1
|
Wölkart G, Stessel H, Fassett E, Teschl E, Friedl K, Trummer M, Schrammel A, Kollau A, Mayer B, Fassett J. Adenosine kinase (ADK) inhibition with ABT-702 induces ADK protein degradation and a distinct form of sustained cardioprotection. Eur J Pharmacol 2022; 927:175050. [PMID: 35618039 DOI: 10.1016/j.ejphar.2022.175050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
Abstract
Pharmacological inhibition of adenosine kinase (ADK), the major route of myocardial adenosine metabolism, can elicit acute cardioprotection against ischemia-reperfusion (IR) by increasing adenosine signaling. Here, we identified a novel, extended effect of the ADK inhibitor, ABT-702, on cardiac ADK protein longevity and investigated its impact on sustained adenosinergic cardioprotection. We found that ABT-702 treatment significantly reduced cardiac ADK protein content in mice 24-72 h after administration (IP or oral). ABT-702 did not alter ADK mRNA levels, but strongly diminished (ADK-L) isoform protein content through a proteasome-dependent mechanism. Langendorff perfusion experiments revealed that hearts from ABT-702-treated mice maintain higher adenosine release long after ABT-702 tissue elimination, accompanied by increased basal coronary flow (CF) and robust tolerance to IR. Sustained cardioprotection by ABT-702 did not involve increased nitric oxide synthase expression, but was completely dependent upon increased adenosine release in the delayed phase (24 h), as indicated by the loss of cardioprotection and CF increase upon perfusion of adenosine deaminase or adenosine receptor antagonist, 8-phenyltheophylline. Importantly, blocking adenosine receptor activity with theophylline during ABT-702 administration prevented ADK degradation, preserved late cardiac ADK activity, diminished CF increase and abolished delayed cardioprotection, indicating that early adenosine receptor signaling induces late ADK degradation to elicit sustained adenosine release. Together, these results indicate that ABT-702 induces a distinct form of delayed cardioprotection mediated by adenosine receptor-dependent, proteasomal degradation of cardiac ADK and enhanced adenosine signaling in the late phase. These findings suggest ADK protein stability may be pharmacologically targeted to achieve sustained adenosinergic cardioprotection.
Collapse
Affiliation(s)
- Gerald Wölkart
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria
| | - Heike Stessel
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria
| | - Erin Fassett
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria
| | - Eva Teschl
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria
| | - Katrin Friedl
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria
| | - Modesta Trummer
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria
| | - Astrid Schrammel
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria
| | - Alexander Kollau
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria
| | - Bernd Mayer
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria
| | - John Fassett
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria.
| |
Collapse
|
2
|
Hebanowska A, Mierzejewska P, Braczko A. Effect of estradiol on enzymes of vascular extracellular nucleotide metabolism. Hormones (Athens) 2021; 20:111-117. [PMID: 32935303 PMCID: PMC7889668 DOI: 10.1007/s42000-020-00242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/02/2020] [Indexed: 11/08/2022]
Abstract
PURPOSE Estrogens have beneficial effects on the cardiovascular system, promoting vasodilation, endothelial cells growth, relaxation, and regulation of blood pressure. Some of these effects could be associated with the purinergic system known for the control of vasodilation, inflammation, and platelet function. The aim of our study was the evaluation of ATP, AMP, and adenosine extracellular catabolism, catalyzed by ectonucleoside triphosphate diphosphohydrolase-1 (CD39), ecto-5'-nucleotidase (CD73), and ecto-adenosine deaminase (eADA) in mouse aortas. METHODS Extracellular hydrolysis of ATP, AMP, and adenosine was estimated on the aortic surface of 3-month-old female and male C57BL/6 J wild-type (WT) mice, in female WT mouse aortas incubated for 48 h in the presence or absence of 100 nM estradiol, and in WT female mouse and ApoE-/-LDL-R-/- aortas. The conversion of substrates to products was analyzed by high-pressure liquid chromatography (HPLC). RESULTS We demonstrated significantly higher adenosine deamination rate in WT male vs. female mice (p = 0.041). We also noted the lower adenosine hydrolysis in aortas exposed to estradiol, as compared with the samples incubated in estradiol-free medium (p = 0.043). Finally, we observed that adenosine conversion to inosine was significantly higher on the surface of ApoE-/-LDL-R-/- aortas compared with WT mice (p = 0.001). No such effects were noted in ATP and AMP extracellular hydrolysis. CONCLUSION We conclude that estradiol inhibits the extracellular degradation of adenosine to inosine, which may be an element of its vascular protective effect, as it will lead to an increase in extracellular adenosine concentration. We can also assume that during the development of the atherosclerotic process, the protective role of estradiol in the regulation of adenosine degradation may be obscured by other pathogenic factors.
Collapse
Affiliation(s)
- Areta Hebanowska
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland.
| | | | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
3
|
Yetgin T, Uitterdijk A, Te Lintel Hekkert M, Merkus D, Krabbendam-Peters I, van Beusekom HMM, Falotico R, Serruys PW, Manintveld OC, van Geuns RJM, Zijlstra F, Duncker DJ. Limitation of Infarct Size and No-Reflow by Intracoronary Adenosine Depends Critically on Dose and Duration. JACC Cardiovasc Interv 2016; 8:1990-1999. [PMID: 26738671 DOI: 10.1016/j.jcin.2015.08.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/14/2015] [Indexed: 11/19/2022]
Abstract
OBJECTIVES In the absence of effective clinical pharmacotherapy for prevention of reperfusion-mediated injury, this study re-evaluated the effects of intracoronary adenosine on infarct size and no-reflow in a porcine model of acute myocardial infarction using clinical bolus and experimental high-dose infusion regimens. BACKGROUND Despite the clear cardioprotective effects of adenosine, when administered prior to ischemia, studies on cardioprotection by adenosine when administered at reperfusion have yielded contradictory results in both pre-clinical and clinical settings. METHODS Swine (54 ± 1 kg) were subjected to a 45-min mid-left anterior descending artery occlusion followed by 2 h of reperfusion. In protocol A, an intracoronary bolus of 3 mg adenosine injected over 1 min (n = 5) or saline (n = 10) was administered at reperfusion. In protocol B, an intracoronary infusion of 50 μg/kg/min adenosine (n = 15) or saline (n = 21) was administered starting 5 min prior to reperfusion and continued throughout the 2-h reperfusion period. RESULTS In protocol A, area-at-risk, infarct size, and no-reflow were similar between groups. In protocol B, risk zones were similar, but administration of adenosine resulted in significant reductions in infarct size from 59 ± 3% of the area-at-risk in control swine to 46 ± 4% (p = 0.02), and no-reflow from 49 ± 6% of the infarct area to 26 ± 6% (p = 0.03). CONCLUSIONS During reperfusion, intracoronary adenosine can limit infarct size and no-reflow in a porcine model of acute myocardial infarction. However, protection was only observed when adenosine was administered via prolonged high-dose infusion, and not via short-acting bolus injection. These findings warrant reconsideration of adenosine as an adjuvant therapy during early reperfusion.
Collapse
Affiliation(s)
- Tuncay Yetgin
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands; Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - André Uitterdijk
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Maaike Te Lintel Hekkert
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Daphne Merkus
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Ilona Krabbendam-Peters
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Heleen M M van Beusekom
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Patrick W Serruys
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Olivier C Manintveld
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Robert-Jan M van Geuns
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Felix Zijlstra
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands; Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| | - Dirk J Duncker
- Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, Rotterdam, the Netherlands; Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands.
| |
Collapse
|
4
|
|
5
|
Baines CP. How and when do myocytes die during ischemia and reperfusion: the late phase. J Cardiovasc Pharmacol Ther 2012; 16:239-43. [PMID: 21821522 DOI: 10.1177/1074248411407769] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
While the majority of the cardiac myocyte death that makes up the final infarct occurs during ischemia and the first few minutes of reperfusion, cell death does not stop there. In fact necrosis and apoptosis, and potentially autophagy, can continue in the previously ischemic area for up to 3 days post-reperfusion. Several mechanisms can potentially contribute to this death continuum: (1) myocytes that have already passed the point of no return despite reperfusion; (2) continued dysfunction of the coronary microvasculature; and (3) infiltration of inflammatory cells. The latter in particular leads to elevated myocardial concentrations of reactive oxygen species (ROS), inflammatory cytokines, activation of toll-like receptors, secretion of toxic enzymes, and activation of the complement cascade--all of which can lead to myocyte death. However, there is a considerable lack of studies that comprehensively examine the time course, nature, and mechanisms of post-reperfusion myocyte death. Moreover, cell death types (apoptosis, necrosis, and autophagy) are inextricably linked to one another. Therefore, we do not know whether specific blockade of necrosis during the acute phase of myocyte death will instead enhance apoptosis during the late phase, that is, will we be simply delaying the inevitable? Consequently, the purpose of this article is to briefly review what we do, and more importantly what we do not, know about cardiac cell death in the reperfused heart and what is needed to advance our understanding of this phenomenon.
Collapse
Affiliation(s)
- Christopher P Baines
- Department of Biomedical Sciences, and Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA.
| |
Collapse
|
6
|
Hussain A, Karjian P, Maddock H. The role of nitric oxide in A3 adenosine receptor-mediated cardioprotection. ACTA ACUST UNITED AC 2009; 29:97-104. [DOI: 10.1111/j.1474-8673.2009.00438.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Mykytenko J, Kerendi F, Reeves JG, Kin H, Zatta AJ, Jiang R, Guyton RA, Vinten-Johansen J, Zhao ZQ. Long-term inhibition of myocardial infarction by postconditioning during reperfusion. Basic Res Cardiol 2006; 102:90-100. [PMID: 17003965 DOI: 10.1007/s00395-006-0625-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 08/16/2006] [Accepted: 08/21/2006] [Indexed: 10/24/2022]
Abstract
Cardioprotection with postconditioning has been well demonstrated after a short period of reperfusion. This study tested the hypothesis that postconditioning reduces infarct size, vascular dysfunction, and neutrophil accumulation after a long-term reperfusion. Canines undergoing 60 min left anterior descending artery (LAD) occlusion were divided into two control groups of either 3 h or 24 h of full reperfusion and two postconditioning groups with three 30 s cycles of reperfusion and re-occlusion applied at the onset of either 3 h or 24 h of reperfusion. Size of the area at risk (AAR) and collateral blood flow during ischemia were similar among groups. In controls, infarct size as percentage of the AAR (30 +/- 3 vs. 39 +/- 2* %) by TTC staining, superoxide anion generation from the post-ischemic coronary arteries by lucigenin-enhanced chemiluminescence [(89 +/- 5 vs. 236 +/- 27* relative light units (RLU/mg)], and neutrophil (PMN) accumulation by immunohistochemical staining in the AAR (52 +/- 11 vs. 84 +/- 14* cells/mm(2) myocardium) significantly increased between 3 and 24 h of reperfusion. Postconditioning reduced infarct size (15 +/- 4 and 27 +/- 3.6 %), superoxide anion generation (24 +/- 4 and 43 +/- 11 RLU/mg), and PMN accumulation (19 +/- 6 and 45 +/- 8 cells/mm(2) myocardium) in the 3 and 24 h reperfusion groups relative to time-matched controls. These data suggest that myocardial injury increases with duration of reperfusion; reduction in infarct size and attenuation in inflammatory responses with postconditioning persist after a prolonged reperfusion. * p < 0.05 24 vs. 3 h control; p < 0.05 postconditioning vs. time-matched control.
Collapse
Affiliation(s)
- James Mykytenko
- Cardiothoracic Research Laboratory, Carlyle Fraser Heart Center/ Crawford Long Hospital Emory University School of Medicine, 550 Peachtree Street NE, Atlanta, GA 30308-2225, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Forman MB, Stone GW, Jackson EK. Role of Adenosine as Adjunctive Therapy in Acute Myocardial Infarction. ACTA ACUST UNITED AC 2006; 24:116-47. [PMID: 16961725 DOI: 10.1111/j.1527-3466.2006.00116.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although early reperfusion and maintained patency is the mainstay therapy for ST elevation myocardial infarction, experimental studies demonstrate that reperfusion per se induces deleterious effects on viable ischemic cells. Thus "myocardial reperfusion injury" may compromise the full potential of reperfusion therapy and may account for unfavorable outcomes in high-risk patients. Although the mechanisms of reperfusion injury are complex and multifactorial, neutrophil-mediated microvascular injury resulting in a progressive decrease in blood flow ("no-reflow" phenomenon) likely plays an important role. Adenosine is an endogenous nucleoside found in large quantities in myocardial and endothelial cells. It activates four well-characterized receptors producing various physiological effects that attenuate many of the proposed mechanisms of reperfusion injury. The cardio-protective effects of adenosine are supported by its role as a mediator of pre- and post-conditioning. In experimental models, administration of adenosine in the peri-reperfusion period results in a marked reduction in infarct size and improvement in ventricular function. The cardioprotective effects in the canine model have a narrow time window with the drug losing its effect following three hours of ischemia. Several small clinical studies have demonstrated that administration of adenosine with reperfusion therapy reduces infarct size and improves ventricular function. In the larger AMISTAD and AMISTAD II trials a 3-h infusion of adenosine as an adjunct to reperfusion resulted in a striking reduction in infarct size (55-65%). Post hoc analysis of AMISTAD II showed that this was associated with significantly improved early and late mortality in patients treated within 3.17 h of symptoms. An intravenous infusion of adenosine for 3 h should be considered as adjunctive therapy in high risk-patients undergoing reperfusion therapy.
Collapse
Affiliation(s)
- Mervyn B Forman
- Emory University and North Atlanta Cardiovascular Associates, P.C., Atlanta, GA, USA
| | | | | |
Collapse
|
9
|
Cassuto J, Sinclair R, Bonderovic M. Anti-inflammatory properties of local anesthetics and their present and potential clinical implications. Acta Anaesthesiol Scand 2006; 50:265-82. [PMID: 16480459 DOI: 10.1111/j.1399-6576.2006.00936.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Development of new local anesthetic agents has been focused on the potency of their nerve-blocking effects, duration of action and safety and has resulted in a substantial number of agents in clinical use. It is well established and well documented that the nerve blocking effects of local anesthetics are secondary to their interaction with the Na+ channels thereby blocking nerve membrane excitability and the generation of action potentials. Accumulating data suggest however that local anesthetics also possess a wide range of anti-inflammatory actions through their effects on cells of the immune system, as well as on other cells, e.g. microorganisms, thrombocytes and erythrocytes. The potent anti-inflammatory properties of local anesthetics, superior in several aspects to traditional anti-inflammatory agents of the NSAID and steroid groups and with fewer side-effects, has prompted clinicians to introduce them in the treatment of various inflammation-related conditions and diseases. They have proved successful in the treatment of burn injuries, interstitial cystitis, ulcerative proctitis, arthritis and herpes simplex infections. The detailed mechanisms of action are not fully understood but seem to involve a reversible interaction with membrane proteins and lipids thus regulating cell metabolic activity, migration, exocytosis and phagocytosis.
Collapse
Affiliation(s)
- J Cassuto
- Department of Anesthesiology and Intensive Care and Institution of Surgical Specialties, Sahlgrenska University Hospital, Mölndal, Sweden.
| | | | | |
Collapse
|
10
|
Boucher M, Wann BP, Kaloustian S, Massé R, Schampaert E, Cardinal R, Rousseau G. Sustained cardioprotection afforded by A2A adenosine receptor stimulation after 72 hours of myocardial reperfusion. J Cardiovasc Pharmacol 2005; 45:439-46. [PMID: 15821439 DOI: 10.1097/01.fjc.0000159047.73359.08] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study was designed to determine whether cardioprotection afforded by A2A adenosine receptor stimulation can be sustained and to determine the effect of an A2A adenosine receptor agonist on Akt and cAMP response element binding protein (CREB) activation, as well as Hsp27 and Hsp70 protein expression in such events. The left anterior descending coronary artery was occluded for 40 minutes in anesthetized rats followed by 72 hours of reperfusion. A2A agonist (CGS21680 at 0.2 microg/kg/min) was administered for 120 minutes, starting either 5 minutes before (early) or after (late) the beginning of reperfusion. Infarct size was reduced significantly in the early compared with the control group (35.2 +/- 1.9% and 52.5 +/- 3.4%, respectively; P < 0.05), whereas no difference was observed with the late group (44.5 +/- 7.1%). After 72 hours of reperfusion, drug administration was accompanied by Akt activation (early, 121.8 +/- 17.6%; late, 118.1 +/- 16.4%; P < 0.05), as well as elevated Hsp27 expression (early, 197.2 +/- 27.7%; late, 203.8 +/- 36.8%; P < 0.05); CREB activation and Hsp70 expression were not altered. In another set of experiments in which reperfusion was limited to 15 minutes, Akt was activated only in the early group (121.8 +/- 17.6%; P < 0.05). Moreover, CREB was activated in both the early and late groups (98.4 +/- 8.3% and 107.0 +/- 6.5%, respectively; P < 0.05), whereas Hsp27 and Hsp70 expression were not altered. These results demonstrate that A2A adenosine receptor activation induces a sustained cardioprotection only if the therapy is instituted before reperfusion. This myocardial protection is associated by an early prosurvival Akt activation. CREB activation and Hsp27 content do not seem to be associated with cardioprotection because they are enhanced in both treated groups, suggesting indirect A2A agonist and pathology-related effects.
Collapse
Affiliation(s)
- Matthieu Boucher
- Centre de Biomédecine, Hôpital du Sacré-Coeur de Montréal, Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Pétrault O, Ouk T, Gautier S, Laprais M, Gelé P, Bastide M, Bordet R. Pharmacological neutropenia prevents endothelial dysfunction but not smooth muscle functions impairment induced by middle cerebral artery occlusion. Br J Pharmacol 2005; 144:1051-8. [PMID: 15700030 PMCID: PMC1576087 DOI: 10.1038/sj.bjp.0706124] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The polymorphonuclear neutrophils (PMN) activation and mobilization observed in acute cerebral infarction contribute to the brain tissue damage, but PMN could also be involved in postischemic functional injury of ischemied blood vessel. 2. This study was undertaken to investigate whether pharmacological neutropenia could modify the postischemic endothelial dysfunction in comparison to smooth muscle whose impairment is likely more related to reperfusion and oxidative stress. 3. A cerebral ischemia-reperfusion by endoluminal occlusion of right middle cerebral artery (MCA) was performed 4 days after intravenous administration of vinblastine or 12 h after RP-3 anti-rat neutrophils monoclonal antibody (mAb RP-3) injection into the peritoneal cavity, on male Wistar rats with 1-h ischemia then followed by 24-h reperfusion period. Brain infarct volume was measured by histomorphometric analysis and vascular endothelial and smooth muscle reactivity of MCA was analysed using Halpern myograph. 4. Neutropenia induced a neuroprotective effect as demonstrated by a significant decrease of brain infarct size. In parallel to neuroprotection, neutropenia prevented postischemic impairment of endothelium-dependent relaxing response to acetylcholine. In contrast, smooth muscle functional alterations were not prevented by neutropenia. Ischemia-reperfusion-induced myogenic tone impairment remained unchanged in vinblastine and mAb RP-3-treated rats. Postischemic Kir2.x-dependent relaxation impairment was not prevented in neutropenic conditions. The fully relaxation of smooth muscle response to sodium nitroprusside was similar in all groups. 5. Our results evidenced the dissociate prevention of pharmacologically induced neutropenia on postischemic vascular endothelial and smooth muscle impairment. The selective endothelial protection by neutropenia is parallel to a neuroprotective effect suggesting a possible relationship between the two phenomena.
Collapse
MESH Headings
- Animals
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Infarction, Middle Cerebral Artery/physiopathology
- Infarction, Middle Cerebral Artery/prevention & control
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Neutropenia/chemically induced
- Neutropenia/physiopathology
- Rats
- Rats, Wistar
- Vinblastine/toxicity
Collapse
Affiliation(s)
- Olivier Pétrault
- EA 1046-Laboratoire de Pharmacologie, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université de Lille 2 et Centre Hospitalier Universitaire de Lille, 1 place de Verdun 59045, Lille Cedex, France
| | - Thavarak Ouk
- EA 1046-Laboratoire de Pharmacologie, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université de Lille 2 et Centre Hospitalier Universitaire de Lille, 1 place de Verdun 59045, Lille Cedex, France
| | - Sophie Gautier
- EA 1046-Laboratoire de Pharmacologie, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université de Lille 2 et Centre Hospitalier Universitaire de Lille, 1 place de Verdun 59045, Lille Cedex, France
| | - Maud Laprais
- EA 1046-Laboratoire de Pharmacologie, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université de Lille 2 et Centre Hospitalier Universitaire de Lille, 1 place de Verdun 59045, Lille Cedex, France
| | - Patrick Gelé
- EA 1046-Laboratoire de Pharmacologie, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université de Lille 2 et Centre Hospitalier Universitaire de Lille, 1 place de Verdun 59045, Lille Cedex, France
| | - Michèle Bastide
- EA 1046-Laboratoire de Pharmacologie, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université de Lille 2 et Centre Hospitalier Universitaire de Lille, 1 place de Verdun 59045, Lille Cedex, France
- IUT A, Université Sciences et Techniques de Lille, Villeneuve d'Ascq, France
| | - Régis Bordet
- EA 1046-Laboratoire de Pharmacologie, Institut de Médecine Prédictive et de Recherche Thérapeutique, Université de Lille 2 et Centre Hospitalier Universitaire de Lille, 1 place de Verdun 59045, Lille Cedex, France
- Author for correspondence:
| |
Collapse
|