1
|
Vanderhaeghe S, Prerad J, Tharkeshwar AK, Goethals E, Vints K, Beckers J, Scheveneels W, Debroux E, Princen K, Van Damme P, Fivaz M, Griffioen G, Van Den Bosch L. A pathogenic mutation in the ALS/FTD gene VCP induces mitochondrial hypermetabolism by modulating the permeability transition pore. Acta Neuropathol Commun 2024; 12:161. [PMID: 39390590 PMCID: PMC11465669 DOI: 10.1186/s40478-024-01866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Valosin-containing protein (VCP) is a ubiquitously expressed type II AAA+ ATPase protein, implicated in both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This study aimed to explore the impact of the disease-causing VCPR191Q/wt mutation on mitochondrial function using a CRISPR/Cas9-engineered neuroblastoma cell line. Mitochondria in these cells are enlarged, with a depolarized mitochondrial membrane potential associated with increased respiration and electron transport chain activity. Our results indicate that mitochondrial hypermetabolism could be caused, at least partially, by increased calcium-induced opening of the permeability transition pore (mPTP), leading to mild mitochondrial uncoupling. In conclusion, our findings reveal a central role of the ALS/FTD gene VCP in maintaining mitochondrial homeostasis and suggest a model of pathogenesis based on progressive alterations in mPTP physiology and mitochondrial energetics.
Collapse
Affiliation(s)
- Silke Vanderhaeghe
- Laboratory of Neurobiology, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- reMYND, Leuven, Belgium
| | | | - Arun Kumar Tharkeshwar
- Department of Human Genetics, KU Leuven - University of Leuven, Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven - University of Leuven, Leuven, Belgium
| | - Elien Goethals
- Laboratory of Neurobiology, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- reMYND, Leuven, Belgium
| | - Katlijn Vints
- Electron Microscopy Platform and VIB-Bioimaging Core, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Jimmy Beckers
- Laboratory of Neurobiology, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Wendy Scheveneels
- Laboratory of Neurobiology, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | | | | | - Philip Van Damme
- Laboratory of Neurobiology, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Ludo Van Den Bosch
- Laboratory of Neurobiology, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
| |
Collapse
|
2
|
Huang J, Fu Y, Wang A, Shi K, Peng Y, Yi Y, Yu R, Gao J, Feng J, Jiang G, Song Q, Jiang J, Chen H, Gao X. Brain Delivery of Protein Therapeutics by Cell Matrix-Inspired Biomimetic Nanocarrier. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405323. [PMID: 38718295 DOI: 10.1002/adma.202405323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Indexed: 05/24/2024]
Abstract
Protein therapeutics are anticipated to offer significant treatment options for central nervous system (CNS) diseases. However, the majority of proteins are unable to traverse the blood-brain barrier (BBB) and reach their CNS target sites. Inspired by the natural environment of active proteins, the cell matrix components hyaluronic acid (HA) and protamine (PRTM) are used to self-assemble with proteins to form a protein-loaded biomimetic core and then incorporated into ApoE3-reconstituted high-density lipoprotein (rHDL) to form a protein-loaded biomimetic nanocarrier (Protein-HA-PRTM-rHDL). This cell matrix-inspired biomimetic nanocarrier facilitates the penetration of protein therapeutics across the BBB and enables their access to intracellular target sites. Specifically, CAT-HA-PRTM-rHDL facilitates rapid intracellular delivery and release of catalase (CAT) via macropinocytosis-activated membrane fusion, resulting in improved spatial learning and memory in traumatic brain injury (TBI) model mice (significantly reduces the latency of TBI mice and doubles the number of crossing platforms), and enhances motor function and prolongs survival in amyotrophic lateral sclerosis (ALS) model mice (extended the median survival of ALS mice by more than 10 days). Collectively, this cell matrix-inspired nanoplatform enables the efficient CNS delivery of protein therapeutics and provides a novel approach for the treatment of CNS diseases.
Collapse
Affiliation(s)
- Jialin Huang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yuli Fu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Antian Wang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Kexing Shi
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yidong Peng
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yao Yi
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Renhe Yu
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinchao Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junfeng Feng
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiyao Jiang
- Brain Injury Center, Renji Hospital, Shanghai Institute of Head Trauma, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Shuguang Lab for Future Health, Academy of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200021, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
3
|
Tarot P, Lasbleiz C, Liévens JC. NRF2 signaling cascade in amyotrophic lateral sclerosis: bridging the gap between promise and reality. Neural Regen Res 2024; 19:1006-1012. [PMID: 37862202 PMCID: PMC10749620 DOI: 10.4103/1673-5374.385283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/27/2023] [Accepted: 07/20/2023] [Indexed: 10/22/2023] Open
Abstract
Amyotrophic lateral sclerosis is a very disabling disease due to the degeneration of motor neurons. Symptoms include muscle weakness and atrophy, spasticity, and progressive paralysis. Currently, there is no treatment to reverse damage to motor neurons and cure amyotrophic lateral sclerosis. The only two treatments actually approved, riluzole and edaravone, have shown mitigated beneficial effects. The difficulty to find a cure lies in the complexity and multifaceted pattern of amyotrophic lateral sclerosis pathogenesis. Among mechanisms, abnormal RNA metabolism, nucleocytoplasmic transport defects, accumulation of unfolded protein, and mitochondrial dysfunction would in fine induce oxidative damage and vice versa. A potent therapeutic strategy will be to find molecules that break this vicious circle. Sharpening the nuclear factor erythroid-2 related factor 2 signaling may fulfill this objective since nuclear factor erythroid-2 related factor 2 has a multitarget profile controlling antioxidant defense, mitochondrial functioning, and inflammation. We here discuss the interest of developing nuclear factor erythroid-2 related factor 2-based therapy in regard to the pathophysiological mechanisms and we provide a general overview of the attempted clinical assays in amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Pauline Tarot
- MMDN, Univ Montpellier, EPHE, INSERM, Montpellier, France
| | | | | |
Collapse
|
4
|
Scarian E, Viola C, Dragoni F, Di Gerlando R, Rizzo B, Diamanti L, Gagliardi S, Bordoni M, Pansarasa O. New Insights into Oxidative Stress and Inflammatory Response in Neurodegenerative Diseases. Int J Mol Sci 2024; 25:2698. [PMID: 38473944 DOI: 10.3390/ijms25052698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Oxidative stress (OS) and inflammation are two important and well-studied pathological hallmarks of neurodegenerative diseases (NDDs). Due to elevated oxygen consumption, the high presence of easily oxidizable polyunsaturated fatty acids and the weak antioxidant defenses, the brain is particularly vulnerable to oxidative injury. Uncertainty exists over whether these deficits contribute to the development of NDDs or are solely a consequence of neuronal degeneration. Furthermore, these two pathological hallmarks are linked, and it is known that OS can affect the inflammatory response. In this review, we will overview the last findings about these two pathways in the principal NDDs. Moreover, we will focus more in depth on amyotrophic lateral sclerosis (ALS) to understand how anti-inflammatory and antioxidants drugs have been used for the treatment of this still incurable motor neuron (MN) disease. Finally, we will analyze the principal past and actual clinical trials and the future perspectives in the study of these two pathological mechanisms.
Collapse
Affiliation(s)
- Eveljn Scarian
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Camilla Viola
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Via Agostino Bassi 21, 27100 Pavia, Italy
| | - Francesca Dragoni
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Rosalinda Di Gerlando
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Bartolo Rizzo
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Luca Diamanti
- Neuroncology Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Stella Gagliardi
- Molecular Biology and Transcriptomics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Matteo Bordoni
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| | - Orietta Pansarasa
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy
| |
Collapse
|
5
|
Wunsch FT, Metzler-Nolte N, Theiss C, Matschke V. Defects in Glutathione System in an Animal Model of Amyotrophic Lateral Sclerosis. Antioxidants (Basel) 2023; 12:antiox12051014. [PMID: 37237880 DOI: 10.3390/antiox12051014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progredient neurodegenerative disease characterized by a degeneration of the first and second motor neurons. Elevated levels of reactive oxygen species (ROS) and decreased levels of glutathione, which are important defense mechanisms against ROS, have been reported in the central nervous system (CNS) of ALS patients and animal models. The aim of this study was to determine the cause of decreased glutathione levels in the CNS of the ALS model wobbler mouse. We analyzed changes in glutathione metabolism in the spinal cord, hippocampus, cerebellum, liver, and blood samples of the ALS model, wobbler mouse, using qPCR, Western Blot, HPLC, and fluorometric assays. Here, we show for the first time a decreased expression of enzymes involved in glutathione synthesis in the cervical spinal cord of wobbler mice. We provide evidence for a deficient glutathione metabolism, which is not restricted to the nervous system, but can be seen in various tissues of the wobbler mouse. This deficient system is most likely the reason for an inefficient antioxidative system and, thus, for elevated ROS levels.
Collapse
Affiliation(s)
- Franziska T Wunsch
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Nils Metzler-Nolte
- Inorganic Chemistry I-Bioinorganic Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Carsten Theiss
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany
- International Graduate School of Neuroscience (IGSN), Ruhr-University Bochum, D-44801 Bochum, Germany
| | - Veronika Matschke
- Department of Cytology, Institute of Anatomy, Ruhr-University Bochum, D-44801 Bochum, Germany
| |
Collapse
|
6
|
Porras G, Ruiz S, Maestro I, Borrego-Hernández D, Redondo AG, Martínez A, Martín-Requero Á. Functional Characterization of a Familial ALS-Associated Missense TBK1 (p-Arg573Gly) Mutation in Patient-Derived Lymphoblasts. Int J Mol Sci 2023; 24:ijms24032847. [PMID: 36769169 PMCID: PMC9917786 DOI: 10.3390/ijms24032847] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The goal of this work was to elucidate the pathogenic mechanism of an ALS-associated missense mutation, p.Arg573Gly (R573G), in the TBK1 gene. In particular, we seek to analyze the influence of this variant on the cellular levels and the function of TBK1 in immortalized cells from an ALS patient. The patient (Code# E7) belonged to a Spanish family with autosomal dominant disease manifesting in the sixth decade as either dementia or ALS. Four control individuals without signs of neurological disease were also included in this study. Our results indicate that the R375G TBK1 mutation did not affect the levels of mRNA nor the total TBK1 content; however, we observed a significant decrease in the levels of TBK1 phosphorylation, which is essential for TBK1 activity, as well as a significant reduction in the phosphorylation of p62 and RIPK1, known substrates for TBK1. Lymphoblasts from the R573G TBK1 mutation carrier patient display pathological TDP-43 homeostasis, showing elevated levels of phosphorylated TDP-43 and accumulation of the protein in the cytosolic compartment. In addition, the functional decrease in TBK1 activity observed in the E7 patient did not alter the autophagy flux, but it seems to be enough to increase ROS levels as well as the expression of pro-inflammatory cytokine IL-6.
Collapse
Affiliation(s)
- Gracia Porras
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Silvana Ruiz
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Inés Maestro
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | - Alberto G. Redondo
- ALS Research Lab, Hospital 12 de Octubre Research Institute (i+12), 28041 Madrid, Spain
| | - Ana Martínez
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas, Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Correspondence: (A.M.); (Á.M.-R.)
| | - Ángeles Martín-Requero
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, 28031 Madrid, Spain
- Correspondence: (A.M.); (Á.M.-R.)
| |
Collapse
|
7
|
Vishwas S, Kumar R, Khursheed R, Ramanunny AK, Kumar R, Awasthi A, Corrie L, Porwal O, Arshad MF, Alshammari MK, Alghitran AA, Qumayri AN, Alkhaldi SM, Alshammari AK, Chellappan DK, Gupta G, Collet T, Adams J, Dua K, Gulati M, Singh SK. Expanding Arsenal against Neurodegenerative Diseases Using Quercetin Based Nanoformulations: Breakthroughs and Bottlenecks. Curr Neuropharmacol 2023; 21:1558-1574. [PMID: 35950245 PMCID: PMC10472810 DOI: 10.2174/1570159x20666220810105421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022] Open
Abstract
Quercetin (Qu), a dietary flavonoid, is obtained from many fruits and vegetables such as coriander, broccoli, capers, asparagus, onion, figs, radish leaves, cranberry, walnuts, and citrus fruits. It has proven its role as a nutraceutical owing to numerous pharmacological effects against various diseases in preclinical studies. Despite these facts, Qu and its nanoparticles are less explored in clinical research as a nutraceutical. The present review covers various neuroprotective actions of Qu against various neurodegenerative diseases (NDs) such as Alzheimer's, Parkinson's, Huntington's, and Amyotrophic lateral sclerosis. A literature search was conducted to systematically review the various mechanistic pathways through which Qu elicits its neuroprotective actions and the challenges associated with raw Qu that compromise therapeutic efficacy. The nanoformulations developed to enhance Qu's therapeutic efficacy are also covered. Various ongoing/completed clinical trials related to Qu in treating various diseases, including NDs, are also tabulated. Despite these many successes, the exploration of research on Qu-loaded nanoformulations is limited mostly to preclinical studies, probably due to poor drug loading and stability of the formulation, time-consuming steps involved in the formulation, and their poor scale-up capacity. Hence, future efforts are required in this area to reach Qu nanoformulations to the clinical level.
Collapse
Affiliation(s)
- Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | | | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, 44001, KRG, Iraq
| | - Mohammed F. Arshad
- Department of Research and Scientific Communications, Isthmus Research and Publishing House, New Delhi, 110044, India
| | | | - Abdulrahman A. Alghitran
- Department of Clinical Pharmacy, General Administration of Pharmaceutical Care, Ministry of Health, Riyadh 11176, Saudi Arabia
| | - Ashwaq N. Qumayri
- Department of Clinical Pharmacy, General Administration of Pharmaceutical Care, Ministry of Health, Riyadh 11176, Saudi Arabia
| | - Saif M. Alkhaldi
- Department of Pharmaceutical Care, King Khalid Hospital in Majmaah, Riyadh Region 76312, Saudi Arabia
| | | | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Trudi Collet
- Innovative Medicines Group, Faculty of Health, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411 Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
8
|
Choudhary N, Tewari D, Nabavi SF, Kashani HRK, Lorigooini Z, Filosa R, Khan FB, Masoudian N, Nabavi SM. Plant based food bioactives: A boon or bane for neurological disorders. Crit Rev Food Sci Nutr 2022; 64:3279-3325. [PMID: 36369694 DOI: 10.1080/10408398.2022.2131729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Neurological disorders are the foremost occurring diseases across the globe resulting in progressive dysfunction, loss of neuronal structure ultimately cell death. Therefore, attention has been drawn toward the natural resources for the search of neuroprotective agents. Plant-based food bioactives have emerged as potential neuroprotective agents for the treatment of neurodegenerative disorders. This comprehensive review primarily focuses on various plant food bioactive, mechanisms, therapeutic targets, in vitro and in vivo studies in the treatment of neurological disorders to explore whether they are boon or bane for neurological disorders. In addition, the clinical perspective of plant food bioactives in neurological disorders are also highlighted. Scientific evidences point toward the enormous therapeutic efficacy of plant food bioactives in the prevention or treatment of neurological disorders. Nevertheless, identification of food bioactive components accountable for the neuroprotective effects, mechanism, clinical trials, and consolidation of information flow are warranted. Plant food bioactives primarily act by mediating through various pathways including oxidative stress, neuroinflammation, apoptosis, excitotoxicity, specific proteins, mitochondrial dysfunction, and reversing neurodegeneration and can be used for the prevention and therapy of neurodegenerative disorders. In conclusion, the plant based food bioactives are boon for neurological disorders.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, Adesh Institute of Pharmacy and Biomedical Sciences, Adesh University, Bathinda, Punjab, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India
| | - Seyed Fazel Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Lorigooini
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Rosanna Filosa
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Farheen Badrealam Khan
- Department of Biology, College of Science, The United Arab Emirates University, Al Ain, 15551 United Arab Emirates
| | - Nooshin Masoudian
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre Via Cortenocera, 82030, San Salvatore Telesino, (BN), Italy
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite, Ceara, Brazil
| |
Collapse
|
9
|
Cunha-Oliveira T, Silva DF, Segura L, Baldeiras I, Marques R, Rosenstock T, Oliveira PJ, Silva FSG. Redox profiles of amyotrophic lateral sclerosis lymphoblasts with or without known SOD1 mutations. Eur J Clin Invest 2022; 52:e13798. [PMID: 35467758 DOI: 10.1111/eci.13798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal and rapidly progressing neurodegenerative disease that affects motor neurons. This disease is associated with oxidative stress especially in mutant superoxide dismutase 1 (mutSOD1) patients. However, less is known for the most prevalent sporadic ALS form, due to a lack of disease models. Here, we studied oxidative stress profiles in lymphoblasts from ALS patients with mutSOD1 or unknown (undSOD1) mutations. METHODS mutSOD1 and undSOD1 lymphoblasts, as well as sex/age-matched controls (3/group) were obtained from Coriell and divided into 46 years-old-men (C1), 46 years-old-women (C2) or 26/27 years-old-men (C3) cohorts. Growth curves were performed, and several parameters associated with redox homeostasis were evaluated, including SOD activity and expression, general oxidative stress levels, lipid peroxidation, response to oxidative stimulus, glutathione redox cycle, catalase expression, and activity, and Nrf2 transcripts. Pooled (all cohorts) and paired (intra-cohort) statistical analyses were performed, followed by clustering and principal component analyses (PCA). RESULTS Although a high heterogeneity among lymphoblast redox profiles was found between cohorts, clustering analysis based on 7 parameters with high chi-square ranking (total SOD activity, oxidative stress levels, catalase transcripts, SOD1 protein levels, metabolic response to mM concentrations of tert-butyl hydroperoxide, glutathione reductase activity, and Nrf2 transcript levels) provided a perfect cluster segregation between samples from healthy controls and ALS (undSOD1 and mutSOD1), also visualized in the PCA. CONCLUSIONS Our results show distinct redox signatures in lymphoblasts from mutSOD1, undSOD1 and healthy controls that can be used as therapeutic targets for ALS drug development.
Collapse
Affiliation(s)
- Teresa Cunha-Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Daniela Franco Silva
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Luis Segura
- Santa Casa de São Paulo School of Medical Science, Physiological Sciences, São Paulo, Brazil
| | - Inês Baldeiras
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,FMUC - Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ricardo Marques
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Health School of the Polytechnic Institute of Guarda, Guarda, Portugal
| | - Tatiana Rosenstock
- Department of Pharmacology, University of São Paulo, São Paulo, Brazil.,Sygnature Discovery, In vitro Neuroscience, Nottingham, UK
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Filomena S G Silva
- CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Mitotag Lda, Cantanhede, Portugal
| |
Collapse
|
10
|
Narine M, Colognato H. Current Insights Into Oligodendrocyte Metabolism and Its Power to Sculpt the Myelin Landscape. Front Cell Neurosci 2022; 16:892968. [PMID: 35573837 PMCID: PMC9097137 DOI: 10.3389/fncel.2022.892968] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022] Open
Abstract
Once believed to be part of the nervenkitt or "nerve glue" network in the central nervous system (CNS), oligodendroglial cells now have established roles in key neurological functions such as myelination, neuroprotection, and motor learning. More recently, oligodendroglia has become the subject of intense investigations aimed at understanding the contributions of its energetics to CNS physiology and pathology. In this review, we discuss the current understanding of oligodendroglial metabolism in regulating key stages of oligodendroglial development and health, its role in providing energy to neighboring cells such as neurons, as well as how alterations in oligodendroglial bioenergetics contribute to disease states. Importantly, we highlight how certain inputs can regulate oligodendroglial metabolism, including extrinsic and intrinsic mediators of cellular signaling, pharmacological compounds, and even dietary interventions. Lastly, we discuss emerging studies aimed at discovering the therapeutic potential of targeting components within oligodendroglial bioenergetic pathways.
Collapse
Affiliation(s)
- Mohanlall Narine
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
- Department of Neurobiology, & Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
11
|
Günther R, Pal A, Williams C, Zimyanin VL, Liehr M, von Neubeck C, Krause M, Parab MG, Petri S, Kalmbach N, Marklund SL, Sterneckert J, Munch Andersen P, Wegner F, Gilthorpe JD, Hermann A. Alteration of Mitochondrial Integrity as Upstream Event in the Pathophysiology of SOD1-ALS. Cells 2022; 11:cells11071246. [PMID: 35406813 PMCID: PMC8997900 DOI: 10.3390/cells11071246] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Little is known about the early pathogenic events by which mutant superoxide dismutase 1 (SOD1) causes amyotrophic lateral sclerosis (ALS). This lack of mechanistic understanding is a major barrier to the development and evaluation of efficient therapies. Although protein aggregation is known to be involved, it is not understood how mutant SOD1 causes degeneration of motoneurons (MNs). Previous research has relied heavily on the overexpression of mutant SOD1, but the clinical relevance of SOD1 overexpression models remains questionable. We used a human induced pluripotent stem cell (iPSC) model of spinal MNs and three different endogenous ALS-associated SOD1 mutations (D90Ahom, R115Ghet or A4Vhet) to investigate early cellular disturbances in MNs. Although enhanced misfolding and aggregation of SOD1 was induced by proteasome inhibition, it was not affected by activation of the stress granule pathway. Interestingly, we identified loss of mitochondrial, but not lysosomal, integrity as the earliest common pathological phenotype, which preceded elevated levels of insoluble, aggregated SOD1. A super-elongated mitochondrial morphology with impaired inner mitochondrial membrane potential was a unifying feature in mutant SOD1 iPSC-derived MNs. Impaired mitochondrial integrity was most prominent in mutant D90Ahom MNs, whereas both soluble disordered and detergent-resistant misfolded SOD1 was more prominent in R115Ghet and A4Vhet mutant lines. Taking advantage of patient-specific models of SOD1-ALS in vitro, our data suggest that mitochondrial dysfunction is one of the first crucial steps in the pathogenic cascade that leads to SOD1-ALS and also highlights the need for individualized medical approaches for SOD1-ALS.
Collapse
Affiliation(s)
- René Günther
- Department of Neurology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (R.G.); (A.P.); (V.L.Z.); (M.L.); (M.G.P.)
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 01307 Dresden, Germany
| | - Arun Pal
- Department of Neurology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (R.G.); (A.P.); (V.L.Z.); (M.L.); (M.G.P.)
- Dresden High Magnetic Field Laboratory (HLD), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany
| | - Chloe Williams
- Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden; (C.W.); (J.D.G.)
| | - Vitaly L. Zimyanin
- Department of Neurology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (R.G.); (A.P.); (V.L.Z.); (M.L.); (M.G.P.)
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| | - Maria Liehr
- Department of Neurology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (R.G.); (A.P.); (V.L.Z.); (M.L.); (M.G.P.)
| | - Cläre von Neubeck
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany; (C.v.N.); (M.K.)
- OncoRay—National Center for Radiation Research in Oncology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany
- Clinic for Particle Therapy, West German Proton Therapy Centre Essen (WPE) gGmbH, University Medical Centre of Essen, 45147 Essen, Germany
| | - Mechthild Krause
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), 69192 Heidelberg, Germany; (C.v.N.); (M.K.)
- OncoRay—National Center for Radiation Research in Oncology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiooncology—OncoRay, 01328 Dresden, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Partner Site Dresden, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany
| | - Mrudula G. Parab
- Department of Neurology, University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, 01307 Dresden, Germany; (R.G.); (A.P.); (V.L.Z.); (M.L.); (M.G.P.)
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; (S.P.); (N.K.); (F.W.)
| | - Norman Kalmbach
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; (S.P.); (N.K.); (F.W.)
| | - Stefan L. Marklund
- Department of Medical Biosciences, Clinical Chemistry, Umeå University, 90187 Umeå, Sweden;
| | - Jared Sterneckert
- Center for Regenerative Therapies Dresden, Technical University Dresden, 01307 Dresden, Germany;
| | | | - Florian Wegner
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany; (S.P.); (N.K.); (F.W.)
| | - Jonathan D. Gilthorpe
- Department of Integrative Medical Biology, Umeå University, 90187 Umeå, Sweden; (C.W.); (J.D.G.)
| | - Andreas Hermann
- Translational Neurodegeneration Section, “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
- Correspondence: ; Tel.: +49-381-4949541
| |
Collapse
|
12
|
Arslanbaeva L, Bisaglia M. Activation of the Nrf2 Pathway as a Therapeutic Strategy for ALS Treatment. Molecules 2022; 27:1471. [PMID: 35268572 PMCID: PMC8911691 DOI: 10.3390/molecules27051471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022] Open
Abstract
Amyotrophic lateral sclerosis is a progressive and fatal disease that causes motoneurons degeneration and functional impairment of voluntary muscles, with limited and poorly efficient therapies. Alterations in the Nrf2-ARE pathway are associated with ALS pathology and result in aberrant oxidative stress, making the stimulation of the Nrf2-mediated antioxidant response a promising therapeutic strategy in ALS to reduce oxidative stress. In this review, we first introduce the involvement of the Nrf2 pathway in the pathogenesis of ALS and the role played by astrocytes in modulating such a protective pathway. We then describe the currently developed activators of Nrf2, used in both preclinical animal models and clinical studies, taking into consideration their potentialities as well as the possible limitations associated with their use.
Collapse
Affiliation(s)
| | - Marco Bisaglia
- Department of Biology, University of Padua, 35131 Padua, Italy
- Center Study for Neurodegeneration (CESNE), University of Padua, 35131 Padua, Italy
| |
Collapse
|
13
|
Park HR, Yang EJ. Oxidative Stress as a Therapeutic Target in Amyotrophic Lateral Sclerosis: Opportunities and Limitations. Diagnostics (Basel) 2021; 11:diagnostics11091546. [PMID: 34573888 PMCID: PMC8465946 DOI: 10.3390/diagnostics11091546] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/14/2021] [Accepted: 08/25/2021] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND) and Lou Gehrig’s disease, is characterized by a loss of the lower motor neurons in the spinal cord and the upper motor neurons in the cerebral cortex. Due to the complex and multifactorial nature of the various risk factors and mechanisms that are related to motor neuronal degeneration, the pathological mechanisms of ALS are not fully understood. Oxidative stress is one of the known causes of ALS pathogenesis. This has been observed in patients as well as in cellular and animal models, and is known to induce mitochondrial dysfunction and the loss of motor neurons. Numerous therapeutic agents have been developed to inhibit oxidative stress and neuroinflammation. In this review, we describe the role of oxidative stress in ALS pathogenesis, and discuss several anti-inflammatory and anti-oxidative agents as potential therapeutics for ALS. Although oxidative stress and antioxidant fields are meaningful approaches to delay disease progression and prolong the survival in ALS, it is necessary to investigate various animal models or humans with different subtypes of sporadic and familial ALS.
Collapse
|
14
|
Novak V, Rogelj B, Župunski V. Therapeutic Potential of Polyphenols in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Antioxidants (Basel) 2021; 10:antiox10081328. [PMID: 34439576 PMCID: PMC8389294 DOI: 10.3390/antiox10081328] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are severe neurodegenerative disorders that belong to a common disease spectrum. The molecular and cellular aetiology of the spectrum is a highly complex encompassing dysfunction in many processes, including mitochondrial dysfunction and oxidative stress. There is a paucity of treatment options aside from therapies with subtle effects on the post diagnostic lifespan and symptom management. This presents great interest and necessity for the discovery and development of new compounds and therapies with beneficial effects on the disease. Polyphenols are secondary metabolites found in plant-based foods and are well known for their antioxidant activity. Recent research suggests that they also have a diverse array of neuroprotective functions that could lead to better treatments for neurodegenerative diseases. We present an overview of the effects of various polyphenols in cell line and animal models of ALS/FTD. Furthermore, possible mechanisms behind actions of the most researched compounds (resveratrol, curcumin and green tea catechins) are discussed.
Collapse
Affiliation(s)
- Valentina Novak
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (V.N.); (B.R.)
| | - Boris Rogelj
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (V.N.); (B.R.)
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Vera Župunski
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (V.N.); (B.R.)
- Correspondence:
| |
Collapse
|
15
|
Giagnorio E, Malacarne C, Mantegazza R, Bonanno S, Marcuzzo S. MyomiRs and their multifaceted regulatory roles in muscle homeostasis and amyotrophic lateral sclerosis. J Cell Sci 2021; 134:269129. [PMID: 34137441 DOI: 10.1242/jcs.258349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of both upper and lower motor neurons (MNs). The main clinical features of ALS are motor function impairment, progressive muscle weakness, muscle atrophy and, ultimately, paralysis. Intrinsic skeletal muscle deterioration plays a crucial role in the disease and contributes to ALS progression. Currently, there are no effective treatments for ALS, highlighting the need to obtain a deeper understanding of the molecular events underlying degeneration of both MNs and muscle tissue, with the aim of developing successful therapies. Muscle tissue is enriched in a group of microRNAs called myomiRs, which are effective regulators of muscle homeostasis, plasticity and myogenesis in both physiological and pathological conditions. After providing an overview of ALS pathophysiology, with a focus on the role of skeletal muscle, we review the current literature on myomiR network dysregulation as a contributing factor to myogenic perturbations and muscle atrophy in ALS. We argue that, in view of their critical regulatory function at the interface between MNs and skeletal muscle fiber, myomiRs are worthy of further investigation as potential molecular targets of therapeutic strategies to improve ALS symptoms and counteract disease progression.
Collapse
Affiliation(s)
- Eleonora Giagnorio
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy.,PhD program in Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Claudia Malacarne
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy.,PhD program in Neuroscience, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Renato Mantegazza
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Silvia Bonanno
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| | - Stefania Marcuzzo
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy
| |
Collapse
|
16
|
Intersection between Redox Homeostasis and Autophagy: Valuable Insights into Neurodegeneration. Antioxidants (Basel) 2021; 10:antiox10050694. [PMID: 33924878 PMCID: PMC8146521 DOI: 10.3390/antiox10050694] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/25/2021] [Indexed: 12/14/2022] Open
Abstract
Autophagy, a main degradation pathway for maintaining cellular homeostasis, and redox homeostasis have recently been considered to play protective roles in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Increased levels of reactive oxygen species (ROS) in neurons can induce mitochondrial damage and protein aggregation, thereby resulting in neurodegeneration. Oxidative stress is one of the major activation signals for the induction of autophagy. Upon activation, autophagy can remove ROS, damaged mitochondria, and aggregated proteins from the cells. Thus, autophagy can be an effective strategy to maintain redox homeostasis in the brain. However, the interaction between redox homeostasis and autophagy is not clearly elucidated. In this review, we discuss recent studies on the relationship between redox homeostasis and autophagy associated with neurodegenerative diseases and propose that autophagy induction through pharmacological intervention or genetic activation might be a promising strategy to treat these disorders.
Collapse
|
17
|
Koçancı FG. Role of Fatty Acid Chemical Structures on Underlying Mechanisms of Neurodegenerative Diseases and Gut Microbiota. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fatma Gonca Koçancı
- Vocational High School of Health Services Department of Medical Laboratory Techniques Alanya Alaaddin Keykubat University Alanya/Antalya 07425 Turkey
| |
Collapse
|
18
|
Wen J, Li S, Zheng C, Wang F, Luo Y, Wu L, Cao J, Guo B, Yu P, Zhang G, Li S, Sun Y, Yang X, Zhang Z, Wang Y. Tetramethylpyrazine nitrone improves motor dysfunction and pathological manifestations by activating the PGC-1α/Nrf2/HO-1 pathway in ALS mice. Neuropharmacology 2020; 182:108380. [PMID: 33152451 DOI: 10.1016/j.neuropharm.2020.108380] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/11/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of upper and lower motor neurons that results in skeletal muscle atrophy, weakness and paralysis. Oxidative stress plays a key role in the pathogenesis of ALS, including familial forms of the disease arising from mutation of the gene coding for superoxide dismutase (SOD1). We have used the SOD1G93A ALS mouse model to investigate the efficacy of 2-[[(1,1-dimethylethyl)oxidoimino]-methyl]-3,5,6-trimethylpyrazine (TBN), a novel tetramethylpyrazine derivative armed with a powerful free-radical scavenging nitrone moiety. TBN was administered to mice by intraperitoneal or intragastric injection after the onset of motor deficits. TBN slowed the progression of motor neuron disease as evidenced by improved motor performance, reduced spinal motor neuron loss and the associated glial response, and decreased skeletal muscle fiber denervation and fibrosis. TBN treatment activated mitochondrial antioxidant activity through the PGC-1α/Nrf2/HO-1 pathway and decreased the expression of human SOD1. These findings suggest that TBN holds promise as a therapeutic agent for ALS.
Collapse
Affiliation(s)
- Jing Wen
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Shangming Li
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Chengyou Zheng
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Fengjiao Wang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Yangwen Luo
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Liangmiao Wu
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Jie Cao
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Baojian Guo
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Pei Yu
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Gaoxiao Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| | - Shupeng Li
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yewei Sun
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China.
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen, 518055, China.
| | - Zaijun Zhang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China.
| | - Yuqiang Wang
- Institute of New Drug Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, China
| |
Collapse
|
19
|
Limanaqi F, Biagioni F, Mastroiacovo F, Polzella M, Lazzeri G, Fornai F. Merging the Multi-Target Effects of Phytochemicals in Neurodegeneration: From Oxidative Stress to Protein Aggregation and Inflammation. Antioxidants (Basel) 2020; 9:antiox9101022. [PMID: 33092300 PMCID: PMC7589770 DOI: 10.3390/antiox9101022] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Wide experimental evidence has been provided in the last decade concerning the neuroprotective effects of phytochemicals in a variety of neurodegenerative disorders. Generally, the neuroprotective effects of bioactive compounds belonging to different phytochemical classes are attributed to antioxidant, anti-aggregation, and anti-inflammatory activity along with the restoration of mitochondrial homeostasis and targeting alterations of cell-clearing systems. Far from being independent, these multi-target effects represent interconnected events that are commonly implicated in the pathogenesis of most neurodegenerative diseases, independently of etiology, nosography, and the specific misfolded proteins being involved. Nonetheless, the increasing amount of data applying to a variety of neurodegenerative disorders joined with the multiple effects exerted by the wide variety of plant-derived neuroprotective agents may rather confound the reader. The present review is an attempt to provide a general guideline about the most relevant mechanisms through which naturally occurring agents may counteract neurodegeneration. With such an aim, we focus on some popular phytochemical classes and bioactive compounds as representative examples to design a sort of main highway aimed at deciphering the most relevant protective mechanisms which make phytochemicals potentially useful in counteracting neurodegeneration. In this frame, we emphasize the potential role of the cell-clearing machinery as a kernel in the antioxidant, anti-aggregation, anti-inflammatory, and mitochondrial protecting effects of phytochemicals.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.M.)
| | - Federica Mastroiacovo
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.M.)
| | - Maico Polzella
- Aliveda Laboratories, Viale Karol Wojtyla 19, 56042 Crespina Lorenzana, Italy;
| | - Gloria Lazzeri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Correspondence: (G.L.); (F.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (F.M.)
- Correspondence: (G.L.); (F.F.)
| |
Collapse
|
20
|
Alhajala HS, Markley JL, Kim JH, Al-Gizawiy MM, Schmainda KM, Kuo JS, Chitambar CR. The cytotoxicity of gallium maltolate in glioblastoma cells is enhanced by metformin through combined action on mitochondrial complex 1. Oncotarget 2020; 11:1531-1544. [PMID: 32391122 PMCID: PMC7197450 DOI: 10.18632/oncotarget.27567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/03/2020] [Indexed: 12/04/2022] Open
Abstract
New drugs are needed for glioblastoma, an aggressive brain tumor with a dismal prognosis. We recently reported that gallium maltolate (GaM) retards the growth of glioblastoma in a rat orthotopic brain tumor model by inhibiting mitochondrial function and iron-dependent ribonucleotide reductase (RR). However, GaM's mechanism of action at the mitochondrial level is not known. Given the interaction between gallium and iron metabolism, we hypothesized that gallium might target iron-sulfur (Fe-S) cluster-containing mitochondrial proteins. Using Extracellular Flux Analyzer technology, we confirmed that after a 24-h incubation, GaM 50 μmol/L inhibited glioblastoma cell growth by <10% but inhibited cellular oxygen consumption rate by 44% and abrogated mitochondrial reserve capacity. GaM blocked mitochondrial complex I activity and produced a 2.9-fold increase in cellular ROS. NMR spectroscopy revealed that gallium binds to IscU, the bacterial scaffold protein for Fe-S cluster assembly and stabilizes its folded state. Gallium inhibited the rate of in vitro cluster assembly catalyzed by bacterial cysteine desulfurase in a reaction mixture containing IscU, Fe (II), DTT, and L-cysteine. Metformin, a complex I inhibitor, enhanced GaM's inhibition of complex I, further increased cellular ROS levels, and synergistically enhanced GaM's cytotoxicity in glioblastoma cells in 2-D and 3-D cultures. Metformin did not affect GaM action on cellular iron uptake or transferrin receptor1 expression nor did it enhance the cytotoxicity of the RR inhibitor Didox. Our results show that GaM inhibits complex I by disrupting iron-sulfur cluster assembly and that its cytotoxicity can be synergistically enhanced by metformin through combined action on complex I.
Collapse
Affiliation(s)
- Hisham S. Alhajala
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - John L. Markley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jin Hae Kim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Mona M. Al-Gizawiy
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - John S. Kuo
- Department of Neurosurgery and Mulva Clinic for the Neurosciences, Dell Medical School, Austin, Texas, USA
| | - Christopher R. Chitambar
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
21
|
Halpern M, Brennand KJ, Gregory J. Examining the relationship between astrocyte dysfunction and neurodegeneration in ALS using hiPSCs. Neurobiol Dis 2019; 132:104562. [PMID: 31381978 DOI: 10.1016/j.nbd.2019.104562] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 06/28/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex and fatal neurodegenerative disease for which the causes of disease onset and progression remain unclear. Recent advances in human induced pluripotent stem cell (hiPSC)-based models permit the study of the genetic factors associated with ALS in patient-derived neural cell types, including motor neurons and glia. While astrocyte dysfunction has traditionally been thought to exacerbate disease progression, astrocytic dysfunction may play a more direct role in disease initiation and progression. Such non-cell autonomous mechanisms expand the potential targets of therapeutic intervention, but only a handful of ALS risk-associated genes have been examined for their impact on astrocyte dysfunction and neurodegeneration. This review summarizes what is currently known about astrocyte function in ALS and suggests ways in which hiPSC-based models can be used to more effectively study the role of astrocytes in neurodegenerative disease.
Collapse
Affiliation(s)
- Madeline Halpern
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Kristen J Brennand
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| | - James Gregory
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, United States of America.
| |
Collapse
|
22
|
Ferreira CA, Ni D, Rosenkrans ZT, Cai W. Scavenging of reactive oxygen and nitrogen species with nanomaterials. NANO RESEARCH 2018; 11:4955-4984. [PMID: 30450165 PMCID: PMC6233906 DOI: 10.1007/s12274-018-2092-y] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 05/03/2023]
Abstract
Reactive oxygen and nitrogen species (RONS) are essential for normal physiological processes and play important roles in cell signaling, immunity, and tissue homeostasis. However, excess radical species are implicated in the development and augmented pathogenesis of various diseases. Several antioxidants may restore the chemical balance, but their use is limited by disappointing results of clinical trials. Nanoparticles are an attractive therapeutic alternative because they can change the biodistribution profile of antioxidants, and possess intrinsic ability to scavenge RONS. Herein, we review the types of RONS, how they are implicated in several diseases, and the types of nanoparticles with inherent antioxidant capability, their mechanisms of action, and their biological applications.
Collapse
Affiliation(s)
- Carolina A. Ferreira
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dalong Ni
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | | - Weibo Cai
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
23
|
Lazo-Gomez R, Tapia R. Quercetin prevents spinal motor neuron degeneration induced by chronic excitotoxic stimulus by a sirtuin 1-dependent mechanism. Transl Neurodegener 2017; 6:31. [PMID: 29201361 PMCID: PMC5697078 DOI: 10.1186/s40035-017-0102-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/03/2017] [Indexed: 12/13/2022] Open
Abstract
Background Excitotoxicity is a mechanism of foremost importance in the selective motor neuron degeneration characteristic of motor neuron disorders. Effective therapeutic strategies are an unmet need for these disorders. Polyphenols, such as quercetin and resveratrol, are plant-derived compounds that activate sirtuins (SIRTs) and have shown promising results in some models of neuronal death, although their effects have been scarcely tested in models of motor neuron degeneration. Methods In this work we investigated the effects of quercetin and resveratrol in an in vivo model of excitotoxic motor neuron death induced by the chronic infusion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) into the rat spinal cord tissue. Quercetin and resveratrol were co-infused with AMPA and motor behavior and muscle strength were assessed daily for up to ten days. Then, animals were fixed and lumbar spinal cord tissue was analyzed by histological and immunocytological procedures. Results We found that the chronic infusion of AMPA [1 mM] caused a progressive motor neuron degeneration, accompanied by astrogliosis and microgliosis, and motor deficits and paralysis of the rear limbs. Quercetin infusion ameliorated AMPA-induced paralysis, rescued motor neurons, and prevented both astrogliosis and microgliosis, and these protective effects were prevented by EX527, a very selective SIRT1 inhibitor. In contrast, neither resveratrol nor EX527 alone improved motor behavior deficits or reduced motor neuron degeneration, albeit both reduced gliosis. Conclusions These results suggest that quercetin exerts its beneficial effects through a SIRT1-mediated mechanism, and thus SIRT1 plays an important role in excitotoxic neurodegeneration and therefore its pharmacological modulation might provide opportunities for therapy in motor neuron disorders. Electronic supplementary material The online version of this article (10.1186/s40035-017-0102-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rafael Lazo-Gomez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico
| | - Ricardo Tapia
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito exterior s/n, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico
| |
Collapse
|
24
|
Abstract
All known eukaryotes require copper for their development and survival. The essentiality of copper reflects its widespread use as a co-factor in conserved enzymes that catalyze biochemical reactions critical to energy production, free radical detoxification, collagen deposition, neurotransmitter biosynthesis and iron homeostasis. However, the prioritized use of copper poses an organism with a considerable challenge because, in its unbound form, copper can potentiate free radical production and displace iron-sulphur clusters to disrupt protein function. Protective mechanisms therefore evolved to mitigate this challenge and tightly regulate the acquisition, trafficking and storage of copper such that the metal ion is rarely found in its free form in the cell. Findings by a number of groups over the last ten years emphasize that this regulatory framework forms the foundation of a system that is capable of monitoring copper status and reprioritizing copper usage at both the cellular and systemic levels of organization. While the identification of relevant molecular mechanisms and signaling pathways has proven to be difficult and remains a barrier to our full understanding of the regulation of copper homeostasis, mounting evidence points to the mitochondrion as a pivotal hub in this regard in both healthy and diseased states. Here, we review our current understanding of copper handling pathways contained within the organelle and consider plausible mechanisms that may serve to functionally couple their activity to that of other cellular copper handling machinery to maintain copper homeostasis.
Collapse
Affiliation(s)
- Zakery N. Baker
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK Canada S7N 5E5
| | - Paul A. Cobine
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Scot C. Leary
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK Canada S7N 5E5
| |
Collapse
|
25
|
Penndorf D, Tadić V, Witte OW, Grosskreutz J, Kretz A. DNA strand breaks and TDP-43 mislocation are absent in the murine hSOD1G93A model of amyotrophic lateral sclerosis in vivo and in vitro. PLoS One 2017; 12:e0183684. [PMID: 28832631 PMCID: PMC5568271 DOI: 10.1371/journal.pone.0183684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022] Open
Abstract
Mutations in the human Cu/Zn superoxide dismutase type-1 (hSOD1) gene are common in familial amyotrophic lateral sclerosis (fALS). The pathophysiology has been linked to, e.g., organelle dysfunction, RNA metabolism and oxidative DNA damage conferred by SOD1 malfunction. However, apart from metabolically evoked DNA oxidation, it is unclear whether severe genotoxicity including DNA single-strand breaks (SSBs) and double-strand breaks (DSBs), originates from loss of function of nuclear SOD1 enzyme. Factors that endogenously interfere with DNA integrity and repair complexes in hSOD1-mediated fALS remain similarly unexplored. In this regard, uncontrolled activation of transposable elements (TEs) might contribute to DNA disintegration and neurodegeneration. The aim of this study was to elucidate the role of the fALS-causing hSOD1G93A mutation in the generation of severe DNA damage beyond well-characterized DNA base oxidation. Therefore, DNA damage was assessed in spinal tissue of hSOD1G93A-overexpressing mice and in corresponding motor neuron-enriched cell cultures in vitro. Overexpression of the hSOD1G93A locus did not change the threshold for severe DNA damage per se. We found that levels of SSBs and DSBs were unaltered between hSOD1G93A and control conditions, as demonstrated in post-mitotic motor neurons and in astrocytes susceptible to replication-dependent DNA breakage. Analogously, parameters indicative of DNA damage response processes were not activated in vivo or in vitro. Evidence for a mutation-related elevation in TE activation was not detected, in accordance with the absence of TAR DNA binding protein 43 (TDP-43) proteinopathy in terms of cytoplasmic mislocation or nuclear loss, as nuclear TDP-43 is supposed to silence TEs physiologically. Conclusively, the superoxide dismutase function of SOD1 might not be required to preserve DNA integrity in motor neurons, at least when the function of TDP-43 is unaltered. Our data establish a foundation for further investigations addressing functional TDP-43 interaction with ALS-relevant genetic mutations.
Collapse
Affiliation(s)
- Diane Penndorf
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Thuringia, Germany
| | - Vedrana Tadić
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Thuringia, Germany
| | - Otto W. Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Thuringia, Germany
| | - Julian Grosskreutz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Thuringia, Germany
| | - Alexandra Kretz
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Thuringia, Germany
- * E-mail:
| |
Collapse
|
26
|
Mohamed LA, Markandaiah S, Bonanno S, Pasinelli P, Trotti D. Blood-Brain Barrier Driven Pharmacoresistance in Amyotrophic Lateral Sclerosis and Challenges for Effective Drug Therapies. AAPS JOURNAL 2017; 19:1600-1614. [PMID: 28779378 DOI: 10.1208/s12248-017-0120-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB) is essential for proper neuronal function, homeostasis, and protection of the central nervous system (CNS) microenvironment from blood-borne pathogens and neurotoxins. The BBB is also an impediment for CNS penetration of drugs. In some neurologic conditions, such as epilepsy and brain tumors, overexpression of P-glycoprotein, an efflux transporter whose physiological function is to expel catabolites and xenobiotics from the CNS into the blood stream, has been reported. Recent studies reported that overexpression of P-glycoprotein and increase in its activity at the BBB drives a progressive resistance to CNS penetration and persistence of riluzole, the only drug approved thus far for treatment of amyotrophic lateral sclerosis (ALS), rapidly progressive and mostly fatal neurologic disease. This review will discuss the impact of transporter-mediated pharmacoresistance for ALS drug therapy and the potential therapeutic strategies to improve the outcome of ALS clinical trials and efficacy of current and future drug treatments.
Collapse
Affiliation(s)
- Loqman A Mohamed
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA.
| | - Shashirekha Markandaiah
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| | - Silvia Bonanno
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| |
Collapse
|
27
|
Smith EF, Shaw PJ, De Vos KJ. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett 2017; 710:132933. [PMID: 28669745 DOI: 10.1016/j.neulet.2017.06.052] [Citation(s) in RCA: 338] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022]
Abstract
Mitochondria are unique organelles that are essential for a variety of cellular processes including energy metabolism, calcium homeostasis, lipid biosynthesis, and apoptosis. Mitochondrial dysfunction is a prevalent feature of many neurodegenerative diseases including motor neuron disorders such as amyotrophic lateral sclerosis (ALS). Disruption of mitochondrial structure, dynamics, bioenergetics and calcium buffering has been extensively reported in ALS patients and model systems and has been suggested to be directly involved in disease pathogenesis. Here we review the alterations in mitochondrial parameters in ALS and examine the common pathways to dysfunction.
Collapse
Affiliation(s)
- Emma F Smith
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Kurt J De Vos
- Sheffield Institute for Translational Neuroscience (SITraN), Department of Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK.
| |
Collapse
|
28
|
Teymouri M, Barati N, Pirro M, Sahebkar A. Biological and pharmacological evaluation of dimethoxycurcumin: A metabolically stable curcumin analogue with a promising therapeutic potential. J Cell Physiol 2017; 233:124-140. [PMID: 27996095 DOI: 10.1002/jcp.25749] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 12/19/2016] [Indexed: 12/16/2022]
Abstract
Dimethoxycurcumin (DiMC) is a synthetic analog of curcumin with superior inter-related pro-oxidant and anti-cancer activity, and metabolic stability. Numerous studies have shown that DiMC reserves the biologically beneficial features, including anti-inflammatory, anti-carcinogenic, and cytoprotective properties, almost to the same extent as curcumin exhibits. DiMC lacks the phenolic-OH groups as opposed to curcumin, dimethoxycurcumin, and bis-demethoxycurcumin that all vary in the number of methoxy groups per molecule, and has drawn the attentions of researchers who attempted to discover the structure-activity relationship (SAR) of curcumin. In this regard, tetrahydrocurcumin (THC), the reduced and biologically inert metabolite of curcumin, denotes the significance of the conjugated α,β diketone moiety for the curcumin activity. DiMC exerts unique molecular activities compared to curcumin, including induction of androgen receptor (AR) degradation and suppression of the transcription factor activator protein-1 (AP-1). The enhanced AR degradation on DiMC treatment suggests it as a novel anticancer agent against resistant tumors with androgenic etiology. Further, DiMC might be a potential treatment for acne vulgaris. DiMC induces epigenetic alteration more effectively than curcumin, although both showed no direct DNA hypomethylating activity. Given the metabolic stability, nanoparticulation of DiMC is more promising for in vivo effectiveness. However, studies in this regard are still in its infancy. In the current review, we portray the various molecular and biological functions of DiMC reported so far. Whenever possible, the efficiency is compared with curcumin and the reasons for DiMC being more metabolically stable are elaborated. We also provide future perspective investigations with respect to varying DiMC-nanoparticles.
Collapse
Affiliation(s)
- Manouchehr Teymouri
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nastaran Barati
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Matteo Pirro
- Department of Medicine, Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, University of Perugia, Perugia, Italy
| | - Amirhosein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Ambrosi G, Milani P. Endoplasmic reticulum, oxidative stress and their complex crosstalk in neurodegeneration: proteostasis, signaling pathways and molecular chaperones. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.4.424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
30
|
Grad LI, Cashman NR. Prion-like activity of Cu/Zn superoxide dismutase: implications for amyotrophic lateral sclerosis. Prion 2015; 8:33-41. [PMID: 24394345 DOI: 10.4161/pri.27602] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases belong to a larger group of protein misfolding disorders, known as proteinopathies. There is increasing experimental evidence implicating prion-like mechanisms in many common neurodegenerative disorders, including Alzheimer disease, Parkinson disease, the tauopathies, and amyotrophic lateral sclerosis (ALS), all of which feature the aberrant misfolding and aggregation of specific proteins. The prion paradigm provides a mechanism by which a mutant or wild-type protein can dominate pathogenesis through the initiation of self-propagating protein misfolding. ALS, a lethal disease characterized by progressive degeneration of motor neurons is understood as a classical proteinopathy; the disease is typified by the formation of inclusions consisting of aggregated protein within and around motor neurons that can contribute to neurotoxicity. It is well established that misfolded/oxidized SOD1 protein is highly toxic to motor neurons and plays a prominent role in the pathology of ALS. Recent work has identified propagated protein misfolding properties in both mutant and wild-type SOD1, which may provide the molecular basis for the clinically observed contiguous spread of the disease through the neuroaxis. In this review we examine the current state of knowledge regarding the prion-like properties of SOD1 and comment on its proposed mechanisms of intercellular transmission.
Collapse
|
31
|
Grad LI, Fernando SM, Cashman NR. From molecule to molecule and cell to cell: prion-like mechanisms in amyotrophic lateral sclerosis. Neurobiol Dis 2015; 77:257-65. [PMID: 25701498 DOI: 10.1016/j.nbd.2015.02.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 08/13/2014] [Accepted: 02/09/2015] [Indexed: 12/12/2022] Open
Abstract
Prions, self-proliferating infectious agents consisting of misfolded protein, are most often associated with aggressive neurodegenerative diseases in animals and humans. Akin to the contiguous spread of a living pathogen, the prion paradigm provides a mechanism by which a mutant or wild-type misfolded protein can dominate pathogenesis through self-propagating protein misfolding, and subsequently spread from region to region through the central nervous system. The prion diseases, along with more common neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and the tauopathies belong to a larger group of protein misfolding disorders termed proteinopathies that feature aberrant misfolding and aggregation of specific proteins. Amyotrophic lateral sclerosis (ALS), a lethal disease characterized by progressive degeneration of motor neurons is currently understood as a classical proteinopathy; the disease is typified by the formation of inclusions consisting of aggregated protein within motor neurons that contribute to neurotoxicity. It is well established that misfolded/aggregated proteins such as SOD1 and TDP-43 contribute to the toxicity of motor neurons and play a prominent role in the pathology of ALS. Recent work has identified propagated protein misfolding properties in both mutant and wild-type SOD1, and to a lesser extent TDP-43, which may provide the molecular basis for the clinically observed contiguous spread of the disease through the neuroaxis. In this review we examine the current state of knowledge regarding the prion-like properties of proteins associated with ALS pathology as well as their possible mechanisms of transmission.
Collapse
Affiliation(s)
- Leslie I Grad
- Department of Medicine (Neurology), Brain Research Centre, University of British Columbia, 2211 Wesbrook Mall, Vancouver BC, Canada, V6T 2B5
| | - Sarah M Fernando
- Department of Medicine (Neurology), Brain Research Centre, University of British Columbia, 2211 Wesbrook Mall, Vancouver BC, Canada, V6T 2B5
| | - Neil R Cashman
- Department of Medicine (Neurology), Brain Research Centre, University of British Columbia, 2211 Wesbrook Mall, Vancouver BC, Canada, V6T 2B5.
| |
Collapse
|
32
|
De Marco G, Lomartire A, Mandili G, Lupino E, Buccinnà B, Ramondetti C, Moglia C, Novelli F, Piccinini M, Mostert M, Rinaudo MT, Chiò A, Calvo A. Reduced cellular Ca(2+) availability enhances TDP-43 cleavage by apoptotic caspases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:725-34. [PMID: 24440855 DOI: 10.1016/j.bbamcr.2014.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 12/20/2013] [Accepted: 01/08/2014] [Indexed: 12/13/2022]
Abstract
Accumulation of transactive response DNA binding protein (TDP-43) fragments in motor neurons is a post mortem hallmark of different neurodegenerative diseases. TDP-43 fragments are the products of the apoptotic caspases-3 and -7. Either excessive or insufficient cellular Ca(2+) availability is associated with activation of apoptotic caspases. However, as far as we know, it is not described whether activation of caspases, due to restricted intracellular Ca(2+), affects TDP-43 cleavage. Here we show that in various cell lineages with restricted Ca(2+) availability, TDP-43 is initially cleaved by caspases-3 and -7 and then, also by caspases-6 and -8 once activated by caspase-3. Furthermore, we disclose the existence of a TDP-43 caspase-mediated fragment of 15kDa, in addition to the well-known fragments of 35 and 25kDa. Interestingly, with respect to the other two fragments this novel fragment is the major product of caspase activity on murine TDP-43 whereas in human cell lines the opposite occurs. This outcome should be considered when murine models are used to investigate TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Giovanni De Marco
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Department of Oncology, University of Turin, Turin, Italy
| | - Annarosa Lomartire
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; Department of Oncology, University of Turin, Turin, Italy
| | - Giorgia Mandili
- Center for Experimental Research and Medical Studies (CeRMS), University of Turin, Turin, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Elisa Lupino
- Department of Oncology, University of Turin, Turin, Italy
| | | | | | - Cristina Moglia
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; CRESLA Turin, AOU Città della Salute e della Scienza, Turin, Italy
| | - Francesco Novelli
- Center for Experimental Research and Medical Studies (CeRMS), University of Turin, Turin, Italy; Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Michael Mostert
- Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | | | - Adriano Chiò
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; CRESLA Turin, AOU Città della Salute e della Scienza, Turin, Italy
| | - Andrea Calvo
- 'Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy; CRESLA Turin, AOU Città della Salute e della Scienza, Turin, Italy
| |
Collapse
|
33
|
Fujimaki N, Kitamura F, Takeuchi H. Pro-oxidant copper-binding mode of the Apo form of ALS-linked SOD1 mutant H43R denatured at physiological temperature. Biochemistry 2013; 52:5184-94. [PMID: 23837654 DOI: 10.1021/bi400370w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mutation of Cu,Zn-superoxide dismutase (SOD1), a major antioxidant enzyme, is associated with amyotrophic lateral sclerosis (ALS). In a previous study, we showed that the metal-depleted apo form of an ALS-linked mutant, H43R, undergoes denaturation at physiological temperature (37 °C) in 90 min and acquires pro-oxidant activity in the presence of Cu(2+) and H2O2. In this study, we have examined the Cu(2+)-binding mode of denatured apo-H43R by circular dichroism (CD), fluorescent oxidation, UV Raman spectroscopy, and photooxidation. CD spectroscopy indicates that denatured apo-H43R loses native β-barrel structure and the binding of Cu(2+) to the denatured apo form induces local refolding. Fluorescent-oxidation assays in the absence and presence of Cu(2+) chelators show that denatured apo-H43R contains two Cu(2+)-binding sites with higher and lower Cu(2+) affinities and with pro-oxidant activities in the reverse order. UV Raman spectroscopy gives evidence that His residues are bound to Cu(2+) mainly through the imidazole Nτ atom at the higher-affinity site and through the Nπ atom at the lower-affinity site, sharing one His residue with each other. The Cu(2+)-binding mode of denatured apo-H43R is analogous to but different from the Cu,Zn-binding mode of the native holo form. Photooxidation experiments confirm the involvement of His residues in the pro-oxidant activity. Taken together, it is suggested that the binding of Cu(2+) induces the local refolding of denatured apo-H43R to create toxic catalytic centers that convert the enzyme from antioxidant to pro-oxidant, leading to the pathogenesis of ALS. His residues are essential for both Cu(2+)-binding and pro-oxidant activities.
Collapse
Affiliation(s)
- Nobuhiro Fujimaki
- Graduate School of Pharmaceutical Sciences, Tohoku University , Aobayama, Sendai 980-8578, Japan
| | | | | |
Collapse
|
34
|
Ghosh RD, Banerjee K, Das S, Ganguly A, Chakraborty P, Sarkar A, Chatterjee M, Choudhuri SK. A novel manganese complex, Mn-(II) N-(2-hydroxy acetophenone) glycinate overcomes multidrug-resistance in cancer. Eur J Pharm Sci 2013; 49:737-47. [PMID: 23665413 DOI: 10.1016/j.ejps.2013.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/11/2013] [Accepted: 05/01/2013] [Indexed: 01/08/2023]
Abstract
Multidrug resistance (MDR) remains a significant problem for effective cancer chemotherapy. In spite of considerable advances in drug discovery, most of the cancer cases still stay incurable because of resistance to chemotherapy. We synthesized a novel, Mn (II) complex (chelate), viz., manganese N-(2-hydroxy acetophenone) glycinate (MnNG) that exhibits considerable efficacy to overcome drug resistant cancer. The antiproliferative activity of MnNG was studied on doxorubicin resistant and sensitive human T lymphoblastic leukemia cells (CEM/ADR 5000 and CCRF/CEM). MnNG induced apoptosis significantly in CEM/ADR 5000 cells probably through generation of reactive oxygen species. Moreover, intraperitoneal (i.p.) application of MnNG at non-toxic doses caused significant increase in the life-span of Swiss albino mice bearing sensitive and doxorubicin resistant subline of Ehrlich ascites carcinoma cells.
Collapse
Affiliation(s)
- Ruma Dey Ghosh
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, Kolkata, India
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Long KVQ, Nguyễn LTH. Roles of vitamin D in amyotrophic lateral sclerosis: possible genetic and cellular signaling mechanisms. Mol Brain 2013; 6:16. [PMID: 23570271 PMCID: PMC3641959 DOI: 10.1186/1756-6606-6-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 03/25/2013] [Indexed: 12/12/2022] Open
Abstract
Evidence suggests that there are aberrations in the vitamin D-endocrine system in subjects with amyotrophic lateral sclerosis (ALS). Here, we review the relationship between vitamin D and ALS. Vitamin D deficiency was reported in patients with ALS. Dietary vitamin D3 supplementation improves functional capacity in the G93A transgenic mouse model of ALS. Genetic studies have provided an opportunity to identify the proteins that link vitamin D to ALS pathology, including major histocompatibility complex (MHC) class II molecules, toll-like receptors, poly(ADP-ribose) polymerase-1, heme oxygenase-1, and calcium-binding proteins, as well as the reduced form of nicotinamide adenine dinucleotide phosphate. Vitamin D also exerts its effect on ALS through cell-signaling mechanisms, including glutamate, matrix metalloproteinases, mitogen-activated protein kinase pathways, the Wnt/β-catenin signaling pathway, prostaglandins, reactive oxygen species, and nitric oxide synthase. In conclusion, vitamin D may have a role in ALS. Further investigation of vitamin D in ALS patients is needed.
Collapse
|
36
|
Das A, Plotkin SS. Mechanical Probes of SOD1 Predict Systematic Trends in Metal and Dimer Affinity of ALS-Associated Mutants. J Mol Biol 2013; 425:850-74. [DOI: 10.1016/j.jmb.2012.12.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 11/08/2012] [Accepted: 12/21/2012] [Indexed: 01/28/2023]
|
37
|
Ghosh RD, Das S, Ganguly A, Banerjee K, Chakraborty P, Sarkar A, Chatterjee M, Nanda A, Pradhan K, Choudhuri SK. An in vitro and in vivo study of a novel zinc complex, zinc N-(2-hydroxyacetophenone)glycinate to overcome multidrug resistance in cancer. Dalton Trans 2011; 40:10873-84. [PMID: 21717020 DOI: 10.1039/c1dt10501a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multiple drug resistance (MDR) remains a major clinical challenge for cancer treatment. P-glycoprotein is the major contributor and they exceed their role in the chemotherapy resistance of most of the malignancies. Attempts in several preclinical and clinical studies to reverse the MDR phenomenon by using MDR modulators have not yet generated promising results. In the present study, a co-ordination complex of zinc viz., Zn N-(2-hydroxyacetophenone)glycinate (ZnNG) has been synthesized, characterized and its antitumour activity was tested in vitro against drug sensitive and resistant human T-lymphoblastic leukemic cell lines (CCRF/CEM and CEM/ADR5000 respectively) and in vivo against Ehrlich ascites carcinoma (EAC) implanted in female Swiss albino mice. To evaluate the cytotoxic potential of ZnNG, we used sensitive CCRF/CEM and drug resistant CEM/ADR 5000 cell lines in vitro. Moreover, ZnNG also has the potential ability to reverse the multidrug resistance phenotype in drug resistant CEM/ADR 5000 cell line and induces apoptosis in combination with vinblastine. ZnNG remarkably increases the life span of Swiss albino mice bearing sensitive and doxorubicin resistant subline of EAC in presence and in absence of doxorubicin. In addition, intraperitoneal application of ZnNG in mice does not show any systemic toxicity in preliminary trials in normal mice. To conclude, a novel metal chelate of zinc viz., ZnNG, may be a promising therapeutic agent against sensitive as well as drug resistant cancers.
Collapse
Affiliation(s)
- Ruma Dey Ghosh
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, 700 026, Kolkata, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kitamura F, Fujimaki N, Okita W, Hiramatsu H, Takeuchi H. Structural Instability and Cu-Dependent Pro-Oxidant Activity Acquired by the Apo Form of Mutant SOD1 Associated with Amyotrophic Lateral Sclerosis. Biochemistry 2011; 50:4242-50. [DOI: 10.1021/bi200338h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Furi Kitamura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan
| | - Nobuhiro Fujimaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan
| | - Wakana Okita
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan
| | - Hirotsugu Hiramatsu
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan
| | - Hideo Takeuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan
| |
Collapse
|
39
|
Guest WC, Silverman JM, Pokrishevsky E, O'Neill MA, Grad LI, Cashman NR. Generalization of the prion hypothesis to other neurodegenerative diseases: an imperfect fit. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:1433-1459. [PMID: 22043906 DOI: 10.1080/15287394.2011.618967] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Protein misfolding diseases have been classically understood as diffuse errors in protein folding, with misfolded protein arising autonomously throughout a tissue due to a pathologic stressor. The field of prion science has provided an alternative mechanism whereby a seed of pathologically misfolded protein, arising exogenously or through a rare endogenous structural fluctuation, yields a template to catalyze misfolding of the native protein. The misfolded protein may then spread intercellularly to communicate the misfold to adjacent areas and ultimately infect a whole tissue. Mounting evidence implicates a prion-like process in the propagation of several neurodegenerative diseases, including Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis, and the tauopathies. However, the parallels between the events observed in these conditions and those in prion disease are often incomplete. The aim of this review was to examine the current state of knowledge concerning the mechanisms of protein misfolding and aggregation for neurodegeneration-associated proteins. In addition, possible methods of intercellular spread are described that focus on the hypothesis that released microvesicles function as misfolded protein delivery vehicles, and the therapeutic options enabled by viewing these diseases from the prion perspective.
Collapse
Affiliation(s)
- Will C Guest
- Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Ganguly A, Basu S, Chakraborty P, Chatterjee S, Sarkar A, Chatterjee M, Choudhuri SK. Targeting mitochondrial cell death pathway to overcome drug resistance with a newly developed iron chelate. PLoS One 2010; 5:e11253. [PMID: 20582168 PMCID: PMC2889820 DOI: 10.1371/journal.pone.0011253] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 05/18/2010] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Multi drug resistance (MDR) or cross-resistance to multiple classes of chemotherapeutic agents is a major obstacle to successful application of chemotherapy and a basic problem in cancer biology. The multidrug resistance gene, MDR1, and its gene product P-glycoprotein (P-gp) are an important determinant of MDR. Therefore, there is an urgent need for development of novel compounds that are not substrates of P-glycoprotein and are effective against drug-resistant cancer. METHODOLOGY/PRINCIPAL FINDINGS In this present study, we have synthesized a novel, redox active Fe (II) complex (chelate), iron N- (2-hydroxy acetophenone) glycinate (FeNG). The structure of the complex has been determined by spectroscopic means. To evaluate the cytotoxic effect of FeNG we used doxorubicin resistant and/or sensitive T lymphoblastic leukemia cells and show that FeNG kills both the cell types irrespective of their MDR phenotype. Moreover, FeNG induces apoptosis in doxorubicin resistance T lymphoblastic leukemia cell through mitochondrial pathway via generation reactive oxygen species (ROS). This is substantiated by the fact that the antioxidant N-acetyl-cysteine (NAC) could completely block ROS generation and, subsequently, abrogated FeNG induced apoptosis. Therefore, FeNG induces the doxorubicin resistant T lymphoblastic leukemia cells to undergo apoptosis and thus overcome MDR. CONCLUSION/SIGNIFICANCE Our study provides evidence that FeNG, a redox active metal chelate may be a promising new therapeutic agent against drug resistance cancers.
Collapse
Affiliation(s)
- Avishek Ganguly
- Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, Kolkata, India
| | | | | | | | | | | | | |
Collapse
|
41
|
Metal ion physiopathology in neurodegenerative disorders. Neuromolecular Med 2009; 11:223-38. [PMID: 19946766 DOI: 10.1007/s12017-009-8102-1] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 10/14/2009] [Indexed: 12/14/2022]
Abstract
Metal dyshomeostasis in the brain (BMD) has often been proposed as a possible cause for several neurodegenerative disorders (NDs). Nevertheless, the precise nature of the biochemical mechanisms of metal involvement in NDs is still largely unknown. Mounting evidence suggests that normal aging itself is characterized by, among other features, a significant degree of metal ion dysmetabolism in the brain. This is probably the result of a progressive deterioration of the metal regulatory systems and, at least in some cases, of life-long metal exposure and brain accumulation. Although alterations of metal metabolism do occur to some extent in normal aging, they appear to be highly enhanced under various neuropathological conditions, causing increased oxidative stress and favoring abnormal metal-protein interactions. Intriguingly, despite the fact that most common NDs have a distinct etiological basis, they share striking similarities as they are all characterized by a documented brain metal impairment. This review will primarily focus on the alterations of metal homeostasis that are observed in normal aging and in Alzheimer's disease. We also present a brief survey on BMD in other NDs (Amyotrophic Lateral Sclerosis, Parkinson's, and Prion Protein disease) in order to highlight what represents the most reliable evidence supporting a crucial involvement of metals in neurodegeneration. The opportunities for metal-targeted pharmacological strategies in the major NDs are briefly outlined as well.
Collapse
|
42
|
Gunther MR, Donahue JA. Bicarbonate and active site zinc modulate the self-peroxidation of bovine copper-zinc superoxide dismutase. Free Radic Res 2009; 41:1005-16. [PMID: 17729118 DOI: 10.1080/10715760701516308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Peroxidation reactions of copper-zinc superoxide dismutase (CuZn-SOD1) or its zinc-depleted form (CuE-SOD1) that likely also involve a component of bicarbonate buffer have been implicated in the pathophysiology of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS), Alzheimer's Disease and Parkinson's Disease. Neither removal of the zinc ion nor adding bicarbonate had large effects on the self-peroxidation reaction of bovine SOD1, but the combination of zinc-deficiency and added bicarbonate caused major changes to the spin trapped SOD1-centred free radical. Removal of the active site zinc ion greatly decreased the formation of an unassigned SOD1-centred free radical in the reaction with the inorganic peroxide peroxynitrite. The results suggest that under cellular conditions ( approximately 5 mM bicarbonate) zinc-deficient SOD1 peroxidation could play a pathogenic role in neurodegenerative diseases.
Collapse
Affiliation(s)
- Michael R Gunther
- Department of Biochemistry and Molecular Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, USA.
| | | |
Collapse
|
43
|
Bolognin S, Drago D, Messori L, Zatta P. Chelation therapy for neurodegenerative diseases. Med Res Rev 2009; 29:547-70. [DOI: 10.1002/med.20148] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
Yang M, Chitambar CR. Role of oxidative stress in the induction of metallothionein-2A and heme oxygenase-1 gene expression by the antineoplastic agent gallium nitrate in human lymphoma cells. Free Radic Biol Med 2008; 45:763-72. [PMID: 18586083 PMCID: PMC2610863 DOI: 10.1016/j.freeradbiomed.2008.05.031] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 05/17/2008] [Accepted: 05/29/2008] [Indexed: 10/21/2022]
Abstract
The mechanisms of action of gallium nitrate, an antineoplastic drug, are only partly understood. Using a DNA microarray to examine genes induced by gallium nitrate in CCRF-CEM cells, we found that gallium increased metallothionein-2A (MT2A) and heme oxygenase-1 (HO-1) gene expression and altered the levels of other stress-related genes. MT2A and HO-1 were increased after 6 and 16 h of incubation with gallium nitrate. An increase in oxidative stress, evidenced by a decrease in cellular GSH and GSH/GSSG ratio, and an increase in dichlorodihydrofluorescein (DCF) fluorescence, was seen after 1-4 h of incubation of cells with gallium nitrate. DCF fluorescence was blocked by the mitochondria-targeted antioxidant mitoquinone. N-Acetyl-L-cysteine blocked gallium-induced MT2A and HO-1 expression and increased gallium's cytotoxicity. Studies with a zinc-specific fluoroprobe suggested that gallium produced an expansion of an intracellular labile zinc pool, suggesting an action of gallium on zinc homeostasis. Gallium nitrate increased the phosphorylation of p38 mitogen-activated protein kinase and activated Nrf-2, a regulator of HO-1 gene transcription. Gallium-induced Nrf-2 activation and HO-1 expression were diminished by a p38 MAP kinase inhibitor. We conclude that gallium nitrate induces cellular oxidative stress as an early event which then triggers the expression of HO-1 and MT2A through different pathways.
Collapse
Affiliation(s)
- Meiying Yang
- Division of Neoplastic Diseases, Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, WI 53226, USA
| | | |
Collapse
|
45
|
Pierce A, Mirzaei H, Muller F, De Waal E, Taylor AB, Leonard S, Van Remmen H, Regnier F, Richardson A, Chaudhuri A. GAPDH is conformationally and functionally altered in association with oxidative stress in mouse models of amyotrophic lateral sclerosis. J Mol Biol 2008; 382:1195-210. [PMID: 18706911 DOI: 10.1016/j.jmb.2008.07.088] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/15/2008] [Accepted: 07/30/2008] [Indexed: 11/26/2022]
Abstract
It is proposed that conformational changes induced in proteins by oxidation can lead to loss of activity or protein aggregation through exposure of hydrophobic residues and alteration in surface hydrophobicity. Because increased oxidative stress and protein aggregation are consistently observed in amyotrophic lateral sclerosis (ALS), we used a 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (BisANS) photolabeling approach to monitor changes in protein unfolding in vivo in skeletal muscle proteins in ALS mice. We find two major proteins, creatine kinase (CK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), conformationally affected in the ALS G93A mouse model concordant with a 43% and 41% reduction in enzyme activity, respectively. This correlated with changes in conformation and activity that were detected in CK and GAPDH with in vitro oxidation. Interestingly, we found that GAPDH, but not CK, is conformationally and functionally affected in a longer-lived ALS model (H46R/H48Q), exhibiting a 22% reduction in enzyme activity. We proposed a reaction mechanism for BisANS with nucleophilic amino acids such as lysine, serine, threonine, and tyrosine, and BisANS was found to be primarily incorporated to lysine residues in GAPDH. We identified the specific BisANS incorporation sites on GAPDH in nontransgenic (NTg), G93A, and H46R/H48Q mice using liquid chromatography-tandem mass spectrometry analysis. Four BisANS-containing sites (K52, K104, K212, and K248) were found in NTg GAPDH, while three out of four of these sites were lost in either G93A or H46R/H48Q GAPDH. Conversely, eight new sites (K2, K63, K69, K114, K183, K251, S330, and K331) were found on GAPDH for G93A, including one common site (K114) for H46R/H48Q, which is not found on GAPDH from NTg mice. These data show that GAPDH is differentially affected structurally and functionally in vivo in accordance with the degree of oxidative stress associated with these two models of ALS.
Collapse
Affiliation(s)
- Anson Pierce
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cozzolino M, Ferri A, Carrì MT. Amyotrophic lateral sclerosis: from current developments in the laboratory to clinical implications. Antioxid Redox Signal 2008; 10:405-43. [PMID: 18370853 DOI: 10.1089/ars.2007.1760] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset progressive degeneration of motor neurons occurring both as a sporadic and a familial disease. The etiology of ALS remains unknown, but one fifth of instances are due to specific gene defects, the best characterized of which is point mutations in the gene coding for Cu/Zn superoxide dismutase (SOD1). Because sporadic and familial ALS affect the same neurons with similar pathology, it is hoped that understanding these gene defects will help in devising therapies effective in both forms. A wealth of evidence has been collected in rodents made transgenic for mutant SOD1, which represent the best available models for familial ALS. Mutant SOD1 likely induces selective vulnerability of motor neurons through a combination of several mechanisms, including protein misfolding, mitochondrial dysfunction, oxidative damage, cytoskeletal abnormalities and defective axonal transport, excitotoxicity, inadequate growth factor signaling, and inflammation. Damage within motor neurons is enhanced by noxious signals originating from nonneuronal neighboring cells, where mutant SOD1 induces an inflammatory response that accelerates disease progression. The clinical implication of these findings is that promising therapeutic approaches can be derived from multidrug treatments aimed at the simultaneous interception of damage in both motor neurons and nonmotor neuronal cells.
Collapse
|
47
|
Dubinina EE, Pustygina AV. Free radical processes in aging, neurodegenerative diseases and other pathological states. BIOCHEMISTRY (MOSCOW) SUPPLEMENT SERIES B: BIOMEDICAL CHEMISTRY 2007. [DOI: 10.1134/s1990750807040026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
48
|
Chitambar CR, Purpi DP, Woodliff J, Yang M, Wereley JP. Development of Gallium Compounds for Treatment of Lymphoma: Gallium Maltolate, a Novel Hydroxypyrone Gallium Compound, Induces Apoptosis and Circumvents Lymphoma Cell Resistance to Gallium Nitrate. J Pharmacol Exp Ther 2007; 322:1228-36. [PMID: 17600139 DOI: 10.1124/jpet.107.126342] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Clinical studies have shown gallium nitrate to have significant antitumor activity against non-Hodgkin's lymphoma and bladder cancer, thus indicating that gallium-based drugs have potential for further development as antineoplastic agents. In this study, we compared the cytotoxicity of gallium maltolate, a novel gallium compound, with gallium nitrate in lymphoma cell lines, including p53 variant and unique gallium nitrate-resistant cells. We found that gallium maltolate inhibited cell proliferation and induced apoptosis through the mitochondrial pathway at lower concentrations and more rapidly than gallium nitrate. Gallium maltolate produced an increase in intracellular reactive oxygen species (ROS) within 2 h of incubation with cells; this effect could be blocked by mitoquinone, a mitochondria-targeted antioxidant. The role of the transferrin receptor (TfR) in gallium maltolate's action was examined using monoclonal antibody (MoAb) 42/6 to block TfR function. However, although MoAb 42/6 reduced gallium maltolate-induced caspase-3 activity, it had only a minor effect on cell growth inhibition. Importantly, gallium maltolate induced apoptosis in cells resistant to gallium nitrate, and, unlike gallium nitrate, its cytotoxicity was not affected by cellular p53 status. Cellular gallium uptake was greater with gallium maltolate than with gallium nitrate. We conclude that gallium maltolate inhibits cell proliferation and induces apoptosis more efficiently than gallium nitrate. Gallium maltolate is incorporated into lymphoma cells to a greater extent than gallium nitrate via both TfR-independent and -dependent pathways; it has significant activity against gallium nitrate-resistant cells and acts independently of p53. Further studies to evaluate its antineoplastic activity in vivo are warranted.
Collapse
Affiliation(s)
- Christopher R Chitambar
- Division of Neoplastic Diseases, Department of Medicine, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA.
| | | | | | | | | |
Collapse
|
49
|
Liu D, Bao F, Wen J, Liu J. Mutation of superoxide dismutase elevates reactive species: comparison of nitration and oxidation of proteins in different brain regions of transgenic mice with amyotrophic lateral sclerosis. Neuroscience 2007; 146:255-64. [PMID: 17368952 DOI: 10.1016/j.neuroscience.2007.01.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 12/20/2006] [Accepted: 01/03/2007] [Indexed: 12/13/2022]
Abstract
As part of our effort to study the role of reactive species in amyotrophic lateral sclerosis (ALS), the goal of this work is to explore the correlation between nitration and oxidation of proteins and mutation of Cu, Zn-superoxide dismutase (SOD1) in ALS. Transgenic mice overexpressing the mutant Cu, Zn-superoxide dismutase (mSOD1) gene from humans with familial ALS, wild-type mice overexpressing the normal human SOD1 gene and normal mice without gene overexpression were used. Brain sections from different regions of three groups of mice were double immunohistochemically stained with anti-neurofilament plus anti-nitrotyrosine or treated with 2,4-dinitrophenylhydrazine to label protein carbonyls, then double stained with anti-neurofilament plus anti-2,4-dinitrophenyl (anti-DNP). Neurons containing nitrated and oxidized proteins were visualized only in mSOD1 mice in the motor cortex, the cerebellar cortex and nucleus of hypoglossal nerves (regions related with movement). This correlates mutation of SOD1 to nitration and oxidation of neurons in the movement regions. By counting double-stained neurons, we demonstrated that the number of nitrotyrosine- and DNP-positive neurons was significantly higher in the brain sections of both motor and sensory cortex in mSOD1 mice than in the corresponding regions of control mice (P=0.005 to <0.001), further correlating nitration and oxidation of proteins to SOD1 mutation. Neurons underwent significantly more nitration and oxidation in the motor cortex than in the sensory cortex in mSOD1 mice (P=0.002 and 0.02 respectively), indicating enhanced susceptibility of the motor cortex to nitration and oxidation of proteins and thereby targeting oxidation and nitration of proteins in neurons of the motor cortex in ALS. Significantly elevated protein nitration and nitric oxide synthesis were also demonstrated biochemically in the brain tissues and in cerebrospinal fluid of mutant SOD1 mice. Our in vivo evidence correlates mutation of the SOD1 gene to increased nitric oxide, nitration and oxidation of proteins in ALS.
Collapse
Affiliation(s)
- D Liu
- Department of Neurology, University of Texas Medical Branch, 301 University Boulevard, Route 0881, Galveston, TX 77555-0881, USA.
| | | | | | | |
Collapse
|
50
|
Park JH, Hong YH, Kim HJ, Kim SM, Kim MJ, Park KS, Sung JJ, Lee KW. Pyruvate slows disease progression in a G93A SOD1 mutant transgenic mouse model. Neurosci Lett 2007; 413:265-9. [PMID: 17174029 DOI: 10.1016/j.neulet.2006.11.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 11/30/2006] [Accepted: 11/30/2006] [Indexed: 10/23/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease caused by selective motor neuron death, and currently no effective treatment is available for ALS. In this study, we investigated the neuroprotective effects of pyruvate, which acts as an anti-oxidant and as an energy source. We treated G93A SOD1 transgenic mice with pyruvate (from 70 days of age, i.p., at 1000 mg/kg/week), and found that it prolonged average lifespan by 12.3 days (10.5%), slowed disease progression, and improved motor performance, but did not delay disease onset. Pyruvate treatment was also associated with reduced nitrotyrosine immunoreactivity, gliosis, and increased Bcl-2 expression in the spinal cords of G93A SOD1 transgenic mice. These results suggest that pyruvate treatment may be a potential therapeutic strategy in ALS.
Collapse
Affiliation(s)
- Jong-Ha Park
- Department of Neurology, Seoul National University College of Medicine, Clinical Research Institute of Seoul National University Hospital, 28 Yongon-Dong, Chongno-Gu, Seoul 110-744, South Korea
| | | | | | | | | | | | | | | |
Collapse
|