073536 DOI: 10.3390/jcm10081742] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Implementation of protocolized surveillance, diagnosis, and management of septic patients, and of surgical sepsis patients in particular, is shown to result in significantly increased numbers of patients surviving their initial hospitalization. Currently, most surgical sepsis patients will rapidly recover from sepsis; however, many patients will not rapidly recover, but instead will go on to develop chronic critical illness (CCI) and experience dismal long-term outcomes. The elderly and comorbid patient is highly susceptible to death or CCI after sepsis. Here, we review aspects of the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome (PICS) endotype to explain the underlying pathobiology of a dysregulated immune system in sepsis survivors who develop CCI; then, we explore targets for immunomodulatory therapy.
Collapse
|
4
|
Abstract
The microcirculation maintains tissue homeostasis through local regulation of blood flow and oxygen delivery. Perturbations in microvascular function are characteristic of several diseases and may be early indicators of pathological changes in the cardiovascular system and in parenchymal tissue function. These changes are often mediated by various reactive oxygen species and linked to disruptions in pathways such as vasodilation or angiogenesis. This overview compiles recent advances relating to redox regulation of the microcirculation by adopting both cellular and functional perspectives. Findings from a variety of vascular beds and models are integrated to describe common effects of different reactive species on microvascular function. Gaps in understanding and areas for further research are outlined. © 2020 American Physiological Society. Compr Physiol 10:229-260, 2020.
Collapse
Affiliation(s)
- Andrew O Kadlec
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - David D Gutterman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Department of Medicine-Division of Cardiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
5
|
Induction of NLRP3 Inflammasome Activation by Heme in Human Endothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4310816. [PMID: 29743981 PMCID: PMC5883980 DOI: 10.1155/2018/4310816] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/17/2018] [Accepted: 01/28/2018] [Indexed: 12/31/2022]
Abstract
Hemolytic or hemorrhagic episodes are often associated with inflammation even when infectious agents are absent suggesting that red blood cells (RBCs) release damage-associated molecular patterns (DAMPs). DAMPs activate immune and nonimmune cells through pattern recognition receptors. Heme, released from RBCs, is a DAMP and induces IL-1β production through the activation of the nucleotide-binding domain and leucine-rich repeat-containing family and pyrin domain containing 3 (NLRP3) in macrophages; however, other cellular targets of heme-mediated inflammasome activation were not investigated. Because of their location, endothelial cells can be largely exposed to RBC-derived DAMPs; therefore, we investigated whether heme and other hemoglobin- (Hb-) derived species induce NLRP3 inflammasome activation in these cells. We found that heme upregulated NLRP3 expression and induced active IL-1β production in human umbilical vein endothelial cells (HUVECs). LPS priming largely amplified the heme-mediated production of IL-1β. Heme administration into C57BL/6 mice induced caspase-1 activation and cleavage of IL-1β which was not observed in NLRP3-/- mice. Unfettered production of reactive oxygen species played a critical role in heme-mediated NLRP3 activation. Activation of NLRP3 by heme required structural integrity of the heme molecule, as neither protoporphyrin IX nor iron-induced IL-1β production. Neither naive nor oxidized forms of Hb were able to induce IL-1β production in HUVECs. Our results identified endothelial cells as a target of heme-mediated NLRP3 activation that can contribute to the inflammation triggered by sterile hemolysis. Thus, understanding the characteristics and cellular counterparts of RBC-derived DAMPs might allow us to identify new therapeutic targets for hemolytic diseases.
Collapse
|
6
|
Gabriele M, Pucci L, La Marca M, Lucchesi D, Della Croce CM, Longo V, Lubrano V. A fermented bean flour extract downregulates LOX-1, CHOP and ICAM-1 in HMEC-1 stimulated by ox-LDL. Cell Mol Biol Lett 2016; 21:10. [PMID: 28536613 PMCID: PMC5415722 DOI: 10.1186/s11658-016-0015-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/09/2016] [Indexed: 02/07/2023] Open
Abstract
This study focused on an extract from fermented flour from the Lady Joy variety of the common bean Phaseolus vulgaris. The extract, Lady Joy lysate (Lys LJ), is enriched in antioxidant compounds during the fermentation. We assessed it for its protective effect on endothelial cells treated with oxidized-LDL (ox-LDL). The oxidative stress was determined by measuring the contents of thiobarbituric acid-reactive substances and reactive oxygen metabolites. ICAM-1, ET-1 and IL-6 concentrations were assessed using ELISA. LOX-1 and CHOP expression were analyzed using both quantitative RT-PCR and ELISA or western blotting. Ox-LDL treatment induced significant oxidative stress, which was strongly reduced by pre-treatment with the extract. The ox-LDL exposure significantly enhanced ICAM-1, IL-6 and ET-1 levels over basal levels. Lys LJ pre-treatment exerted an inhibitory effect on ox-LDL-induced endothelial activation with ICAM-1 levels comparable to those for the untreated cells. IL-6 and ET-1 production, although reduced, was still significantly higher than for the control. Both LOX-1 and CHOP expression were upregulated after ox-LDL exposure, but this effect was significantly decreased after Lys LJ pre-treatment. Lys LJ alone did not alter the ICAM-1, IL-6 and ET-1 concentrations or CHOP expression, but it did significantly lower the LOX-1 protein level. Our data suggest that Lys LJ is an effective antioxidant that is able to inhibit the oxidation process, but that it is only marginally active against inflammation and ET-1 production in HMEC-1 exposed to ox-LDL.
Collapse
Affiliation(s)
- Morena Gabriele
- National Research Council (CNR), Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Laura Pucci
- National Research Council (CNR), Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Margherita La Marca
- National Research Council (CNR), Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Daniela Lucchesi
- Department of Clinical and Experimental Medicine, Section of Metabolic Diseases, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | - Clara Maria Della Croce
- National Research Council (CNR), Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Vincenzo Longo
- National Research Council (CNR), Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Valter Lubrano
- Fondazione CNR/Regione Toscana G. Monasterio, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
7
|
Zhao H, Liu Z, Shen H, Jin S, Zhang S. Glycyrrhizic acid pretreatment prevents sepsis-induced acute kidney injury via suppressing inflammation, apoptosis and oxidative stress. Eur J Pharmacol 2016; 781:92-9. [PMID: 27063444 DOI: 10.1016/j.ejphar.2016.04.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 10/22/2022]
Abstract
Glycyrrhizic acid (GA), an active ingredient in licorice, has multiple pharmacological activities. The aim of our study was to investigate the molecular mechanism involved in the protective effects of GA in lipopolysaccharide (LPS) stimulated rat mesangial cells (HBZY-1) and septic rats. Sepsis model was established by injection of 5mg/kg LPS in rats or incubation with 1μg/ml LPS for 24h in HBZY-1 cells. A variety of molecular biological experiments were carried out to assess the effects of GA on inflammation, apoptosis, and oxidative stress. First we found that GA alleviated sepsis-induced kidney injury in vivo. Furthermore, GA suppressed inflammatory response in vivo and in vitro. Additionally, GA inhibited cell apoptosis and the changes in expressions of apoptosis related proteins induced by LPS. Moreover, GA markedly inhibited oxidative stress induced by LPS via activation of ERK signaling pathway. Finally GA could inhibit the activation of NF-κ B induced by LPS. Our present study indicates that GA has a protective effect against sepsis-induced inflammatory response, apoptosis, and oxidative stress damage, which provides a molecular basis for a new medical treatment of septic acute kidney injury.
Collapse
Affiliation(s)
- Hongyu Zhao
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| | - Zhenning Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Shuai Jin
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Shun Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| |
Collapse
|
8
|
Effect of N-acetylcysteine treatment on oxidative stress and inflammation after severe burn. Burns 2012; 38:428-37. [DOI: 10.1016/j.burns.2011.09.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 09/04/2011] [Accepted: 09/05/2011] [Indexed: 11/17/2022]
|
9
|
Liu XH, Pan LL, Yang HB, Gong QH, Zhu YZ. Leonurine attenuates lipopolysaccharide-induced inflammatory responses in human endothelial cells: involvement of reactive oxygen species and NF-κB pathways. Eur J Pharmacol 2012; 680:108-14. [PMID: 22305882 DOI: 10.1016/j.ejphar.2012.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 12/29/2011] [Accepted: 01/13/2012] [Indexed: 01/27/2023]
Abstract
Leonurine, an active alkaloid of Traditional Chinese Medicine Herba leonuri, displayed cardioprotective effects by anti-oxidative and anti-apoptotic activities in vitro and in vivo. Herein, we explored the effects and possible mechanisms of leonurine on lipopolysaccharide (LPS)-induced inflammatory responses in human umbilical vein endothelial cells (HUVEC). We found that leonurine pretreatment concentration-dependently attenuated LPS-induced mRNA expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), E-selectin, and monocyte chemoattractant protein-1. Meanwhile, LPS-mediated expression/release of ICAM-1, VCAM-1, and cyclooxygenase-2, and tumor necrosis factor-α was also reduced by leonurine. In addition, we confirmed that leonurine suppressed degradation of IκBα and phosphorylation of nuclear factor-κB (NF-κB) p65 as well as production of intracellular reactive oxygen species in a concentration dependent manner. Furthermore, the cytoprotective enzyme heme oxygenase-1 could be upregulated in leonurine-treated HUVEC. Our present results indicated leonurine exerted beneficial effects in inflammatory conditions partly through inhibition of reactive oxygen species and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Xin Hua Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | | | | | | | | |
Collapse
|
10
|
Grinnell KL, Chichger H, Braza J, Duong H, Harrington EO. Protection against LPS-induced pulmonary edema through the attenuation of protein tyrosine phosphatase-1B oxidation. Am J Respir Cell Mol Biol 2011; 46:623-32. [PMID: 22180868 DOI: 10.1165/rcmb.2011-0271oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
One hallmark of acute lung injury is the disruption of the pulmonary endothelial barrier. Such disruption correlates with increased endothelial permeability, partly through the disruption of cell-cell contacts. Protein tyrosine phosphatases (PTPs) are known to affect the stability of both cell-extracellular matrix adhesions and intercellular adherens junctions (AJs). However, evidence for the role of select PTPs in regulating endothelial permeability is limited. Our investigations noted that the inhibition of PTP1B in cultured pulmonary endothelial cells (ECs), as well as in the vasculature of intact murine lungs via the transient overexpression of a catalytically inactive PTP1B, decreased the baseline resistance of cultured EC monolayers and increased the formation of edema in murine lungs, respectively. In addition, we observed that the overexpression of wild-type PTP1B enhanced basal barrier function in vitro. Immunohistochemical analyses of pulmonary ECs and the coimmunoprecipitation of murine lung homogenates demonstrated the association of PTP1B with the AJ proteins β-catenin, p120-catenin, and VE-cadherin both in vitro and ex vivo. Using LPS in a model of sepsis-induced acute lung injury, we showed that reactive oxygen species were generated in response to LPS, which correlated with enhanced PTP1B oxidation, inhibited phosphatase activity, and attenuation of the interactions between PTP1B and β-catenin, as well as enhanced β-catenin tyrosine phosphorylation. Finally, the overexpression of a cytosolic PTP1B fragment, shown to be resistant to nicotinamide adenine dinucleotide phosphate-reduced oxidase-4 (Nox4)-mediated oxidation, significantly attenuated LPS-induced endothelial barrier dysfunction and the formation of lung edema, and preserved the associations of PTP1B with AJ protein components, independent of PTP1B phosphatase activity. We conclude that PTP1B plays an important role in maintaining the pulmonary endothelial barrier, and PTP1B oxidation appears to contribute to sepsis-induced pulmonary vascular dysfunction, possibly through the disruption of AJs.
Collapse
Affiliation(s)
- Katie L Grinnell
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, 830 Chalkstone Avenue, Providence, RI 02908, USA
| | | | | | | | | |
Collapse
|
11
|
Neun BW, Dobrovolskaia MA. Detection and quantitative evaluation of endotoxin contamination in nanoparticle formulations by LAL-based assays. Methods Mol Biol 2011; 697:121-130. [PMID: 21116960 DOI: 10.1007/978-1-60327-198-1_12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Bacterial endotoxin or lipopolysaccharide (LPS) is a membrane component of all Gram-negative bacteria. The administration of products contaminated with bacterial endotoxin can cause fever, shock, and even death. Accordingly, the FDA sets limits on the number of endotoxin units (EU) that may be present in a drug or device product. Limulus amoebocyte lysate (LAL) is the extract from amoebocytes of the horseshoe crab Limulus polyphemus, which reacts with bacterial endotoxin. Detection of the products of this reaction is an effective means of quantifying the EU present in a drug formulation. However, nanoparticles frequently interfere with the reactivity of endotoxin, the LAL reaction, or the detection of the reaction products. This interference can be manifested as either an enhancement or an inhibition, causing a respective overestimation or underestimation of the EU in the sample. Here, we present two methods for the detection and quantification of endotoxin in nanoparticle preparations: one is based on an end-point chromogenic LAL assay, and the second approach is based on measuring the turbidity of the LAL extract.
Collapse
Affiliation(s)
- Barry W Neun
- Nanotechnology Characterization Laboratory, Advanced Technology Program, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD, USA
| | | |
Collapse
|
12
|
Li J, Peng L, Wu L, Kuang Y, Su J, Yi M, Hu X, Li D, Xie H, Kanekura T, Chen X. Depletion of CD147 sensitizes human malignant melanoma cells to hydrogen peroxide-induced oxidative stress. J Dermatol Sci 2010; 58:204-10. [DOI: 10.1016/j.jdermsci.2010.03.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 03/16/2010] [Accepted: 03/30/2010] [Indexed: 02/04/2023]
|
13
|
Fu P, Birukova AA, Xing J, Sammani S, Murley JS, Garcia JGN, Grdina DJ, Birukov KG. Amifostine reduces lung vascular permeability via suppression of inflammatory signalling. Eur Respir J 2008; 33:612-24. [PMID: 19010997 DOI: 10.1183/09031936.00014808] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Despite an encouraging outcome of antioxidant therapy in animal models of acute lung injury, effective antioxidant agents for clinical application remain to be developed. The present study investigated the effect of pre-treatment with amifostine, a thiol antioxidant compound, on lung endothelial barrier dysfunction induced by Gram-negative bacteria wall-lipopolysaccharide (LPS). Endothelial permeability was monitored by changes in transendothelial electrical resistance. Cytoskeletal remodelling and reactive oxygen species (ROS) production was examined by immunofluorescence. Cell signalling was assessed by Western blot. Measurements of Evans blue extravasation, cell count and protein content in bronchoalveolar lavage fluid were used as in vivo parameters of lung vascular permeability. Hydrogen peroxide, LPS and interleukin-6 caused cytoskeletal reorganisation and increased permeability in the pulmonary endothelial cells, reflecting endothelial barrier dysfunction. These disruptive effects were inhibited by pre-treatment with amifostine and linked to the amifostine-mediated abrogation of ROS production and redox-sensitive signalling cascades, including p38, extracellular signal regulated kinase 1/2, mitogen-activated protein kinases and the nuclear factor-kappaB pathway. In vivo, concurrent amifostine administration inhibited LPS-induced oxidative stress and p38 mitogen-activated protein kinase activation, which was associated with reduced vascular leak and neutrophil recruitment to the lungs. The present study demonstrates, for the first time, protective effects of amifostine against lipopolysaccharide-induced lung vascular leak in vitro and in animal models of lipopolysaccharide-induced acute lung injury.
Collapse
Affiliation(s)
- P Fu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, University of Chicago, 929 E. 57th Street, GCIS Bldg, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Videm V, Albrigtsen M. Soluble ICAM-1 and VCAM-1 as markers of endothelial activation. Scand J Immunol 2008; 67:523-31. [PMID: 18363595 DOI: 10.1111/j.1365-3083.2008.02029.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Activated endothelium releases the soluble adhesion molecules vascular cell adhesion molecule-1 (sVCAM-1) and intercellular adhesion molecule-1 (sICAM-1). Measurement of fluid-phase adhesion molecules is therefore used to quantify endothelial activation, but it is unclear which is the better marker. The aims of the study were to compare the relationships between mRNA, surface and total expression and released VCAM-1 and ICAM-1 in endothelial cell cultures during activation, and to compare human umbilical vein endothelial cells (HUVEC) with the microvascular cell line HMEC-1. sVCAM-1 better represented mRNA and surface expression changes in HUVEC undergoing endotoxin stimulation than did sICAM-1. Very little VCAM-1 was released from endotoxin-stimulated HMEC-1, and sICAM-1 seemed a better activation marker for these cells. During incubation of HUVEC in media with glucose concentrations of 5.6, 10.6 or 20.6 mM, VCAM-1 was released to the media in a dose-dependent way without changes in surface expression. ICAM-1 was not influenced by the glucose concentration. There are situations when VCAM-1 concentrations in the media do not mirror the surface expression on HUVEC in culture, indicating that measurements of soluble adhesion molecules may not necessarily be representative of the conditions on the cell surface. Endothelium from different locations showed varying responses with respect to VCAM-1 and ICAM-1 liberation upon endotoxin stimulation. Thus, both sVCAM-1 and sICAM-1 should be quantified in clinical studies of endothelial activation until their characteristics are better clarified.
Collapse
Affiliation(s)
- V Videm
- Department of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway. vibeke.videm@.ntnu.no
| | | |
Collapse
|
15
|
Alipour M, Omri A, Smith MG, Suntres ZE. Prophylactic effect of liposomal N-acetylcysteine against LPS-induced liver injuries. ACTA ACUST UNITED AC 2008; 13:297-304. [PMID: 17986488 DOI: 10.1177/0968051907085062] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The aim of this study was to evaluate and compare the effectiveness of N-acetylcysteine (NAC) and liposomally-encapsulated NAC (L-NAC) in ameliorating the hepatotoxic effects of lipopolysaccharide (LPS). LPS, a major cell wall molecule of Gram-negative bacteria and the principal initiator of septic shock, causes liver injury in vivo that is dependent on neutrophils, platelets, and several inflammatory mediators, including tumour necrosis factor-alpha (TNF-alpha). Male Sprague-Dawley rats were pretreated intravenously with saline, plain liposomes (dipalmitoylphosphatidylcholine [DPPC]), NAC (25 mg/kg body weight), or L-NAC (25 mg/kg NAC body weight) and 4 h later were challenged intravenously with LPS (Escherichia coli O111:B4, 1.0 mg/kg body weight); animals were killed 20 h post-LPS challenge. Hepatic cell injury was evaluated by measuring the alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in plasma. LPS-induced activation of the inflammatory response was evaluated by measuring the levels of myeloperoxidase activity and chloramine concentration in liver homogenates as well as TNF-alpha levels in plasma. The hepatic levels of lipid peroxidation products and non-protein thiols (NPSH) were used to assess the extent of involvement of oxidative stress mechanisms. In general, challenge of animals with LPS resulted in hepatic injuries, activation of the inflammatory response, decreases in NPSH levels and increases in the levels of lipid peroxidation products (malondialdehyde and 4-hydroxyalkenals). Pretreatment of animals with NAC or empty liposomes did not have any significant protective effect against LPS-induced hepatotoxicity. On the other hand, pretreatment of animals with an equivalent dose of L-NAC conferred protection against the liver injuries induced following LPS challenge. These data suggest that NAC when delivered as a liposomal formulation is a potentially more effective prophylactic pharmacological agent in alleviating LPS-induced liver injuries.
Collapse
Affiliation(s)
- Misagh Alipour
- The Novel Drug and Vaccine Delivery Systems Facility, Laurentian University, Sudbury, Ontario, Canada
| | | | | | | |
Collapse
|
16
|
Tomofuji T, Ekuni D, Yamanaka R, Kusano H, Azuma T, Sanbe T, Tamaki N, Yamamoto T, Watanabe T, Miyauchi M, Takata T. Chronic Administration of Lipopolysaccharide and Proteases Induces Periodontal Inflammation and Hepatic Steatosis in Rats. J Periodontol 2007; 78:1999-2006. [DOI: 10.1902/jop.2007.070056] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
17
|
Zha RP, Xu W, Wang WY, Dong L, Wang YP. Prevention of lipopolysaccharide-induced injury by 3,5-dicaffeoylquinic acid in endothelial cells. Acta Pharmacol Sin 2007; 28:1143-8. [PMID: 17640475 DOI: 10.1111/j.1745-7254.2007.00595.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AIM To investigate the effect of 3,5-dicaffeoylquinic acid (3,5-diCQA) on lipopolysaccharide (LPS)-induced injury in human dermal microvascular endothelial cells (HMEC-1). METHODS The anti-oxidant effect was detected using the malondialdehyde (MDA) assay in a rat liver microsome model of lipid peroxidation. Cell viability was analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide assay. Cell lipid peroxide injury was measured by lactate dehydrogenase (LDH) release. Apoptotic cells were detected by flow cytometry, and confirmed by DNA fragmentation analysis. Caspase-3 activity was measured using a specific assay kit. The level of intracellular reactive oxygen species (ROS) was determined by flow cytometry with a 2,7-dichlorodihydro-fluorescein diacetate fluorescence probe. RESULTS The exposure of microsomes to ascorbate-Fe2+ resulted in lipoperoxidation according to an increase in the level of MDA. MDA formation decreased in a dose-dependent manner on treatment with 5, 10, or 50 micromol/L 3,5-diCQA. Treatment with LPS for 16 h resulted in a 60% decrease in cell viability and an increase in LDH release from 47.6% to 61.5%. DNA laddering was observed by agarose gel electrophoresis. The level of apoptotic cells peaked at 27% after treatment with LPS for 12 h. Following treatment with LPS for 12 h, intracellular ROS and caspase-3 activity increased. Pretreatment with 3,5-diCQA at 5, 10, or 50 micromol/L for 1 h attenuated LPS-mediated endothelial cell injury. The anti-apoptotic action of 3,5-diCQA was partially dependent on its capacity for anti-oxidation and the suppression of caspase-3 activity. CONCLUSION 3,5-diCQA displays anti-oxidative and anti-apoptotic activity in HMEC-1 due to scavenging of intracellular ROS induced by LPS, and the suppression of caspase-3 activity.
Collapse
Affiliation(s)
- Ruo-peng Zha
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | |
Collapse
|
18
|
Kaushal V, Koeberle PD, Wang Y, Schlichter LC. The Ca2+-activated K+ channel KCNN4/KCa3.1 contributes to microglia activation and nitric oxide-dependent neurodegeneration. J Neurosci 2007; 27:234-44. [PMID: 17202491 PMCID: PMC6672279 DOI: 10.1523/jneurosci.3593-06.2007] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain damage and disease involve activation of microglia and production of potentially neurotoxic molecules, but there are no treatments that effectively target their harmful properties. We present evidence that the small-conductance Ca2+/calmodulin-activated K+ channel KCNN4/ KCa3.1/SK4/IK1 is highly expressed in rat microglia and is a potential therapeutic target for acute brain damage. Using a Transwell cell-culture system that allows separate treatment of the microglia or neurons, we show that activated microglia killed neurons, and this was markedly reduced by treating only the microglia with a selective inhibitor of KCa3.1 channels, triarylmethane-34 (TRAM-34). To assess the role of KCa3.1 channels in microglia activation and key signaling pathways involved, we exploited several fluorescence plate-reader-based assays. KCa3.1 channels contributed to microglia activation, inducible nitric oxide synthase upregulation, production of nitric oxide and peroxynitrite, and to consequent neurotoxicity, protein tyrosine nitration, and caspase 3 activation in the target neurons. Microglia activation involved the signaling pathways p38 mitogen-activated protein kinase (MAPK) and nuclear factor kappaB (NF-kappaB), which are important for upregulation of numerous proinflammatory molecules, and the KCa3.1 channels were functionally linked to activation of p38 MAPK but not NF-kappaB. These in vitro findings translated into in vivo neuroprotection, because we found that degeneration of retinal ganglion cells after optic nerve transection was reduced by intraocular injection of TRAM-34. This study provides evidence that KCa3.1 channels constitute a therapeutic target in the CNS and that inhibiting this K+ channel might benefit acute and chronic neurodegenerative disorders that are caused by or exacerbated by inflammation.
Collapse
Affiliation(s)
- Vikas Kaushal
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8, and
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A1
| | - Paulo D. Koeberle
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8, and
| | - Yimin Wang
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8, and
| | - Lyanne C. Schlichter
- Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada M5T 2S8, and
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada M5S 1A1
| |
Collapse
|
19
|
Ivanova AV, Mikhal'chik EV, Miroshnikova EA, Lukasheva EV, Korkina LG. Effect of endotoxemia on skin antioxidant enzymes under experimental conditions. Bull Exp Biol Med 2006; 142:413-5. [PMID: 17415424 DOI: 10.1007/s10517-006-0379-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Intraperitoneal injection of bacterial lipopolysaccharide in a dose of 1 mg/kg was followed by prestimulation of whole blood leukocytes in rats. Activities of peroxide- and lipoperoxide-utilizing antioxidant enzymes glutathione peroxidase, glutathione S-transferase, and catalase increased 1 day after lipopolysaccharide administration, while the content of malonic dialdehyde in the skin remained unchanged.
Collapse
Affiliation(s)
- A V Ivanova
- Russian State Medical University; Russian People's Friendship University, Moscow
| | | | | | | | | |
Collapse
|
20
|
Nooteboom A, Bleichrodt RP, Hendriks T. Modulation of endothelial monolayer permeability induced by plasma obtained from lipopolysaccharide-stimulated whole blood. Clin Exp Immunol 2006; 144:362-9. [PMID: 16634811 PMCID: PMC1809663 DOI: 10.1111/j.1365-2249.2006.03074.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to elucidate the time course of the permeability response of endothelial monolayers after exposure to plasma obtained from lipopolysaccharide (LPS)-treated human whole blood; to investigate the role of apoptosis in monolayer permeability, and to inhibit the permeability increase, particularly after addition of the plasma stimulus. Human umbilical vein endothelial cells (HUVEC) were cultured on semiporous membranes and the permeability for albumin was measured after exposure, according to different schedules, to LPS-conditioned plasma. Apoptotic HUVEC were measured by both flow cytometry and ELISA. A variety of agents, including antibodies against cytokines, inhibitors of NF-kappaB, and a caspase inhibitor, were added to HUVEC, either prior to or after the stimulus. A maximum increase of the permeability was achieved after 4-6 h of exposure to LPS-conditioned plasma. This response was not accompanied by an increase in the number of apoptotic HUVEC. Administration of antibodies against both Tumour Necrosis Factor-alpha (TNF-alpha) and Interleukin-1beta (IL-1beta) to HUVEC within 1 h after stimulation significantly reduced the permeability increase. Similarly, pyrollidine di-thiocarbamate (PDTC), but not N-acetylcysteine, could prevent the permeability response, and was still effective when added within 2 h after LPS-conditioned plasma. The TNF-alpha/IL-1beta signal present in LPS-conditioned plasma appears to increase endothelial permeability through intracellular pathways that very likely involve the activation of NF-kappaB. Although poststimulatory inhibition of the permeability response proves to be possible with agents such as PDTC, the window of opportunity appears very small if placed in a clinical perspective.
Collapse
Affiliation(s)
- A Nooteboom
- Department of Surgery, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | | | | |
Collapse
|
21
|
Beck GC, Rafat N, Brinkkoetter P, Hanusch C, Schulte J, Haak M, van Ackern K, van der Woude FJ, Yard BA. Heterogeneity in lipopolysaccharide responsiveness of endothelial cells identified by gene expression profiling: role of transcription factors. Clin Exp Immunol 2006; 143:523-33. [PMID: 16487252 PMCID: PMC1809605 DOI: 10.1111/j.1365-2249.2006.03005.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Interindividual differences of endothelial cells in response to endotoxins might contribute to the diversity in clinical outcome among septic patients. The present study was conducted to test the hypothesis that endothelial cells (EC) with high and low proinflammatory potential exist and to dissect the molecular basis underlying this phenomenon. Thirty human umbilical vein endothelial cell (HUVEC) lines were stimulated for 24 h with lipopolysaccharide (LPS) and screened for interleukin (IL)-8 production. Based on IL-8 production five low and five high producers, tentatively called types I and II responders, respectively, were selected for genome-wide gene expression profiling. From the 74 genes that were modulated by LPS in all type II responders, 33 genes were not influenced in type I responders. Among the 41 genes that were increased in both responders, 17 were expressed significantly stronger in type II responders. Apart from IL-8, significant differences in the expression of proinflammatory related genes between types I and II responders were found for adhesion molecules [intercellular adhesion molecule (ICAM-1), E-selectin)], chemokines [monocyte chemoattractant protein (MCP-1), granulocyte chemotactic protein (GCP-2)], cytokines (IL-6) and the transcription factor CCAAT/enhancer binding protein-delta (C/EBP-delta). Type I responders also displayed a low response towards tumour necrosis factor (TNF)-alpha. In general, maximal activation of nuclear factor (NF)-kappaB was achieved in type I responders at higher concentrations of LPS compared to type II responders. In the present study we demonstrate that LPS-mediated gene expression differs quantitatively and qualitatively in types I and II responders. Our results suggest a pivotal role for common transcription factors as a low inflammatory response was also observed after TNF-alpha stimulation. Further studies are required to elucidate the relevance of these findings in terms of clinical outcome in septic patients.
Collapse
Affiliation(s)
- G C Beck
- Institute of Anaesthesiology and Critical Care Medicine, University of Mannheim, Theodor-Kutzer Ufer 1-3, 68167 Mannheim, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sadowska AM, Manuel-Y-Keenoy B, De Backer WA. Antioxidant and anti-inflammatory efficacy of NAC in the treatment of COPD: discordant in vitro and in vivo dose-effects: a review. Pulm Pharmacol Ther 2006; 20:9-22. [PMID: 16458553 DOI: 10.1016/j.pupt.2005.12.007] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 12/16/2005] [Indexed: 01/07/2023]
Abstract
In order to develop efficient therapeutic regimes for chronic obstructive pulmonary disease (COPD), N-acetylcysteine (NAC) has been tested as a medication which can suppress various pathogenic processes in this disease. Besides its well-known and efficient mucolytic action, NAC meets these needs by virtue of its antioxidant and anti-inflammatory modes of action. NAC is a thiol compound which by providing sulfhydryl groups, can act both as a precursor of reduced glutathione and as a direct ROS scavenger, hence regulating the redox status in the cells. In this way it can interfere with several signaling pathways that play a role in regulating apoptosis, angiogenesis, cell growth and arrest and inflammatory response. Overall, the antioxidant effects of NAC are well documented in in vivo and in vitro studies. It successfully inhibits oxidative stress at both high and low concentrations, under acute (in vitro) and chronic administration (in vivo). With regard to its anti-inflammatory action, in contrast, the effects of NAC differ in vivo and in vitro and are highly dose-dependent. In the in vitro settings anti-inflammatory effects are seen at high but not at low concentrations. On the other hand, some long-term effectiveness is reported in several in vivo studies even at low dosages. Increasing the dose seems to improve NAC bioavailability and may also consolidate some of its effects. In this way, the effects that are observed in the clinical and in vivo studies do not always reflect the success of the in vitro experiments. Furthermore, the results obtained with healthy volunteers do not always provide incontrovertible proof of its usefulness in COPD especially when number of exacerbations and changes in lung function are chosen as the primary outcomes. Despite these considerations and in view of the present lack of effective therapies to inhibit disease progression in COPD, NAC and its derivatives, because of their multiple molecular modes of action, remain promising medication once doses and route of administration are optimized.
Collapse
Affiliation(s)
- A M Sadowska
- Department of Respiratory Medicine, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | | | | |
Collapse
|
23
|
Xu Z, Cawthon D, McCastlain KA, Duhart HM, Newport GD, Fang H, Patterson TA, Slikker W, Ali SF. Selective alterations of transcription factors in MPP+-induced neurotoxicity in PC12 cells. Neurotoxicology 2005; 26:729-37. [PMID: 16112330 DOI: 10.1016/j.neuro.2004.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 01/10/2005] [Accepted: 12/13/2004] [Indexed: 01/02/2023]
Abstract
MPP(+) (1-methyl-4-phenylpyridinium; the active metabolite of the neurotoxin MPTP (1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine)) depletes dopamine (DA) content and elicits cell death in PC12 cells. However, the mechanism of MPP(+)-induced neurotoxicity is still unclear. In this study, the dose response and time-course of MPP(+)-induced DA depletion and decreased cell viability were determined in nerve growth factor (NGF)-differentiated PC12 cells. The alteration of transcription factors (TFs) induced by MPP(+) from a selected dose level and time point was then evaluated using protein/DNA-binding arrays. K-means clustering analysis identified four patterns of protein/DNA-binding changes. Three of the 28 TFs identified in PC12 cells increased by 100% (p53, PRE, Smad SBE) and 2 decreased by 50% (HSE, RXR(DR1)) of control with MPP(+) treatment. In addition, three TFs decreased within the range of 33-50% (TFIID, E2F1, CREB) and two TFs increased within the range of 50-100% (PAX-5, Stat4). An electrophoretic mobility shift assay (EMSA) was used to confirm the changes of p53 and HSE. The observed changes in TFs correlated with the alterations of DA and cell viability. The data indicates that selective transcription factors are involved in MPP(+)-induced neurotoxicity and it provides mechanistic information that may be applicable to animal studies with MPTP and clinical studies of Parkinson's disease.
Collapse
Affiliation(s)
- Z Xu
- Neurochemistry Laboratory, Division of Neurotoxicology, HFT-132, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Jafari B, Ouyang B, Li LF, Hales CA, Quinn DA. Intracellular glutathione in stretch-induced cytokine release from alveolar type-2 like cells. Respirology 2004; 9:43-53. [PMID: 14982601 DOI: 10.1111/j.1440-1843.2003.00527.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Ventilator-induced lung injury (VILI) is characterized by release of inflammatory cytokines, but the mechanisms are not well understood. We hypothesized that stretch-induced cytokine production is dependent on oxidant release and is regulated by intracellular glutathione (GSH) inhibition of nuclear factor kappa B (NF-kappa B) and activator protein-1 (AP-1) binding. METHODOLOGY Type 2-like alveolar epithelial cells (A549) were exposed to cyclic stretch at 15% strain for 4 h at 20 cycles/min with or without N-acetylcysteine (NAC) or glutathione monoethylester (GSH-e) to increase intracellular GSH, or buthionine sulfoximine (BSO), to deplete intracellular GSH. RESULTS Cyclic stretch initially caused a decline in intracellular GSH and a rise in the levels of isoprostane, a marker of oxidant injury. This was followed by a significant increase in intracellular GSH and a decrease in isoprostane. Stretch-induced IL-8 and IL-6 production were significantly inhibited when intracellular GSH was further increased by NAC or GSH-e (P < 0.0001). Stretch-induced IL-8 and IL-6 production were augmented when intracellular GSH was depleted by BSO (P < 0.0001). NAC blocked stretch-induced NF-kappa B and AP-1 binding and inhibited IL-8 mRNA expression. CONCLUSIONS We conclude that oxidant release may play a role in lung cell stretch-induced cytokine release, and antioxidants, which increase intracellular GSH, may protect lung cells against stretch-induced injury.
Collapse
Affiliation(s)
- Behrouz Jafari
- Pulmonary & Critical Care Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | | | | | | | | |
Collapse
|
26
|
Dyakonova VA, Dambaeva SV, Pinegin BV, Khaitov RM. Study of interaction between the polyoxidonium immunomodulator and the human immune system cells. Int Immunopharmacol 2004; 4:1615-23. [PMID: 15454114 DOI: 10.1016/j.intimp.2004.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 07/13/2004] [Accepted: 07/14/2004] [Indexed: 11/16/2022]
Abstract
Polyoxidonium (PO) is a high-molecular weight physiologically active compound with pronounced immunomodulating activity, an N-oxidized polyethylene-piperazine derivative. The aim of our work was to study cellular and molecular mechanisms of the action of PO on the human peripheral blood leukocytes. By means of flow cytometry it was established that the binding of fluorescein-isothiocyanate-labeled PO (FITC-labeled PO) occurs more rapidly with monocytes and neutrophils than with lymphocytes (7- to 8-fold weaker as compared with monocytes). Using colloidal gold-labeled PO and electron microscopy it was shown with that the preparation penetrates into leukocytes by endocytosis. PO is localized in endoplasmic vesicles of cellular cytosol. Analysis of one of the crucial signal transducer, the intracellular Ca(2+), performed with the Fluo-3 fluorescent dye, showed that PO does not induce Ca(2+) mobilization from the intracellular calcium stores and influx of extracellular Ca(2+). The study of the intracellular hydrogen peroxide (H(2)O(2)) production with the 2',7'-dichlorfluorescein indicator demonstrated that PO significantly increases the level of intracellular H(2)O(2) in monocytes and neutrophils, however, this increase is much less as compared with phorbol myristate acetate stimulation. The analysis of immunomodulating effect produced by PO proved its stimulating activity on some cytokines production in vitro, e.g. interleukin 1beta (IL-1beta), tumor necrosis factor (TNF)-alpha and IL-6. A dose-dependent increase in the intracellular killing by blood phagocytes was established under the action of PO.
Collapse
Affiliation(s)
- Vera A Dyakonova
- Department of Immunodiagnostics and Immunocorrection, National Research Center Institute of Immunology, Ministry of Public Health Moscow, Russian Federation.
| | | | | | | |
Collapse
|