1
|
László K, Tóth K, Kertes E, Péczely L, Lénárd L. The role of neurotensin in positive reinforcement in the rat central nucleus of amygdala. Behav Brain Res 2009; 208:430-5. [PMID: 20035801 DOI: 10.1016/j.bbr.2009.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 12/10/2009] [Accepted: 12/12/2009] [Indexed: 10/20/2022]
Abstract
In the central nervous system neurotensin (NT) acts as a neurotransmitter and neuromodulator. It was shown that NT has positive reinforcing effects after its direct microinjection into the ventral tegmental area. The central nucleus of amygdala (CeA), part of the limbic system, plays an important role in learning, memory, regulation of feeding, anxiety and emotional behavior. By means of immunohistochemical and radioimmune methods it was shown that the amygdaloid body is relatively rich in NT immunoreactive elements and NT receptors. The aim of our study was to examine the possible effects of NT on reinforcement and anxiety in the CeA. In conditioned place preference test male Wistar rats were microinjected bilaterally with 100 or 250 ng NT in volume of 0.4 microl or 35 ng neurotensin receptor 1 (NTS1) antagonist SR 48692 alone, or NTS1 antagonist 15 min before 100 ng NT treatment. Hundred or 250 ng NT significantly increased the time rats spent in the treatment quadrant. Prior treatment with the non-peptide NTS1 antagonist blocked the effects of NT. Antagonist itself did not influence the reinforcing effect. In elevated plus maze test we did not find differences among the groups as far as the anxiety index (time spent on the open arms) was concerned. Our results suggest that in the rat ACE NT has positive reinforcing effects. We clarified that NTS1s are involved in this action. It was also shown that NT does not influence anxiety behavior.
Collapse
Affiliation(s)
- Kristóf László
- Institute of Physiology, Pécs University Medical School, Pécs, Hungary
| | | | | | | | | |
Collapse
|
2
|
Prus AJ, Huang M, Li Z, Dai J, Meltzer HY. The neurotensin analog NT69L enhances medial prefrontal cortical dopamine and acetylcholine efflux: Potentiation of risperidone-, but not haloperidol-, induced dopamine efflux. Brain Res 2007; 1184:354-64. [DOI: 10.1016/j.brainres.2007.09.092] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Revised: 09/20/2007] [Accepted: 09/28/2007] [Indexed: 10/22/2022]
|
3
|
Cáceda R, Kinkead B, Nemeroff CB. Involvement of neuropeptide systems in schizophrenia: human studies. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 78:327-76. [PMID: 17349866 DOI: 10.1016/s0074-7742(06)78011-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Neuropeptides are heterogeneously distributed throughout the digestive, circulatory, and nervous systems and serve as neurotransmitters, neuromodulators, and hormones. Neuropeptides are phylogenetically conserved and have been demonstrated to regulate numerous behaviors. They have been hypothesized to be pathologically involved in several psychiatric disorders, including schizophrenia. On the basis of preclinical data, numerous studies have sought to examine the role of neuropeptide systems in schizophrenia. This chapter reviews the clinical data, linking alterations in neuropeptide systems to the etiology, pathophysiology, and treatment of schizophrenia. Data for the following neuropeptide systems are included: arginine-vasopressin, cholecystokinin (CCK), corticotropin-releasing factor (CRF), interleukins, neuregulin 1 (NRG1), neurotensin (NT), neuropeptide Y (NPY), opioids, secretin, somatostatin, tachykinins, thyrotropin-releasing hormone (TRH), and vasoactive intestinal peptide (VIP). Data from cerebrospinal fluid (CSF), postmortem and genetic studies, as well as clinical trials are described. Despite the inherent difficulties associated with human studies (including small sample size, variable duration of illness, medication status, the presence of comorbid psychiatric disorders, and diagnostic heterogeneity), several findings are noteworthy. Postmortem studies support disease-related alterations in several neuropeptide systems in the frontal and temporal cortices. The strongest genetic evidence supporting a role for neuropeptides in schizophrenia are those studies linking polymorphisms in NRG1 and the CCKA receptor with schizophrenia. Finally, the only compounds that act directly on neuropeptide systems that have demonstrated therapeutic efficacy in schizophrenia are neurokinin receptor antagonists. Clearly, additional investigation into the role of neuropeptide systems in the etiology, pathophysiology, and treatment of schizophrenia is warranted.
Collapse
Affiliation(s)
- Ricardo Cáceda
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
4
|
Boules M, Fredrickson P, Richelson E. Bioactive analogs of neurotensin: focus on CNS effects. Peptides 2006; 27:2523-33. [PMID: 16882457 DOI: 10.1016/j.peptides.2005.12.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 12/01/2005] [Indexed: 11/17/2022]
Abstract
Neurotensin (NT) is a 13-amino acid neuropeptide found in the central nervous system and in the gastrointestinal tract. It is closely associated anatomically with dopaminergic and other neurotransmitter systems, and evidence supports a role for NT agonists in the treatment of various neuropsychiatric disorders. However, NT is readily degraded by peptidases, so there is much interest in the development of stable NT agonists, that can be injected systemically, cross the blood-brain barrier (BBB), yet retains the pharmacological characteristics of native NT for therapeutic use in the treatment of diseases such as schizophrenia, Parkinson's disease and addiction.
Collapse
Affiliation(s)
- Mona Boules
- Neuropsychopharmacology Laboratory, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | | | | |
Collapse
|
5
|
Cáceda R, Kinkead B, Nemeroff CB. Neurotensin: role in psychiatric and neurological diseases. Peptides 2006; 27:2385-404. [PMID: 16891042 DOI: 10.1016/j.peptides.2006.04.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Accepted: 04/01/2006] [Indexed: 10/24/2022]
Abstract
Neurotensin (NT), an endogenous brain-gut peptide, has a close anatomical and functional relationship with the mesocorticolimbic and neostriatal dopamine system. Dysregulation of NT neurotransmission in this system has been hypothesized to be involved in the pathogenesis of schizophrenia. Additionally, NT containing circuits have been demonstrated to mediate some of the mechanisms of action of antipsychotic drugs, as well as the rewarding and/or sensitizing properties of drugs of abuse. NT receptors have been suggested to be novel targets for the treatment of psychoses or drug addiction.
Collapse
Affiliation(s)
- Ricardo Cáceda
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Suite 4000 WMRB, 101 Woodruff Circle, Atlanta, GA 30322 4990, USA.
| | | | | |
Collapse
|
6
|
Abstract
Neurotensin (NT) is a brain-gut tridecapeptide that functions as a neurotransmitter/neuromodulator in the central nervous system (CNS) and as an endocrine agent in the periphery. NT has numerous physiologic effects on multiple organs. This review will focus on the effects of NT as a trophic factor for normal and neoplastic tissues. In this regard, NT may act as an endocrine agent or, in some instances, in a paracrine and/or autocrine fashion. These effects appear to be mediated predominantly through the G protein-coupled high-affinity NT receptor. However, some of the trophic effects may also be through the other two receptor subtypes, particularly the NT receptor type 3, which belongs to a recently identified family of sorting receptors. The signaling pathways mediating the effects of NT are multiple but most appear to activate the ERK signaling pathway, which then activates downstream transcription factors, ultimately leading to proliferation. NT may be a useful agent to enhance the growth of normal tissues such as the small bowel mucosa during periods of gut disuse or disease and, finally, the selective targeting of NT receptor subtypes on certain cancers may offer a novel strategy in the armamentarium of cancer chemotherapeutics.
Collapse
Affiliation(s)
- B Mark Evers
- Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
| |
Collapse
|
7
|
Luca S, Heise H, Lange A, Baldus M. Investigation of Ligand-Receptor Systems by High-Resolution Solid-State NMR: Recent Progress and Perspectives. Arch Pharm (Weinheim) 2005; 338:217-28. [PMID: 15938000 DOI: 10.1002/ardp.200400991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Solid-state Nuclear Magnetic Resonance (NMR) provides a general method to study molecular structure and dynamics in a non-crystalline and insoluble environment. We discuss the latest methodological progress to construct 3D molecular structures from solid-state NMR data obtained under magic-angle-spinning conditions. As shown for the neurotensin/NTS-1 system, these methods can be readily applied to the investigation of ligand-binding to G-protein coupled receptors.
Collapse
Affiliation(s)
- Sorin Luca
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
8
|
White JF, Trinh LB, Shiloach J, Grisshammer R. Automated large-scale purification of a G protein-coupled receptor for neurotensin. FEBS Lett 2004; 564:289-93. [PMID: 15111111 DOI: 10.1016/s0014-5793(04)00195-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Accepted: 02/02/2004] [Indexed: 11/29/2022]
Abstract
Structure determination of integral membrane proteins requires milligram amounts of purified, functional protein on a regular basis. Here, we describe a protocol for the purification of a G protein-coupled neurotensin receptor fusion protein at the 3-mg or 10-mg level using immobilized metal affinity chromatography and a neurotensin column in a fully automated mode. Fermentation at a 200-l scale of Escherichia coli expressing functional receptors provides the material needed to feed into the purification routine. Constructs with tobacco etch virus protease recognition sites at either end of the receptor allow the isolation of neurotensin receptor devoid of its fusion partners. The presented expression and purification procedures are simple and robust, and provide the basis for crystallization experiments of receptors on a routine basis.
Collapse
Affiliation(s)
- Jim F White
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892-8030, USA
| | | | | | | |
Collapse
|
9
|
Luca S, White JF, Sohal AK, Filippov DV, van Boom JH, Grisshammer R, Baldus M. The conformation of neurotensin bound to its G protein-coupled receptor. Proc Natl Acad Sci U S A 2003; 100:10706-11. [PMID: 12960362 PMCID: PMC196868 DOI: 10.1073/pnas.1834523100] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Indexed: 11/18/2022] Open
Abstract
G protein-coupled receptors (GPCRs) mediate the perception of smell, light, taste, and pain. They are involved in signal recognition and cell communication and are some of the most important targets for drug development. Because currently no direct structural information on high-affinity ligands bound to GPCRs is available, rational drug design is limited to computational prediction combined with mutagenesis experiments. Here, we present the conformation of a high-affinity peptide agonist (neurotensin, NT) bound to its GPCR NTS-1, determined by direct structural methods. Functional receptors were expressed in Escherichia coli, purified in milligram amounts by using optimized procedures, and subsequently reconstituted into lipid vesicles. Solid-state NMR experiments were tailored to allow for the unequivocal detection of microgram quantities of 13C,15N-labeled NT(8-13) in complex with functional NTS-1. The NMR data are consistent with a disordered state of the ligand in the absence of receptor. Upon receptor binding, the peptide undergoes a linear rearrangement, adopting a beta-strand conformation. Our results provide a viable structural template for further pharmacological investigations.
Collapse
Affiliation(s)
- Sorin Luca
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
10
|
Richelson E, Boules M, Fredrickson P. Neurotensin agonists: possible drugs for treatment of psychostimulant abuse. Life Sci 2003; 73:679-90. [PMID: 12801589 DOI: 10.1016/s0024-3205(03)00388-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although many neuropeptides have been implicated in the pathophysiology of psychostimulant abuse, the tridecapeptide neurotensin holds a prominent position in this field due to the compelling literature on this peptide and psychostimulants. These data strongly support the hypothesis that a neurotensin agonist will be clinically useful to treat the abuse of psychostimulants, including nicotine. This paper reviews the evidence for a role for neurotensin in stimulant abuse and for a neurotensin agonist for its treatment.
Collapse
|
11
|
Fredrickson P, Boules M, Yerbury S, Richelson E. Blockade of nicotine-induced locomotor sensitization by a novel neurotensin analog in rats. Eur J Pharmacol 2003; 458:111-8. [PMID: 12498914 DOI: 10.1016/s0014-2999(02)02689-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Neurotensin is a tridecapeptide with anatomic and functional relationships to dopaminergic neurons. Previously we showed that one of our brain-penetrating neurotensin analogs, NT69L (N-met-L-Arg, L-Lys, L-Pro, L-neo-Trp, L-tert-Leu, L-Leu), blocks cocaine- and D-amphetamine-induced hyperactivity in rats. We have now performed a similar study in rats sensitized to nicotine over 15 days of administration. Male Sprague-Dawley rats were randomly assigned to receive daily injections for 15 days with one of the following combinations: saline/nicotine (0.35 mg/kg), NT69L (1 mg/kg)/nicotine, saline/saline, or NT69L/saline with a 30-min period between injections. On day 15 each group was given saline/nicotine or NT69L/nicotine and tested in an activity chamber. One-time administration of NT69L attenuated nicotine-induced activity with an ED(50) of 1.6 microg/kg. Rats injected with nicotine over the 15 days had a significant increase in locomotor activity, consistent with nicotine-induced locomotor sensitization. A single injection of NT69L on day 15 prior to nicotine markedly decreased nicotine-induced hyperactivity. Although daily injections of NT69L lessened its effect, statistically significant reductions in hyperactivity to nicotine persisted throughout the study. There was no significant difference in activity between rats injected with NT69L/saline and saline/saline. Thus, the activity reduction was not due to sedation. Acute and chronic nicotine injection caused an increase in cytisine binding in prefrontal cortex. NT69L significantly reduced the increase caused by acute but not chronic injection of nicotine. Nicotine injection resulted in an increase in dopamine levels in the striatum and dopamine and norepinephrine levels in the prefrontal cortex. NT69L lowered the norepinephrine and dopamine levels in the prefrontal cortex but did not affect striatal dopamine. The present study is the first report, to our knowledge, of a possible role for neurotensin in the development of nicotine dependence, and suggests that neurotensin analogs such as NT69L may be explored as treatment for nicotine and other psychostimulant abuse.
Collapse
Affiliation(s)
- Paul Fredrickson
- Nicotine Dependence Center, Mayo Foundation for Medical Education and Research, and Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | | | | | | |
Collapse
|
12
|
Daniels DA, Sohal AK, Rees S, Grisshammer R. Generation of RNA aptamers to the G-protein-coupled receptor for neurotensin, NTS-1. Anal Biochem 2002; 305:214-26. [PMID: 12054450 DOI: 10.1006/abio.2002.5663] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
G-protein-coupled receptors (GPCRs) are integral membrane proteins involved in signal transduction and constitute major drug targets for disease therapy. Aptamers, which are globular RNA or DNA molecules evolved to specifically bind a target, could represent a valuable tool with which to probe the role of such receptors in normal tissue and disease pathology and for cocrystallization with receptors for structure determination by X-ray crystallography. Using the bacterially expressed rat neurotensin receptor NTS-1 as an example, we describe a strategy for the generation of GPCR-specific RNA aptamers. Seven rounds of a "subtractive," paramagnetic bead-based selection protocol were used to enrich for neurotensin receptor-specific aptamers, while circumventing the evolution of aptamers reactive to minor protein contaminants. Representatives of each aptamer family were analyzed in Escherichia coli membrane nitrocellulose filter binding assays. Eight aptamers demonstrated specificity for the neurotensin receptor. One aptamer, P19, was characterized in detail and shown to bind to both the rat receptor and the human receptor with nanomolar affinity. P19 was also shown to interact with rat neurotensin receptor expressed in CHO cells, in both membrane preparations and intact cells. P19 represents the first example of a GPCR-specific RNA aptamer.
Collapse
Affiliation(s)
- Dion A Daniels
- Gene Expression and Protein Biochemistry, Medicines Research Centre, Stevenage, SG1 2NY, United Kingdom
| | | | | | | |
Collapse
|
13
|
Grisshammer R, Grunwald T, Sohal AK. Characterization of an antibody Fv fragment that binds to the human, but not to the rat neurotensin receptor NTS-1. Protein Expr Purif 2002; 24:505-12. [PMID: 11922768 DOI: 10.1006/prep.2001.1591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cDNAs coding for the heavy and light chain variable domains of an antibody, recognizing the human G-protein-coupled receptor for neurotensin, NTS-1, were obtained from a hybridoma cell line, B-N6. The Fv B-N6 fragment was expressed in Escherichia coli and purified. To characterize the properties of the antibody fragment, human and rat high-affinity neurotensin receptors were expressed in E. coli in functional form, linked at their N-termini to the maltose-binding protein. Fv B-N6 was found to compete for [3H]neurotensin binding to the human neurotensin receptor, but not to the rat neurotensin receptor, with IC50 values of 1.6 microM (membrane-bound receptor) and 1.9 microM (detergent-solubilized, purified receptor). The formation of a relatively stable complex of Fv B-N6 with purified human neurotensin receptor fusion protein was also demonstrated by gel filtration experiments. The Fv B-N6 fragment will be used to isolate a high-affinity binder to the human neurotensin receptor as a valuable tool for cocrystallization and receptor structure determination.
Collapse
|
14
|
Binder EB, Kinkead B, Owens MJ, Nemeroff CB. The role of neurotensin in the pathophysiology of schizophrenia and the mechanism of action of antipsychotic drugs. Biol Psychiatry 2001; 50:856-72. [PMID: 11743941 DOI: 10.1016/s0006-3223(01)01211-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has become increasingly clear that schizophrenia does not result from the dysfunction of a single neurotransmitter system, but rather pathologic alterations of several interacting systems. Targeting of neuropeptide neuromodulator systems, capable of concomitantly regulating several transmitter systems, represents a promising approach for the development of increasingly effective and side effect-free antipsychotic drugs. Neurotensin (NT) is a neuropeptide implicated in the pathophysiology of schizophrenia that specifically modulates neurotransmitter systems previously demonstrated to be dysregulated in this disorder. Clinical studies in which cerebrospinal fluid (CSF) NT concentrations have been measured revealed a subset of schizophrenic patients with decreased CSF NT concentrations that are restored by effective antipsychotic drug treatment. Considerable evidence also exists concordant with the involvement of NT systems in the mechanism of action of antipsychotic drugs. The behavioral and biochemical effects of centrally administered NT remarkably resemble those of systemically administered antipsychotic drugs, and antipsychotic drugs increase NT neurotransmission. This concatenation of findings led to the hypothesis that NT functions as an endogenous antipsychotic. Moreover, typical and atypical antipsychotic drugs differentially alter NT neurotransmission in nigrostriatal and mesolimbic dopamine (DA) terminal regions, and these effects are predictive of side effect liability and efficacy, respectively. This review summarizes the evidence in support of a role for the NT system in both the pathophysiology of schizophrenia and the mechanism of action of antipsychotic drugs.
Collapse
Affiliation(s)
- E B Binder
- Max Planck Institute for Psychiatry, Munich, Germany
| | | | | | | |
Collapse
|
15
|
Boules M, McMahon B, Warrington L, Stewart J, Jackson J, Fauq A, McCormick D, Richelson E. Neurotensin analog selective for hypothermia over antinociception and exhibiting atypical neuroleptic-like properties. Brain Res 2001; 919:1-11. [PMID: 11689157 DOI: 10.1016/s0006-8993(01)02981-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neurotensin (NT) is a tridecapeptide neurotransmitter in the central nervous system. It has been implicated in the therapeutic effects of neuroleptics. Central activity of NT can only be demonstrated by direct injection into the brain, since it is readily degraded by peptidases in the periphery. We have developed many NT(8-13) analogs that are resistant to peptidase degradation and can cross the blood-brain barrier (BBB). In this study, we report on one of these analogs, NT77L. NT77L induced hypothermia (ED(50)=6.5 mg/kg, i.p.) but induced analgesia only at the highest dose examined (20 mg/kg, i.p.). Like the atypical neuroleptic clozapine, NT77L blocked the climbing behavior in rats induced by the dopamine agonist apomorphine (600 microg/kg) with an ED(50) of 5.6 mg/kg (i.p.), without affecting the licking and the sniffing behaviors. By itself NT77L did not cause catalepsy, but it moderately reversed haloperidol-induced catalepsy with an ED(50) of 6.0 mg/kg (i.p.). Haloperidol alone did not lower body temperature, but it potentiated the body temperature lowering effect of NT77L. In studies using in vivo microdialysis NT77L showed similar effects on dopamine turnover to those of clozapine, and significantly different from those of haloperidol in the striatum. In the prefrontal cortex, NT77L significantly increased serotonergic transmission as evidenced by increased 5-hydroxyindole acetic acid:5-hydroxytryptamine (5-HIAA:5-HT) ratio. Thus, NT77L selectively caused hypothermia, over antinociception, while exhibiting atypical neuroleptic-like effects.
Collapse
Affiliation(s)
- M Boules
- Neuropsychopharmacology Laboratory, Mayo Foundation for Medical Education and Research, and Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tyler-McMahon BM, Boules M, Richelson E. Neurotensin: peptide for the next millennium. REGULATORY PEPTIDES 2000; 93:125-36. [PMID: 11033059 DOI: 10.1016/s0167-0115(00)00183-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neurotensin is an endogenous tridecapeptide neurotransmitter (pGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Try-Ile-Leu-OH) that was discovered by Carraway and Leeman in bovine hypothalami in the early 1970s. Since then this peptide has been the subject of a multitude of articles detailing discoveries related to its activity, receptors, localization, synthesis, and interactions with other systems. This review article does not intend to summarize again all the history of this fascinating peptide and its receptors, since this has been done quite well by others. The reader will be directed to these other reviews, where appropriate. Instead, this review attempts to provide a summary of current knowledge about neurotensin, why it is an important peptide to study, and where the field is heading. Special emphasis is placed on the behavioral studies, particularly with reference to agonists, antagonists, and antisense studies, as well as, the interaction of neurotensin with other neurotransmitters.
Collapse
Affiliation(s)
- B M Tyler-McMahon
- Laboratory of Neuropharmacology, Mayo Foundation for Medical and Educational Research, 4500 San Pablo Rd., 32224, Jacksonville, FL, USA.
| | | | | |
Collapse
|
17
|
Cusack B, Jansen K, McCormick DJ, Chou T, Pang Y, Richelson E. A single amino acid of the human and rat neurotensin receptors (subtype 1) determining the pharmacological profile of a species-selective neurotensin agonist. Biochem Pharmacol 2000; 60:793-801. [PMID: 10930533 DOI: 10.1016/s0006-2952(00)00409-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The neurotensin (NT) receptor, subtype 1 (NTR1), is a 7-transmembrane-spanning receptor, forming 3 extracellular and 3 intracellular loops. Previously, we showed that the third outer loop (E3) is the binding site for NT and its analogs, several of which bind with higher affinity to rat NTR1 (rNTR1) than to human NTR1 (hNTR1). In particular, NT34 [3,1'-naphthyl-l-Ala(11)]NT(8-13) has greater than 60-fold higher affinity for rNTR1 (46 and 60 pM for transiently- and stably-transfected cells, respectively) than for hNTR1 (2.8 and 5.8 nM for transiently- and stably-transfected cells, respectively) isolated from transfected cell membranes. Previously, our molecular modeling studies of rNTR1 and hNTR1 showed that the binding pocket in the human receptor for NT34 is smaller in volume from the bulky residue Tyr(339) in the pocket center, as compared with the corresponding residue Phe(344) in the rat binding pocket. Therefore, with site-directed mutagenesis, we derived mutant forms of rNTR1(F344Y) and hNTR1(Y339F). Examination of the mutant receptors from membranal preparations of transfected cells in radioligand binding assays and with intact cells in functional assays (phosphatidyl-4,5-bisphosphate turnover) showed that the human-like rat receptor and the rat-like human receptor bound NT34 with a predicted reverse of binding compared with its binding to the wild-type receptors. These results strongly affirm our molecular modeling studies and demonstrate the importance of the study of even minor structural variations in proteins to determine the basis of significantly different drug responses, an area of focus for pharmacological research in the 21st century.
Collapse
Affiliation(s)
- B Cusack
- Neuropsychopharmacology Laboratory, Mayo Foundation for Medical Education and Research and Mayo Clinic Jacksonville, FL 32224, USA
| | | | | | | | | | | |
Collapse
|
18
|
Fassio A, Evans G, Grisshammer R, Bolam JP, Mimmack M, Emson PC. Distribution of the neurotensin receptor NTS1 in the rat CNS studied using an amino-terminal directed antibody. Neuropharmacology 2000; 39:1430-42. [PMID: 10818259 DOI: 10.1016/s0028-3908(00)00060-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The distribution of neurotensin receptor 1 immunoreactivity in the rat brain was studied using an antibody against the amino-terminal of the receptor expressed as a fusion protein with glutathione-S transferase. Affinity purified antibodies detected the fusion protein and the complete neurotensin receptor sequence expressed in Escherichia coli. The immunostaining was abolished by preabsorption with the amino-terminal fusion protein. Immunoreactive neurotensin receptor 1 immunoreactivity was detected on cell bodies and their processes in a number of CNS regions. In agreement with previous binding studies neurotensin receptor 1 immunoreactivity was particularly localised in cell bodies in the basal forebrain, nucleus basalis and substantia nigra. At the electron microscope level immunoreactivity was found both in axonal bouton and dendrites and spines in the basal forebrain indicating that neurotensin may act both pre- and post-synaptically. There were several regions such as the substantia gelatinosa, ventral caudate-putamen and the lateral reticular nucleus where the neurotensin receptor 1 positive cells had not previously been reported, indicating that distribution of this receptor is widespread.
Collapse
Affiliation(s)
- A Fassio
- Laboratory of Molecular Neuroscience, Department of Neurobiology, The Babraham Institute, CB2 4AT, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
19
|
Cusack B, Boules M, Tyler BM, Fauq A, McCormick DJ, Richelson E. Effects of a novel neurotensin peptide analog given extracranially on CNS behaviors mediated by apomorphine and haloperidol. Brain Res 2000; 856:48-54. [PMID: 10677610 DOI: 10.1016/s0006-8993(99)02363-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neurotensin (NT) is a neuropeptide neurotransmitter in the central nervous system. It has been implicated in the therapeutic and in the adverse effects of neuroleptics. Activity of NT in brain can only be shown by direct injection of the peptide into that organ. However, we have developed a novel analog of NT(8-13), NT69L, which is active upon intraperitoneal (i.p.) injection. Like atypical neuroleptics, NT69L blocked the climbing behavior in rats, but not the licking and sniffing behaviors of a high dose (600 microgram/kg) of the non-selective dopamine agonist apomorphine. Its blockade of climbing was very potent with an ED(50) (effective dose at 50% of maximum) of 16 microgram/kg. Both apomorphine and NT69L caused a long-lasting hypothermia, which was greater with the peptide but not synergistic in combination with apomorphine. The ED(50) of NT69L for hypothermia was 390 microgram/kg. NT69L (up to 5 mg/kg i.p.) did not produce catalepsy. However, when given before haloperidol, NT69L, but not clozapine, completely prevented catalepsy. When given after haloperidol, NT69L, but not clozapine, reversed haloperidol's cataleptic effects with an ED(50) of 260 microg/kg. There was no significant difference between the ED(50)s for hypothermia and anticataleptic effects of NT69L. However, the ED(50) for blocking the effects of apomorphine was significantly lower than the other two. These data suggest that NT69L may have neuroleptic properties in humans and may be useful in the treatment of extrapyramidal side effects caused by typical neuroleptics such as haloperidol.
Collapse
Affiliation(s)
- B Cusack
- Neuropsychopharmacology Laboratory, Mayo Foundation for Medical Education and Research, and Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL, USA
| | | | | | | | | | | |
Collapse
|
20
|
Cusack B, Chou T, Jansen K, McCormick DJ, Richelson E. Analysis of binding sites and efficacy of a species-specific peptide at rat and human neurotensin receptors. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2000; 55:72-80. [PMID: 10667863 DOI: 10.1034/j.1399-3011.2000.00153.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have developed a neurotensin analog, L-[3,1'-naphthylalanine11]NT(8-13), NT34, that can distinguish between rat and human neurotensin receptors, and exhibits more than a 100-fold difference in binding affinities and a 60-fold difference in functional coupling to phosphatidylinositol turnover. Using cells transfected with different numbers of the appropriate receptors, we measured the changes in phosphatidylinositol production, and then evaluated the efficiency of receptor-effector coupling based on Furchgott's design. The binding of NT34 at both rat and human neurotensin receptors stably expressed in CHO-K1 cells was to two sites, while the binding of NT was to one site. At the rat receptor the equilibrium dissociation constant (Kd) for NT34 at the high-affinity site was 0.058 nM, while that at the low-affinity site was 3.1 nM. For the human receptor at the high-affinity site, the Kd for NT34 was 18 nM, while that at the low-affinity site was 180 nM. For both species the percentage of receptors representing the high-affinity site was approximately 60-70% with 30-40% at the low-affinity site. We derived agonist dissociation constants (Ka) for NT and NT34, which suggest that for NT34, the low-affinity site is functionally coupled to phosphatidylinositol turnover. Finally, we compared the relative efficacies of both compounds and found that NT34 was about 2-fold and 4-fold more efficacious than NT in stimulating phosphatidylinositol turnover in rat and human NT receptors, respectively.
Collapse
Affiliation(s)
- B Cusack
- Neuropsychopharmacology Research, Mayo Foundation for Medical Education and Research, Jacksonville, FL 32224, USA.
| | | | | | | | | |
Collapse
|
21
|
Tyler BM, Jansen K, McCormick DJ, Douglas CL, Boules M, Stewart JA, Zhao L, Lacy B, Cusack B, Fauq A, Richelson E. Peptide nucleic acids targeted to the neurotensin receptor and administered i.p. cross the blood-brain barrier and specifically reduce gene expression. Proc Natl Acad Sci U S A 1999; 96:7053-8. [PMID: 10359837 PMCID: PMC22053 DOI: 10.1073/pnas.96.12.7053] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/1999] [Accepted: 04/14/1999] [Indexed: 11/18/2022] Open
Abstract
Intraperitoneal injection of an unmodified antisense peptide nucleic acid (PNA) complementary to mRNA of the rat neurotensin (NT) receptor (NTR1) was demonstrated by a gel shift assay to be present in brain, thus indicating that the PNA had in fact crossed the blood-brain barrier. An i.p. injection of this antisense PNA specifically inhibited the hypothermic and antinociceptive activities of NT microinjected into brain. These results were associated with a reduction in binding sites for NT both in brain and the small intestine. Additionally, the sense-NTR1 PNA, targeted to DNA, microinjected directly into the brain specifically reduced mRNA levels by 50% and caused a loss of response to NT. To demonstrate the specificity of changes in behavioral, binding, and mRNA studies, animals treated with NTR1 PNA were tested for behavioral responses to morphine and their mu receptor levels were determined. Both were found to be unaffected in these NTR1 PNA-treated animals. The effects of both the antisense and sense PNAs were completely reversible. This work provides evidence that any antisense strategy targeted to brain proteins can work through i. p. delivery by crossing the normal blood-brain barrier. Equally important was that an antigene strategy, the sense PNA, was shown in vivo to be a potentially effective therapeutic treatment.
Collapse
Affiliation(s)
- B M Tyler
- Laboratory of Neuropsychopharmacology, Mayo Foundation for Medical and Educational Research, Jacksonville, FL 32224, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tyler BM, Cusack B, Douglas CL, Souder T, Richelson E. Evidence for additional neurotensin receptor subtypes: neurotensin analogs that distinguish between neurotensin-mediated hypothermia and antinociception. Brain Res 1998; 792:246-52. [PMID: 9593920 DOI: 10.1016/s0006-8993(98)00150-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurotensin (NT), a tridecapeptide, is a neurotransmitter that elicits potent effects including hypothermia and antinociception in mice and rats. To date, there are two types of the neurotensin receptor (NTR) that have been molecularly cloned from the rat. However, several lines of evidence suggest the presence of additional NTR subtypes. We have identified a NT analog of the NT(8-13) fragment, NT27, that selectively causes only the hypothermic response in vivo, when microinjected into the periaqueductal gray (PAG) of rats. A dose of 18 nmol of NT or NT27 caused a body temperature lowering of 1.8 and 1.2 degrees C, respectively. This same dose of NT or NT27 yielded a hotplate maximum physiological effect of 75% and 25%, respectively. Interestingly, despite its high KD (620 nM) at the cloned NTR-1, NT27-I (the iodinated form of NT27) exerted a potent hypothermic effect even at a very low dose (0.6 nmol). Equally intriguing, was that NT24, a sterioisomer of NT27, with a much higher affinity (KD=0. 5 nM) at NTR-1, did not selectively induce hypothermia in mice, but did selectively induce hypothermia in rats.
Collapse
Affiliation(s)
- B M Tyler
- Neuropsychopharmacology Research, Mayo Foundation for Medical and Educational Research, Jacksonville, FL 32224, USA.
| | | | | | | | | |
Collapse
|
23
|
Tyler BM, Groshan K, Cusack B, Richelson E. In vivo studies with low doses of levocabastine and diphenhydramine, but not pyrilamine, antagonize neurotensin-mediated antinociception. Brain Res 1998; 787:78-84. [PMID: 9518559 DOI: 10.1016/s0006-8993(97)01479-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study describes in vivo experiments in the rat addressing the role of levocabastine, and two other specific histamine H1 antagonists, diphenhydramine and pyrilamine, at neurotensin (NT)-mediated hypothermia and antinociception (hotplate). Levocabastine given i.p. or microinjected directly into the periaqueductal gray (PAG) did not cause antinociception or hypothermia. This indicates that despite the results with the recently-cloned levocabastine-sensitive NT receptors (NTR) in the rat (NTR-2) and mouse (NTRL), levocabastine by itself does not mediate either hypothermia or antinociception at NT receptors. However, pretreatment with 5 or 50 microg/kg of levocabastine or 5 microg/kg diphenhydramine all caused over a three-fold reduction in NT-mediated antinociception. Higher doses (500 or 5000 microg/kg) of levocabastine did not cause any antagonism of NT-mediated antinociception. All three antihistamines did not affect NT-mediated hypothermia. In addition, histamine H1 pathways are not involved in NT-mediated antinociception, as pretreatment with the much more potent histamine H1 antagonist pyrilamine did not affect antinociception mediated by NT. Therefore, these data may suggest the presence of yet unidentified NTR subtypes responsible for NT-mediated hypothermia and antinociception.
Collapse
Affiliation(s)
- B M Tyler
- Neuropsychopharmacology Research, Mayo Foundation for Medical and Educational Research, Jacksonville, FL 32224, USA.
| | | | | | | |
Collapse
|
24
|
Tyler BM, McCormick DJ, Hoshall CV, Douglas CL, Jansen K, Lacy BW, Cusack B, Richelson E. Specific gene blockade shows that peptide nucleic acids readily enter neuronal cells in vivo. FEBS Lett 1998; 421:280-4. [PMID: 9468323 DOI: 10.1016/s0014-5793(97)01575-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Peptide nucleic acids (PNAs) are DNA analogs that can hybridize to complementary sequences with high affinity and stability. Here, we report the first evidence of intracellular delivery of PNAs in vivo. Two CNS receptors, an opioid (mu) and a neurotensin (NTR-1), were targeted independently by repeated microinjection of PNAs into the periaqueductal gray. Behavioral responses to neurotensin (antinociception and hypothermia) and morphine (antinociception) were lost in a specific manner. Binding studies confirmed a large reduction in receptor sites. The loss of behavioral responses was long lasting but did fully recover. The implications of specifically and readily turning off gene expression in vivo are profound.
Collapse
Affiliation(s)
- B M Tyler
- Neuropsychopharmacology, Mayo Clinic, Jacksonville, FL 32224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Rostene W, Azzi M, Boudin H, Lepee I, Souaze F, Mendez-Ubach M, Betancur C, Gully D. Use of nonpeptide antagonists to explore the physiological roles of neurotensin. Focus on brain neurotensin/dopamine interactions. Ann N Y Acad Sci 1997; 814:125-41. [PMID: 9160965 DOI: 10.1111/j.1749-6632.1997.tb46151.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- W Rostene
- INSERM U.339, Hôpital St. Antoine, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
More than two decades of research indicate that the peptide neurotensin (NT) and its cognate receptors participate to a remarkable extent in the regulation of mammalian neuroendocrine systems, potentially at multiple levels in a given system. NT-synthesizing neurons appear to exert a direct or indirect stimulatory influence on neurosecretory cells that synthesize gonadotropin-releasing hormone, dopamine (DA), somatostatin, and corticotropin-releasing hormone (CRH). In addition, context-specific synthesis of NT occurs in hypothalamic neurosecretory cells located in the arcuate nucleus and parvocellular paraventricular nucleus, including distinct subsets of cells which release DA, CRH, or growth hormone-releasing hormone into the hypophysial portal circulation. At the level of the anterior pituitary, NT stimulates secretion of prolactin and occurs in subsets of gonadotropes and thyrotropes. Moreover, circulating hormones influence NT synthesis in the hypothalamus and anterior pituitary, raising the possibility that NT mediates certain feedback effects of the hormones on neuroendocrine cells. Gonadal steroids alter NT levels in the preoptic area, arcuate nucleus, and anterior pituitary; adrenal steroids alter NT levels in the hypothalamic periventricular nucleus and arcuate nucleus; and thyroid hormones alter NT levels in the hypothalamus and anterior pituitary. Finally, clarification of the specific neuroendocrine roles subserved by NT should be greatly facilitated by the use of newly developed agonists and antagonists of the peptide.
Collapse
Affiliation(s)
- W H Rostène
- INSERM U.339, Hôpital St. Antoine, Paris, France.
| | | |
Collapse
|
27
|
Yamada M, Groshan K, Phung CT, Yamada M, Hisamitsu T, Richelson E. The expression of mRNA for a kappa opioid receptor in the substantia nigra of Parkinson's disease brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 44:12-20. [PMID: 9030693 DOI: 10.1016/s0169-328x(96)00139-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We molecularly cloned the kappa opioid receptor from a human substantia nigra cDNA library. When expressed in HEK293 cells, the cloned receptor had similar pharmacological characteristics to the rat kappa opioid receptor. Northern blot analysis showed the presence of a single transcript of about 6 kb in size for mRNA prepared from the substantia nigra. Using in situ hybridization histochemistry, we studied the expression of this receptor in postmortem human brains from control and Parkinson's disease subjects. Kappa opioid receptor mRNA was present in melanized (possibly dopaminergic) neurons of the substantia nigra and the nucleus paranigralis. On the other hand, Parkinson's disease brains had markedly fewer melanized neurons, as expected, and correspondingly very low or background levels of mRNA for the kappa opioid receptor. However, in some cases, remaining melanized neurons still expressed the receptor mRNA. From these results we suggest that dopaminergic neurons in the human substantia nigra and the nucleus paranigralis synthesize kappa opioid receptors and express them in their perikarya and their terminal regions. The kappa opioid receptor expressed in the melanized neurons may play a role in the normal function of dopaminergic systems and possibly in the etiology of Parkinson's disease.
Collapse
Affiliation(s)
- M Yamada
- Department of Psychiatry, Mayo Foundation and Mayo Clinic Jacksonville, FL 32224, USA
| | | | | | | | | | | |
Collapse
|
28
|
Le F, Groshan K, Zeng XP, Richelson E. Characterization of the genomic structure, promoter region, and a tetranucleotide repeat polymorphism of the human neurotensin receptor gene. J Biol Chem 1997; 272:1315-22. [PMID: 8995438 DOI: 10.1074/jbc.272.2.1315] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the present study, we have cloned the human neurotensin receptor (NTR) gene, determined its structure, demonstrated that its promoter is functional in transfection experiments, and identified the start site of transcription and a tetranucleotide repeat polymorphism that locates at less than 3 kilobase pairs from the gene. The gene contains three introns, all in the coding regions. Several differences in genomic clones and previously characterized cDNA sequences are reconciled. The 5' regulatory region, which is rich in presumptive transcription factors, can drive luciferase expression in transfected CHO-K1 cells. Stepwise 5' deletions identify a positive modulator between -782 and -1309 and a negative modulator between -1309 and -1563. Southern blot analyses demonstrate a single copy gene for the NTR. The tetranucleotide repeat polymorphism is highly informative with at least 23 alleles and might serve as a very useful marker for genetic study of the relationship between the NTR and neuropsychiatric disorders.
Collapse
Affiliation(s)
- F Le
- Laboratory of Neuropsychopharmacology, Mayo Clinic, Jacksonville, Florida 32224, USA
| | | | | | | |
Collapse
|
29
|
Azzi M, Boudin H, Mahmudi N, Pélaprat D, Rostène W, Bérod A. In vivo regulation of neurotensin receptors following long-term pharmacological blockade with a specific receptor antagonist. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 42:213-21. [PMID: 9013776 DOI: 10.1016/s0169-328x(96)00124-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Adaptive changes in brain neurotensin (NT) receptors were investigated in rats after repeated administration of SR 48692, a potent and selective non-peptide NT receptor antagonist. Administration of SR 48692 (1 mg/kg i.p.) for 15 days did not alter NT content in the brain but highly enhanced the expression of NT receptor mRNA as shown by quantitative in situ hybridization. The increase of the signal was observed in numerous areas of the brain, such as the anterior cingulate, perirhinal and retrosplenial cortices, the suprachiasmatic nucleus, the ventral tegmental area, the substantia nigra and the posterior cortical nucleus of the amygdaloid complex. Moreover, the SR 48692 treatment induced the expression of NT receptor mRNA in several nuclei of the diencephalon where it could not be detected in basal conditions. Immunoblot analysis with a specific antibody directed against the rat cloned NT receptor revealed an important increase in NT receptor protein in the brain of SR 48692-treated rats, correlating well with the increase in NT receptor mRNA levels. Surprisingly, the number and the affinity constant of NT binding sites determined on brain membrane homogenates remained unchanged after SR 48692 treatment, even after membrane permeabilization with low concentrations of digitonin. These results suggest that chronic treatment with a specific NT antagonist induces an up-regulation of NT receptors at the level of mRNA and protein. Moreover, they indicate that after a chronic treatment with SR 48692, the number of NT binding sites remains stable in contrast to what is observed after 5-day treatment or with central monoaminergic receptor following their long-term blockade.
Collapse
Affiliation(s)
- M Azzi
- INSERM U339, Hôpital Saint-Antoine, Paris, France
| | | | | | | | | | | |
Collapse
|
30
|
Pang YP, Cusack B, Groshan K, Richelson E. Proposed ligand binding site of the transmembrane receptor for neurotensin(8-13). J Biol Chem 1996; 271:15060-8. [PMID: 8663052 DOI: 10.1074/jbc.271.25.15060] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We report here the first proposed ligand binding site of the transmembrane receptor for neurotensin(8-13) in human and rat, the corresponding bound conformation of the peptide ligand, and site-directed mutagenesis studies that support the binding site model. These three-dimensional structures were generated by using a heuristic approach in conjunction with experimental data. The proposed neurotensin(8-13) binding site is primarily composed of eight residues (i.e., Phe326, Ile329, Trp334, Phe337, Tyr339, Phe341, Tyr342, and Tyr344 in the human receptor; Phe331, Ile334, Trp339, Phe342, Phe344, Phe346, Tyr347, and Tyr349 in the rat receptor) located in the third extracellular loop. The seven aromatic residues form an aromatic pocket on the extracellular surface of the neurotensin receptor to accommodate its ligands apparently by cation-pi, pi-pi, and hydrogen bonding interactions. The neurotensin(8-13) ligand adopts a compact conformation at the proposed binding site. In the bound conformation of neurotensin(8-13), the backbone of Arg9-Pro10-Tyr11-Ile12 forms the proline type I turn, and the hydroxy group of Tyr11 interacts with the two guanidinium groups of Arg8 and Arg9. These guanidinium groups are curled toward the hydroxy group so that they interact electrostatically with the hydroxy group, and that the guanidinium group of Arg9 forms an intra-hydrogen bond with the hydroxy group. The proposed three-dimensional structure may not only provide a basis for rationalizing mutations of the neurotensin receptor gene but also offer insights into understanding the binding of many neurotensin analogs, biological functions of the neurotensin receptors, and structural elements for species specificity of the neurotensin receptors, and may expedite developing nonpeptidic neurotensin mimetics for the potential treatment of the neuropsychiatric diseases.
Collapse
Affiliation(s)
- Y P Pang
- Neurochemistry and Neuropsychopharmacology Research, Mayo Foundation for Medical Education and Research, Jacksonville, Florida 32224, USA
| | | | | | | |
Collapse
|
31
|
Cusack B, Groshan K, McCormick DJ, Pang YP, Perry R, Phung CT, Souder T, Richelson E. Chimeric Rat/Human Neurotensin Receptors Localize a Region of the Receptor Sensitive to Binding of a Novel, Species-specific, Picomolar Affinity Peptide. J Biol Chem 1996. [DOI: 10.1074/jbc.271.25.15054] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
32
|
Chalon P, Vita N, Kaghad M, Guillemot M, Bonnin J, Delpech B, Le Fur G, Ferrara P, Caput D. Molecular cloning of a levocabastine-sensitive neurotensin binding site. FEBS Lett 1996; 386:91-4. [PMID: 8647296 DOI: 10.1016/0014-5793(96)00397-3] [Citation(s) in RCA: 203] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A search for sequences homologous to the neurotensin receptor cDNA in a rat hypothalamic library has identified a novel neurotensin receptor (NTR-2). The 1539 bp cDNA encodes a 416 amino acid protein and shows highest homology to the previously cloned neurotensin receptor (NTR-1) (64% homology and 43% identity). Binding and pharmacological studies demonstrate that NTR-2 expressed in COS cells recognizes neurotensin (NT) with high affinity as well as several other agonists and antagonists. However, a fundamental difference was found; unlike NTR-1, NTR-2 recognizes, with high affinity, levocabastine, a histamine H1 receptor antagonist previously shown to compete with NT for low-affinity binding sites in brain.
Collapse
Affiliation(s)
- P Chalon
- Sanofi Recherche, Labège Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Gully D, Jeanjean F, Poncelet M, Steinberg R, Soubrié P, Le Fur G, Maffrand JP. Neuropharmacological profile of non-peptide neurotensin antagonists. Fundam Clin Pharmacol 1995; 9:513-21. [PMID: 8808171 DOI: 10.1111/j.1472-8206.1995.tb00528.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neurotensin, an endogenous peptide widely distributed throughout the brain, fulfils neurotransmitter criteria. When administered centrally, neurotensin induces various effects and modulates the activity of the mesolimbic dopamine system. It antagonizes the behavioural action of dopamine in a manner similar, but not identical, to antipsychotic drugs. Neurotensin is even considered to be an endogenous neuroleptic. In fact, microinjection of neurotensin elicits different effects depending on both the dose and the cerebral structures into which the injection is made. Our work on the development of orally-active neurotensin antagonists has led to the identification of SR 48692, the first non-peptide antagonist of the neurotensin receptor, and some analogues. This small molecule reveals a surprising neuropharmacological profile. It antagonizes turning behaviour induced in mice and rats (after striatal or ventral tegmental area administration of neurotensin, respectively), hypolocomotion induced by intracerebroventricular injection of neurotensin in rats, and reverses the inhibitory effect of neurotensin (nucleus accumbens injection) on amphetamine-induced hyperlocomotion in rats. However, SR 48692 cannot reverse either dopamine release in the nucleus accumbens evoked by neurotensin injection in ventral tegmental area, or hypothermia and analgesia induced by intracerebroventricular injection of neurotensin. As direct and indirect dopamine agonists have been reported to promote neurotensin release in the cortex, behavioural studies were performed using injection of apomorphine. In these experiments, SR 48692 inhibited only turning and yawning. It did not antagonize other apomorphine-dependent effects such as climbing, hypothermia, hypo- or hyperlocomotion, penile erection and stereotypies. All together, these data raise the question of the existence of neurotensin receptor subtypes and confirm that the nature of neurotensin and dopamine interactions depends on the brain structures considered.
Collapse
Affiliation(s)
- D Gully
- Sanofi Recherche, Toulouse, France
| | | | | | | | | | | | | |
Collapse
|
34
|
Cusack B, McCormick DJ, Pang YP, Souder T, Garcia R, Fauq A, Richelson E. Pharmacological and biochemical profiles of unique neurotensin 8-13 analogs exhibiting species selectivity, stereoselectivity, and superagonism. J Biol Chem 1995; 270:18359-66. [PMID: 7629159 DOI: 10.1074/jbc.270.31.18359] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recently, the rat neurotensin receptor and the two human neurotensin receptor clones (differing by one amino acid residue) have been isolated. We present results with 33 newly synthesized neurotensin analogs. We have evaluated their binding potency at the three neurotensin receptor clones by determining equilibrium dissociation constants and coupling to phosphatidylinositol turnover. Our work focused on position 8 and 9 substitutions as well as position 11 of the neurotensin hexamer NT8-13. The results presented include: 1) the development of a compound that is species selective, with a binding potency at the rat receptor that is 20-fold more potent than at the human receptor; 2) the development of a pair of stereoselective compounds with the L-isomer exhibiting 190-700-fold more potency than the D-isomer; and 3) the development of an agonist that has a Kd of 0.3 and 0.2 nM at the human and rat neurotensin receptor, respectively, ranking it as among the most potent tested. Also, we present the first evidence that 1) the effect of pi electrons at position 11 (L-Tyr) are important for binding to the neurotensin receptor, and 2) the length of the side chain on position 9 (L-Arg) changes binding potency.
Collapse
Affiliation(s)
- B Cusack
- Mayo Foundation for Medical Education and Research, Jacksonville, Florida 32224, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
MAFFRAND JEANPIERRE, BOIGEGRAIN ROBERT, GULLY DANIELLE, JEANJEAN FRANCIS. NEW POTENT AND SELECTIVE NON-PEPTIDE ANTAGONISTS OF NEUROTENSIN RECEPTORS. Eur J Med Chem 1995. [DOI: 10.1016/s0223-5234(23)00151-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
36
|
Dood DS, Kozikowski AP, Cusack B, Richelson E. Synthesis of partially non-peptidic neurotensin mimetics. Bioorg Med Chem Lett 1994. [DOI: 10.1016/s0960-894x(01)80338-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|