1
|
Rustamova N, Huang G, Isokov M, Movlanov J, Farid R, Buston I, Xiang H, Davranov K, Yili A. Modification of natural compounds through biotransformation process by microorganisms and their pharmacological properties. Fitoterapia 2024; 179:106227. [PMID: 39326800 DOI: 10.1016/j.fitote.2024.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
The biotransformation of natural compounds by fungal microorganisms is a complex biochemical process. Tandem whole-cell biotransformation offers a promising, alternative, and cost-effective method for modifying of bioactive novel compounds. This approach is particularly beneficial for structurally complex natural products that are difficult to be synthesized through traditional synthetic methods. Biotransformation also provides significant regio- and stereoselectivity, making it a valuable tool for the chemical modification of natural compounds. By utilizing microbial conversion reactions, the biological activity and structural diversity of natural products can be enhanced. In this review, we have summarized 282 novel metabolites resulting from microbial transformation by various microorganisms. We discussed the chemical structures and pharmacological properties of these novel biotransformation products. The review would assist scientists working in the fields of biotechnology, organic chemistry, medicinal chemistry, and pharmacology.
Collapse
Affiliation(s)
- Nigora Rustamova
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Department of Enzymology, Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Shaykhantakhur district, street Abdulla Kadiriy, 7 B100128, Uzbekistan; Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan.
| | - Guozheng Huang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, 59 Hudong Road, Ma'anshan 243002, Anhui, China
| | - Maksud Isokov
- University of Geological Science, Center of Geoinnovation Technologies, 100041 Tashkent, Uzbekistan
| | - Jakhongir Movlanov
- University of Geological Science, Center of Geoinnovation Technologies, 100041 Tashkent, Uzbekistan
| | - Ruziev Farid
- Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan
| | - Islamov Buston
- Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan
| | - Hua Xiang
- Institute Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kahramon Davranov
- Department of Enzymology, Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Shaykhantakhur district, street Abdulla Kadiriy, 7 B100128, Uzbekistan
| | - Abulimiti Yili
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
2
|
Guo W, Liu Y, Chen B, Fan L. Target prediction and potential application of dihydroartemisinin on hepatocarcinoma treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7711-7724. [PMID: 38713259 DOI: 10.1007/s00210-024-03123-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024]
Abstract
With high incidence of hepatocarcinoma and limited effective treatments, most patients suffer in pain. Antitumor drugs are single-targeted, toxicity, causing adverse side effects and resistance. Dihydroartemisinin (DHA) inhibits tumor through multiple mechanisms effectively. This study explores and evaluates safety and potential mechanism of DHA towards human hepatocarcinoma based on network pharmacology in a comprehensive way. Adsorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of DHA were evaluated with pkCSM, SwissADME, and ADMETlab. Potential targets of DHA were obtained from SwissTargetPrediction, Drugbank, TargetNET, and PharmMapper. Target gene of hepatocarcinoma was obtained from OMIM, GeneCards, and DisGeNET. Overlapping targets and hub genes were identified and analyzed for Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome pathway. Molecular docking was utilized to investigate the interactions sites and hydrogen bonds. Cell counting kit-8 (CCK8), wound healing, invasion, and migration assays on HepG2 and SNU387 cell proved DHA inhibits malignant biological features of hepatocarcinoma cell. DHA is safe and desirable for clinical application. A total of 131 overlapping targets were identified. Biofunction analysis showed targets were involved in kinase activity, protein phosphorylation, intracellular reception, signal transduction, transcriptome dysregulation, PPAR pathway, and JAK-STAT signaling axis. Top 9 hub genes were obtained using MCC (Maximal Clique Centrality) algorithm, namely CDK1, CCNA2, CCNB1, CCNB2, KIF11, CHEK1, TYMS, AURKA, and TOP2A. Molecular docking suggests that all hub genes form a stable interaction with DHA for optimal binding energy were all less than - 5 kcal/mol. Dihydroartemisinin might be a potent and safe anticarcinogen based on its biological safety and effective therapeutic effect.
Collapse
Affiliation(s)
- Wenjia Guo
- Department of Laboratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yu'e Liu
- Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Bingdi Chen
- The Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China.
| | - Lieying Fan
- Department of Laboratory Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Li Y, Ma P, Li J, Wu F, Guo M, Zhou E, Song S, Wang S, Zhang S, Jin Y. Dihydroartemisinin restores the immunogenicity and enhances the anticancer immunosurveillance of cisplatin by activating the PERK/eIF2α pathway. Cell Biosci 2024; 14:100. [PMID: 39090653 PMCID: PMC11295430 DOI: 10.1186/s13578-024-01254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Immunosurveillance is pivotal in the effectiveness of anticancer therapies and tumor control. The ineffectiveness of cisplatin in activating the immunosurveillance is attributed to its lack of adjuvanticity resulting from its inability to stimulate endoplasmic reticulum stress. Dihydroartemisinin demonstrates the anti-tumor effects through various mechanisms, including the activation of the endoplasmic reticulum stress. This study aimed to develop a novel strategy to enhance the immunogenicity of dying tumor cells by combining cisplatin with dihydroartemisinin, thereby triggering effective anti-tumor immunosurveillance and improving the efficacy of cisplatin in clinical practice. METHODS Lewis lung carcinoma (LLC) and CT26 colon cancer cell lines and subcutaneous tumor models were used in this study. The importance of immunosurveillance was validated in both immunocompetent and immunodeficient mouse models. The ability of dihydroartemisinin and cisplatin therapy to induce immunogenic cell death and tumor growth control in vivo was validated by prophylactic tumor vaccination and therapeutic tumor models. The underlying mechanism was elucidated through the pharmaceutical or genetic intervention of the PERK/eIF2α pathway in vitro and in vivo. RESULTS Dihydroartemisinin enhanced the generation of reactive oxygen species in cisplatin-treated LLC and CT26 cancer cells. The combination treatment of dihydroartemisinin with cisplatin promoted cell death and ensured an optimal release of damage-associated molecular patterns from dying cancer cells, promoting the phagocytosis of dendritic cells. In the tumor vaccination model, we confirmed that dihydroartemisinin plus cisplatin treatment induced immunogenic cell death. Utilizing immunocompetent and immunodeficient mouse models, we further demonstrated that the combination treatment suppressed the tumor growth of CT26 colon cancer and LLC lung cancer, leading to an improved prognosis through the restoration of cytotoxic T lymphocyte responses and reinstatement of anti-cancer immunosurveillance in vivo. Mechanistically, dihydroartemisinin restored the immunogenicity of cisplatin by activating the adjuvanticity of damage-associated molecular patterns, such as calreticulin exposure, through the PERK/eIF2α pathway. Additionally, the inhibition of eIF2α phosphorylation attenuated the anti-tumor efficiency of C + D in vivo. CONCLUSIONS We highlighted that dihydroartemisinin acts as an immunogenic cell death rescuer for cisplatin, activating anticancer immunosurveillance in a PERK/eIF2α-dependent manner and offering a strategy to enhance the anti-tumor efficacy of cisplatin in clinical practice.
Collapse
Affiliation(s)
- Yumei Li
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pei Ma
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jingxia Li
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Wu
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengfei Guo
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - E Zhou
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siwei Song
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sufei Wang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Zhang
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, Key Laboratory of Pulmonary Diseases of National Health Commission, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, Hubei, China.
- The Ministry of Education Key Laboratory of Biological Targeted Therapy, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Province Engineering Research Center for Tumor-Targeted Biochemotherapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Shepherd JM, Ross J, Anton L, Rourke C, Brentnall AR, Tarning J, White NJ, Thiemermann C, Brohi K. Safety and efficacy of artesunate treatment in severely injured patients with traumatic hemorrhage. The TOP-ART randomized clinical trial. Intensive Care Med 2023; 49:922-933. [PMID: 37470832 PMCID: PMC10425486 DOI: 10.1007/s00134-023-07135-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/27/2023] [Indexed: 07/21/2023]
Abstract
PURPOSE This study aimed at determining whether intravenous artesunate is safe and effective in reducing multiple organ dysfunction syndrome in trauma patients with major hemorrhage. METHODS TOP-ART, a randomized, blinded, placebo-controlled, phase IIa trial, was conducted at a London major trauma center in adult trauma patients who activated the major hemorrhage protocol. Participants received artesunate or placebo (2:1 randomization ratio) as an intravenous bolus dose (2.4 mg/kg or 4.8 mg/kg) within 4 h of injury. The safety outcome was the 28-day serious adverse event (SAE) rate. The primary efficacy outcome was the 48 h sequential organ failure assessment (SOFA) score. The per-protocol recruitment target was 105 patients. RESULTS The trial was terminated after enrolment of 90 patients because of safety concerns. Eighty-three participants received artesunate (n = 54) or placebo (n = 29) and formed the safety population and 75 met per-protocol criteria (48 artesunate, 27 placebo). Admission characteristics were similar between groups (overall 88% male, median age 29 years, median injury severity score 22), except participants who received artesunate were more shocked (median base deficit 9 vs. 4.7, p = 0.042). SAEs occurred in 17 artesunate participants (31%) vs. 5 who received placebo (17%). Venous thromboembolic events (VTE) occurred in 9 artesunate participants (17%) vs. 1 who received placebo (3%). Superiority of artesunate was not supported by the 48 h SOFA score (median 5.5 artesunate vs. 4 placebo, p = 0.303) or any of the trial's secondary endpoints. CONCLUSION Among critically ill trauma patients, artesunate is unlikely to improve organ dysfunction and might be associated with a higher VTE rate.
Collapse
Affiliation(s)
- Joanna M Shepherd
- Centre for Trauma Sciences, The Blizard Institute, Queen Mary University of London, London, E1 4AT, UK.
| | - Jennifer Ross
- Centre for Trauma Sciences, The Blizard Institute, Queen Mary University of London, London, E1 4AT, UK
| | - Lourdes Anton
- Centre for Trauma Sciences, The Blizard Institute, Queen Mary University of London, London, E1 4AT, UK
- Chelsea Research Center, The Royal Marsden NHS Foundation Trust, 2nd Floor Wallace Wing, 203 Fulham Rd, Chelsea, London, SW3 6JJ, UK
| | - Claire Rourke
- Centre for Trauma Sciences, The Blizard Institute, Queen Mary University of London, London, E1 4AT, UK
- NHS Blood and Transplant Clinical Trials Unit, Cambridge Blood Centre, Long Road, Cambridge, CB20PT, UK
| | - Adam R Brentnall
- Centre for Evaluation and Methods, Wolfson Institute of Population Health, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Christoph Thiemermann
- Centre for Translational Medicine and Therapeutics, The William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Karim Brohi
- Centre for Trauma Sciences, The Blizard Institute, Queen Mary University of London, London, E1 4AT, UK
| |
Collapse
|
5
|
Lu J, Yu J, Xie W, Guo Z, Gao X, Li Y, Zhang Z, Jin Z, Fahad A, Che S, Zhao L, Wei Y. Acidity-Triggered Charge-Convertible Conjugated Polymer for Dihydroartemisinin Delivery and Tumor-Specific Chemo-Photothermal Therapy. ACS APPLIED BIO MATERIALS 2023. [PMID: 37190932 DOI: 10.1021/acsabm.3c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Since the nonspecificity and nonselectivity of traditional treatment models lead to the difficulty of cancer treatment, nanobased strategies are needed to fill in the gaps of current approaches. Herein, a tumor microenvironment (TME)-responsive chemo-photothermal treatment model was developed based on dihydroartemisinin (DHA)-loaded conjugated polymers (DHA@PLGA-PANI). The synthesized DHA@PLGA-PANI exhibited enhanced photothermal properties under mild-acidic conditions and thus triggered local heat at the tumor site. Meanwhile, these iron-doped conjugated polymers of PLGA-PANI were used as the source of Fe, and benefiting from the Fe-dependent cytotoxicity of DHA, the burst of free radicals could be generated in tumors. Therefore, the combination of TME-responsive chemo-photothermal therapy could achieve effective tumor efficacy.
Collapse
Affiliation(s)
- Jingsong Lu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Jing Yu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Wensheng Xie
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Zhenhu Guo
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaohan Gao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Ying Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Ziqing Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Zeping Jin
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Abdul Fahad
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Shenglei Che
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Lingyun Zhao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
- Research Center of Magnetic and Electronic Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Institute of Process Engineering Chinese Academy of Sciences, State Key Laboratories of Biochemical Engineering, Beijing 100190, China
- Department of Neurosurgery, Yuquan Hospital School of Clinical Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Grignano E, Cantero-Aguilar L, Tuerdi Z, Chabane T, Vazquez R, Johnson N, Zerbit J, Decroocq J, Birsen R, Fontenay M, Kosmider O, Chapuis N, Bouscary D. Dihydroartemisinin-induced ferroptosis in acute myeloid leukemia: links to iron metabolism and metallothionein. Cell Death Discov 2023; 9:97. [PMID: 36928207 PMCID: PMC10020442 DOI: 10.1038/s41420-023-01371-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 03/18/2023] Open
Abstract
Artemisinin is an anti-malarial drug that has shown anticancer properties. Recently, ferroptosis was reported to be induced by dihydroartemisinin (DHA) and linked to iron increase. In the current study, we determined the effect of DHA in leukemic cell lines on ferroptosis induction and iron metabolism and the cytoprotective effect triggered in leukemic cells. We found that treatment of DHA induces early ferroptosis by promoting ferritinophagy and subsequent iron increase. Furthermore, our study demonstrated that DHA activated zinc metabolism signaling, especially the upregulation of metallothionein (MT). Supportingly, we showed that inhibition MT2A and MT1M isoforms enhanced DHA-induced ferroptosis. Finally, we demonstrated that DHA-induced ferroptosis alters glutathione pool, which is highly dependent on MTs-driven antioxidant response. Taken together, our study indicated that DHA activates ferritinophagy and subsequent ferroptosis in AML and that MTs are involved in glutathione regenerating and antioxidant response.
Collapse
Affiliation(s)
- E Grignano
- INSERM U1016, Institut Cochin, Paris, France. .,CNRS UMR8104, Paris, France. .,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France. .,Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France. .,Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Service d'Hématologie Clinique, Paris, France.
| | - L Cantero-Aguilar
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France
| | - Z Tuerdi
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France
| | - T Chabane
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France
| | - R Vazquez
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Service d'Hématologie Biologique, Paris, France
| | - N Johnson
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Service d'Hématologie Clinique, Paris, France
| | - J Zerbit
- Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Pharmacie, Paris, France
| | - J Decroocq
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Service d'Hématologie Clinique, Paris, France
| | - R Birsen
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Service d'Hématologie Clinique, Paris, France
| | - M Fontenay
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Service d'Hématologie Biologique, Paris, France
| | - O Kosmider
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Service d'Hématologie Biologique, Paris, France
| | - N Chapuis
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Service d'Hématologie Biologique, Paris, France
| | - D Bouscary
- INSERM U1016, Institut Cochin, Paris, France.,CNRS UMR8104, Paris, France.,Université Paris Descartes, Faculté de Médecine Sorbonne Paris Cité, Paris, France.,Equipe Labellisée Ligue Nationale Contre le Cancer (LNCC), Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Paris Centre, Service d'Hématologie Clinique, Paris, France.,Member of OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Paris, France
| |
Collapse
|
7
|
Zhou Y, Fang C, Xu H, Yuan L, Liu Y, Wang X, Zhang A, Shao A, Zhou D. Ferroptosis in glioma treatment: Current situation, prospects and drug applications. Front Oncol 2022; 12:989896. [PMID: 36249003 PMCID: PMC9557197 DOI: 10.3389/fonc.2022.989896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis is a regulatory form of iron-dependent cell death caused by the accumulation of lipid-based reactive oxygen species (ROS) and differs from apoptosis, pyroptosis, and necrosis. Especially in neoplastic diseases, the susceptibility of tumor cells to ferroptosis affects prognosis and is associated with complex effects. Gliomas are the most common primary intracranial tumors, accounting for disease in 81% of patients with malignant brain tumors. An increasing number of studies have revealed the particular characteristics of iron metabolism in glioma cells. Therefore, agents that target a wide range of molecules involved in ferroptosis may regulate this process and enhance glioma treatment. Here, we review the underlying mechanisms of ferroptosis and summarize the potential therapeutic options for targeting ferroptosis in glioma.
Collapse
Affiliation(s)
- Yuhang Zhou
- Health Management Center, Tongde Hospital of Zhejiang Province, Hangzhou, China
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Danyang Zhou,
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Danyang Zhou,
| | - Danyang Zhou
- Health Management Center, Tongde Hospital of Zhejiang Province, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Danyang Zhou,
| |
Collapse
|
8
|
Ozok-Arici O, Kavak E, Kivrak A. Synthesis of Thiophene/Furan-Artemisinin Hybrid Molecules. Chem Biodivers 2022; 19:e202200144. [PMID: 35713943 DOI: 10.1002/cbdv.202200144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/17/2022] [Indexed: 11/11/2022]
Abstract
Natural products with semi-synthetic molecules displays higher biological activities, and creates new biological properties for the treatment of diseases. Although, natural products like artemisinin have been used as a traditional medicine over thousands of years, structure and biological properties of many natural products were investigated in the 20th century. Design and synthesis of new biologically active compounds including natural products have very critical roles to find novel drug candidates. Herein, novel thiophene/furan bridge artemisinin derivatives were synthesized by starting from artemisinin. Firstly, benzothiophene derivatives are synthesized, then Stergich esterification reactions give the new artemisinin hybrid molecules with moderate to high yields.
Collapse
Affiliation(s)
- Omruye Ozok-Arici
- Eski?ehir Osmangazi Üniversitesi: Eskisehir Osmangazi Universitesi, Chemistry, Eskişehir Osmangazi Üniversitesi Fen Edebiyat Fakültesi Kimya Bölümü, 26040, Odunpazarı, TURKEY
| | - Emrah Kavak
- Van Yuzuncu Yil Universitesi, Chemistry, Eskisehir Osmangazi University, Arts and Science Faculty Depatment of Chemistry, 26040, Eskisehir, TURKEY
| | - Arif Kivrak
- Eskisehir Osmangazi University: Eskisehir Osmangazi Universitesi, Chemistry, Eskisehir Osmangazi University, Arts and Science Faculty Depatment of Chemistry, 26040, Eskisehir, TURKEY
| |
Collapse
|
9
|
Nandi D, Cheema PS, Singal A, Bharti H, Nag A. Artemisinin Mediates Its Tumor-Suppressive Activity in Hepatocellular Carcinoma Through Targeted Inhibition of FoxM1. Front Oncol 2021; 11:751271. [PMID: 34900697 PMCID: PMC8652299 DOI: 10.3389/fonc.2021.751271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/04/2021] [Indexed: 12/28/2022] Open
Abstract
The aberrant up-regulation of the oncogenic transcription factor Forkhead box M1 (FoxM1) is associated with tumor development, progression and metastasis in a myriad of carcinomas, thus establishing it as an attractive target for anticancer drug development. FoxM1 overexpression in hepatocellular carcinoma is reflective of tumor aggressiveness and recurrence, poor prognosis and low survival in patients. In our study, we have identified the antimalarial natural product, Artemisinin, to efficiently curb FoxM1 expression and activity in hepatic cancer cells, thereby exhibiting potential anticancer efficacy. Here, we demonstrated that Artemisinin considerably mitigates FoxM1 transcriptional activity by disrupting its interaction with the promoter region of its downstream targets, thereby suppressing the expression of numerous oncogenic drivers. Augmented level of FoxM1 is implicated in drug resistance of cancer cells, including hepatic tumor cells. Notably, FoxM1 overexpression rendered HCC cells poorly responsive to Artemisinin-mediated cytotoxicity while FoxM1 depletion in resistant liver cancer cells sensitized them to Artemisinin treatment, manifested in lower proliferative and growth index, drop in invasive potential and repressed expression of EMT markers with a concomitantly increased apoptosis. Moreover, Artemisinin, when used in combination with Thiostrepton, an established FoxM1 inhibitor, markedly reduced anchorage-independent growth and displayed more pronounced death in liver cancer cells. We found this effect to be evident even in the resistant HCC cells, thereby putting forth a novel combination therapy for resistant cancer patients. Altogether, our findings provide insight into the pivotal involvement of FoxM1 in the tumor suppressive activities of Artemisinin and shed light on the potential application of Artemisinin for improved therapeutic response, especially in resistant hepatic malignancies. Considering that Artemisinin compounds are in current clinical use with favorable safety profiles, the results from our study will potentiate its utility in juxtaposition with established FoxM1 inhibitors, promoting maximal therapeutic efficacy with minimal adverse effects in liver cancer patients.
Collapse
Affiliation(s)
| | | | - Aakriti Singal
- Department of Biochemistry, University of Delhi, New Delhi, India
| | - Hina Bharti
- Department of Biochemistry, University of Delhi, New Delhi, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi, New Delhi, India
| |
Collapse
|
10
|
Xu Z, Liu X, Zhuang D. Artesunate inhibits cell proliferation, migration, and invasion of thyroid cancer by regulating the PI3K/AKT/FKHR pathway. Biochem Cell Biol 2021; 100:85-92. [PMID: 34797728 DOI: 10.1139/bcb-2021-0275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study characterized the effects of artesunate on thyroid cancer and partially identified its related molecular mechanism. We determined the effect of artesunate on the proliferation of thyroid cancer cells using the MTT assay, cell colony formation experiments, and western blotting, and used flow cytometry to detect the apoptosis of cancer cells. Using a wound-healing assay, Transwell chamber experiments, and western blotting, we determined the effect of artesunate on cancer cell migration. By co-cultivating artesunate with the PI3K agonist, 740Y-P, we also partially identified the molecular mechanism. Artesunate significantly inhibited the growth, proliferation, migration, and invasion of thyroid cancer cells, and promoted the apoptosis of cancer cells. Using co-cultivation with a PI3K agonist, we found that the inhibitory effect of artesunate on cancer cells was mainly due to suppressing the PI3K/AKT/FKHR signaling pathway. By inhibiting the PI3K/AKT/FKHR signaling pathway, artesunate induced apoptosis of thyroid cancer cells and inhibited their proliferation and migration.
Collapse
Affiliation(s)
- Zhiwei Xu
- Tongxiang First People's Hospital, Jiaxing, China;
| | - Xiaojian Liu
- Tongxiang First People's Hospital, Jiaxing, China;
| | | |
Collapse
|
11
|
Synthesis and Anticancer Activity of 11-azaartemisinin Derivatives Bearing 1,2,3-triazole Moiety. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-03019-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Abstract
Terpenoids are the largest class of natural products, most of which are derived from plants. Amongst their numerous biological properties, their anti-tumor effects are of interest for they are extremely diverse which include anti-proliferative, apoptotic, anti-angiogenic, and anti-metastatic activities. Recently, several in vitro and in vivo studies have been dedicated to understanding the 'terpenoid induced autophagy' phenomenon in cancer cells. Light has already been shed on the intricacy of apoptosis and autophagy relationship. This latter crosstalk is driven by the delicate balance between activating or silencing of certain proteins whereby the outcome is expressed via interrelated signaling pathways. In this review, we focus on nine of the most studied terpenoids and on their cell death and autophagic activity. These terpenoids are grouped in three classes: sesquiterpenoid (artemisinin, parthenolide), diterpenoids (oridonin, triptolide), and triterpenoids (alisol, betulinic acid, oleanolic acid, platycodin D, and ursolic acid). We have selected these nine terpenoids among others as they belong to the different major classes of terpenoids and our extensive search of the literature indicated that they were the most studied in terms of autophagy in cancer. These terpenoids alone demonstrate the complexity by which these secondary metabolites induce autophagy via complex signaling pathways such as MAPK/ERK/JNK, PI3K/AKT/mTOR, AMPK, NF-kB, and reactive oxygen species. Moreover, induction of autophagy can be either destructive or protective in tumor cells. Nevertheless, should this phenomenon be well understood, we ought to be able to exploit it to create novel therapies and design more effective regimens in the management and treatment of cancer.
Collapse
|
13
|
Dihydroartemisinin Attenuates Pulmonary Hypertension Through Inhibition of Pulmonary Vascular Remodeling in Rats. J Cardiovasc Pharmacol 2021; 76:337-348. [PMID: 32569012 DOI: 10.1097/fjc.0000000000000862] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a malignant disease characterized by pulmonary arterial remodeling because of the abnormal proliferation and migration of pulmonary arterial smooth muscle cells. Dihydroartemisinin (DHA), an artemisinin derivative used to treat malaria, is able to inhibit fibrosis, neovascularization, and tumor proliferation. In this study, we hypothesized that DHA can be beneficial in treating PAH. To test this hypothesis, a rat model of pulmonary hypertension induced with monocrotaline (MCT) was used. Compared with MCT treatment alone, treatment with 50 or 100 mg/kg DHA significantly reduced the mean pulmonary arterial pressure (30.11 ± 2.48 mm Hg vs. 21.35 ± 3.04 mm Hg and 19.18 ± 1.98 mm Hg, respectively, both P < 0.01), right ventricular transverse diameter (4.36 ± 0.41 mm vs. 3.72 ± 0.24 mm and 3.67 ± 0.27 mm, respectively, both P < 0.01), pulmonary artery medial wall thickness (57.93 ± 11.14% vs. 34.45 ± 4.39% and 25.01 ± 6.66%, respectively, both P < 0.01), and increased tricuspid annular plane systolic excursion (1.34 ± 0.17 mm vs. 1.62 ± 0.3 mm and 1.62 ± 0.16 mm, respectively, both P < 0.05). We also found that DHA inhibited platelet-derived growth factor-BB-mediated pulmonary arterial smooth muscle cells proliferation and migration in a dose-dependent manner. Moreover, DHA downregulated β-catenin levels while upregulating the levels of axis inhibition protein 2 (Axin2) and glycogen synthase kinase 3β (GSK-3β). Our findings suggest that DHA, which may be a potential candidate for PAH therapy, attenuates experimental pulmonary hypertension possibly by inhibiting pulmonary vascular remodeling.
Collapse
|
14
|
Ozok O, Kavak E, Kivrak A. Synthesis of novel artesunate-benzothiophene and artemisinin-benzothiophene derivatives. Nat Prod Res 2021; 36:5228-5234. [PMID: 34024198 DOI: 10.1080/14786419.2021.1928116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Natural products are used for the treatment of a variety of diseases for many years. Last decades, design and synthesis of novel biologically active hybrid molecules including natural product is gained big importance due to their unique and new biological properties. In the present study, novel artemisinin-benzothiophene derivatives (12 A-F) are synthesised. Initially, benzothiophene derivatives (4 A-4F) are prepared via the Pd-catalyzed coupling reactions and iodocyclisation reactions. Then, Suzuki-Miyaura coupling reactions were used for the formation of intermediates 6 A-6F (between 64% and 91% yields). Finally, the Steglich esterification reaction between intermediate 6 and artesunate formed the artemisinin-benzothiophene hybrids (9 A-9F) in moderate to excellent yields under very mild reaction conditions. When intermediate 6 was reacted with dihydroartemisinin, product 12 A-12F was also obtained with high yields.
Collapse
Affiliation(s)
- Omruye Ozok
- Department of Chemistry, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey.,Department of Molecular Biology and Genetics, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey
| | - Emrah Kavak
- Department of Chemistry, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey
| | - Arif Kivrak
- Department of Chemistry, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey.,Faculty of Sciences and Arts, Department of Chemistry, Eskisehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
15
|
Luo R, Zhang Z, Han L, Xue Z, Zhang K, Liu F, Feng F, Xue J, Liu W, Qu W. An albumin-binding dimeric prodrug nanoparticle with long blood circulation and light-triggered drug release for chemo-photodynamic combination therapy against hypoxia-induced metastasis of lung cancer. Biomater Sci 2021; 9:3718-3736. [PMID: 34008617 DOI: 10.1039/d1bm00284h] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Photodynamic therapy (PDT) has been widely used in cancer therapy, but its therapeutic effect is reduced by the aggravating hypoxic microenvironment via upregulating hypoxia-associated proteins and promoting tumor metastasis. To mitigate these issues, we designed an albumin-binding and light-triggered core-shell dimeric prodrug nanoparticle to inhibit hypoxia-induced tumor metastasis and enhance the PDT efficacy. The prodrug nanoparticles, Ce6&DHA-S-DHA@CMN NPs (CDC NPs), were prepared using a single thioether-linked dihydroartemisinin (DHA) dimer co-encapsulated with Chlorin e6 (Ce6) and stabilized by albumin-capturing maleimide- and hypoxia-sensitive 2-nitroimidazole-modified carboxymethyl chitosan (CMCTS-MAL&NI, CMN for short). Upon laser irradiation, Ce6 could generate reactive oxygen species (ROS), which not only exerted the effect of the PDT but also broke the ROS-sensitive single thioether bridge in the dimeric prodrug DHA-S-DHA, thus accelerating the disassembly of the nanoparticles. DHA-S-DHA served as both an ROS-responsive carrier for Ce6 and a chemotherapeutic drug, synergizing with PDT and inhibiting tumor metastasis by downregulating hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF). Polyethylene glycol (PEG) modification has been widely used to stabilize hydrophobic prodrug nanoparticles and prolong the circulation time, but the PEGylated nanoparticles always suffer from accelerated blood clearance (ABC), a phenomenon which restricts their application severely. In this study, PEG was replaced by an amphipathic micelle, CMN, which could specifically capture albumin in the blood, conferring the nanoparticles long circulation and no ABC phenomenon. Under the aggravating hypoxic condition during PDT, the conversion of 2-nitroimidazole groups to 2-aminoimidazole groups in CMN could destabilize the structure of the shell and accelerate drug release. Results showed that the novel CDC NPs exhibited unique advantages in chemo-photodynamic combination therapy, such as long systemic circulation, high tumor accumulation, light-triggered drug release, HIF-1α/VEGF downregulation, and anti-metastasis efficacy, which provided a new route to overcome the ABC phenomenon of the PEGylated prodrug nanoparticles and reverse the hypoxia-induced metastasis simultaneously.
Collapse
Affiliation(s)
- Renjie Luo
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhongtao Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| | - Lingfei Han
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhen Xue
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| | - Kexin Zhang
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| | - Fulei Liu
- Tumor Precise Intervention and Translational Medicine Laboratory, Taian City Central Hospital, Taian, 271000, China. and Pharmaceutical Department, Taian City Central Hospital, Taian, 271000, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China. and Jiangsu Food and Pharmaceutical Science College, Huaian, 223003, China
| | - Jingwei Xue
- Tumor Precise Intervention and Translational Medicine Laboratory, Taian City Central Hospital, Taian, 271000, China.
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| | - Wei Qu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
16
|
Li W, Zhao L, Li Y, Zhai Z. Artesunate attenuates proliferation of epithelial cells by downregulating the NF-κB and AKT signaling pathways in benign mammary gland hyperplasia rats. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:848. [PMID: 34164482 PMCID: PMC8184455 DOI: 10.21037/atm-21-1447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background The aim of this study was to investigate the effects of artesunate (ART) on breast epithelial cell proliferation in vitro and in vivo. Methods Immortalized human non-cancer mammary epithelial (MCF-10A) cells were used to determine the effect of ART on estrogen-induced mammary hyperplasia cells. We investigated the effect of ART on the synthesis of cyclooxygenase-2 (COX-2) and proliferating cell nuclear antigen (PCNA) in MCF-10A by treating MCF-10A 36 h with different concentrations of ART (0, 100, 200, 400 µm, n=12/group). We then investigated the effect of ART on estrogen induced COX-2, PCNA, nuclear factor-kappa B (NF-κB), and pNF-κB synthesis by treating MCF-10A with both estrogen and ART (0, 50, 100, 200 µm, n=12/group). A mammary hyperplasia model (MGH) was established in rats. All rats (n=12) were divided into 4 groups [group A: negative control (NC) + Art −; group B: NC + Art +; group C: MGH + Art −; group D: MGH + Art +] by the random number table method and the effects of ART on estradiol-induced mammary hyperplasia, fibrosis, and phosphorylation of AKT and NF-κB were studied by histopathological staining, Masson trichrome staining, immunohistochemistry (IHC), and western blotting. Results The proliferation and inflammation of mammary epithelial cells were blocked by ART (P<0.05). The phosphorylation of NF-κB induced by estradiol in MCF-10A was attenuated by ART (P<0.05). In the rat MGH, ART reduced cell proliferation and fibrosis (P<0.05) and inhibited the phosphorylation of AKT and NF-κB (P<0.05). Conclusions The drug ART inhibits estrogen-induced breast hyperplasia by blocking AKT and NFkB phosphorylation.
Collapse
Affiliation(s)
- Wei Li
- Department of Breast, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Lina Zhao
- Department of Breast, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Yiliang Li
- Department of Breast, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Zhen Zhai
- Department of Breast, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Zhu S, Yu Q, Huo C, Li Y, He L, Ran B, Chen J, Li Y, Liu W. Ferroptosis: A Novel Mechanism of Artemisinin and its Derivatives in Cancer Therapy. Curr Med Chem 2021; 28:329-345. [PMID: 31965935 DOI: 10.2174/0929867327666200121124404] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/06/2019] [Accepted: 12/12/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Artemisinin is a sesquiterpene lactone compound with a special peroxide bridge that is tightly linked to the cytotoxicity involved in fighting malaria and cancer. Artemisinin and its derivatives (ARTs) are considered to be potential anticancer drugs that promote cancer cell apoptosis, induce cell cycle arrest and autophagy, inhibit cancer cell invasion and migration. Additionally, ARTs significantly increase intracellular Reactive Oxygen Species (ROS) in cancer cells, which result in ferroptosis, a new form of cell death, depending on the ferritin concentration. Ferroptosis is regarded as a cancer suppressor and as well as considered a new mechanism for cancer therapy. METHODS The anticancer activities of ARTs and reference molecules were compared by literature search and analysis. The latest research progress on ferroptosis was described, with a special focus on the molecular mechanism of artemisinin-induced ferroptosis. RESULTS Artemisinin derivatives, artemisinin-derived dimers, hybrids and artemisinin-transferrin conjugates, could significantly improve anticancer activity, and their IC50 values are lower than those of reference molecules such as doxorubicin and paclitaxel. The biological activities of linkers in dimers and hybrids are important in the drug design processes. ARTs induce ferroptosis mainly by triggering intracellular ROS production, promoting the lysosomal degradation of ferritin and regulating the System Xc-/Gpx4 axis. Interestingly, ARTs also stimulate the feedback inhibition pathway. CONCLUSION Artemisinin and its derivatives could be used in the future as cancer therapies with broader applications due to their induction of ferroptosis. Meanwhile, more attention should be paid to the development of novel artemisinin-related drugs based on the mechanism of artemisinininduced ferroptosis.
Collapse
Affiliation(s)
- Shunqin Zhu
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qin Yu
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Chunsong Huo
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yuanpeng Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Linshen He
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Botian Ran
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ji Chen
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Yonghao Li
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Wanhong Liu
- School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
18
|
Dai X, Zhang X, Chen W, Chen Y, Zhang Q, Mo S, Lu J. Dihydroartemisinin: A Potential Natural Anticancer Drug. Int J Biol Sci 2021; 17:603-622. [PMID: 33613116 PMCID: PMC7893584 DOI: 10.7150/ijbs.50364] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Dihydroartemisinin (DHA) is an active metabolite of artemisinin and its derivatives (ARTs), and it is an effective clinical drug widely used to treat malaria. Recently, the anticancer activity of DHA has attracted increasing attention. Nevertheless, there is no systematic summary on the anticancer effects of DHA. Notably, studies have shown that DHA exerts anticancer effects through various molecular mechanisms, such as inhibiting proliferation, inducing apoptosis, inhibiting tumor metastasis and angiogenesis, promoting immune function, inducing autophagy and endoplasmic reticulum (ER) stress. In this review, we comprehensively summarized the latest progress regarding the anticancer activities of DHA in cancer. Importantly, the underlying anticancer molecular mechanisms and pharmacological effects of DHA in vitro and in vivo are the focus of our attention. Interestingly, new methods to improve the solubility and bioavailability of DHA are discussed, which greatly enhance its anticancer efficacy. Remarkably, DHA has synergistic anti-tumor effects with a variety of clinical drugs, and preclinical and clinical studies provide stronger evidence of its anticancer potential. Moreover, this article also gives suggestions for further research on the anticancer effects of DHA. Thus, we hope to provide a strong theoretical support for DHA as an anticancer drug.
Collapse
Affiliation(s)
- Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Xiaoyan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| | - Wei Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Yihuan Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Qiushuang Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Saijun Mo
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan Province 450001, PR China.,State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan Province 450052, PR China
| |
Collapse
|
19
|
Lanna EG, Siqueira RP, Machado MGC, de Souza A, Trindade IC, Branquinho RT, Mosqueira VCF. Lipid-based nanocarriers co-loaded with artemether and triglycerides of docosahexaenoic acid: Effects on human breast cancer cells. Biomed Pharmacother 2020; 134:111114. [PMID: 33352447 DOI: 10.1016/j.biopha.2020.111114] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022] Open
Abstract
Artemether (ART) was combined with triglyceride of docosahexaenoic acid (DHA) as the lipid-core in nanoemulsions (NE), nanostructured lipid carriers (NLC), and PEG-PLA nanocapsules (NC) formulations, and their effects on human breast cancer cells were evaluated. ART has been extensively used for malaria and has also therapeutic potential against different tumor cells in a repositioning strategy. The concentration-dependent cytotoxicity in vitro was determined in tumor lineages, MDA-MB-231 and MCF-7, and non-tumor MCF-10A cells for free-ART/DHA combination and its formulations. The cells were monitored for viability, effects on cell migration and clonogenicity, cell death mechanism, and qualitative and quantitative cell uptake of nanocarriers. The lipid-nanocarriers showed mean sizes over the range of 110 and 280 nm with monodisperse populations and zeta potential values ranging from -21 to -67 mV. The ART encapsulation efficiencies varied from 57 to 83 %. ART/DHA co-loaded in three different lipid nanocarriers reduced the MDA-MB-231 and MCF-7 viability in a dose-dependent manner with enhanced selectivity toward tumor cell lines. They also reduced clonogenicity and the ability of cells to migrate showing antimetastatic potential in both cell lines and triggered apoptosis in MCF-7 cells. Confocal microscopy and flow cytometry analysis showed that NC, NLC, and NE were rapidly internalized by cells, with higher interaction displayed by NE with MCF-7 cells compared to NC and NLC that was correlated with the strongest NE-fluorescence in cells. Therefore, this study not only demonstrated the value of this new combination of ART/DHA as a new strategy for breast cancer therapy but also showed enhanced cytotoxicity and potential metastatic activity of lipid-based formulations against human breast cancer cells that indicate great potential for pre-clinical and clinical translation.
Collapse
Affiliation(s)
- Elisa Gomes Lanna
- Laboratory of Pharmaceutics and Nanotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil; Doctoral Program in Pharmaceutical Nanotechnology (NanoFarma Network), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Raoni Pais Siqueira
- Laboratory of Pharmaceutics and Nanotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil; Doctoral Program in Pharmaceutical Nanotechnology (NanoFarma Network), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Marina Guimarães Carvalho Machado
- Laboratory of Pharmaceutics and Nanotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Aline de Souza
- Laboratory of Pharmaceutics and Nanotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Izabel Cristina Trindade
- Laboratory of Pharmaceutics and Nanotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Renata Tupinambá Branquinho
- Laboratory of Pharmaceutics and Nanotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil
| | - Vanessa Carla Furtado Mosqueira
- Laboratory of Pharmaceutics and Nanotechnology (LDGNano), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil; Doctoral Program in Pharmaceutical Nanotechnology (NanoFarma Network), School of Pharmacy, Federal University of Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
20
|
Augustin Y, Staines HM, Krishna S. Artemisinins as a novel anti-cancer therapy: Targeting a global cancer pandemic through drug repurposing. Pharmacol Ther 2020; 216:107706. [PMID: 33075360 PMCID: PMC7564301 DOI: 10.1016/j.pharmthera.2020.107706] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
Artemisinins are a unique class of antimalarial drugs with significant potential for drug repurposing for a wide range of diseases including cancer. Cancer is a leading cause of death globally and the majority of cancer related deaths occur in Low and Middle Income Countries (LMICs) where conventional treatment options are often limited by financial cost. Drug repurposing can significantly shorten new therapeutic discovery pathways, ensuring greater accessibility and affordability globally. Artemisinins have an excellent safety and tolerability profile as well as being affordable for deployment in Low and Middle Class Income Countries at around USD1 per daily dose. Robust, well designed clinical trials of artemisinin drug repurposing are indicated for a variety of different cancers and treatment settings.
Collapse
Affiliation(s)
- Yolanda Augustin
- Institute of Infection & Immunity, St George's University of London, United Kingdom
| | - Henry M Staines
- Institute of Infection & Immunity, St George's University of London, United Kingdom
| | - Sanjeev Krishna
- Institute of Infection & Immunity, St George's University of London, United Kingdom.
| |
Collapse
|
21
|
Sabbir MG, Taylor CG, Zahradka P. Hypomorphic CAMKK2 in EA.hy926 endothelial cells causes abnormal transferrin trafficking, iron homeostasis and glucose metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118763. [DOI: 10.1016/j.bbamcr.2020.118763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/23/2020] [Accepted: 05/27/2020] [Indexed: 02/08/2023]
|
22
|
Kiani BH, Kayani WK, Khayam AU, Dilshad E, Ismail H, Mirza B. Artemisinin and its derivatives: a promising cancer therapy. Mol Biol Rep 2020; 47:6321-6336. [PMID: 32710388 DOI: 10.1007/s11033-020-05669-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/15/2020] [Indexed: 12/21/2022]
Abstract
The world is experiencing a cancer epidemic and an increase in the prevalence of the disease. Cancer remains a major killer, accounting for more than half a million deaths annually. There is a wide range of natural products that have the potential to treat this disease. One of these products is artemisinin; a natural product from Artemisia plant. The Nobel Prize for Medicine was awarded in 2015 for the discovery of artemisinin in recognition of the drug's efficacy. Artemisinin produces highly reactive free radicals by the breakdown of two oxygen atoms that kill cancerous cells. These cells sequester iron and accumulate as much as 1000 times in comparison with normal cells. Generally, chemotherapy is toxic to both cancerous cells and normal cells, while no significant cytotoxicity from artemisinin to normal cells has been found in more than 4000 case studies, which makes it far different than conventional chemotherapy. The pleiotropic response of artemisinin in cancer cells is responsible for growth inhibition by multiple ways including inhibition of angiogenesis, apoptosis, cell cycle arrest, disruption of cell migration, and modulation of nuclear receptor responsiveness. It is very encouraging that artemisinin and its derivatives are anticipated to be a novel class of broad-spectrum antitumor agents based on efficacy and safety. This review aims to highlight these achievements and propose potential strategies to develop artemisinin and its derivatives as a new class of cancer therapeutic agents.
Collapse
Affiliation(s)
- Bushra Hafeez Kiani
- Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad, 44000, Pakistan.
| | - Waqas Khan Kayani
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, 23053, Alnarp, Sweden
| | - Asma Umer Khayam
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Capital University of Science and Technology, Islamabad, Pakistan
| | - Hammad Ismail
- Department of Biochemistry and Molecular Biology, University of Gujrat, Gujrat, 50700, Pakistan
| | - Bushra Mirza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
23
|
Elhassanny AEM, Soliman E, Marie M, McGuire P, Gul W, ElSohly M, Van Dross R. Heme-Dependent ER Stress Apoptosis: A Mechanism for the Selective Toxicity of the Dihydroartemisinin, NSC735847, in Colorectal Cancer Cells. Front Oncol 2020; 10:965. [PMID: 32626657 PMCID: PMC7313430 DOI: 10.3389/fonc.2020.00965] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/15/2020] [Indexed: 01/05/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer death in the United States. Artemisinin derivatives, including the dihydroartemisinin (DHA) monomers, are widely used as clinical agents for the treatment of malaria. Numerous studies demonstrate that these molecules also display antineoplastic activity with minimal toxicity. Of interest, dimeric DHA molecules are more active than their monomeric counterparts. Our previous data showed that the DHA dimer, NSC735847, was a potent inducer of death in different cancer cell types. However, the mechanism of action and activity of NSC735847 in colon cancer cells was not explored. The present study investigated the anticancer activity of NSC735847 and four structurally similar analog in human tumorigenic (HT-29 and HCT-116) and non-tumorigenic (FHC) colon cell lines. NSC735847 was more cytotoxic toward tumorigenic than non-tumorigenic colonocytes. In addition, NSC735847 exhibited greater cytotoxicity and tumor selectivity than the NSC735847 derivatives. To gain insight into mechanisms of NSC735847 activity, the requirement for endoplasmic reticulum (ER) stress and oxidative stress was tested. The data show that ER stress played a key role in the cytotoxicity of NSC735847 while oxidative stress had little impact on cell fate. In addition, it was observed that the cytotoxic activity of NSC735847 required the presence of heme, but not iron. The activity of NSC735847 was then compared to clinically utilized CRC therapeutics. NSC735847 was cytotoxic toward colon tumor cells at lower concentrations than oxaliplatin (OX). In addition, cell death was achieved at lower concentrations in colon cancer cells that were co-treated with folinic acid (Fol), 5-FU (F), and NSC735847 (FolFNSC), than Fol, F, and OX (FolFOX). The selective activity of NSC735847 and its ability to induce cytotoxicity at low concentrations suggest that NSC735847 may be an alternative for oxaliplatin in the FolFOX regimen for patients who are unable to tolerate its adverse effects.
Collapse
Affiliation(s)
- Ahmed E M Elhassanny
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Eman Soliman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mona Marie
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Paul McGuire
- Medical Doctor Program, Brody School of Medicine, Greenville, NC, United States
| | - Waseem Gul
- ElSohly Laboratories Inc., Oxford, MS, United States.,National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS, United States
| | - Mahmoud ElSohly
- ElSohly Laboratories Inc., Oxford, MS, United States.,National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, Oxford, MS, United States
| | - Rukiyah Van Dross
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC, United States.,Center for Health Disparities, East Carolina University, Greenville, NC, United States
| |
Collapse
|
24
|
Zhang J. The osteoprotective effects of artemisinin compounds and the possible mechanisms associated with intracellular iron: A review of in vivo and in vitro studies. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 76:103358. [PMID: 32143118 DOI: 10.1016/j.etap.2020.103358] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 05/16/2023]
Abstract
Osteoporosis is a progressive systemic disease characterized by low bone mineral density and deterioration of bone microarchitecture. The current therapies are effective to prevent further bone loss and fractures but they are accompanied by undesirable side effects and cost issues. The discovery of Chinese herbal medicines with osteoprotective effects provides alternative treatments to prevent bone loss without causing severe side effects. Artemisinin (ARS) and its related compounds have been clinically used as antimalarial agents. Interestingly, their bioactivity is not limited to antimalarial treatment. Experimental evidences indicate that ARS compounds are a potential type of therapeutic alternative medicine for bone loss induced by accelerated osteoclastic bone resorption. The present review intends to summarize the current understandings of ARS compounds and their molecular mechanisms of actions in preventing bone loss. ARS compounds selectively inhibit osteoclast differentiation by downregulation of pathways involved in receptor activator of nuclear factor kappa-B ligand (RANKL) -induced osteoclastogenesis, and have no effect on osteogenic differentiation of osteoblasts. The exact mechanism of activation and action of these anti-resorption effects are not fully elucidated. Considering the characteristic of high levels of intracellular iron in osteoclasts, ARS compounds may inhibit osteoclast differentiation via mechanisms associated with intracellular iron, including the cleavage of endoperoxide bridge, oxidative damage and ferroptosis. The anti-resorptive effects of ARS compounds need to be further investigated in bone loss models caused by different factors, and to be under clinical development.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China.
| |
Collapse
|
25
|
Xiao Y, Huang W, Zhu D, Wang Q, Chen B, Liu Z, Wang Y, Liu Q. Cancer cell membrane-camouflaged MOF nanoparticles for a potent dihydroartemisinin-based hepatocellular carcinoma therapy. RSC Adv 2020; 10:7194-7205. [PMID: 35493895 PMCID: PMC9049790 DOI: 10.1039/c9ra09233a] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/30/2020] [Indexed: 01/10/2023] Open
Abstract
Developing new drugs for cancer treatment remains a challenging task. Herein, cancer cell membrane biomimetic ferrous ion-doped metal-organic framework nanoparticles (ZIF-8 nanoparticles) combined with dihydroartemisinin (DHA) have been designed for targeted cancer treatment with low toxicity and side effects. The biomimetic nanomaterials (CDZs) have excellent homologous targeting ability and can accumulate in tumor tissues. In an acid tumor microenvironment, ferrous ions and DHA could be released with the degradation of materials. DHA, an ancient Chinese medicine, combines with ferrous ions to produce a powerful anti-tumor effect. In human liver cancer models, about 90.8% of tumor growth was suppressed. In addition, the nanomaterial has no obvious toxic and side effects in vivo and is a highly effective and low-toxicity anti-tumor drug with a strong clinical application value.
Collapse
Affiliation(s)
- Yusha Xiao
- Department of General Surgery, Research Center of Digestive Diseases Zhongnan Hospital of Wuhan University Wuhan 430071 Hubei P. R. China
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Daoming Zhu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University Wuhan 430071 Hubei P. R. China
| | - Quanxiong Wang
- Department of General Surgery, Research Center of Digestive Diseases Zhongnan Hospital of Wuhan University Wuhan 430071 Hubei P. R. China
| | - Baiyang Chen
- Department of General Surgery, Research Center of Digestive Diseases Zhongnan Hospital of Wuhan University Wuhan 430071 Hubei P. R. China
| | - Zhisu Liu
- Department of General Surgery, Research Center of Digestive Diseases Zhongnan Hospital of Wuhan University Wuhan 430071 Hubei P. R. China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Quanyan Liu
- Department of General Surgery, General Hospital of Tianjin Medical University Tianjin 300052 China
| |
Collapse
|
26
|
Li L, Wu J, Weng S, Yang L, Wang H, Xu Y, Shen K. Fourier Transform Infrared Spectroscopy Monitoring of Dihydroartemisinin-Induced Growth Inhibition in Ovarian Cancer Cells and Normal Ovarian Surface Epithelial Cells. Cancer Manag Res 2020; 12:653-661. [PMID: 32099462 PMCID: PMC6996210 DOI: 10.2147/cmar.s240285] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/19/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose Ovarian cancer is the most lethal of gynecological malignancies. Dihydroartemisinin (DHA), a derivative of artemisinin (ARS), has profound effects against human tumors. The aim of this study was to provide a convenient, cost-efficient technique, Fourier transform infrared (FTIR) spectroscopy, to monitor and evaluate responses to DHA-induced growth inhibition of ovarian cancer cells. Methods Cell growth and viability and the 50% inhibitory concentration (IC50) of DHA were assessed by the MTT assay. FTIR spectroscopy was used to monitor cells following DHA treatment, and data were analyzed by OMNIC 8.0 software. Results DHA can decrease the viability of ovarian cancer cells and normal cells, but cancer cells were more sensitive to this drug than normal cells. Spectral differences were observed between cells with or without DHA treatment. In particular, an increase in the amount of lipids and nucleic acids was observed. The band intensity ratio of 1454/1400, and the intensity of the band 1741 cm−1 increased, indicating stronger absorption after DHA treatment. Moreover, the differences were larger for the cell lines that were more sensitive to DHA. Conclusion The spectral features provided information about important molecular characteristics of the cells in response to chemicals. These findings demonstrated the possible use of FTIR spectroscopy to evaluate DHA-induced growth inhibition effects in ovarian cancer cells and provided a promising new tool for monitoring cell growth and the effects of antitumor drugs in the clinic in the future.
Collapse
Affiliation(s)
- Lei Li
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Jinguang Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Shifu Weng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Limin Yang
- State Key Laboratory of Nuclear Physics and Technology, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Huizi Wang
- Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Yizhuang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| |
Collapse
|
27
|
Wong KM, Song J, Saini V, Wong YH. Small Molecules as Drugs to Upregulate Metastasis Suppressors in Cancer Cells. Curr Med Chem 2019; 26:5876-5899. [PMID: 29788870 DOI: 10.2174/0929867325666180522090842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/20/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022]
Abstract
It is well-recognized that the majority of cancer-related deaths is attributed to metastasis, which can arise from virtually any type of tumor. Metastasis is a complex multistep process wherein cancer cells must break away from the primary tumor, intravasate into the circulatory or lymphatic systems, extravasate, proliferate and eventually colonize secondary sites. Since these molecular processes involve the coordinated actions of numerous proteins, targeted disruptions of key players along these pathways represent possible therapeutic interventions to impede metastasis formation and reduce cancer mortality. A diverse group of proteins with demonstrated ability to inhibit metastatic colonization have been identified and they are collectively known as metastasis suppressors. Given that the metastasis suppressors are often downregulated in tumors, drug-induced re-expression or upregulation of these proteins represents a promising approach to limit metastasis. Indeed, over 40 compounds are known to exhibit efficacy in upregulating the expression of metastasis suppressors via transcriptional or post-transcriptional mechanisms, and the most promising ones are being evaluated for their translational potentials. These small molecules range from natural products to drugs in clinical use and they apparently target different molecular pathways, reflecting the diverse nature of the metastasis suppressors. In this review, we provide an overview of the different classes of compounds known to possess the ability to upregulate one or more metastasis suppressors, with an emphasis on their mechanisms of action and therapeutic potentials.
Collapse
Affiliation(s)
- Ka Ming Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jiaxing Song
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Vasu Saini
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Yung H Wong
- Division of Life Science and the Biotechnology Research Institute, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.,State Key Laboratory of Molecular Neuroscience, and the Molecular Neuroscience Center, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.,Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
28
|
You C, Wu H, Gao Z, Chen F, Ning L, Zhang Y, Dong Y, Sun B, Wang F. Enhanced Reactive Oxygen Species Levels by an Active Benzothiazole Complex-Mediated Fenton Reaction for Highly Effective Antitumor Therapy. Mol Pharm 2019; 16:4929-4939. [DOI: 10.1021/acs.molpharmaceut.9b00819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chaoqun You
- College of Chemical Engineering, Nanjing Forestry University; Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing 210037, People’s Republic of China
| | - Hongshuai Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, People’s Republic of China
| | - Zhiguo Gao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, People’s Republic of China
| | - Fanghui Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, People’s Republic of China
| | - Like Ning
- College of Chemical Engineering, Nanjing Forestry University; Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing 210037, People’s Republic of China
| | - Yu Zhang
- College of Chemical Engineering, Nanjing Forestry University; Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing 210037, People’s Republic of China
| | - Yixin Dong
- College of Chemical Engineering, Nanjing Forestry University; Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing 210037, People’s Republic of China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, People’s Republic of China
| | - Fei Wang
- College of Chemical Engineering, Nanjing Forestry University; Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Nanjing 210037, People’s Republic of China
| |
Collapse
|
29
|
Chen Y, Mi Y, Zhang X, Ma Q, Song Y, Zhang L, Wang D, Xing J, Hou B, Li H, Jin H, Du W, Zou Z. Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:402. [PMID: 31519193 PMCID: PMC6743121 DOI: 10.1186/s13046-019-1413-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/05/2019] [Indexed: 02/07/2023]
Abstract
Background Dihydroartemisinin (DHA) has been shown to exert anticancer activity through iron-dependent reactive oxygen species (ROS) generation, which is similar to ferroptosis, a novel form of cell death. However, whether DHA causes ferroptosis in glioma cells and the potential regulatory mechanisms remain unclear. Methods Effects of DHA on the proliferation, cell death, ROS and lipid ROS generation as well as reduced gluthione consumption were assessed in glioma cells with or without ferroptosis inhibitor. The biological mechanisms by which glioma cells attenuate the pro-ferroptotic effects of DHA were assessed using molecular methods. Results DHA induced ferroptosis in glioma cells, as characterized by iron-dependent cell death accompanied with ROS generation and lipid peroxidation. However, DHA treatment simultaneously activated a feedback pathway of ferroptosis by increasing the expression of heat shock protein family A (Hsp70) member 5 (HSPA5). Mechanistically, DHA caused endoplasmic reticulum (ER) stress in glioma cells, which resulted in the induction of HSPA5 expression by protein kinase R-like ER kinase (PERK)-upregulated activating transcription factor 4 (ATF4). Subsequent HSPA5 upregulation increased the expression and activity of glutathione peroxidase 4 (GPX4), which neutralized DHA-induced lipid peroxidation and thus protected glioma cells from ferroptosis. Inhibition of the PERK-ATF4-HSPA5-GPX4 pathway using siRNA or small molecules increased DHA sensitivity of glioma cells by increasing ferroptosis both in vitro and in vivo. Conclusions Collectively, these data suggested that ferroptosis might be a novel anticancer mechanism of DHA in glioma and HSPA5 may serve as a negative regulator of DHA-induced ferroptosis. Therefore, inhibiting the negative feedback pathway would be a promising therapeutic strategy to strengthen the anti-glioma activity of DHA.
Collapse
Affiliation(s)
- Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Yanjun Mi
- Department of Medical Oncology, Xiamen Cancer Hospital, First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Xiaofei Zhang
- Department of Medical Oncology, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Qian Ma
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Yucen Song
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Liwei Zhang
- Department of Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Dandan Wang
- Shandong Medicinal Biotechnology Centre, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Back and Neck Pain Hospital of Shandong Academy of Medical Sciences, Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Jinliang Xing
- State Key Laboratory of Cancer Biology & Experimental Teaching Center of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Benxin Hou
- Department of General Surgery, Hainan Province Nongken Sanya Hospital, Sanya, 572000, China
| | - Haolong Li
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Huan Jin
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China
| | - Wei Du
- Department of Neurosurgery, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, Guangdong, China.
| |
Collapse
|
30
|
Zarrelli A, Pollio A, Aceto S, Romanucci V, Carella F, Stefani P, De Natale A, De Vico G. Optimisation of artemisinin and scopoletin extraction from Artemisia annua with a new modern pressurised cyclic solid-liquid (PCSL) extraction technique. PHYTOCHEMICAL ANALYSIS : PCA 2019; 30:564-571. [PMID: 31238388 DOI: 10.1002/pca.2853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/23/2019] [Accepted: 05/05/2019] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Artemisia annua is a small herbaceous plant belonging to the Asteraceae family declared therapeutic by the World Health Organisation, in particular for its artemisinin content, an active ingredient at the base of most antimalarial treatments, used every year by over 300 million people. In the last years, owing to low artemisinin content, research of new ways to increase the yield of the plant matrix has led to the use of the total extract taking advantage from the synergic and stabilising effects of the other components. OBJECTIVE In this work we evaluated and compared the content of artemisinin and scopoletin in extracts of A. annua collected in the Campania Region (southern Italy), by two different extraction processes. METHODOLOGY Artemisia annua plants were extracted by traditional maceration (TM) in hydroalcoholic solution as a mother tincture prepared according to the European Pharmacopeia and by pressurised cyclic solid-liquid (PCSL) extraction, a new generation method using the Naviglio extractor. RESULTS The results showed that the PCSL extraction technique is more effective than traditional methods in extracting both phytochemicals, up to 15 times more, reducing the extraction times, without using solvents or having risks for the operators, the environment and the users of the extracts. CONCLUSION The Naviglio extractor provides extracts with an artemisinin and scopoletin content eight times higher than the daily therapeutic dose, which should be evaluated for its stability over time and biological properties for possible direct use for therapeutic purposes.
Collapse
Affiliation(s)
- Armando Zarrelli
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Antonino Pollio
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Serena Aceto
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Valeria Romanucci
- Department of Chemical Sciences, University of Naples "Federico II", Naples, Italy
| | - Francesca Carella
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Paolo Stefani
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Antonino De Natale
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Gionata De Vico
- Department of Biology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
31
|
Kalani K, Chaturvedi V, Trivedi P, Tondon S, Srivastava SK. Dihydroartemisinin and its Analogs: A New Class of Antitubercular Agents. Curr Top Med Chem 2019; 19:594-599. [PMID: 30836916 DOI: 10.2174/1568026619666190304142802] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Tuberculosis is one of the leading causes of mortality worldwide. Resistance against the frontline anti-tubercular drugs has worsened the already alarming situation, which requires intensive drug discovery to develop new, more effective, affordable and accessible anti-tubercular agents possessing novel modes of action. OBJECTIVE Chemical transformation of dihydroartemisinin for anti-tubercular lead optimization. METHODS Dihydroartemisinin, a metabolite of artemisinin was chemically converted into eight acyl derivatives and were evaluated for anti-tubercular potential against H37Rv virulent strain of Mycobacterium tuberculosis by agar-based proportion assay. Further, synergistic activity of 12-O-m-anisoyl dihydroartemisinin was also studied with the front-line anti-TB drugs, isoniazid and rifampicin. RESULTS The results showed that all the derivatives were active but out of eight, 12-O-m-anisoyl dihydroartemisinin and 12-O-p-anisoyl dihydroartemisinin were significantly active (MIC 25.0 µg/mL). In synergistic activity evaluation, the 12-O-m-anisoyl dihydroartemisinin derivative showed reduction in MIC (by 1/8th, i.e. 3.12 µg/mL and that of rifampicin by ¼th, i.e. 0.05 µg/mL) with the front-line anti-TB drug, rifampicin. The sumfractional inhibitory concentration (Σ FIC) was 0.375. CONCLUSION These results suggested a synergistic effect of the 12-O-m-anisoyl dihydroartemisinin with rifampicin and established its base for the development of anti-tubercular agents from an in-expensive and non-toxic natural product. To the best of our knowledge this is the first ever report on the anti-tubercular potential of dihydroartemisinin and its derivatives.
Collapse
Affiliation(s)
- Komal Kalani
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Vinita Chaturvedi
- Microbiology Division, Central Drug Research Institute, Lucknow, India
| | - Priyanka Trivedi
- Microbiology Division, Central Drug Research Institute, Lucknow, India
| | - Sudeep Tondon
- Process Chemistry & Chemical Engineering Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Santosh Kumar Srivastava
- Medicinal Chemistry Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
32
|
Cao Y, Feng YH, Gao LW, Li XY, Jin QX, Wang YY, Xu YY, Jin F, Lu SL, Wei MJ. Artemisinin enhances the anti-tumor immune response in 4T1 breast cancer cells in vitro and in vivo. Int Immunopharmacol 2019; 70:110-116. [PMID: 30798159 DOI: 10.1016/j.intimp.2019.01.041] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/01/2022]
Abstract
BACKGROUND Breast cancer is a prominent cause of death among women worldwide. Recent studies have demonstrated that artemisinin (ART) displays anti-tumor activity. Using a mouse breast cancer model, we investigated the effects of ART in vitro and in vivo to determine how it influences the anti-tumor immune response. METHODS We measured the proliferation and apoptosis of 4T1 cells in vitro after ART treatment by MTT assay and FACS. To examine the effects of ART in vivo, tumor volumes and survival rates were measured in 4T1 tumor-bearing mice. FACS was used to determine the frequencies of Tregs, MDSCs, CD4+ IFN-γ+ T cells, and CTLs in the tumors and spleens of the mice. mRNA levels of the transcription factors T-bet and FOXP3 and cytokines IFN-γ, TNF-α, TGF-β, and IL-10 were also determined by real-time RT-PCR. ELISA was used to measure TGF-β protein levels in the cell culture supernatants. RESULTS ART supplementation significantly increased 4T1 cell apoptosis and decreased TGF-β levels in vitro. ART also impeded tumor growth in 4T1 TB mice and extended their survival. MDSC and Treg frequencies significantly decreased in the 4T1 TB mice after ART treatment while CD4+ IFN-γ+ T cells and CTLs significantly increased. ART significantly increased T-bet, IFN-γ, and TNF-α mRNA levels within the tumor and significantly decreased TGF-β mRNA levels. CONCLUSION ART supplementation hindered 4T1 tumor growth in vivo by promoting T cell activation and quelling immunosuppression from Tregs and MDSCs in the tumor.
Collapse
Affiliation(s)
- Yu Cao
- Laboratory of Precision Oncology, China Medial University School of Pharmacy, Shenyang, Liaoning, China; Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Yong-Hui Feng
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Li-Wei Gao
- Department of Radiation Oncology, China Japan Friendship Hospital, Beijing, China
| | - Xiao-Ying Li
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Quan-Xiu Jin
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Department of Breast Surgery, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Yu-Ying Wang
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China; Department of Breast Surgery, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Ying-Ying Xu
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Feng Jin
- Department of Surgical Oncology and Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shi-Long Lu
- Laboratory of Precision Oncology, China Medial University School of Pharmacy, Shenyang, Liaoning, China; Department of Otolaryngology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - Min-Jie Wei
- Laboratory of Precision Oncology, China Medial University School of Pharmacy, Shenyang, Liaoning, China.
| |
Collapse
|
33
|
Liu Y, Gao S, Zhu J, Zheng Y, Zhang H, Sun H. Dihydroartemisinin induces apoptosis and inhibits proliferation, migration, and invasion in epithelial ovarian cancer via inhibition of the hedgehog signaling pathway. Cancer Med 2018; 7:5704-5715. [PMID: 30338663 PMCID: PMC6247066 DOI: 10.1002/cam4.1827] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 09/04/2018] [Accepted: 09/19/2018] [Indexed: 01/28/2023] Open
Abstract
Dihydroartemisinin (DHA), the primary of artemisinin extracted from the traditional Chinese medicine Artemisia annua, has been used in malaria treatment for a long time. Recently, many studies have indicated that, in addition to antimalarial effects, DHA also exhibits anticancer activity in certain types of neoplasms, including ovarian cancer. However, the precise anti‐ovarian cancer mechanism of DHA is still unclear. Abnormal activation of the hedgehog (Hh) pathway is closely related to tumorigenesis and progression of ovarian cancer. We performed this study to elucidate the effects of DHA on the biological behavior of ovarian cancer cells and to determine its effects on the Hh signaling pathway. CCK8 assays and flow cytometry were used to evaluate the effects of DHA on cell viability and apoptosis in both ovarian cancer cells and HOSEPICs (human ovarian surface epithelial cells) in response to DHA treatment. Transwell membrane chambers were used to analyze the effects of DHA on the migration and invasion of epithelial ovarian cancer cells following treatment with DHA. The impact of DHA on Hh signaling was analyzed by RT‐qPCR and Western blot. DHA significantly inhibited proliferation, migration, and invasion of ovarian cancer cells, and induced apoptosis in vitro. In contrast, DHA had few effects on cell proliferation and apoptosis in HOSEPICs. DHA inhibited the hedgehog signaling pathway. Furthermore, DHA inhibited purmorphamine (Hh signaling pathway agonist)‐induced cell proliferation, cell migration, and cell invasion and the inhibition of apoptosis. Importantly, DHA enhanced GANT61 (hedgehog signaling pathway inhibitor)‐induced apoptosis and the inhibition of cell viability, migratory capacity, and invasive ability. This study demonstrates that DHA inhibits cell viability, migration, and invasion, as well as induces apoptosis in epithelial ovarian cancer through suppression of the Hh signaling pathway.
Collapse
Affiliation(s)
- Yanmei Liu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Shujun Gao
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.,The Diagnosis and Treatment Center of Cervical Disease, Obstetrics and Gynecology, Hospital of Fudan University, Shanghai, China
| | - Jie Zhu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Ya Zheng
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Haiyan Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Hong Sun
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
34
|
Zheng W, Abd El-Aty AM, Kim SK, Choi JM, Hacımüftüoğlu A, Shim JH, Kang YS, Shin HC. Quantification of artesunate and its metabolite, dihydroartemisinin, in animal products using liquid chromatography-tandem mass spectrometry. J Sep Sci 2018; 41:3538-3546. [DOI: 10.1002/jssc.201800499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 02/07/2018] [Accepted: 08/07/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Weijia Zheng
- Department of Veterinary Pharmacology and Toxicology; College of Veterinary Medicine; Konkuk University; Seoul Republic of Korea
| | - A. M. Abd El-Aty
- Department of Pharmacology; Faculty of Veterinary Medicine; Cairo University; Giza Egypt
- Department of Medical Pharmacology; Medical Faculty; Ataturk University; Erzurum Turkey
| | - Seong-Kwan Kim
- Department of Veterinary Pharmacology and Toxicology; College of Veterinary Medicine; Konkuk University; Seoul Republic of Korea
| | - Jeong-Min Choi
- Department of Veterinary Pharmacology and Toxicology; College of Veterinary Medicine; Konkuk University; Seoul Republic of Korea
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology; Medical Faculty; Ataturk University; Erzurum Turkey
| | - Jae-Han Shim
- Natural Products Chemistry Laboratory; College of Agriculture and Life Sciences; Chonnam National University; Republic of Korea
| | - Young-Sun Kang
- Department of Veterinary Pharmacology and Toxicology; College of Veterinary Medicine; Konkuk University; Seoul Republic of Korea
- Department of Biomedical Science and Technology; Konkuk University; Seoul Republic of Korea
| | - Ho-Chul Shin
- Department of Veterinary Pharmacology and Toxicology; College of Veterinary Medicine; Konkuk University; Seoul Republic of Korea
| |
Collapse
|
35
|
Zhou C, Tang X, Xu J, Wang J, Yang Y, Chen Y, Chen L, Wang L, Zhu L, Yang H. Opening of the CLC-3 chloride channel induced by dihydroartemisinin contributed to early apoptotic events in human poorly differentiated nasopharyngeal carcinoma cells. J Cell Biochem 2018; 119:9560-9572. [PMID: 30171707 DOI: 10.1002/jcb.27274] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a specific type of head and neck cancer that is prevalent in Southeast Asia. Dihydroartemisinin (DHA), a semisynthetic derivative of artemisinin, has specific anticancer activity. Here, we aimed to investigate the role of the CLC-3 chloride channel in the anticancer effect of DHA in poorly differentiated NPC CNE-2Z cells. First, we observed that DHA could specifically inhibit the proliferation, induce apoptosis, and increase cleaved caspase-3 expression in the CNE-2Z cells. Then, we found that DHA could activate chloride channels, which led to Cl- efflux and apoptotic volume decrease (AVD) in the early stage in the CNE-2Z cells. DHA also specifically increased CLC-3 chloride channel protein expression in the CNE-2Z cells. Silencing of the CLC-3 protein expression depleted the Cl- currents, and decreased the AVD capacity and cell apoptosis induced by DHA. Finally, we revealed that the [Ca2+ ]i increased after around 6 hours of treatment with DHA, which was also inhibited by silencing of the CLC-3 protein expression. Our data demonstrated that the selective antitumor activities of DHA in NPC may occur through the specific activation of the CLC-3 Cl- channel, leading to Cl- efflux, and induced AVD, then led to [Ca2+ ]i accumulation and caspase-3 activation, and finally induced apoptosis. The activation of the CLC-3 chloride channel played an essential and proximal upstream role in the antitumor activities of DHA.
Collapse
Affiliation(s)
- Congran Zhou
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Xinwei Tang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Jingkui Xu
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Jiajia Wang
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Yaping Yang
- Analysis and Test Center, Jinan University, Guangzhou, China
| | - Yehui Chen
- Department of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lixin Chen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Liwei Wang
- Department of Physiology, School of Medicine, Jinan University, Guangzhou, China
| | - Linyan Zhu
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Haifeng Yang
- Department of Pathology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
36
|
Effects of Different Methods of Isolation on Volatile Composition of Artemisia annua L. Int J Anal Chem 2018; 2018:9604183. [PMID: 30210542 PMCID: PMC6120287 DOI: 10.1155/2018/9604183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/11/2018] [Accepted: 08/06/2018] [Indexed: 11/27/2022] Open
Abstract
In order to determine influence of extraction method on volatile oil composition of Artemisia annua L., steam distillation, hydrodistillation, organic solvent extraction, and headspace sampling have been applied. The relative abundance of volatile compounds from the odorous aerial parts of A. annua, obtained by different extraction techniques, was analyzed by GC-MS. Exactly fifty constituents were identified. The leaf and flower essential oil yield ranged from 0.9 to 2.3% (v/w). Oxygenated monoterpenes were predominant in all samples ranged from 42.6% for steam-distilled fraction of petroleum ether extract to 70.6% for headspace of plant material. Essential oils isolated by steam distillation and hydrodistillation indicate that A. annua belongs to artemisia ketone chemotype with its relative content of 30.2% and 28.3%, respectively. The principal constituent in headspace sample of plant material was also artemisia ketone (46.4%), while headspace of petroleum ether extract had camphene (25.6%) as the major compound. The results prove the combined approaches to be powerful for the analysis of complex herbal samples.
Collapse
|
37
|
Giang LNT, Tien DD, Anh DTT, Dung NT, Thuong NH, Tan LQ, Thanh NH, Anh LTT, Van Tuyen N, Van Kiem P. Synthesis and Cytotoxic Evaluation of Artemisinin Derivatives Containing an Aminopropanol Group. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801300801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Series of novel artemisinin derivatives were designed and synthesized in which the amino propanol group was bonded to the artemisinin nucleus through C-C linkage. Ten new compounds were thus successfully prepared and evaluated as cytotoxic agents, revealing an interesting anticancer activity in KB and HepG2 cancer cell lines.
Collapse
Affiliation(s)
- Le Nhat Thuy Giang
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Doan Duy Tien
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Dang Thi Tuyet Anh
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Tien Dung
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Ngo Hanh Thuong
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Luc Quang Tan
- Thai Nguyen University-Lao Cai Campus, Group 13, Binh Minh Ward, Lao Cai City, Lao Cai Province, Vietnam
| | - Nguyen Ha Thanh
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Le Thi Tu Anh
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Nguyen Van Tuyen
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Phan Van Kiem
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology (VAST), 18-Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
38
|
Gong W, Zhang L, Yu H, Yu Q, Pan WK, Wang Y, Wu XL, Liu Q. Dihydroartemisinin suppresses the proliferation of Epstein-Barr virus-associated gastric carcinoma cells via downregulation of latent membrane protein 2A. Oncol Lett 2018; 16:2613-2619. [PMID: 30013656 DOI: 10.3892/ol.2018.8950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 02/13/2017] [Indexed: 12/13/2022] Open
Abstract
Treatment of recurrent and metastatic Epstein-Barr virus-associated gastric carcinoma (EBVaGC) remains a challenge, particularly in developing countries, due to lack of efficient screening programs. Latent membrane protein 2A (LMP2A) has been reported to serve an important function in the development of EBVaGC. In previous years dihydroartemisinin (DHA), traditionally used as an anti-malarial agent, has been demonstrated to inhibit tumor growth with low toxicity to normal cells. In the present study, the anti-tumor effect of DHA in EBVaGC was investigated. The MTT assay was used to compare the viability of untreated and DHA-treated EBVaGC GT-38 cells. Flow cytometry was applied to determine the percentage of GT-38 cells at each stage of the cell cycle. Reverse transcription-polymerase chain reaction and western blotting were used to determine the expression of the LMP2A gene. The effect of DHA treatment in vivo was evaluated in nude mice bearing GT-38 tumors. The results of the present study revealed that DHA-treated cells exhibited a time- and dose-dependent inhibition of viability. DHA significantly increased the apoptotic rate of GT-38 cells following treatment with 20 µg/ml DHA for 48 h. DHA-treated GT-38 cells were blocked in the G0/G1 phase, resulting in an accumulation of G0/G1 phase cells and a significant decrease of G2/M phase cells. In vivo, the results of the present study revealed that DHA significantly inhibited the growth of GT-38 cell-transplanted tumors. The mRNA and protein levels of LMP2A were significantly downregulated in the DHA-treated group compared with the control group. The present data indicated that DHA inhibited cell growth and induced cell apoptosis of the EBVaGC GT-38 cell line via downregulation of LMP2A. DHA may therefore be a potential therapeutic candidate for the treatment of EBVaGC.
Collapse
Affiliation(s)
- Wei Gong
- Pediatric Surgery Department, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Lei Zhang
- General Surgery Department, Yan'an University Affiliated Hospital, Yan'an, Shaanxi 716000, P.R. China
| | - Hui Yu
- Pediatric Surgery Department, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Qiang Yu
- Pediatric Surgery Department, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Wei-Kang Pan
- Pediatric Surgery Department, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Yin Wang
- Pediatric Surgery Department, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Xuan-Lin Wu
- Pediatric Surgery Department, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Qiang Liu
- Department of Imaging, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, Shaanxi 710000, P.R. China
| |
Collapse
|
39
|
Li J, Wang B, Luo Y, Bian Y, Wang R. Effect of artemisinin and neurectomy of pterygoid canal in ovalbumin-induced allergic rhinitis mouse model. Allergy Asthma Clin Immunol 2018; 14:22. [PMID: 29991950 PMCID: PMC5994650 DOI: 10.1186/s13223-018-0249-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/04/2018] [Indexed: 02/07/2023] Open
Abstract
Background Allergic rhinitis (AR), characterized by sneezing, nasal itching and rhinorrhea, affects a large number of population. This study aimed to explore the effects of artemisinin alone or combined with neurectomy of pterygoid canal in ovalbumin-induced AR mouse model and illustrate the underlying mechanisms. Methods Allergic symptoms were evaluated to verify inhibitory effect of artemisinin alone or combined with neurectomy of pterygoid canal on AR. Serum levels of histamine, immunoglobulin E (IgE) and inflammatory factors TNF, INF-γ, IL-1β IL-10, IL-4 and IL-5 were measured by ELISA. The mRNA levels of TNF, INF-γ, IL-1β and IL-10 in local lymph nodes were measured by RT-qPCR. The total and phosphorylated levels of ERK and JNK were assessed by Western blot. CD4+CD25+Foxp3+ T (Treg) cells were analyzed by flow cytometry. Results Artemisinin significantly relieved the behavior symptoms of AR mice. The administration of artemisinin strikingly suppressed the expression of histamine, IgE and inflammatory factors. An increased Treg cell proportion and inhibited ERK phosphorylation were observed in artemisinin-treated groups as compared to those in the AR group. Moreover, artemisinin plus neurectomy of pterygoid almost abolished the behavioral score increase in AR mice. Conclusions These results indicated that artemisinin exhibited anti-allergic effect by inhibiting ERK activation and increasing Treg cell proportion, which subsequently decreased the expressions of allergic mediators. In addition, artemisinin combined with neurectomy of pterygoid showed better efficacy than artemisinin alone. Electronic supplementary material The online version of this article (10.1186/s13223-018-0249-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian Li
- 1Departments of Otorhinolaryngology and Geriatrics, Cangzhou Central Hospital, 16 Xinhua West Road, Cangzhou, 061000 Hebei People's Republic of China
| | - Bin Wang
- 1Departments of Otorhinolaryngology and Geriatrics, Cangzhou Central Hospital, 16 Xinhua West Road, Cangzhou, 061000 Hebei People's Republic of China
| | - Yingying Luo
- Departments of Pediatric Bone Oncology, Cangzhou Combine Traditional Chinese and Western Medicine Hospital, 31 Huanghe West Road, Cangzhou, 061000 Hebei People's Republic of China
| | - Yajie Bian
- Department of Dermatology, Langfang City Dacheng County Traditional Chinese Medicine Hospital, Cultural Street, Langfang, 065900 Hebei People's Republic of China
| | - Ruipei Wang
- Department of Otorhinolaryngology and Geriatrics, Langfang City Dacheng County Hospital, 47 Xinhua East Street, Langfang, 065900 Hebei People's Republic of China
| |
Collapse
|
40
|
Yao Z, Bhandari A, Wang Y, Pan Y, Yang F, Chen R, Xia E, Wang O. Dihydroartemisinin potentiates antitumor activity of 5-fluorouracil against a resistant colorectal cancer cell line. Biochem Biophys Res Commun 2018; 501:636-642. [PMID: 29738772 DOI: 10.1016/j.bbrc.2018.05.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022]
Abstract
Although the combination of chemotherapy and surgical resection has effectively increased the survival rate of colorectal cancer patients in recent decades, acquired drug resistance is still a problem that leads to treatment failure. Dihydroartemisinin (DHA), a semisynthetic derivative of artemisinin, has recently been reported to show anticancer effects against numerous types of cancer, including colorectal cancer. This study showed that DHA exerted a strong anticancer effect against several colorectal cancer cell lines. We also found that p53 knockout colorectal cancer HCT116 cells (HCT116 TP53-/-) were not sensitive to 5-fluorouracil (5-FU) treatment, unlike wild-type HCT116 cells. Interestingly, co-treatment with DHA could effectively restore the anticancer effect of 5-FU against HCT116 TP53-/- cells, which manifested as the inhibition of proliferation and induction of reactive oxygen species (ROS)-mediated apoptosis and was accompanied by the upregulation of B-cell lymphoma 2 (BCL-2) and downregulation of the BCL-2-associated X protein (BAX). These findings suggested that DHA could effectively sensitize cells to 5-FU through ROS-mediated apoptosis and the alteration of the BCL-2/BAX expression ratio, which indicated that this may be one of the mechanisms of the DHA-promoted 5-FU anticancer effect.
Collapse
Affiliation(s)
- Zhihan Yao
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
| | - Adheesh Bhandari
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
| | - Yinghao Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
| | - Yiyuan Pan
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
| | - Fan Yang
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
| | - Rongfa Chen
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, 325035, China
| | - Erjie Xia
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China
| | - Ouchen Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China.
| |
Collapse
|
41
|
Ismail M, Ling L, Du Y, Yao C, Li X. Liposomes of dimeric artesunate phospholipid: A combination of dimerization and self-assembly to combat malaria. Biomaterials 2018; 163:76-87. [DOI: 10.1016/j.biomaterials.2018.02.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/03/2018] [Accepted: 02/09/2018] [Indexed: 10/18/2022]
|
42
|
Dihydroartemisinin suppresses pancreatic cancer cells via a microRNA-mRNA regulatory network. Oncotarget 2018; 7:62460-62473. [PMID: 27613829 PMCID: PMC5308739 DOI: 10.18632/oncotarget.11517] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 08/08/2016] [Indexed: 01/10/2023] Open
Abstract
Despite improvements in surgical procedures and chemotherapy, pancreatic cancer remains one of the most aggressive and fatal human malignancies, with a low 5-year survival rate of only 8%. Therefore, novel strategies for prevention and treatment are urgently needed. Here, we investigated the mechanisms underlying the anti-pancreatic cancer effects dihydroartemisinin (DHA). Microarray and systematic analysis showed that DHA suppressed proliferation, inhibited angiogenesis and promoted apoptosis in two different human pancreatic cancer cell lines, and that 5 DHA-regulated microRNAs and 11 of their target mRNAs were involved in these effects via 19 microRNA-mRNA interactions. Four of these microRNAs, 9 of the mRNAs and 17 of the interactions were experimentally verified. Furthermore, we found that the anti-pancreatic caner effects of DHA in vivo involved 4 microRNAs, 9 mRNAs and 17 microRNA-mRNA interactions. These results improve the understanding of the mechanisms by which DHA suppresses proliferation and angiogenesis and promotes apoptosis in pancreatic cancer cells and indicate that DHA, an effective antimalarial drug, might improve pancreatic cancer treatments.
Collapse
|
43
|
Ju RJ, Cheng L, Peng XM, Wang T, Li CQ, Song XL, Liu S, Chao JP, Li XT. Octreotide-modified liposomes containing daunorubicin and dihydroartemisinin for treatment of invasive breast cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:616-628. [PMID: 29381101 DOI: 10.1080/21691401.2018.1433187] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Tumor invasion is considered a major promoter in the initiation of tumor metastasis, which is supposed to cause most cancer-related deaths. In the present study, octreotide (OCT)-modified daunorubicin plus dihydroartemisinin liposomes were developed and characterized. Evaluations were undertaken on breast cancer MDA-MB-435S cells and MDA-MB-435S xenografts nude mice. The liposomes were ∼100 nm in size with a narrow polydispersity index. In vitro results showed that the OCT-modified daunorubicin plus dihydroartemisinin liposomes could enhance cytotoxicity and cellular uptake by OCT-SSTRs (somatostatin receptors)-mediated active targeting, block on tumor cell wound healing and migration by incorporating dihydroartemisinin. The action mechanism might be related to regulations on E-cadherin, α5β1-integrin, TGF-β1, VEGF and MMP2/9 in breast cancer cells. In vivo, the liposomes displayed a prolonged circulating time, more accumulation in tumor location, and a robust overall antitumor efficacy with no obvious toxicity at the test dose in MDA-MB-435S xenograft mice. In conclusion, the OCT-modified daunorubicin plus dihydroartemisinin liposomes could prevent breast cancer invasion, hence providing a possible strategy for treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Rui-Jun Ju
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Lan Cheng
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Xiao-Ming Peng
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Teng Wang
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Cui-Qing Li
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Xiao-Li Song
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Shuang Liu
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| | - Jian-Ping Chao
- a Department of Pharmaceutical Engineering , Beijing Institute of Petrochemical Technology , Beijing , China
| | - Xue-Tao Li
- b School of Pharmacy , Liaoning University of Traditional Chinese Medicine , Dalian , China
| |
Collapse
|
44
|
Li X, Gu S, Sun D, Dai H, Chen H, Zhang Z. The selectivity of artemisinin-based drugs on human lung normal and cancer cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 57:86-94. [PMID: 29227908 DOI: 10.1016/j.etap.2017.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 09/27/2017] [Accepted: 12/06/2017] [Indexed: 05/21/2023]
Abstract
Artemisinin-based drugs are documented to possess anticancer potential that is selectively effective to cancer cells. However, this selectivity is disputable in different studies and the mechanism is still unclear. To clarify this discrepancy, this study employed five assays to evaluate the cytotoxic effects of artemisinin and artesunate on normal human bronchial epithelial (HBE) cells and lung adenocarcinoma A549 cells. The results of five cytotoxic assays coherently showed that artemisinin and artesunate caused dose-dependent cytotoxicity in both HBE and A549 cells with a slight selectivity to A549 cells. Further, both HBE cells and A549 cells demonstrated elevated levels of intracellular reactive oxygen species (ROS) and increased DNA damage. Since artemisinin and artesunate exerted significant cytotoxic effect on both normal cells and cancer cells via the same pathway of ROS-mediated DNA damage, the side effects of artemisinin and artesunate on normal cell cannot be ignored when developing their antitumor effects.
Collapse
Affiliation(s)
- Xinyang Li
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shiyan Gu
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Donglei Sun
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Huangmei Dai
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Hongyu Chen
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zunzhen Zhang
- Department of Environmental Health and Occupational Medicine, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
45
|
Kumari K, Keshari S, Sengupta D, Sabat SC, Mishra SK. Transcriptome analysis of genes associated with breast cancer cell motility in response to Artemisinin treatment. BMC Cancer 2017; 17:858. [PMID: 29246124 PMCID: PMC5732364 DOI: 10.1186/s12885-017-3863-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 11/23/2017] [Indexed: 12/13/2022] Open
Abstract
Background Well-known anti-malarial drug artemisinin exhibits potent anti-cancerous activities. In-vivo and in-vitro studies showed its anti-tumor and immunomodulatory properties signifying it as a potent drug candidate for study. The studies of mechanisms of cell movement are relevant which can be understood by knowing the involvement of genes in an effect of a drug. Although cytotoxicity and anti-proliferative activity of artemisinin is evident, the genes participating in its anti-migratory and reduced invasive effect are not well studied. The present study reports the alteration in the expression of 84 genes involved in cell motility upon artemisinin treatment in MCF-7 breast cancer cells using pathway focused gene expression PCR array. In addition, the effect of artemisinin on epigenetic modifier HDACs is studied. Methods We checked the functional stimulus of artemisinin on cell viability, migration, invasion and apoptosis in breast cancerous cell lines. Using qRT-PCR and western blot, we validated the altered expression of relevant genes associated with proliferation, migration, invasion, apoptosis and mammary gland development. Results Artemisinin inhibited cell proliferation of estrogen receptor negative breast cancer cells with fewer efficacies in comparison to estrogen receptor positive ones. At the same time, cell viability and proliferation of normal breast epithelial MCF10A cells was un-affected. Artemisinin strongly inhibited cancer cell migration and invasion. Along with orphan nuclear receptors (ERRα, ERRβ and ERRγ), artemisinin altered the ERα/ERβ/PR/Her expression status of MCF-7 cells. The expression of genes involved in the signaling pathways associated with proliferation, migration, invasion and apoptosis was significantly altered which cooperatively resulted into reduced growth promoting activities of breast cancer cells. Interestingly, artemisinin exhibited inhibitory effect on histone deacetylases (HDACs). Conclusions Upregulated expression of tumor suppressor genes along with reduced expression of oncogenes significantly associated with growth stimulating signaling pathways in response to artemisinin treatment suggests its efficacy as an effective drug in breast cancer treatment.
Collapse
Affiliation(s)
- Kanchan Kumari
- Cancer Biology Laboratory, Institute of Life Sciences (Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India
| | | | | | - Surendra C Sabat
- Molecular biology of abiotic stress, Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, 751023, India
| | - Sandip K Mishra
- Cancer Biology Laboratory, Institute of Life Sciences (Government of India), Nalco Square, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|
46
|
Li X, Gao Y, Zhang Q, Hu N, Han D, Ning S, Ao Z. Dihydroartemisinin-regulated mRNAs and lncRNAs in chronic myeloid leukemia. Oncotarget 2017; 9:2543-2552. [PMID: 29416790 PMCID: PMC5788658 DOI: 10.18632/oncotarget.23274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/04/2017] [Indexed: 02/02/2023] Open
Abstract
Chronic myelocytic leukemia (CML) is characterized by increased and unregulated growth of predominantly myeloid cells in the bone marrow, and accumulation of these cells in blood. We investigated the effects of an anti-malarial drug, dihydroartemisinin (DHA), on K562 CML cells. We identified 34 mRNAs and eight lncRNAs dysregulated following DHA treatment in pure and hemin-induced K562 cells. Up- or downregulation of these potential DHA targets increased with increasing DHA concentration. We also constructed and analyzed a DHA-related mRNA-lncRNA regulation network in K562 cells, and found that four DHA-modulated mRNAs regulated by four lncRNAs participated in the steroid biosynthesis pathway. Some estrogen-related drugs, such as tamoxifen, shared common targets with DHA. We inferred that DHA exerted anti-cancer effects on K562 cells by influencing estrogen levels. Our findings indicate that DHA has potential not only as an anti-malarial drug, but also as an anti-CML chemotherapeutic.
Collapse
Affiliation(s)
- Xiang Li
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yue Gao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Qiang Zhang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Nan Hu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,Department of Traditional Chinese Medicine, Chengde Medical University, Chengde 066000, China
| | - Dong Han
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Zhuo Ao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
47
|
Wang Y, Xu X, Wu X, Chen W, Huang F, Gui X. Dihydroartemisinin treatment of multiple myeloma cells causes activation of c-Jun leading to cell apoptosis. Oncol Lett 2017; 15:2562-2566. [PMID: 29434974 DOI: 10.3892/ol.2017.7582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 10/04/2017] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the effect of dihydroartemisinin (DHA) on a multiple myeloma cell line. An MTT assay, flow cytometry and reverse transcription-polymerase chain reaction (RT-PCR) were used for the analysis of cell viability, cell cycle distribution and c-Jun N-terminal kinase (JNK) expression, respectively. Treatment of U266 cells using DHA caused a significant (P<0.05) decrease in cell viability compared with the control cells. An increase in the concentration of DHA from 1 to 100 µmol/l reduced cell viability from 87 to 35% compared with 100% in the control cultures at 48 h. A significant (P<0.05) increase was observed in the sub-G0/G1 phase population of the U266 cells with an increase in DHA concentration from 1 to 100 µmol/l. Treatment with 1, 3, 10, 30 and 100 µmol/l concentrations of DHA increased the sub-G0/G1 phase cell population to 3.13, 8.25, 24.91, 31.47 and 38.54%, respectively. RT-PCR analysis of DHA-treated or -untreated U266 cells after 48 h demonstrated a significant (P<0.01) increase in caspase-3 expression. Treatment of the cells for 48 h with DHA led to a significant increase in c-Jun expression. DHA treatment at 1, 3, 10, 30 and 100 µmol/l concentrations caused an increase in the level of c-Jun by 0.174±0.001, 0.254±0.002, 0.387±0.001, 0.502±0.003 and 0.679±0.005, respectively, compared with 0.982±0.001 in the control cells. The addition of SP600125 to the cells incubated with DHA resulted in a significant decrease in the caspase-3 and c-Jun expression levels compared with those cells incubated with DHA alone. These findings confirm that treatment with DHA increased caspase-3 and c-Jun expression in the U266 cells through activation of the JNK signaling pathway. Thus, DHA inhibited proliferation of multiple myeloma cells by interfering with the JNK signaling pathway.
Collapse
Affiliation(s)
- Yong Wang
- Department of Hematology, The Affiliated Hospital of Jiujiang University College of Medicine, Jiujiang, Jiangxi 332000, P.R. China.,Key Laboratory of System Bio-Medicine of Jiangxi, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Xiaoyuan Xu
- Key Laboratory of System Bio-Medicine of Jiangxi, Jiujiang University, Jiujiang, Jiangxi 332000, P.R. China
| | - Xiaojian Wu
- Department of Hematology, The Affiliated Hospital of Jiujiang University College of Medicine, Jiujiang, Jiangxi 332000, P.R. China
| | - Weibin Chen
- Department of Hematology, The Affiliated Hospital of Jiujiang University College of Medicine, Jiujiang, Jiangxi 332000, P.R. China
| | - Fangmei Huang
- Department of Hematology, The Affiliated Hospital of Jiujiang University College of Medicine, Jiujiang, Jiangxi 332000, P.R. China
| | - Xiaomin Gui
- Department of Hematology, The Affiliated Hospital of Jiujiang University College of Medicine, Jiujiang, Jiangxi 332000, P.R. China
| |
Collapse
|
48
|
Liu H, Liu X, Zhang L. Computational Analysis of Artimisinin Derivatives on the Antitumor Activities. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:433-443. [PMID: 29094266 PMCID: PMC5709249 DOI: 10.1007/s13659-017-0142-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/18/2017] [Indexed: 06/07/2023]
Abstract
The study on antitumor activities of artemisinin and its derivatives has been closely focused on in recent years. Herein, 2D and 3D QSAR analysis was performed on the basis of a series of artemisinin derivatives with known bioactivities against the non-small-cell lung adenocarcinoma A549 cells. Four QSAR models were successfully established by CoMSIA, CoMFA, topomer CoMFA and HQSAR approaches with respective characteristic values q2 = 0.567, R2 = 0.968, ONC = 5; q2 = 0.547, R2 = 0.980, ONC = 7; q2 = 0.559, R2 = 0.921, ONC = 7 and q2 = 0.527, R2 = 0.921, ONC = 6. The predictive ability of CoMSIA with r2 = 0.991 is the best one compared with the other three approaches, such as CoMFA (r2 = 0.787), topomer CoMFA (r2 = 0.819) and HQSAR (r2 = 0.743). The final QSAR models can provide guidance in structural modification of artemisinin derivatives to improve their anticancer activities.
Collapse
Affiliation(s)
- Hui Liu
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China.
| | - Xingyong Liu
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| | - Li Zhang
- School of Chemical Engineering, Sichuan University of Science & Engineering, Zigong, China
| |
Collapse
|
49
|
Zyad A, Tilaoui M, Jaafari A, Oukerrou MA, Mouse HA. More insights into the pharmacological effects of artemisinin. Phytother Res 2017; 32:216-229. [PMID: 29193409 DOI: 10.1002/ptr.5958] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 12/23/2022]
Abstract
Artemisinin is one of the most widely prescribed drugs against malaria and has recently received increased attention because of its other potential biological effects. The aim of this review is to summarize recent discoveries of the pharmaceutical effects of artemisinin in basic science along with its mechanistic action, as well as the intriguing results of recent clinical studies, with a focus on its antitumor activity. Scientific evidence indicates that artemisinin exerts its biological activity by generating reactive oxygen species that damage the DNA, mitochondrial depolarization, and cell death. In the present article review, scientific evidence suggests that artemisinin is a potential therapeutic agent for various diseases. Thus, this review is expected to encourage interested scientists to conduct further preclinical and clinical studies to evaluate these biological activities.
Collapse
Affiliation(s)
- Abdelmajid Zyad
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Mounir Tilaoui
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Abdeslam Jaafari
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Moulay Ali Oukerrou
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| | - Hassan Ait Mouse
- Laboratory of Biological Engineering, Team of Natural Substances and Cellular and Molecular Immuno-pharmacology, Immuno-biology of Cancer Cells, Sultan Moulay Slimane University, Faculty of Science and Technology, Beni-Mellal, Morocco
| |
Collapse
|
50
|
Xu CH, Liu Y, Xiao LM, Guo CG, Zheng SY, Zeng EM, Li DH. Dihydroartemisinin treatment exhibits antitumor effects in glioma cells through induction of apoptosis. Mol Med Rep 2017; 16:9528-9532. [PMID: 29152657 DOI: 10.3892/mmr.2017.7832] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 08/08/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effect of dihydroartemisinin on the proliferation of chemotherapy‑resistant C6 rat glioma cells. The results revealed that incubation of C6 glioma cells with a range of dihydroartemisinin concentrations for 48 h led to a significant (P<0.02) reduction in the cell number. There was a ‑0.8-fold reduction in the cell count following treatment with 20 µM dihydroartemisinin when compared with the control cultures. Analysis of DNA synthesis using bromodeoxyuridine (BrdU) staining demonstrated a reduction in the BrdU‑labeling index (LI) following treatment with 20 µM dihydroartemisinin. There was a 6‑fold reduction in the BrdU‑LI compared with the control cultures. Incubation of the C6 glioma cells with dihydroartemisinin led to a concentration dependent reduction in the level of cyclic adenosine 3',5'‑monophosphate following 48 h. The percentage of apoptotic cells in the cultures incubated with 20 µM dihydroartemisinin was 54.78% compared with 2.57% in the control cultures. Incubation of the C6 glioma cells with dihydroartemisinin for 48 h led to a reduction in the percentage of cells in G2/M phase with an increase in G0/G1 phase. The control cells exhibited spindle‑shaped morphology and were actively undergoing mitosis following 48 h of culture. The morphological characteristics of the cells treated with dihydroartemisinin were demonstrated to be round with small surface projections. Therefore, treatment of glioma cells with dihydroartemisinin exhibited an antitumor effect by the induction of apoptosis. Therefore, dihydroartemisinin should be evaluated further in the animal models for the treatment of glioma.
Collapse
Affiliation(s)
- Chun-Hua Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yue Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li-Min Xiao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chang-Gui Guo
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Su-Yue Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Er-Ming Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dong-Hai Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|