1
|
Scharbaai-Vázquez R, J. López Font F, A. Zayas Rodríguez F. Persistence in Chlamydia. Infect Dis (Lond) 2022. [DOI: 10.5772/intechopen.109299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Chlamydia spp. are important causes of acute and persistent/chronic infections. All Chlamydia spp. display a unique biphasic developmental cycle alternating between an infectious elementary body (EB) and a replicative form, the reticulate body (RB), followed by the multiplication of RBs by binary fission and progressive differentiation back into EBs. During its intracellular life, Chlamydia employs multiple mechanisms to ensure its persistence inside the host. These include evasion of diverse innate immune responses, modulation of host cell structure and endocytosis, inhibition of apoptosis, activation of pro-signaling pathways, and conversion to enlarged, non-replicative but viable “aberrant bodies” (ABs). Early research described several systems for Chlamydial persistence with a significant number of variables that make a direct comparison of results difficult. Now, emerging tools for genetic manipulations in Chlamydia and advances in global microarray, transcriptomics, and proteomics have opened new and exciting opportunities to understand the persistent state of Chlamydia and link the immune and molecular events of persistence with the pathogenesis of recurrent and chronic Chlamydial infections. This chapter reviews our current understanding and advances in the molecular biology of Chlamydia persistence.
Collapse
|
2
|
Wang J, Wang K. New insights into Chlamydia pathogenesis: Role of leukemia inhibitory factor. Front Cell Infect Microbiol 2022; 12:1029178. [PMID: 36329823 PMCID: PMC9623337 DOI: 10.3389/fcimb.2022.1029178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis (Ct) is the leading cause of bacterial sexually transmitted infections worldwide. Since the symptoms of Ct infection are often subtle or absent, most people are unaware of their infection until they are tested or develop severe complications such as infertility. It is believed that the primary culprit of Ct-associated tissue damage is unresolved chronic inflammation, resulting in aberrant production of cytokines, chemokines, and growth factors, as well as dysregulated tissue influx of innate and adaptive immune cells. A member of the IL-6 cytokine family, leukemia inhibitory factor (LIF), is one of the cytokines induced by Ct infection but its role in Ct pathogenesis is unclear. In this article, we review the biology of LIF and LIF receptor (LIFR)-mediated signaling pathways, summarize the physiological role of LIF in the reproductive system, and discuss the impact of LIF in chronic inflammatory conditions and its implication in Ct pathogenesis. Under normal circumstances, LIF is produced to maintain epithelial homeostasis and tissue repair, including the aftermath of Ct infection. However, LIF/LIFR-mediated signaling – particularly prolonged strong signaling – can gradually transform the microenvironment of the fallopian tube by altering the fate of epithelial cells and the cellular composition of epithelium. This harmful transformation of epithelium may be a key process that leads to an enhanced risk of infertility, ectopic pregnancy and cancer following Ct infection.
Collapse
Affiliation(s)
- Jun Wang
- Canadian Center for Vaccinology, Halifax, NS, Canada
- Department of Microbiology & Immunology, Halifax, NS, Canada
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
- Izaak Walton Killam (IWK) Health Centre, Halifax, NS, Canada
- *Correspondence: Jun Wang,
| | - Katherine Wang
- Canadian Center for Vaccinology, Halifax, NS, Canada
- Department of Microbiology & Immunology, Halifax, NS, Canada
| |
Collapse
|
3
|
Liechti GW. Localized Peptidoglycan Biosynthesis in Chlamydia trachomatis Conforms to the Polarized Division and Cell Size Reduction Developmental Models. Front Microbiol 2021; 12:733850. [PMID: 34956109 PMCID: PMC8699169 DOI: 10.3389/fmicb.2021.733850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Cell size regulation in bacteria is a function of two basic cellular processes: the expansion of the cell envelope and its constriction at spatially defined points at what will eventually become the division plane. In most bacterial species, both cell wall expansion and restriction are dependent on peptidoglycan (PG), a structural polymer comprised of sugars and amino acids that imparts strength and rigidity to bacterial membranes. Pathogenic Chlamydia species are unique in that their cell walls contain very little PG, which is restricted almost entirely to the apparent division plane of the microbe's replicative forms. Very little is known about the degree to which PG affects the size and shape of C. trachomatis during its division process, and recent studies suggest the process is initiated via a polarized mechanism. We conducted an imaging study to ascertain the dimensions, orientation, and relative density of chlamydial PG throughout the organism's developmental cycle. Our analysis indicates that PG in replicating C. trachomatis can be associated with four, broad structural forms; polar/septal disks, small/thick rings, large rings, and small/thin rings. We found that PG density appeared to be highest in septal disks and small/thick rings, indicating that these structures likely have high PG synthesis to degradation ratios. We also discovered that as C. trachomatis progresses through its developmental cycle PG structures, on average, decrease in total volume, indicating that the average cell volume of chlamydial RBs likely decreases over time. When cells infected with C. trachomatis are treated with inhibitors of critical components of the microbe's two distinct PG synthases, we observed drastic differences in the ratio of PG synthesis to degradation, as well as the volume and shape of PG-containing structures. Overall, our results suggest that C. trachomatis PG synthases differentially regulate the expansion and contraction of the PG ring during both the expansion and constriction of the microbe's cell membrane during cell growth and division, respectively.
Collapse
Affiliation(s)
- George W Liechti
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
4
|
McQueen BE, Kiatthanapaiboon A, Fulcher ML, Lam M, Patton K, Powell E, Kollipara A, Madden V, Suchland RJ, Wyrick P, O'Connell CM, Reidel B, Kesimer M, Randell SH, Darville T, Nagarajan UM. Human Fallopian Tube Epithelial Cell Culture Model To Study Host Responses to Chlamydia trachomatis Infection. Infect Immun 2020; 88:e00105-20. [PMID: 32601108 PMCID: PMC7440757 DOI: 10.1128/iai.00105-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Chlamydia trachomatis infection of the human fallopian tubes can lead to damaging inflammation and scarring, ultimately resulting in infertility. To study the human cellular responses to chlamydial infection, researchers have frequently used transformed cell lines that can have limited translational relevance. We developed a primary human fallopian tube epithelial cell model based on a method previously established for culture of primary human bronchial epithelial cells. After protease digestion and physical dissociation of excised fallopian tubes, epithelial cell precursors were expanded in growth factor-containing medium. Expanded cells were cryopreserved to generate a biobank of cells from multiple donors and cultured at an air-liquid interface. Culture conditions stimulated cellular differentiation into polarized mucin-secreting and multiciliated cells, recapitulating the architecture of human fallopian tube epithelium. The polarized and differentiated cells were infected with a clinical isolate of C. trachomatis, and inclusions containing chlamydial developmental forms were visualized by fluorescence and electron microscopy. Apical secretions from infected cells contained increased amounts of proteins associated with chlamydial growth and replication, including transferrin receptor protein 1, the amino acid transporters SLC3A2 and SLC1A5, and the T-cell chemoattractants CXCL10, CXCL11, and RANTES. Flow cytometry revealed that chlamydial infection induced cell surface expression of T-cell homing and activation proteins, including ICAM-1, VCAM-1, HLA class I and II, and interferon gamma receptor. This human fallopian tube epithelial cell culture model is an important tool with translational potential for studying cellular responses to Chlamydia and other sexually transmitted pathogens.
Collapse
Affiliation(s)
- Bryan E McQueen
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Amy Kiatthanapaiboon
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - M Leslie Fulcher
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mariam Lam
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kate Patton
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Emily Powell
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Avinash Kollipara
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Victoria Madden
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Robert J Suchland
- University of Washington, Division of Allergy and Infectious Diseases, Department of Medicine, Seattle, Washington, USA
| | - Priscilla Wyrick
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Catherine M O'Connell
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Boris Reidel
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mehmet Kesimer
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Scott H Randell
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Uma M Nagarajan
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
5
|
Redgrove KA, McLaughlin EA. The Role of the Immune Response in Chlamydia trachomatis Infection of the Male Genital Tract: A Double-Edged Sword. Front Immunol 2014; 5:534. [PMID: 25386180 PMCID: PMC4209867 DOI: 10.3389/fimmu.2014.00534] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 10/09/2014] [Indexed: 01/16/2023] Open
Abstract
Chlamydia trachomatis (CT) is the most prevalent bacterial sexually transmitted infection in the world, with more than 100 million cases reported annually. While there have been extensive studies into the adverse effects that CT infection has on the female genital tract, and on the subsequent ability of these women to conceive, studies into the consequences on male fertility have been limited and controversial. This is in part due to the asymptomatic nature of the infection, where it is estimated that 50% of men with Chlamydia fail to show any symptoms. It is accepted, however, that acute and/or persistent CT infection is the causative agent for conditions such as urethritis, epididymitis, epididymo-orchitis, and potentially prostatitis. As with most infections, the immune system plays a fundamental role in the body’s attempts to eradicate the infection. The first and most important immune response to Chlamydia infection is a local one, whereby immune cells such as leukocytes are recruited to the site of infections, and subsequently secrete pro-inflammatory cytokines and chemokines such as interferon gamma. Immune cells also work to initiate and potentiate chronic inflammation through the production of reactive oxygen species (ROS), and the release of molecules with degradative properties including defensins, elastase, collagenase, cathespins, and lysozyme. This long-term inflammation can lead to cell proliferation (a possible precursor to cancer), tissue remodeling, and scarring, as well as being linked to the onset of autoimmune responses in genetically disposed individuals. This review will focus on the ability of the immune system to recognize and clear acute and persistent chlamydial infections in the male genital tract, and on the paradoxical damage that chronic inflammation resulting from the infection can cause on the reproductive health of the individual.
Collapse
Affiliation(s)
- Kate A Redgrove
- Priority Research Centre in Reproductive Biology and Chemical Biology, University of Newcastle , Callaghan, NSW , Australia ; School of Environmental and Life Science, University of Newcastle , Callaghan, NSW , Australia
| | - Eileen A McLaughlin
- Priority Research Centre in Reproductive Biology and Chemical Biology, University of Newcastle , Callaghan, NSW , Australia ; School of Environmental and Life Science, University of Newcastle , Callaghan, NSW , Australia
| |
Collapse
|
6
|
Saka HA, Thompson JW, Chen YS, Kumar Y, Dubois LG, Moseley MA, Valdivia RH. Quantitative proteomics reveals metabolic and pathogenic properties of Chlamydia trachomatis developmental forms. Mol Microbiol 2011; 82:1185-203. [PMID: 22014092 DOI: 10.1111/j.1365-2958.2011.07877.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen responsible for ocular and genital infections of significant public health importance. C. trachomatis undergoes a biphasic developmental cycle alternating between two distinct forms: the infectious elementary body (EB), and the replicative but non-infectious reticulate body (RB). The molecular basis for these developmental transitions and the metabolic properties of the EB and RB forms are poorly understood as these bacteria have traditionally been difficult to manipulate through classical genetic approaches. Using two-dimensional liquid chromatography - tandem mass spectrometry (LC/LC-MS/MS) we performed a large-scale, label-free quantitative proteomic analysis of C. trachomatis LGV-L2 EB and RB forms. Additionally, we carried out LC-MS/MS to analyse the membranes of the pathogen-containing vacuole ('inclusion'). We developed a label-free quantification approaches to measure protein abundance in a mixed-proteome background which we applied for EB and RB quantitative analysis. In this manner, we catalogued the relative distribution of > 54% of the predicted proteins in the C. trachomatis LGV-L2 proteome. Proteins required for central metabolism and glucose catabolism were predominant in the EB, whereas proteins associated with protein synthesis, ATP generation and nutrient transport were more abundant in the RB. These findings suggest that the EB is primed for a burst in metabolic activity upon entry, whereas the RB form is geared towards nutrient utilization, a rapid increase in cellular mass, and securing the resources for an impending transition back to the EB form. The most revealing difference between the two forms was the relative deficiency of cytoplasmic factors required for efficient type III secretion (T3S) in the RB stage at 18 h post infection, suggesting a reduced T3S capacity or a low frequency of active T3S apparatus assembled on a 'per organism' basis. Our results show that EB and RB proteomes are streamlined to fulfil their predicted biological functions: maximum infectivity for EBs and replicative capacity for RBs.
Collapse
Affiliation(s)
- Hector A Saka
- Department of Molecular Genetics and Microbiology and Center for Microbial Pathogenesis, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | | | |
Collapse
|
7
|
In vivo ultrastructural analysis of the intimate relationship between polymorphonuclear leukocytes and the chlamydial developmental cycle. Infect Immun 2011; 79:3291-301. [PMID: 21576327 DOI: 10.1128/iai.00200-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We utilized a recently developed model of intracervical infection with Chlamydia muridarum in the mouse to elicit a relatively synchronous infection during the initial developmental cycle in order to examine at the ultrastructural level the development of both the chlamydial inclusion and the onset of the inflammatory response. At 18 h after infection, only a few elementary bodies attached to cells were visible, as were an occasional intracellular intermediate body and reticulate body. By 24 h, inclusions had 2 to 5 reticulate bodies and were beginning to fuse. A few polymorphonuclear leukocytes (PMNs) were already present in the epithelium in the vicinity of and directly adjacent to infected cells. By 30 h, the inclusions were larger and consisted solely of reticulate bodies, but by 36 to 42 h, they contained intermediate bodies and elementary bodies as well. Many PMNs were adjacent to or actually inside infected cells. Chlamydiae appeared to exit the cell either (i) through disintegration of the inclusion membrane and rupture of the cell, (ii) by dislodgement of the cell from the epithelium by PMNs, or (iii) by direct invasion of the infected cell by the PMNs. When PMNs were depleted, the number of released elementary bodies was significantly greater as determined both visually and by culture. Interestingly, depletion of PMNs revealed the presence of inclusions containing aberrant reticulate bodies, reminiscent of effects seen in vitro when chlamydiae are incubated with gamma interferon. In vivo evidence for the contact-dependent development hypothesis, a potential mechanism for triggering the conversion of reticulate bodies to elementary bodies, and for translocation of lipid droplets into the inclusion is also presented.
Collapse
|
8
|
Skilton RJ, Cutcliffe LT, Barlow D, Wang Y, Salim O, Lambden PR, Clarke IN. Penicillin induced persistence in Chlamydia trachomatis: high quality time lapse video analysis of the developmental cycle. PLoS One 2009; 4:e7723. [PMID: 19893744 PMCID: PMC2769264 DOI: 10.1371/journal.pone.0007723] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Accepted: 10/09/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Chlamydia trachomatis is a major human pathogen with a unique obligate intracellular developmental cycle that takes place inside a modified cytoplasmic structure known as an inclusion. Following entry into a cell, the infectious elementary body (EB) differentiates into a non-infectious replicative form known as a reticulate body (RB). RBs divide by binary fission and at the end of the cycle they redifferentiate into EBs. Treatment of C.trachomatis with penicillin prevents maturation of RBs which survive and enlarge to become aberrant RBs within the inclusion in a non-infective persistent state. Persistently infected individuals may be a reservoir for chlamydial infection. The C.trachomatis genome encodes the enzymes for peptidoglycan (PG) biosynthesis but a PG sacculus has never been detected. This coupled to the action of penicillin is known as the chlamydial anomaly. We have applied video microscopy and quantitative DNA assays to the chlamydial developmental cycle to assess the effects of penicillin treatment and establish a framework for investigating penicillin induced chlamydial persistence. PRINCIPAL FINDINGS Addition of penicillin at the time of cell infection does not prevent uptake and the establishment of an inclusion. EB to RB transition occurs but bacterial cytokinesis is arrested by the second binary fission. RBs continue to enlarge but not divide in the presence of penicillin. The normal developmental cycle can be recovered by the removal of penicillin although the large, aberrant RBs do not revert to the normal smaller size but remain present to the completion of the developmental cycle. Chromosomal and plasmid DNA replication is unaffected by the addition of penicillin but the arrest of bacterial cytokinesis under these conditions results in RBs accumulating multiple copies of the genome. CONCLUSIONS We have applied video time lapse microscopy to the study of the chlamydial developmental cycle. Linked with accurate measures of genome replication this provides a defined framework to analyse the developmental cycle and to investigate and provide new insights into the effects of antibiotic treatments. Removal of penicillin allows recovery of the normal developmental cycle by 10-20 hrs and the process occurs by budding from aberrant RBs.
Collapse
Affiliation(s)
- Rachel J. Skilton
- Molecular Microbiology Group, University of Southampton Medical School, Southampton General Hospital, Southampton, United Kingdom
| | - Lesley T. Cutcliffe
- Molecular Microbiology Group, University of Southampton Medical School, Southampton General Hospital, Southampton, United Kingdom
| | - David Barlow
- Molecular Microbiology Group, University of Southampton Medical School, Southampton General Hospital, Southampton, United Kingdom
| | - Yibing Wang
- Molecular Microbiology Group, University of Southampton Medical School, Southampton General Hospital, Southampton, United Kingdom
| | - Omar Salim
- Molecular Microbiology Group, University of Southampton Medical School, Southampton General Hospital, Southampton, United Kingdom
| | - Paul R. Lambden
- Molecular Microbiology Group, University of Southampton Medical School, Southampton General Hospital, Southampton, United Kingdom
| | - Ian N. Clarke
- Molecular Microbiology Group, University of Southampton Medical School, Southampton General Hospital, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
9
|
Lambden PR, Pickett MA, Clarke IN. The effect of penicillin on Chlamydia trachomatis DNA replication. MICROBIOLOGY-SGM 2006; 152:2573-2578. [PMID: 16946252 DOI: 10.1099/mic.0.29032-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Chlamydia trachomatis L2 was used to infect BGMK cells at an m.o.i. of 1.0, and the developmental cycle was followed by transmission electron microscopy and quantitative PCR (QPCR) for both chromosomal and plasmid DNA. Samples were taken at sequential 6 h time points. Subsequent analysis by QPCR showed that there was an initial slow replication period (0-18 h), followed by a rapid phase (18-36 h) coinciding with exponential division when the DNA doubling time was 4.6 h. Chromosomal DNA was amplified 100-200-fold corresponding to 7-8 generations for the complete developmental cycle. Penicillin (10 and 100 units ml(-1)) was added to cultures at 20 h post-infection (p.i.). This blocked binary fission and also prevented reticulate body (RB) to elementary body transition. However, exposure to penicillin did not prevent chromosomal or plasmid DNA replication. After a short lag period, following the addition of penicillin, chlamydial chromosomal DNA replication resumed at the same rate as in control C. trachomatis-infected cells. C. trachomatis-infected host cells exposed to penicillin did not lyse, but instead harboured large, aberrant RBs in massive inclusions that completely filled the cell cytoplasm. In these RBs, the DNA continued to replicate well beyond the end of the normal developmental cycle. At 60 h p.i. each aberrant RB contained a minimum of 16 chromosomal copies.
Collapse
Affiliation(s)
- Paul R Lambden
- Molecular Microbiology Group, University of Southampton Medical School, MP814, Southampton General Hospital, Hampshire SO16 6YD, UK
| | - Mark A Pickett
- Molecular Microbiology Group, University of Southampton Medical School, MP814, Southampton General Hospital, Hampshire SO16 6YD, UK
| | - Ian N Clarke
- Molecular Microbiology Group, University of Southampton Medical School, MP814, Southampton General Hospital, Hampshire SO16 6YD, UK
| |
Collapse
|
10
|
Hogan RJ, Mathews SA, Mukhopadhyay S, Summersgill JT, Timms P. Chlamydial persistence: beyond the biphasic paradigm. Infect Immun 2004; 72:1843-55. [PMID: 15039303 PMCID: PMC375192 DOI: 10.1128/iai.72.4.1843-1855.2004] [Citation(s) in RCA: 315] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Richard J Hogan
- Infectious Diseases Program and Cooperative Research Centre for Diagnostics, School of Life Sciences, Queensland University of Technology, Brisbane, Australia
| | | | | | | | | |
Collapse
|
11
|
Harper A, Pogson CI, Pearce JH. Amino acid transport into cultured McCoy cells infected with Chlamydia trachomatis. Infect Immun 2000; 68:5439-42. [PMID: 10948179 PMCID: PMC101813 DOI: 10.1128/iai.68.9.5439-5442.2000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Amino acid transport into McCoy cells infected with strains representative of the two major biovars of Chlamydia trachomatis has been studied to determine if uptake is increased during infection. Preliminary work suggested that the transport systems L, A/ASC (for neutral amino acid transport), N (for transport of Asn, Gln, and His) and y+ (for cationic amino acids) were present in McCoy cells. With lymphogranuloma venereum biovar strain 434, little difference in the influx of representative amino acids Trp, His, and Lys or the analogue 2-aminoisobutyric acid (AIB) was observed during infection. With trachoma biovar strain DK20, a small increase in the initial entry rate and equilibrium concentration of each amino acid was found. McCoy cells appear to have great capacity for concentrating amino acids, which might obviate the need for transport induction by chlamydiae under conditions favoring the growth of infectious organisms.
Collapse
Affiliation(s)
- A Harper
- Microbial Molecular Genetics and Cell Biology Group, School of Biological Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | | | | |
Collapse
|
12
|
Harper A, Pogson CI, Jones ML, Pearce JH. Chlamydial development is adversely affected by minor changes in amino acid supply, blood plasma amino acid levels, and glucose deprivation. Infect Immun 2000; 68:1457-64. [PMID: 10678960 PMCID: PMC97301 DOI: 10.1128/iai.68.3.1457-1464.2000] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study has demonstrated the extreme sensitivity of Chlamydia trachomatis growing in McCoy cells to small changes in external amino acid supply. In the absence of cycloheximide, a decrease in the amino acid concentration of medium to 75% of control values was sufficient to induce the growth of enlarged chlamydial forms of reduced infectivity. Morphology became more distorted and the yield of infectious particles from inclusions declined as medium amino acid levels were further reduced. These events correlated with a general decline in intracellular amino acids, as measured by high-performance liquid chromatography, suggesting that chlamydiae require a minimum concentration of each amino acid for normal development. Cycloheximide enhanced the production of normal organisms and increased infectivity yield in media, suggesting that the drug increased the available pool of amino acids. This was supported by intracellular amino acid analyses. Aberrant forms with reduced infectivity were also induced during supply of infected cell cultures with medium containing blood plasma amino acid concentrations, supporting the proposal that nutrient levels in vivo could promote abnormal chlamydial development. Markedly abnormal forms were also observed during glucose deprivation, providing further evidence that aberrant development is a general stress-related response.
Collapse
Affiliation(s)
- A Harper
- Microbial Molecular Genetics, Cell Biology Group, School of Biological Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom.
| | | | | | | |
Collapse
|
13
|
Phillips DM, Burillo CA. Ultrastructure of the murine cervix following infection with Chlamydia trachomatis. Tissue Cell 1998; 30:446-52. [PMID: 9787477 DOI: 10.1016/s0040-8166(98)80058-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have used electron microscopy to follow the course of Chlamydia trachomatis infection in the mouse cervix. Although numerous elementary bodies (EBs) were observed on the surface of epithelial cells, evidence of coated pits or entry of EBs into epithelial cells were rarely observed. After 2 days postinoculation, inclusions contained numerous reticulate bodies (RBs) and a few intermediate forms (IBs). At 4 days postinoculation, microvilli were no longer present on infected cells and inclusions had often ruptured and released chlamydiae into the cytoplasm of the cells. Aberrant and miniature RBs, similar to those which have been described in in vitro models for persistence, were observed. Unlike the case in vitro where inclusion cause rupture of the cell, infection in vivo may result in rupture of inclusions within the cytoplasm of infected cells. Our observations also suggest that persistent chlamydia can form in some of the cells of the cervical epithelium that are infected by the initial inoculation.
Collapse
|
14
|
Beatty WL, Morrison RP, Byrne GI. Reactivation of persistent Chlamydia trachomatis infection in cell culture. Infect Immun 1995; 63:199-205. [PMID: 7806358 PMCID: PMC172978 DOI: 10.1128/iai.63.1.199-205.1995] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Gamma interferon induces persistent chlamydial infections in cell culture. These infections are characterized by altered morphologic and biochemical features of the pathogen. These persistent forms are abnormally large and noninfectious and undergo unusual structural and functional changes, including production of a paucity of outer envelope constituents and normal levels of the chlamydial hsp60, an immunopathological antigen. The current investigation evaluates the events that occur during reactivation of infectious Chlamydia trachomatis from persistently infected cell cultures. Transfer of persistent chlamydial organisms to gamma interferon-free medium resulted in recovery of infectivity accompanied by an increase in levels of structural membrane proteins and reorganization of aberrant organisms to morphologically typical elementary bodies. In addition, reactivation of infectious organisms from persistent chlamydiae that were maintained in culture for several weeks was demonstrated. These studies show that persistent C. trachomatis maintains viability for extended periods, illustrate the reversibility of immunologically mediated persistent infections, and characterize reactivation at the ultrastructural and biochemical levels.
Collapse
Affiliation(s)
- W L Beatty
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
15
|
Beatty WL, Morrison RP, Byrne GI. Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. Microbiol Rev 1994; 58:686-99. [PMID: 7854252 PMCID: PMC372987 DOI: 10.1128/mr.58.4.686-699.1994] [Citation(s) in RCA: 281] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chlamydiae are medically important bacteria responsible for a wide range of human infections and diseases. Repeated episodes of infection promote chronic inflammation associated with detrimental immune system-mediated pathologic changes. However, the true nature of chlamydial pathogenesis may encompass repeated infection superimposed upon persistent infection, which would allow for heightened immune reactivity. During the course of chlamydial infection, numerous host elaborated factors with inhibitory or modifying effects may cause alterations in the chlamydia-host cell relationship such that the organism is maintained in a nonproductive stage of growth. Abnormal or persistent chlamydiae have been recognized under a variety of cell culture systems. The numerous factors associated with altered growth suggest an innate flexibility in the developmental cycle of chlamydiae. This review evaluates in vitro studies of chlamydial persistence and correlates these model systems to features of natural chlamydial disease.
Collapse
Affiliation(s)
- W L Beatty
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison 53706
| | | | | |
Collapse
|
16
|
Affiliation(s)
- L Weström
- Department of Obsterics and Gynaecology, University Hospital, Lund, Sweden
| | | |
Collapse
|
17
|
Abstract
The obligately intracellular bacteria of the genus Chlamydia, which is only remotely related to other eubacterial genera, cause many diseases of humans, nonhuman mammals, and birds. Interaction of chlamydiae with host cells in vitro has been studied as a model of infection in natural hosts and as an example of the adaptation of an organism to an unusual environment, the inside of another living cell. Among the novel adaptations made by chlamydiae have been the substitution of disulfide-bond-cross-linked polypeptides for peptidoglycans and the use of host-generated nucleotide triphosphates as sources of metabolic energy. The effect of contact between chlamydiae and host cells in culture varies from no effect at all to rapid destruction of either chlamydiae or host cells. When successful infection occurs, it is usually followed by production of large numbers of progeny and destruction of host cells. However, host cells containing chlamydiae sometimes continue to divide, with or without overt signs of infection, and chlamydiae may persist indefinitely in cell cultures. Some of the many factors that influence the outcome of chlamydia-host cell interaction are kind of chlamydiae, kind of host cells, mode of chlamydial entry, nutritional adequacy of the culture medium, presence of antimicrobial agents, and presence of immune cells and soluble immune factors. General characteristics of chlamydial multiplication in cells of their natural hosts are reproduced in established cell lines, but reproduction in vitro of the subtle differences in chlamydial behavior responsible for the individuality of the different chlamydial diseases will require better in vitro models.
Collapse
Affiliation(s)
- J W Moulder
- Department of Molecular Genetics and Cell Biology, University of Chicago, Illinois 60637
| |
Collapse
|
18
|
Schumacher HR, Magge S, Cherian PV, Sleckman J, Rothfuss S, Clayburne G, Sieck M. Light and electron microscopic studies on the synovial membrane in Reiter's syndrome. Immunocytochemical identification of chlamydial antigen in patients with early disease. ARTHRITIS AND RHEUMATISM 1988; 31:937-46. [PMID: 2841944 DOI: 10.1002/art.1780310801] [Citation(s) in RCA: 166] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Studies by light microscopy on synovium obtained from 11 patients with Reiter's syndrome during the first month of an episode showed proliferation of synovial lining cells, polymorphonuclear neutrophils among the synovial lining cells, increased surface fibrin, and vascular congestion. Biopsy specimens taken later showed vascular congestion and still proliferated synovial lining cells, fewer polymorphonuclear neutrophils in some, and a tendency toward increased infiltration with lymphocytes and plasma cells. Electron microscopy of samples from 8 patients during the first month of disease activity showed occlusion of vessels by platelets in 4, and fibrin or dense granular material in the vessel walls in 4. Five of the patients with arthritis of less than 4 weeks duration had unidentified intracellular and extracellular particles; some of these were highly suggestive of Chlamydia. No such particles were noted in samples from patients with more chronic cases. Using an antibody to Chlamydia trachomatis and the peroxidase-antiperoxidase technique, immunocytochemistry showed reaction product in synovial macrophages in 2 patients with arthritis of less than 4 weeks duration, but not in the 1 patient studied who had more chronic disease. These studies provide support for dramatic synovial vascular injury consistent with that caused by endotoxin and the presence of chlamydial antigen in synovial macrophages, at least in the early phases of synovitis.
Collapse
Affiliation(s)
- H R Schumacher
- University of Pennsylvania School of Medicine, Philadelphia
| | | | | | | | | | | | | |
Collapse
|
19
|
Peterson EM, de la Maza LM. Chlamydia parasitism: ultrastructural characterization of the interaction between the chlamydial cell envelope and the host cell. J Bacteriol 1988; 170:1389-92. [PMID: 3343223 PMCID: PMC210922 DOI: 10.1128/jb.170.3.1389-1392.1988] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ultrastructural analysis of the growth cycles of Chlamydia trachomatis and Chlamydia psittaci showed that the chlamydial cell envelope became rigid and septated at the time of the reorganization from reticulate to elementary body. This process occurred in the immediacy of the inclusion membrane and in close proximity with the mitochondria or the endoplasmic reticulum of the host cell.
Collapse
Affiliation(s)
- E M Peterson
- Department of Pathology, University of California, Irvine 92717
| | | |
Collapse
|
20
|
Chi EY, Kuo CC, Grayston JT. Unique ultrastructure in the elementary body of Chlamydia sp. strain TWAR. J Bacteriol 1987; 169:3757-63. [PMID: 3611029 PMCID: PMC212462 DOI: 10.1128/jb.169.8.3757-3763.1987] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The ultrastructure of two prototype strains (TW-183 and AR-39) of Chlamydia sp. strain TWAR was described. The TWAR elementary body (EB) demonstrated a unique morphology and structure distinct from those of other chlamydial organisms. It was pleomorphic but typically pear shaped. The average size was 0.38 micron, with a long axis of 0.44 micron, a short axis of 0.31 micron, and a ratio of the long to the short axes of 1.42. The cytoplasmic mass was round, with an average diameter of 0.24 micron. There was a large periplasmic space. Small, round electron-dense bodies (0.05 micron in diameter), which were attached to the cytoplasm by a stringlike structure, were seen in the periplasmic space. These features are in contrast to those of other chlamydiae, which are typically round with a narrow or barely discernible periplasmic space. The TWAR reticulate body (RB) was morphologically and structurally similar to those of other Chlamydia species, having an average diameter of 0.51 micron and being circular in shape. The ultrastructural observations of the intracellular growth of TWAR in HeLa cells revealed that TWAR underwent the same developmental cycle as do other chlamydiae, i.e., transformation of EB to RB, multiplication by binary fission, and maturation by transformation of RB to EB via the intermediate-form stage.
Collapse
|