1
|
Nie J, Lou S, Pollet AMAO, van Vegchel M, Bouten CVC, den Toonder JMJ. A Cell Pre-Wrapping Seeding Technique for Hydrogel-Based Tubular Organ-On-A-Chip. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400970. [PMID: 38872259 PMCID: PMC11321624 DOI: 10.1002/advs.202400970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/28/2024] [Indexed: 06/15/2024]
Abstract
Organ-on-a-chip (OOC) models based on microfluidic technology are increasingly used to obtain mechanistic insight into (patho)physiological processes in humans, and they hold great promise for application in drug development and regenerative medicine. Despite significant progress in OOC development, several limitations of conventional microfluidic devices pose challenges. First, most microfluidic systems have rectangular cross sections and flat walls, and therefore tubular/ curved structures, like blood vessels and nephrons, are not well represented. Second, polymers used as base materials for microfluidic devices are much stiffer than in vivo extracellular matrix (ECM). Finally, in current cell seeding methods, challenges exist regarding precise control over cell seeding location, unreachable spaces due to flow resistances, and restricted dimensions/geometries. To address these limitations, an alternative cell seeding technique and a corresponding workflow is introduced to create circular cross-sectioned tubular OOC models by pre-wrapping cells around sacrificial fiber templates. As a proof of concept, a perfusable renal proximal tubule-on-a-chip is demonstrated with a diameter as small as 50 µm, cellular tubular structures with branches and curvature, and a preliminary vascular-renal tubule interaction model. The cell pre-wrapping seeding technique promises to enable the construction of diverse physiological/pathological models, providing tubular OOC systems for mechanistic investigations and drug development.
Collapse
Affiliation(s)
- Jing Nie
- Microsystems Research SectionDepartment of Mechanical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Soft Tissue Engineering & Mechanobiology Research SectionDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Sha Lou
- Microsystems Research SectionDepartment of Mechanical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Soft Tissue Engineering & Mechanobiology Research SectionDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Andreas M. A. O. Pollet
- Microsystems Research SectionDepartment of Mechanical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Manon van Vegchel
- Microsystems Research SectionDepartment of Mechanical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Soft Tissue Engineering & Mechanobiology Research SectionDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Carlijn V. C. Bouten
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Soft Tissue Engineering & Mechanobiology Research SectionDepartment of Biomedical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| | - Jaap M. J. den Toonder
- Microsystems Research SectionDepartment of Mechanical EngineeringEindhoven University of TechnologyEindhoven5600 MBThe Netherlands
- Institute for Complex Molecular Systems (ICMS)Eindhoven University of TechnologyEindhoven5600 MBThe Netherlands
| |
Collapse
|
2
|
Ren B, Song K, Chen Y, Murfee WL, Huang Y. Laponite nanoclay-modified sacrificial composite ink for perfusable channel creation via embedded 3D printing. COMPOSITES PART B: ENGINEERING 2023; 263:110851. [DOI: 10.1016/j.compositesb.2023.110851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Salipante PF. Microfluidic techniques for mechanical measurements of biological samples. BIOPHYSICS REVIEWS 2023; 4:011303. [PMID: 38505816 PMCID: PMC10903441 DOI: 10.1063/5.0130762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/30/2022] [Indexed: 03/21/2024]
Abstract
The use of microfluidics to make mechanical property measurements is increasingly common. Fabrication of microfluidic devices has enabled various types of flow control and sensor integration at micrometer length scales to interrogate biological materials. For rheological measurements of biofluids, the small length scales are well suited to reach high rates, and measurements can be made on droplet-sized samples. The control of flow fields, constrictions, and external fields can be used in microfluidics to make mechanical measurements of individual bioparticle properties, often at high sampling rates for high-throughput measurements. Microfluidics also enables the measurement of bio-surfaces, such as the elasticity and permeability properties of layers of cells cultured in microfluidic devices. Recent progress on these topics is reviewed, and future directions are discussed.
Collapse
Affiliation(s)
- Paul F. Salipante
- National Institute of Standards and Technology, Polymers and Complex Fluids Group, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
4
|
de Silva L, Bernal PN, Rosenberg A, Malda J, Levato R, Gawlitta D. Biofabricating the vascular tree in engineered bone tissue. Acta Biomater 2023; 156:250-268. [PMID: 36041651 DOI: 10.1016/j.actbio.2022.08.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2023]
Abstract
The development of tissue engineering strategies for treatment of large bone defects has become increasingly relevant, given the growing demand for bone substitutes. Native bone is composed of a dense vascular network necessary for the regulation of bone development, regeneration and homeostasis. A major obstacle in fabricating living, clinically relevant-sized bone mimics (1-10 cm3) is the limited supply of nutrients, including oxygen to the core of the construct. Therefore, strategies to support vascularization are pivotal for the development of tissue engineered bone constructs. Creating a functional bone construct integrated with a vascular network, capable of delivering the necessary nutrients for optimal tissue development is imperative for translation into the clinics. The vascular system is composed of a complex network that runs throughout the body in a tree-like hierarchical branching fashion. A significant challenge for tissue engineering approaches lies in mimicking the intricate, multi-scale structures consisting of larger vessels (macro-vessels) which interconnect with multiple sprouting vessels (microvessels) in a closed network. The advent of biofabrication has enabled complex, out of plane channels to be generated and has laid the groundwork for the creation of multi-scale vasculature in recent years. This review highlights the key state-of-the-art achievements for the development of vascular networks of varying scales in the field of biofabrication with a particular focus for its application in developing a functional tissue engineered bone construct. STATEMENT OF SIGNIFICANCE: There is a growing need for bone substitutes to overcome the limited supply of patient-derived bone. Bone tissue engineering aims to overcome this by combining stem cells with scaffolds to restore missing bone. The current bottleneck in upscaling is the lack of an integrated vascular network, required for the delivery of nutrients to cells. 3D bioprinting techniques has enabled the creation of complex hollow structures of varying dimensions that resemble native blood vessels. The convergence of multiple materials, cell types and fabrication approaches, opens the possibility of developing clinically-relevant sized vascularized bone constructs. This review provides an up-to-date insight of the technologies currently available for the generation of complex vascular networks, with a focus on their application in bone tissue engineering.
Collapse
Affiliation(s)
- Leanne de Silva
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, the Netherlands; Regenerative Medicine Center Utrecht, Utrecht, 3584 CT, the Netherlands.
| | - Paulina N Bernal
- Regenerative Medicine Center Utrecht, Utrecht, 3584 CT, the Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, the Netherlands
| | - Ajw Rosenberg
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, the Netherlands
| | - Jos Malda
- Regenerative Medicine Center Utrecht, Utrecht, 3584 CT, the Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CT, the Netherlands
| | - Riccardo Levato
- Regenerative Medicine Center Utrecht, Utrecht, 3584 CT, the Netherlands; Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, the Netherlands; Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CT, the Netherlands
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, 3508 GA, the Netherlands; Regenerative Medicine Center Utrecht, Utrecht, 3584 CT, the Netherlands
| |
Collapse
|
5
|
LaMontagne E, Muotri AR, Engler AJ. Recent advancements and future requirements in vascularization of cortical organoids. Front Bioeng Biotechnol 2022; 10:1048731. [PMID: 36406234 PMCID: PMC9669755 DOI: 10.3389/fbioe.2022.1048731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 10/18/2022] [Indexed: 07/23/2023] Open
Abstract
The fields of tissue engineering and disease modeling have become increasingly cognizant of the need to create complex and mature structures in vitro to adequately mimic the in vivo niche. Specifically for neural applications, human brain cortical organoids (COs) require highly stratified neurons and glial cells to generate synaptic functions, and to date, most efforts achieve only fetal functionality at best. Moreover, COs are usually avascular, inducing the development of necrotic cores, which can limit growth, development, and maturation. Recent efforts have attempted to vascularize cortical and other organoid types. In this review, we will outline the components of a fully vascularized CO as they relate to neocortical development in vivo. These components address challenges in recapitulating neurovascular tissue patterning, biomechanical properties, and functionality with the goal of mirroring the quality of organoid vascularization only achieved with an in vivo host. We will provide a comprehensive summary of the current progress made in each one of these categories, highlighting advances in vascularization technologies and areas still under investigation.
Collapse
Affiliation(s)
- Erin LaMontagne
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Alysson R. Muotri
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, United States
| |
Collapse
|
6
|
Qavi I, Tan GZ. Near-field electrospinning polycaprolactone microfibers to mimic arteriole-capillary-venule structure. Prog Biomater 2021; 10:223-233. [PMID: 34553343 DOI: 10.1007/s40204-021-00165-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/10/2021] [Indexed: 11/27/2022] Open
Abstract
The ability to create three-dimensional (3D) cell-incorporated constructs for tissue engineering has progressed tremendously. One of the major challenges that limit the clinical applications of tissue engineering is the inability to form sufficient vascularization of capillary vessels in the 3D constructs. The lack of a functional capillary network for supplying nutrients and oxygen leads to poor cell viability. This paper presents the near-field electrospinning (ES) technique to fabricate a branched microfiber structure that mimics the morphology of capillaries. Polycaprolactone solution was electrospun onto a sloped collector that resulted in morphological and geometric variation of the fibers. With proper control over the solution viscosity and the electrospinning voltage, a single fiber was scattered into a branched fiber network and then converged back to a single fiber on the collector. The obtained fibers have a diameter of less than 100 microns at the two ends with coiled and branched fibers of less than 10 microns that mimics the arteriole-capillary-venule structure. The formation of such a structure in the near-field ES strongly depends on the solution viscosity. Low viscosity solutions form beads and discontinuous lines thus cannot be used to achieve the desired structure. The branching of PCL fiber occurs due to an electrohydrodynamic instability. The transition from the straight large fiber to smaller coiled/branched fibers is not instantaneous and stretches over a horizontal region of 1.5 cm. The current work shows the feasibility of electrospinning the stem-branch-stem fibrous structure by adopting a valley-shaped collector with potentials for tissue engineering applications.
Collapse
Affiliation(s)
- Imtiaz Qavi
- Department of Industrial, Manufacturing and Systems Engineering, Texas Tech University, Lubbock, USA
| | - George Z Tan
- Department of Industrial, Manufacturing and Systems Engineering, Texas Tech University, Lubbock, USA.
| |
Collapse
|
7
|
Tan A, Lam YY, Pacot O, Hawley A, Boyd BJ. Probing cell-nanoparticle (cubosome) interactions at the endothelial interface: do tissue dimension and flow matter? Biomater Sci 2019; 7:3460-3470. [PMID: 31268062 DOI: 10.1039/c9bm00243j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the research field of nanostructured systems for biomedical applications, increasing attention has been paid to using biomimetic, dynamic cellular models to adequately predict their bio-nano behaviours. This work specifically evaluates the biointeractions of nanostructured lipid-based particles (cubosomes) with human vascular cells from the aspects of tissue dimension (conventional 2D well plate versus 3D dynamic tubular vasculature) and shear flow effect (static, venous and arterial flow-mimicking conditions). A glass capillary-hosted, 3D tubular endothelial construct was coupled with circulating luminal fluid flow to simulate the human vascular systems. In the absence of fluid flow, the degree of cell-cubosome association was not significantly different between the 2D planar and the 3D tubular systems. Under flow conditions simulating venous (0.8 dynes per cm2) and arterial (10 dynes per cm2) shear stresses, the cell-cubosome association notably declined by 50% and 98%, respectively. This highlights the significance of shear-guided biointeractions of non-targeted nanoparticles in the circulation. Across all 2D and 3D cellular models with and without flow, cubosomes had little effect on the cell-cell contact based on the unchanged immunoexpression of the endothelial-specific intercellular junction marker PECAM-1. Interestingly, there were dissimilar nanoparticle distribution patterns between the 2D planar (showing discrete punctate staining) and the 3D tubular endothelium (with a more diffused, patchy fashion). Taken together, these findings highlight the importance of tissue dimension and shear flow in governing the magnitude and feature of cell-nanoparticle interactions.
Collapse
Affiliation(s)
- Angel Tan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 3052 Victoria, Australia. and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University (Parkville Campus), 3052 Victoria, Australia
| | - Yuen Yi Lam
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 3052 Victoria, Australia. and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University (Parkville Campus), 3052 Victoria, Australia
| | - Olivier Pacot
- Institute of Systems Engineering, School of Engineering, University of Applied Sciences and Arts Western Switzerland, 1950 Sion, Switzerland
| | - Adrian Hawley
- Australian Synchrotron, ANSTO, 3168 Victoria, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 3052 Victoria, Australia. and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University (Parkville Campus), 3052 Victoria, Australia
| |
Collapse
|
8
|
Regenerative and durable small-diameter graft as an arterial conduit. Proc Natl Acad Sci U S A 2019; 116:12710-12719. [PMID: 31182572 DOI: 10.1073/pnas.1905966116] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Despite significant research efforts, clinical practice for arterial bypass surgery has been stagnant, and engineered grafts continue to face postimplantation challenges. Here, we describe the development and application of a durable small-diameter vascular graft with tailored regenerative capacity. We fabricated small-diameter vascular grafts by electrospinning fibrin tubes and poly(ε-caprolactone) fibrous sheaths, which improved suture retention strength and enabled long-term survival. Using surface topography in a hollow fibrin microfiber tube, we enable immediate, controlled perfusion and formation of a confluent endothelium within 3-4 days in vitro with human endothelial colony-forming cells, but a stable endothelium is noticeable at 4 weeks in vivo. Implantation of acellular or endothelialized fibrin grafts with an external ultrathin poly(ε-caprolactone) sheath as an interposition graft in the abdominal aorta of a severe combined immunodeficient Beige mouse model supports normal blood flow and vessel patency for 24 weeks. Mechanical properties of the implanted grafts closely approximate the native abdominal aorta properties after just 1 week in vivo. Fibrin mediated cellular remodeling, stable tunica intima and media formation, and abundant matrix deposition with organized collagen layers and wavy elastin lamellae. Endothelialized grafts evidenced controlled healthy remodeling with delayed and reduced macrophage infiltration alongside neo vasa vasorum-like structure formation, reduced calcification, and accelerated tunica media formation. Our studies establish a small-diameter graft that is fabricated in less than 1 week, mediates neotissue formation and incorporation into the native tissue, and matches the native vessel size and mechanical properties, overcoming main challenges in arterial bypass surgery.
Collapse
|
9
|
Human Pluripotent Stem Cells to Engineer Blood Vessels. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:147-168. [PMID: 29090328 DOI: 10.1007/10_2017_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Development of pluripotent stem cells (PSCs) is a remarkable scientific advancement that allows scientists to harness the power of regenerative medicine for potential treatment of disease using unaffected cells. PSCs provide a unique opportunity to study and combat cardiovascular diseases, which continue to claim the lives of thousands each day. Here, we discuss the differentiation of PSCs into vascular cells, investigation of the functional capabilities of the derived cells, and their utilization to engineer microvascular beds or vascular grafts for clinical application. Graphical Abstract Human iPSCs generated from patients are differentiated toward ECs and perivascular cells for use in disease modeling, microvascular bed development, or vascular graft fabrication.
Collapse
|
10
|
Bertulli C, Gerigk M, Piano N, Liu Y, Zhang D, Müller T, Knowles TJ, Huang YYS. Image-Assisted Microvessel-on-a-Chip Platform for Studying Cancer Cell Transendothelial Migration Dynamics. Sci Rep 2018; 8:12480. [PMID: 30127372 PMCID: PMC6102203 DOI: 10.1038/s41598-018-30776-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 08/05/2018] [Indexed: 01/09/2023] Open
Abstract
With the push to reduce in vivo approaches, the demand for microphysiological models that recapitulate the in vivo settings in vitro is dramatically increasing. Here, we present an extracellular matrix-integrated microfluidic chip with a rounded microvessel of ~100 µm in diameter. Our system displays favorable characteristics for broad user adaptation: simplified procedure for vessel creation, minimised use of reagents and cells, and the ability to couple live-cell imaging and image analysis to study dynamics of cell-microenvironment interactions in 3D. Using this platform, the dynamic process of single breast cancer cells (LM2-4175) exiting the vessel lumen into the surrounding extracellular matrix was tracked. Here, we show that the presence of endothelial lining significantly reduced the cancer exit events over the 15-hour imaging period: there were either no cancer cells exiting, or the fraction of spontaneous exits was positively correlated with the number of cancer cells in proximity to the endothelial barrier. The capability to map the z-position of individual cancer cells within a 3D vessel lumen enabled us to observe cancer cell transmigration 'hot spot' dynamically. We also suggest the variations in the microvessel qualities may lead to the two distinct types of cancer transmigration behaviour. Our findings provide a tractable in vitro model applicable to other areas of microvascular research.
Collapse
Affiliation(s)
- Cristina Bertulli
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Magda Gerigk
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Nicholas Piano
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Ye Liu
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Duo Zhang
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Thomas Müller
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.,Fluidic Analytics Ltd., Cambridge, CB4 3NP, UK
| | - Tuomas J Knowles
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | | |
Collapse
|
11
|
Andrejecsk JW, Hughes CC. Engineering perfused microvascular networks into microphysiological systems platforms. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018. [DOI: 10.1016/j.cobme.2018.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Caballero D, Blackburn SM, de Pablo M, Samitier J, Albertazzi L. Tumour-vessel-on-a-chip models for drug delivery. LAB ON A CHIP 2017; 17:3760-3771. [PMID: 28861562 DOI: 10.1039/c7lc00574a] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanocarriers for drug delivery have great potential to revolutionize cancer treatment, due to their enhanced selectivity and efficacy. Despite this great promise, researchers have had limited success in the clinical translation of this approach. One of the main causes of these difficulties is that standard in vitro models, typically used to understand nanocarriers' behaviour and screen their efficiency, do not provide the complexity typically encountered in living systems. In contrast, in vivo models, despite being highly physiological, display serious bottlenecks which threaten the relevancy of the obtained data. Microfluidics and nanofabrication can dramatically contribute to solving this issue, providing 3D high-throughput models with improved resemblance to in vivo systems. In particular, microfluidic models of tumour blood vessels can be used to better elucidate how new nanocarriers behave in the microcirculation of healthy and cancerous tissues. Several key steps of the drug delivery process such as extravasation, immune response and endothelial targeting happen under flow in capillaries and can be accurately modelled using microfluidics. In this review, we will present how tumour-vessel-on-a-chip systems can be used to investigate targeted drug delivery and which key factors need to be considered for the rational design of these materials. Future applications of this approach and its role in driving forward the next generation of targeted drug delivery methods will be discussed.
Collapse
Affiliation(s)
- David Caballero
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 15-21, 08028 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
13
|
Landsman TL, Bush RL, Glowczwski A, Horn J, Jessen SL, Ungchusri E, Diguette K, Smith HR, Hasan SM, Nash D, Clubb FJ, Maitland DJ. Design and verification of a shape memory polymer peripheral occlusion device. J Mech Behav Biomed Mater 2016; 63:195-206. [PMID: 27419615 PMCID: PMC5508979 DOI: 10.1016/j.jmbbm.2016.06.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/17/2016] [Accepted: 06/18/2016] [Indexed: 10/21/2022]
Abstract
Shape memory polymer foams have been previously investigated for their safety and efficacy in treating a porcine aneurysm model. Their biocompatibility, rapid thrombus formation, and ability for endovascular catheter-based delivery to a variety of vascular beds makes these foams ideal candidates for use in numerous embolic applications, particularly within the peripheral vasculature. This study sought to investigate the material properties, safety, and efficacy of a shape memory polymer peripheral embolization device in vitro. The material characteristics of the device were analyzed to show tunability of the glass transition temperature (Tg) and the expansion rate of the polymer to ensure adequate time to deliver the device through a catheter prior to excessive foam expansion. Mechanical analysis and flow migration studies were performed to ensure minimal risk of vessel perforation and undesired thromboembolism upon device deployment. The efficacy of the device was verified by performing blood flow studies that established affinity for thrombus formation and blood penetration throughout the foam and by delivery of the device in an ultrasound phantom that demonstrated flow stagnation and diversion of flow to collateral pathways.
Collapse
Affiliation(s)
- Todd L Landsman
- Department of Biomedical Engineering, Texas A&M University, MS 3120, 5045 Emerging Technologies Building, College Station, TX 77843-3120, USA
| | - Ruth L Bush
- College of Medicine, Texas A&M University Health Science Center, MS 1359, 8447 State Highway 47, HPEB 3060, Bryan, TX 77807-3260, USA
| | - Alan Glowczwski
- Texas A&M Institute for Preclinical Studies, Texas A&M University, MS 4478, College Station, TX 77845-4478, USA
| | - John Horn
- Department of Biomedical Engineering, Texas A&M University, MS 3120, 5045 Emerging Technologies Building, College Station, TX 77843-3120, USA
| | - Staci L Jessen
- Department of Biomedical Engineering, Texas A&M University, MS 3120, 5045 Emerging Technologies Building, College Station, TX 77843-3120, USA
| | - Ethan Ungchusri
- College of Medicine, Texas A&M University Health Science Center, MS 1359, 8447 State Highway 47, HPEB 3060, Bryan, TX 77807-3260, USA
| | - Katelin Diguette
- Department of Biomedical Engineering, Texas A&M University, MS 3120, 5045 Emerging Technologies Building, College Station, TX 77843-3120, USA
| | - Harrison R Smith
- Department of Biomedical Engineering, Texas A&M University, MS 3120, 5045 Emerging Technologies Building, College Station, TX 77843-3120, USA
| | - Sayyeda M Hasan
- Department of Biomedical Engineering, Texas A&M University, MS 3120, 5045 Emerging Technologies Building, College Station, TX 77843-3120, USA
| | - Daniel Nash
- Maverick Regional Anesthesia Education, LLC, 10592 County Road 175, Iola, TX 77861, USA
| | - Fred J Clubb
- Department of Biomedical Engineering, Texas A&M University, MS 3120, 5045 Emerging Technologies Building, College Station, TX 77843-3120, USA; Department of Veterinary Pathobiology, Cardiovascular Pathology Laboratory, College of Veterinary Medicine, Texas A&M University, MS 4467, College Station, TX 77843-4467, USA
| | - Duncan J Maitland
- Department of Biomedical Engineering, Texas A&M University, MS 3120, 5045 Emerging Technologies Building, College Station, TX 77843-3120, USA.
| |
Collapse
|
14
|
Elliott MB, Gerecht S. Three-dimensional culture of small-diameter vascular grafts. J Mater Chem B 2016; 4:3443-3453. [DOI: 10.1039/c6tb00024j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Analysis of efforts to engineer 3D small-diameter (<6 mm) vascular grafts, indicating the importance of stem cells, co-culture, and pulsatile flow.
Collapse
Affiliation(s)
- Morgan B. Elliott
- Department of Chemical and Biomolecular Engineering
- Johns Hopkins University
- Baltimore
- USA
- Department of Biomedical Engineering
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering
- Johns Hopkins University
- Baltimore
- USA
| |
Collapse
|
15
|
|
16
|
Barreto-Ortiz SF, Fradkin J, Eoh J, Trivero J, Davenport M, Ginn B, Mao HQ, Gerecht S. Fabrication of 3-dimensional multicellular microvascular structures. FASEB J 2015; 29:3302-14. [PMID: 25900808 PMCID: PMC4511194 DOI: 10.1096/fj.14-263343] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 04/05/2015] [Indexed: 12/12/2022]
Abstract
Despite current advances in engineering blood vessels over 1 mm in diameter and the existing wealth of knowledge regarding capillary bed formation, studies for the development of microvasculature, the connecting bridge between them, have been extremely limited so far. Here, we evaluate the use of 3-dimensional (3D) microfibers fabricated by hydrogel electrospinning as templates for microvascular structure formation. We hypothesize that 3D microfibers improve extracellular matrix (ECM) deposition from vascular cells, enabling the formation of freestanding luminal multicellular microvasculature. Compared to 2-dimensional cultures, we demonstrate with confocal microscopy and RT-PCR that fibrin microfibers induce an increased ECM protein deposition by vascular cells, specifically endothelial colony-forming cells, pericytes, and vascular smooth muscle cells. These ECM proteins comprise different layers of the vascular wall including collagen types I, III, and IV, as well as elastin, fibronectin, and laminin. We further demonstrate the achievement of multicellular microvascular structures with an organized endothelium and a robust multicellular perivascular tunica media. This, along with the increased ECM deposition, allowed for the creation of self-supporting multilayered microvasculature with a distinct circular lumen following fibrin microfiber core removal. This approach presents an advancement toward the development of human microvasculature for basic and translational studies.
Collapse
Affiliation(s)
- Sebastian F Barreto-Ortiz
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jamie Fradkin
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Joon Eoh
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jacqueline Trivero
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Matthew Davenport
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Brian Ginn
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Hai-Quan Mao
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sharon Gerecht
- *Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, and Departments of Biomedical Engineering and Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; and Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Zhou Y, Wu Y, Jiang X, Zhang X, Xia L, Lin K, Xu Y. The Effect of Quercetin on the Osteogenesic Differentiation and Angiogenic Factor Expression of Bone Marrow-Derived Mesenchymal Stem Cells. PLoS One 2015; 10:e0129605. [PMID: 26053266 PMCID: PMC4460026 DOI: 10.1371/journal.pone.0129605] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 05/11/2015] [Indexed: 12/24/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are widely used in regenerative medicine in light of their ability to differentiate along the chondrogenic and osteogenic lineages. As a type of traditional Chinese medicine, quercetin has been preliminarily reported to promote osteogenic differentiation in osteoblasts. In the present study, the effects of quercetin on the proliferation, viability, cellular morphology, osteogenic differentiation and angiogenic factor secretion of rat BMSCs (rBMSCs) were examined by MTT assay, fluorescence activated cell sorter (FACS) analysis, real-time quantitative PCR (RT-PCR) analysis, alkaline phosphatase (ALP) activity and calcium deposition assays, and Enzyme-linked immunosorbent assay (ELISA). Moreover, whether mitogen-activated protein kinase (MAPK) signaling pathways were involved in these processes was also explored. The results showed that quercetin significantly enhanced the cell proliferation, osteogenic differentiation and angiogenic factor secretion of rBMSCs in a dose-dependent manner, with a concentration of 2 μM achieving the greatest stimulatory effect. Moreover, the activation of the extracellular signal-regulated protein kinases (ERK) and p38 pathways was observed in quercetin-treated rBMSCs. Furthermore, these induction effects could be repressed by either the ERK inhibitor PD98059 or the p38 inhibitor SB202190, respectively. These data indicated that quercetin could promote the proliferation, osteogenic differentiation and angiogenic factor secretion of rBMSCs in vitro, partially through the ERK and p38 signaling pathways.
Collapse
Affiliation(s)
- Yuning Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuqiong Wu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuli Zhang
- Oral Bioengineering Lab, Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lunguo Xia
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-maxillofacial Science, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- * E-mail: (LX); (KL); (YX)
| | - Kaili Lin
- Biomaterials & Tissue Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
- Laboratory of Oral Biomedical Science and Translational Medicine, School of Stomatology, Tongji University, Shanghai, China
- * E-mail: (LX); (KL); (YX)
| | - Yuanjin Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
- * E-mail: (LX); (KL); (YX)
| |
Collapse
|
18
|
Tourovskaia A, Fauver M, Kramer G, Simonson S, Neumann T. Tissue-engineered microenvironment systems for modeling human vasculature. Exp Biol Med (Maywood) 2014; 239:1264-71. [PMID: 25030480 DOI: 10.1177/1535370214539228] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The high attrition rate of drug candidates late in the development process has led to an increasing demand for test assays that predict clinical outcome better than conventional 2D cell culture systems and animal models. Government agencies, the military, and the pharmaceutical industry have started initiatives for the development of novel in-vitro systems that recapitulate functional units of human tissues and organs. There is growing evidence that 3D cell arrangement, co-culture of different cell types, and physico-chemical cues lead to improved predictive power. A key element of all tissue microenvironments is the vasculature. Beyond transporting blood the microvasculature assumes important organ-specific functions. It is also involved in pathologic conditions, such as inflammation, tumor growth, metastasis, and degenerative diseases. To provide a tool for modeling this important feature of human tissue microenvironments, we developed a microfluidic chip for creating tissue-engineered microenvironment systems (TEMS) composed of tubular cell structures. Our chip design encompasses a small chamber that is filled with an extracellular matrix (ECM) surrounding one or more tubular channels. Endothelial cells (ECs) seeded into the channels adhere to the ECM walls and grow into perfusable tubular tissue structures that are fluidically connected to upstream and downstream fluid channels in the chip. Using these chips we created models of angiogenesis, the blood-brain barrier (BBB), and tumor-cell extravasation. Our angiogenesis model recapitulates true angiogenesis, in which sprouting occurs from a "parent" vessel in response to a gradient of growth factors. Our BBB model is composed of a microvessel generated from brain-specific ECs within an ECM populated with astrocytes and pericytes. Our tumor-cell extravasation model can be utilized to visualize and measure tumor-cell migration through vessel walls into the surrounding matrix. The described technology can be used to create TEMS that recapitulate structural, functional, and physico-chemical elements of vascularized human tissue microenvironments in vitro.
Collapse
|
19
|
Bajaj P, Schweller RM, Khademhosseini A, West JL, Bashir R. 3D biofabrication strategies for tissue engineering and regenerative medicine. Annu Rev Biomed Eng 2014; 16:247-76. [PMID: 24905875 PMCID: PMC4131759 DOI: 10.1146/annurev-bioeng-071813-105155] [Citation(s) in RCA: 383] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the past several decades, there has been an ever-increasing demand for organ transplants. However, there is a severe shortage of donor organs, and as a result of the increasing demand, the gap between supply and demand continues to widen. A potential solution to this problem is to grow or fabricate organs using biomaterial scaffolds and a person's own cells. Although the realization of this solution has been limited, the development of new biofabrication approaches has made it more realistic. This review provides an overview of natural and synthetic biomaterials that have been used for organ/tissue development. It then discusses past and current biofabrication techniques, with a brief explanation of the state of the art. Finally, the review highlights the need for combining vascularization strategies with current biofabrication techniques. Given the multitude of applications of biofabrication technologies, from organ/tissue development to drug discovery/screening to development of complex in vitro models of human diseases, these manufacturing technologies can have a significant impact on the future of medicine and health care.
Collapse
Affiliation(s)
- Piyush Bajaj
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Defense System and Analysis Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
| | - Ryan M. Schweller
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, Massachusetts 02139
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Jennifer L. West
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708
| | - Rashid Bashir
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
20
|
Coulombe KLK, Bajpai VK, Andreadis ST, Murry CE. Heart regeneration with engineered myocardial tissue. Annu Rev Biomed Eng 2014; 16:1-28. [PMID: 24819474 DOI: 10.1146/annurev-bioeng-071812-152344] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart disease is the leading cause of morbidity and mortality worldwide, and regenerative therapies that replace damaged myocardium could benefit millions of patients annually. The many cell types in the heart, including cardiomyocytes, endothelial cells, vascular smooth muscle cells, pericytes, and cardiac fibroblasts, communicate via intercellular signaling and modulate each other's function. Although much progress has been made in generating cells of the cardiovascular lineage from human pluripotent stem cells, a major challenge now is creating the tissue architecture to integrate a microvascular circulation and afferent arterioles into such an engineered tissue. Recent advances in cardiac and vascular tissue engineering will move us closer to the goal of generating functionally mature tissue. Using the biology of the myocardium as the foundation for designing engineered tissue and addressing the challenges to implantation and integration, we can bridge the gap from bench to bedside for a clinically tractable engineered cardiac tissue.
Collapse
|
21
|
Barreto-Ortiz SF, Zhang S, Davenport M, Fradkin J, Ginn B, Mao HQ, Gerecht S. A novel in vitro model for microvasculature reveals regulation of circumferential ECM organization by curvature. PLoS One 2013; 8:e81061. [PMID: 24278378 PMCID: PMC3836741 DOI: 10.1371/journal.pone.0081061] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/09/2013] [Indexed: 12/25/2022] Open
Abstract
In microvascular vessels, endothelial cells are aligned longitudinally whereas several components of the extracellular matrix (ECM) are organized circumferentially. While current three-dimensional (3D) in vitro models for microvasculature have allowed the study of ECM-regulated tubulogenesis, they have limited control over topographical cues presented by the ECM and impart a barrier for the high-resolution and dynamic study of multicellular and extracellular organization. Here we exploit a 3D fibrin microfiber scaffold to develop a novel in vitro model of the microvasculature that recapitulates endothelial alignment and ECM deposition in a setting that also allows the sequential co-culture of mural cells. We show that the microfibers' nanotopography induces longitudinal adhesion and alignment of endothelial colony-forming cells (ECFCs), and that these deposit circumferentially organized ECM. We found that ECM wrapping on the microfibers is independent of ECFCs' actin and microtubule organization, but it is dependent on the curvature of the microfiber. Microfibers with smaller diameters (100–400 µm) guided circumferential ECM deposition, whereas microfibers with larger diameters (450 µm) failed to support wrapping ECM. Finally, we demonstrate that vascular smooth muscle cells attached on ECFC-seeded microfibers, depositing collagen I and elastin. Collectively, we establish a novel in vitro model for the sequential control and study of microvasculature development and reveal the unprecedented role of the endothelium in organized ECM deposition regulated by the microfiber curvature.
Collapse
Affiliation(s)
- Sebastian F. Barreto-Ortiz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Shuming Zhang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew Davenport
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jamie Fradkin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Brian Ginn
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Hai-Quan Mao
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sharon Gerecht
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
22
|
Morgan JP, Delnero PF, Zheng Y, Verbridge SS, Chen J, Craven M, Choi NW, Diaz-Santana A, Kermani P, Hempstead B, López JA, Corso TN, Fischbach C, Stroock AD. Formation of microvascular networks in vitro. Nat Protoc 2013; 8:1820-36. [PMID: 23989676 DOI: 10.1038/nprot.2013.110] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This protocol describes how to form a 3D cell culture with explicit, endothelialized microvessels. The approach leads to fully enclosed, perfusable vessels in a bioremodelable hydrogel (type I collagen). The protocol uses microfabrication to enable user-defined geometries of the vascular network and microfluidic perfusion to control mass transfer and hemodynamic forces. These microvascular networks (μVNs) allow for multiweek cultures of endothelial cells or cocultures with parenchymal or tissue cells in the extra-lumen space. The platform enables real-time fluorescence imaging of living engineered tissues, in situ confocal fluorescence of fixed cultures and transmission electron microscopy (TEM) imaging of histological sections. This protocol enables studies of basic vascular and blood biology, provides a model for diseases such as tumor angiogenesis or thrombosis and serves as a starting point for constructing prevascularized tissues for regenerative medicine. After one-time microfabrication steps, the system can be assembled in less than 1 d and experiments can run for weeks.
Collapse
Affiliation(s)
- John P Morgan
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sekine H, Shimizu T, Sakaguchi K, Dobashi I, Wada M, Yamato M, Kobayashi E, Umezu M, Okano T. In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat Commun 2013; 4:1399. [PMID: 23360990 PMCID: PMC3660653 DOI: 10.1038/ncomms2406] [Citation(s) in RCA: 300] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 12/20/2012] [Indexed: 12/29/2022] Open
Abstract
In vitro fabrication of functional vascularized three-dimensional tissues has been a long-standing objective in the field of tissue engineering. Here we report a technique to engineer cardiac tissues with perfusable blood vessels in vitro. Using resected tissue with a connectable artery and vein as a vascular bed, we overlay triple-layer cardiac cell sheets produced from coculture with endothelial cells, and support the tissue construct with media perfused in a bioreactor. We show that endothelial cells connect to capillaries in the vascular bed and form tubular lumens, creating in vitro perfusable blood vessels in the cardiac cell sheets. Thicker engineered tissues can be produced in vitro by overlaying additional triple-layer cell sheets. The vascularized cardiac tissues beat and can be transplanted with blood vessel anastomoses. This technique may create new opportunities for in vitro tissue engineering and has potential therapeutic applications.
Collapse
Affiliation(s)
- Hidekazu Sekine
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, TWIns, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sekiya S, Shimizu T, Okano T. Vascularization in 3D tissue using cell sheet technology. Regen Med 2013; 8:371-7. [DOI: 10.2217/rme.13.16] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
25
|
Sukmana I. Bioactive polymer scaffold for fabrication of vascularized engineering tissue. J Artif Organs 2012; 15:215-24. [PMID: 22527978 DOI: 10.1007/s10047-012-0644-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 04/02/2012] [Indexed: 01/01/2023]
Abstract
Tissue engineering seeks strategies to design polymeric scaffolds that allow high-cell-density cultures with signaling molecules and suitable vascular supply. One major obstacle in tissue engineering is the inability to create thick engineered-tissue constructs. A pre-vascularized tissue scaffold appears to be the most favorable approach to avoid nutrient and oxygen supply limitations as well as to allow waste removal, factors that are often hurdles in developing thick engineered tissues. Vascularization can be achieved using strategies in which cells are cultured in bioactive polymer scaffolds that can mimic extracellular matrix environments. This review addresses recent advances and future challenges in developing and using bioactive polymer scaffolds to promote tissue construct vascularization.
Collapse
Affiliation(s)
- Irza Sukmana
- Medical Devices and Implant Technology (Mediteg) Research Group, Department of Biomechanics and Biomedical Materials, Universiti Teknologi Malaysia, Block P23 UTM Skudai, 81310 Johor Bahru, Johore, Malaysia.
| |
Collapse
|
26
|
Zhu J, He P, Lin L, Jones DR, Marchant RE. Biomimetic poly(ethylene glycol)-based hydrogels as scaffolds for inducing endothelial adhesion and capillary-like network formation. Biomacromolecules 2012; 13:706-13. [PMID: 22296572 PMCID: PMC3310151 DOI: 10.1021/bm201596w] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The extracellular matrix (ECM) is an attractive model for designing synthetic scaffolds with a desirable environment for tissue engineering. Here, we report on the synthesis of ECM-mimetic poly(ethylene glycol) (PEG) hydrogels for inducing endothelial cell (EC) adhesion and capillary-like network formation. A collagen type I-derived peptide GPQGIAGQ (GIA)-containing PEGDA (GIA-PEGDA) was synthesized with the collagenase-sensitive GIA sequence attached in the middle of the PEGDA chain, which was then copolymerized with RGD capped-PEG monoacrylate (RGD-PEGMA) to form biomimetic hydrogels. The hydrogels degraded in vitro with the rate dependent on the concentration of collagenase and also supported the adhesion of human umbilical vein ECs (HUVECs). Biomimetic RGD/GIA-PEGDA hydrogels with incorporation of 1% RGD-PEGDA into GIA-PEGDA hydrogels induced capillary-like organization when HUVECs were seeded on the hydrogel surface, while RGD/PEGDA and GIA-PEGDA hydrogels did not. These results indicate that both cell adhesion and biodegradability of scaffolds play important roles in the formation of capillary-like networks.
Collapse
Affiliation(s)
- Junmin Zhu
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
| | - Ping He
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
| | - Lin Lin
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
| | - Derek R. Jones
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
| | - Roger E. Marchant
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106
| |
Collapse
|
27
|
Yoon HJ, Kim SE, Kwon YK, Kim EJ, Lee JC, Lee YS. Synthesis of silver nanostructures on polytetrafluoroethylene (PTFE) using electron beam irradiation for antimicrobacterial effect. J IND ENG CHEM 2012. [DOI: 10.1016/j.jiec.2011.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Smith MH, Izumi K, Feinberg SE. Tissue Engineering. CURRENT THERAPY IN ORAL AND MAXILLOFACIAL SURGERY 2012:79-91. [DOI: 10.1016/b978-1-4160-2527-6.00009-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
29
|
Chau LT, Rolfe BE, Cooper-White JJ. A microdevice for the creation of patent, three-dimensional endothelial cell-based microcirculatory networks. BIOMICROFLUIDICS 2011; 5:34115-3411514. [PMID: 22662042 PMCID: PMC3364830 DOI: 10.1063/1.3609264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 06/20/2011] [Indexed: 05/21/2023]
Abstract
Microvascular network formation is a significant and challenging goal in the engineering of large three-dimensional artificial tissue structures. We show here the development of a fully patent, 3D endothelial cell (microvascular) microfluidic network that has a single inlet and outlet, created in only 28 h in a microdevice involving fluid flow equivalent to natural vasculature. Our microdevice features a tailored "multi-rung ladder" network, a stylized mimic of an arterial-to-venous pedicle, designed to also allow for systematic and reproducible cell seeding. Immunofluorescence staining revealed a highly contiguous endothelial monolayer (human umbilical vein endothelial cells) throughout the whole network after 24 h of continuous perfusion. This network persisted for up to 72 h of culture, providing a useful template from which the effects of surface chemistry, fluid flow, and environmental conditions on the development of artificial vascular networks ex vivo may be rapidly and robustly evaluated.
Collapse
Affiliation(s)
- Lien T Chau
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, 4072, Australia
| | | | | |
Collapse
|
30
|
Grainger SJ, Putnam AJ. Assessing the permeability of engineered capillary networks in a 3D culture. PLoS One 2011; 6:e22086. [PMID: 21760956 PMCID: PMC3131402 DOI: 10.1371/journal.pone.0022086] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 06/15/2011] [Indexed: 01/07/2023] Open
Abstract
Many pathologies are characterized by poor blood vessel growth and reduced nutrient delivery to the surrounding tissue, introducing a need for tissue engineered blood vessels. Our lab has developed a 3D co-culture method to grow interconnected networks of pericyte-invested capillaries, which can anastamose with host vasculature following implantation to restore blood flow to ischemic tissues. However, if the engineered vessels contain endothelial cells (ECs) that are misaligned or contain wide junctional gaps, they may function improperly and behave more like the pathologic vessels that nourish tumors. The purpose of this study was to test the resistance to permeability of these networks in vitro, grown with different stromal cell types, as a metric of vessel functionality. A fluorescent dextran tracer was used to visualize transport across the endothelium and the pixel intensity was quantified using a customized MATLAB algorithm. In fibroblast-EC co-cultures, the dextran tracer easily penetrated through the vessel wall and permeability was high through the first 5 days of culture, indicative of vessel immaturity. Beyond day 5, dextran accumulated at the periphery of the vessel, with very little transported across the endothelium. Quantitatively, permeability dropped from initial levels of 61% to 39% after 7 days, and to 7% after 2 weeks. When ECs were co-cultured with bone marrow-derived mesenchymal stem cells (MSCs) or adipose-derived stem cells (AdSCs), much tighter control of permeability was achieved. Relative to the EC-fibroblast co-cultures, permeabilities were reduced 41% for the EC-MSC co-cultures and 50% for the EC-AdSC co-cultures after 3 days of culture. By day 14, these permeabilities decreased by 68% and 77% over the EC-fibroblast cultures. Co-cultures containing stem cells exhibit elevated VE-cadherin levels and more prominent EC-EC junctional complexes when compared to cultures containing fibroblasts. These data suggest the stromal cell identity influences the functionality and physiologic relevance of engineered capillary networks.
Collapse
Affiliation(s)
- Stephanie J. Grainger
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrew J. Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
31
|
Takei T, Kishihara N, Ijima H, Kawakami K. Fabrication of capillary-like network in a matrix of water-soluble polymer using poly(methyl methacrylate) microfibers. ACTA ACUST UNITED AC 2011; 40:66-9. [PMID: 21732729 DOI: 10.3109/10731199.2011.592492] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Poly(methyl methacrylate) (PMMA) microfibers were used as a template for development of a capillary-like network in agarose hydrogel. Microfibers with diameter 10-20 μm, which is comparable to the diameter of native capillary vessels, were fabricated using a wet spinning technique. The microfibers were embedded in agarose gel and dissolved by immersing the gel in dichloromethane. The resultant microchannels in the gel had the same diameter as the microfibers, and allowed an aqueous solution to be perfused through the gel. The methodology is promising for fabricating a capillary-like network in tissue engineering scaffolds of various water-soluble polymers.
Collapse
Affiliation(s)
- Takayuki Takei
- Department of Chemical Engineerng, Graduate School of Engineering, Kyushu University, Nishi-ku, Fukuoka, Japan.
| | | | | | | |
Collapse
|
32
|
Sukmana I, Vermette P. Polymer fibers as contact guidance to orient microvascularization in a 3D environment. J Biomed Mater Res A 2010; 92:1587-97. [PMID: 19437435 DOI: 10.1002/jbm.a.32479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We describe an in vitro culture process that uses 100-microm diameter poly(ethylene terephthalate) monofilaments as contact guidance of human umbilical vein endothelial cells (HUVECs) to orient the development of microvessels in a 3D environment. Untreated fibers, distanced either by 0.05, 0.1, 0.15, or 0.2 mm were first covered with HUVECs and then sandwiched between two layers of fibrin gel containing HUVECs. After 2 and 4 days of culture, cell connections and microvessels were evaluated. Cell connections formed massively along and in between adjacent fibers that were distanced by 0.05 and 0.1 mm, whereas with fibers separated by larger distances, connections were rare. After 4 days of culture, the optimum fiber-to-fiber distance to form microvessels was 0.1 mm. This study reveals that polymer fibers embedded in gel can be used as guides to direct the microvascularization process, with potential applications in cancer and cardiovascular research and tissue engineering.
Collapse
Affiliation(s)
- Irza Sukmana
- Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | |
Collapse
|
33
|
Sukmana I, Vermette P. The effects of co-culture with fibroblasts and angiogenic growth factors on microvascular maturation and multi-cellular lumen formation in HUVEC-oriented polymer fibre constructs. Biomaterials 2010; 31:5091-9. [PMID: 20347133 DOI: 10.1016/j.biomaterials.2010.02.076] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 02/28/2010] [Indexed: 10/19/2022]
Abstract
In the present study, polymer monofilaments were embedded in fibrin seeded with human umbilical vein endothelial cells (HUVEC) to guide HUVEC attachment and migration in order to form oriented vessel-like structures between adjacent monofilaments. Histology and fluorescent fibrin experiments confirmed that microvessel-like structures, which were developing between polymer monofilaments embedded in fibrin, contained a lumen. The effect of human fibroblasts and growth factors (VEGF and bFGF) over the microvessel formation process was tested. The effects of VEGF and bFGF were dose-dependent. The effect of VEGF was optimum at the lower concentration tested (2 ng/mL), while that of bFGF was optimum at the higher tested concentration (20 ng/mL). Furthermore, the use of fibroblasts significantly improved the maturation of the microvessels compared to control and to samples cultured with VEGF and bFGF.
Collapse
Affiliation(s)
- Irza Sukmana
- Laboratoire de Bioingénierie et de Biophysique de l'Université de Sherbrooke, Department of Chemical and Biotechnological Engineering, Université de Sherbrooke, 2500, blvd de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | | |
Collapse
|
34
|
Abstract
We present in this paper the implementation of an innovative three dimensional (3D) microfabrication technology coupled with numerical simulation to enhance the mass transport in 3D cell culture. The core of this microfabrication technology is a high-resolution projection micro stereolithography (PmicroSL) using a spatial light modulator as a dynamic mask which enables a parallel fabrication of highly complex 3D microstructures. In this work, a set of poly (ethylene glycol) microfabricated bioreactors are demonstrated with PmicroSL technology. We observed both experimentally and numerically the regulation of metabolism and the growth of yeast cells by controlling the density of micro-capillaries. Further development of these 3D microfabricated bioreactors is expected to provide artificially constructed tissues for clinical applications.
Collapse
Affiliation(s)
- Chunguang Xia
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 158 Mechanical Engineering Building, MC-244, 1206 West Green Street, Urbana, IL 61801-2906, USA
| | | |
Collapse
|
35
|
Domachuk P, Tsioris K, Omenetto FG, Kaplan DL. Bio-microfluidics: biomaterials and biomimetic designs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:249-60. [PMID: 20217686 DOI: 10.1002/adma.200900821] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bio-microfluidics applies biomaterials and biologically inspired structural designs (biomimetics) to microfluidic devices. Microfluidics, the techniques for constraining fluids on the micrometer and sub-micrometer scale, offer applications ranging from lab-on-a-chip to optofluidics. Despite this wealth of applications, the design of typical microfluidic devices imparts relatively simple, laminar behavior on fluids and is realized using materials and techniques from silicon planar fabrication. On the other hand, highly complex microfluidic behavior is commonplace in nature, where fluids with nonlinear rheology flow through chaotic vasculature composed from a range of biopolymers. In this Review, the current state of bio-microfluidic materials, designs and applications are examined. Biopolymers enable bio-microfluidic devices with versatile functionalization chemistries, flexibility in fabrication, and biocompatibility in vitro and in vivo. Polymeric materials such as alginate, collagen, chitosan, and silk are being explored as bulk and film materials for bio-microfluidics. Hydrogels offer options for mechanically functional devices for microfluidic systems such as self-regulating valves, microlens arrays and drug release systems, vital for integrated bio-microfluidic devices. These devices including growth factor gradients to study cell responses, blood analysis, biomimetic capillary designs, and blood vessel tissue culture systems, as some recent examples of inroads in the field that should lead the way in a new generation of microfluidic devices for bio-related needs and applications. Perhaps one of the most intriguing directions for the future will be fully implantable microfluidic devices that will also integrate with existing vasculature and slowly degrade to fully recapitulate native tissue structure and function, yet serve critical interim functions, such as tissue maintenance, drug release, mechanical support, and cell delivery.
Collapse
Affiliation(s)
- Peter Domachuk
- Department of Biomedical Engineering, Tufts University Medford, Massachusetts 02155, USA
| | | | | | | |
Collapse
|
36
|
Lovett M, Lee K, Edwards A, Kaplan DL. Vascularization strategies for tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2009; 15:353-70. [PMID: 19496677 DOI: 10.1089/ten.teb.2009.0085] [Citation(s) in RCA: 638] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tissue engineering is currently limited by the inability to adequately vascularize tissues in vitro or in vivo. Issues of nutrient perfusion and mass transport limitations, especially oxygen diffusion, restrict construct development to smaller than clinically relevant dimensions and limit the ability for in vivo integration. There is much interest in the field as researchers have undertaken a variety of approaches to vascularization, including material functionalization, scaffold design, microfabrication, bioreactor development, endothelial cell seeding, modular assembly, and in vivo systems. Efforts to model and measure oxygen diffusion and consumption within these engineered tissues have sought to quantitatively assess and improve these design strategies. This review assesses the current state of the field by outlining the prevailing approaches taken toward producing vascularized tissues and highlighting their strengths and weaknesses.
Collapse
Affiliation(s)
- Michael Lovett
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, USA
| | | | | | | |
Collapse
|
37
|
Kang JH, Gimble JM, Kaplan DL. In vitro 3D model for human vascularized adipose tissue. Tissue Eng Part A 2009; 15:2227-36. [PMID: 19207036 DOI: 10.1089/ten.tea.2008.0469] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The clinical need for both three-dimensional (3D) soft tissue replacements and in vitro adipose tissue models continues to grow. In this study, we evaluated structural and functional characteristics of an in vitro 3D coculture model of vascularized adipose tissue. Tomato red-infected human adipose tissue-derived mesenchymal stem cells (hASCs) and green fluorescence protein-infected human umbilical vein endothelial cells were cocultured on 3D aqueous-derived silk scaffolds for 2 weeks. Confocal microscopy images demonstrated viability of cocultures and organization of both cell types over time. Endothelial cells aligned with time, and further histological analyses revealed continuous endothelial lumen formation in both differentiated and undifferentiated cocultures. Differentiated adipose cocultures secreted significantly higher levels of leptin than undifferentiated cocultures at 1 and 2 weeks. Additionally, lipid accumulation was demonstrated with Oil Red O staining, where positive staining was higher in the differentiated cocultures. A promising in vitro approach for the vascularization of tissue-engineered adipose tissue, and the ability to vascularize a construct containing hASCs was demonstrated. The strategy outlined provides a basis for the formation of other in vitro vascularized tissues as well as a path forward for the sustainable formation of soft tissue due to the use of slowly degrading silk scaffolds.
Collapse
Affiliation(s)
- Jennifer H Kang
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | | |
Collapse
|
38
|
|
39
|
Lokmic Z, Mitchell GM. Engineering the Microcirculation. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:87-103. [DOI: 10.1089/teb.2007.0299] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Zerina Lokmic
- Bernard O'Brien Institute of Microsurgery, Melbourne, Victoria, Australia
- Institute for Physiological Chemistry and Pathobiochemistry, Muenster, Germany
| | | |
Collapse
|
40
|
Rowlands AS, Hudson JE, Cooper-White JJ. From scrawny to brawny: the quest for neomusculogenesis; smart surfaces and scaffolds for muscle tissue engineering. Expert Rev Med Devices 2007; 4:709-28. [PMID: 17850206 DOI: 10.1586/17434440.4.5.709] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The successful generation of functional muscle tissues requires both an in-depth knowledge of muscle tissue physiology and advanced engineering practices. The inherent contractile functionality of muscle is a result of its high-level cellular and matrix organization over a multitude of length scales. While there have been many attempts to produce artificial muscle, a method to fabricate a highly organized construct, comprised of multiple cell types and capable of delivering contractile strengths similar to that of native smooth, skeletal or cardiac muscle has remained elusive. This is largely due to a lack of control over phenotype and spatial organization of cells. This paper covers state-of-the-art approaches to generating both 2D and 3D substrates that provide some form of higher level organization or multiple biochemical, mechanical or electrical cues to cells in order to successfully manipulate their behavior, in a manner that is conducive to the production of contractile muscle tissue. These so-called 'smart surfaces' and 'smart scaffolds' represent vital steps towards surface-engineered substrates for the engineering of muscle tissues, showing confidently that cellular behavior can be effectively and reproducibly manipulated through the design of the physical, chemical and electrical properties of the substrates on which cells are grown. However, many challenges remain to be overcome prior to reaching the ultimate goal of fully functional 3D vascularized engineered muscle.
Collapse
Affiliation(s)
- Andrew S Rowlands
- Australian Institute for Bioengineering & Nanotechnology, Tissue Engineering and Microfluidics Laboratory, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | | |
Collapse
|
41
|
Migliore A, Vozzi F, Vozzi G, Ahluwalia A. Controlled in vitro growth of cell microtubes: towards the realisation of artificial microvessels. Biomed Microdevices 2007; 10:81-8. [PMID: 17687653 DOI: 10.1007/s10544-007-9112-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The aim of this study is to realise in vitro microtubular structures for Tissue Engineering applications. The strategy adopted consists in the use of cylindrical polymeric scaffolds, on which connective tissue cells (murine fibroblasts) can adhere and proliferate. We supply stereotropic and chemical stimuli which induce the cells to cover the whole cylindrical structure and to produce an extra-cellular matrix (ECM) which acts as an adhesive for cell aggregation and assembly. Stereotropic stimuli were provided using purpose designed seeding and proliferation chambers whilst the addition of ascorbic acid to the culture medium furnished chemical stimuli. To obtain cylindrical cellular structures two approaches are considered: the first one consists in the use of biodegradable scaffolds, the second one consists in the use of non-biodegradable scaffolds which can subsequently be withdrawn. The results show that a 14-microm thick cell and ECM coating grows over nylon strands, and can also be coerced to form an effective connection system with external tubing.
Collapse
Affiliation(s)
- Antonio Migliore
- Interdepartmental Research Center E. Piaggio, Faculty of Engineering, University of Pisa, Via Diotisalvi n.2, 56100 Pisa, Italy.
| | | | | | | |
Collapse
|
42
|
Janakiraman V, Kienitz BL, Baskaran H. Lithography Technique for Topographical Micropatterning of Collagen-Glycosaminoglycan Membranes for Tissue Engineering Applications. J Med Device 2007; 1:233-237. [PMID: 19823602 DOI: 10.1115/1.2775937] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND: An adaptable technique for micropatterning biomaterial scaffolds has enormous implications in controlling cell function and in the development of tissue-engineered (TE) microvasculature. In this paper, we report a technique to embed microscale patterns onto a collagen-glycosaminoglycan (CG) membrane as a first step towards the creation of TE constructs with built-in microvasculature. METHOD OF APPROACH: The CG membranes were fabricated by homogenizing a solution of Type I bovine collagen and chondroitin 6-sulfate in acetic acid and vacuum filtering the solution subsequently. The micropatterning technique consisted of three steps: surface dissolution of base matrix using acetic acid solution, feature resolution by application of uniform pressure and feature stability by glutaraldehyde crosslinking. RESULTS: Application of the new technique yielded patterns in CG membranes with a spatial resolution in the order of 2-3 microns. We show that such a patterned matrix is conducive to the attachment of bovine aortic endothelial cells (BAEC's). CONCLUSIONS: The patterned membranes can be used for the development of complex three-dimensional TE products with built-in flow channels, as templates for topographically directed cell growth, or as a model system to study various microvascular disorders where feature scales are important. The new technique is versatile; topographical patterns can be custom-made for any predetermined design with high spatial resolution and the technique itself can be adapted for use with other scaffold materials.
Collapse
|
43
|
Wu X, Kathuria N, Patrick CW, Reece GP. Quantitative analysis of the microvasculature growing in the fibrin interface between a skin graft and the recipient site. Microvasc Res 2007; 75:119-29. [PMID: 17631360 DOI: 10.1016/j.mvr.2007.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 04/26/2007] [Accepted: 04/27/2007] [Indexed: 02/06/2023]
Abstract
Current tissue engineering techniques have failed to provide an established microvasculature in skin substitutes, a requisite for the maintenance of graft viability and rapid revascularization subsequent to graft transplantation in vivo. To improve outcomes for both conventional skin grafts and skin substitutes, the existing knowledge gap concerning the spatio-temporal mechanisms of skin graft revascularization must be abrogated. The current knowledge gap is due, at least in part, to a lack of appropriate diagnostic methods to quantify skin graft revascularization. To enhance the understanding of skin graft revascularization, we quantitatively evaluated revascularization of autologous skin grafts in a rat model by quantifying 2- and 3-dimensional vascular metrics in the fibrin interface 3, 7, and 10 days after transplantation. In this study, the fibrin interface appeared to be completely replaced with fibrovascular tissue by postoperative day 10. Although the mean vessel diameter was about 10 mum for the time points sampled, the mean vessel number, area, and volume fraction increased about 2.5-fold from postoperative day 3 to 7 and then decreased about 1.27-fold at postoperative day 10. There was no significant difference between 2- and 3-dimensional vascular metrics based on Bland-Altman analysis. In conclusion, these data establish a standard for metrics of vessels growing in the fibrin interface of a rat autologous skin graft and its donor site and suggests that once the blood supply has been restored to a viable transplant, the number, area, and volume fractions of vessels decrease to levels found at postoperative day 3.
Collapse
Affiliation(s)
- Xuemei Wu
- Reparative Biology and Bioengineering, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | | | | | | |
Collapse
|
44
|
Janakiraman V, Mathur K, Baskaran H. Optimal planar flow network designs for tissue engineered constructs with built-in vasculature. Ann Biomed Eng 2007; 35:337-47. [PMID: 17203399 PMCID: PMC2613654 DOI: 10.1007/s10439-006-9235-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Accepted: 11/14/2006] [Indexed: 11/28/2022]
Abstract
Convective delivery of nutrients is important to enhance mass transport within tissue engineered (TE) products. Depending on the target tissue, an ideal TE product will have an integrated microvasculature that will eliminate mass transport limitations that can occur during product growth in vitro and integration in vivo. A synthetic approach to develop microvasculature involves development of network designs with efficient mass transfer characteristics. In this paper, utilizing a planar bifurcating network as a basis, we develop an approach to design optimal flow networks that have maximum mass transport efficiency for a given pressure drop. We formulated the optimization problem for a TE skin product, incorporating two types of duct flow, rectangular and square, and solved using a generalized reduced gradient algorithm. Under the conditions of this study, we found that rectangular ducts have superior mass transport characteristics than square ducts. Microvascular area per volume values obtained in this work are significantly greater than those reported in the literature. We discuss the effect of network variables such as porosity and generations on the optimal designs. This research forms the engineering basis for the rational development of TE products with built-in microvasculature and will pave the way to design complex flow networks with optimal mass transfer characteristics.
Collapse
Affiliation(s)
- Vijayakumar Janakiraman
- Department of Chemical Engineering, Case Western Reserve University, 126 Bingham Building, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
45
|
Mennesson E, Erbacher P, Kuzak M, Kieda C, Midoux P, Pichon C. DNA/cationic polymer complex attachment on a human vascular endothelial cell monolayer exposed to a steady laminar flow. J Control Release 2006; 114:389-97. [PMID: 16887230 DOI: 10.1016/j.jconrel.2006.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 05/21/2006] [Accepted: 06/08/2006] [Indexed: 10/24/2022]
Abstract
This study evaluated for the first time the binding of pDNA/polymer complexes (polyplexes) on a human lung microvascular endothelial cell (HLMEC) monolayer under flow conditions. A slide of a HLMEC monolayer was mounted on a parallel flow chamber connected to an open flow system from a reservoir containing fluorescent polyplexes to a syringe. A precise pump allowed their passage through the chamber under a range of shear stresses. The binding of polyethyleneimine (PEI)- and histidylated polylysine (His)-polyplexes was carried out over 30 min by time-lapse video microscopy. At 10 microg pDNA/ml in 10% serum, we found that 360+/-80 PEI- and 250+/-50 His-polyplexes were bound per 1000 cells at a shear stress of 0.3-1 dyn/cm(2). This number dropped to approximately 100 at 2 dyn/cm(2). These polyplexes exhibited differences in their interactions with the cell membrane. Concerning PEI-polyplexes, there was a shear threshold effect allowing a maximum binding at 0.06 dyn/cm(2) and a higher binding reduction (77%) at 5 microg/ml pDNA in 100% serum. The polyplex binding was augmented by 300% with PEI bearing tetraglucose moiety. This set-up is potentially helpful to screen a wide array of endothelial cells ligands prior in vivo experiments.
Collapse
Affiliation(s)
- Eric Mennesson
- Centre de Biophysique Moléculaire UPR4301 CNRS affiliated to the University of Orléans and INSERM, rue Charles Sadron-45071 Orléans cedex 2, France
| | | | | | | | | | | |
Collapse
|
46
|
Kim M, Choi YS, Yang SH, Hong HN, Cho SW, Cha SM, Pak JH, Kim CW, Kwon SW, Park CJ. Muscle regeneration by adipose tissue-derived adult stem cells attached to injectable PLGA spheres. Biochem Biophys Res Commun 2006; 348:386-92. [PMID: 16887099 DOI: 10.1016/j.bbrc.2006.07.063] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Accepted: 07/10/2006] [Indexed: 11/28/2022]
Abstract
The [corrected] use of adult stem cells for cell-based tissue engineering and regeneration strategies represents a promising approach for skeletal muscle repair. We have evaluated the combination of adipose tissue-derived adult stem cells (ADSCs) obtained from autologous liposuction and injectable poly(lactic-co-glycolic acid) (PLGA) spheres for muscle regeneration. ADSCs attached to PLGA spheres and PLGA spheres alone were cultured in myogenic medium for 21 days and injected subcutaneously into the necks of nude mice. After 30 and 60 days, the mice were sacrificed, and newly formed tissues were analyzed by immunostaining, H and E staining, and RT-PCR. We found that ADSCs attached to PLGA spheres, but not PLGA spheres alone, were able to generate muscle tissue. These findings suggest that ADSCs and PLGA spheres are useful materials for muscle tissue engineering and that their combination can be used in clinical settings for muscle regeneration.
Collapse
Affiliation(s)
- MiJung Kim
- Asan Institute for Life Sciences, University of Ulsan, Seoul, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Chrobak KM, Potter DR, Tien J. Formation of perfused, functional microvascular tubes in vitro. Microvasc Res 2006; 71:185-96. [PMID: 16600313 DOI: 10.1016/j.mvr.2006.02.005] [Citation(s) in RCA: 397] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 01/18/2006] [Accepted: 02/20/2006] [Indexed: 11/23/2022]
Abstract
This work describes the formation, perfusion, and maturation of three-dimensional microvascular tubes in vitro. These tubes consisted of confluent monolayers of human endothelial cells that lined open, cylindrical channels within collagen gels. Perivascular cells could be directly embedded within the gels or added after endothelial cells grew to confluence. The tubes spanned the entire 5-7 mm extent of the gels; their diameters initially ranged from 55 to 120 microm and increased to 75-150 microm after maturation. Endothelial tubes displayed a strong barrier function over 5 days, resisted adhesion of leukocytes, and reacted quickly to inflammatory stimuli by breakdown of the barrier and support of leukocyte adhesion. These tubes resembled venules and "giant" capillaries in both their cellular organization and function, and we believe that they will serve as useful in vitro models of inflammation under constant perfusion.
Collapse
Affiliation(s)
- Kenneth M Chrobak
- Department of Biomedical Engineering, Boston University, MA 02215, USA
| | | | | |
Collapse
|
48
|
Wenger A, Kowalewski N, Stahl A, Mehlhorn AT, Schmal H, Stark GB, Finkenzeller G. Development and characterization of a spheroidal coculture model of endothelial cells and fibroblasts for improving angiogenesis in tissue engineering. Cells Tissues Organs 2006; 181:80-8. [PMID: 16534202 DOI: 10.1159/000091097] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2005] [Indexed: 01/29/2023] Open
Abstract
Neovascularization is a critical step in tissue engineering applications since implantation of voluminous grafts without sufficient vascularity results in hypoxic cell death of central tissues. We have developed a three-dimensional spheroidal coculture system consisting of human umbilical vein endothelial cells (HUVECs) and human primary fibroblasts (hFBs) to improve angiogenesis in tissue engineering applications. Morphological analysis of cryosections from HUVEC/hFB cospheroids revealed a characteristic temporal and spatial organization with HUVECs located in the center of the cospheroid and a peripheral localization of fibroblasts. In coculture spheroids, the level of apoptosis of endothelial cells was strongly decreased upon cocultivation with fibroblasts. Collagen-embedded HUVEC spheroids develop numerous lumenized capillary-like sprouts. This was also apparent for HUVEC/hFB cospheroids, albeit to a lesser extent. Quantification of cumulative sprout length revealed an approximately 35% reduction in endothelial cell sprouting upon cocultivation with fibroblasts in cospheroids. The slight reduction in endothelial cell sprouting was not mediated by a paracrine mechanism but is most likely due to the formation of heterogenic cell contacts between HUVECs and hFBs within the cospheroid. The model system introduced in this study is suitable for the development of a preformed lumenized capillary-like network ex vivo and may therefore be useful for improving angiogenesis in in vivo tissue engineering applications.
Collapse
Affiliation(s)
- Andreas Wenger
- Department of Plastic, University of Freiburg Medical Center, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Shimizu T, Sekine H, Yang J, Isoi Y, Yamato M, Kikuchi A, Kobayashi E, Okano T. Polysurgery of cell sheet grafts overcomes diffusion limits to produce thick, vascularized myocardial tissues. FASEB J 2006; 20:708-10. [PMID: 16439619 DOI: 10.1096/fj.05-4715fje] [Citation(s) in RCA: 326] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recently, the field of tissue engineering has progressed rapidly, but poor vascularization remains a major obstacle in bioengineering cell-dense tissues, limiting the viable size of constructs due to hypoxia, nutrient insufficiency, and waste accumulation. Therefore, new technologies for fabricating functional tissues with a well-organized vasculature are required. In the present study, neonatal rat cardiomyocytes were harvested as intact sheets from temperature-responsive culture dishes and stacked into cell-dense myocardial tissues. However, the thickness limit for layered cell sheets in subcutaneous tissue was approximately 80 microm (3 layers). To overcome this limitation, repeated transplantation of triple-layer grafts was performed at 1, 2, or 3 day intervals. The two overlaid grafts completely synchronized and the whole tissues survived without necrosis in the 1 or 2 day interval cases. Multistep transplantation also created approximately 1 mm thick myocardium with a well-organized microvascular network. Furthermore, functional multilayer grafts fabricated over a surgically connectable artery and vein revealed complete graft perfusion via the vessels and ectopic transplantation of the grafts was successfully performed using direct vessel anastomoses. These cultured cell sheet integration methods overcome long-standing barriers to producing thick, vascularized tissues, revealing a possible solution for the clinical repair of various damaged organs, including the impaired myocardium.
Collapse
Affiliation(s)
- Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Vara DS, Salacinski HJ, Kannan RY, Bordenave L, Hamilton G, Seifalian AM. Cardiovascular tissue engineering: state of the art. ACTA ACUST UNITED AC 2005; 53:599-612. [PMID: 16364812 DOI: 10.1016/j.patbio.2004.12.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Accepted: 12/03/2004] [Indexed: 11/18/2022]
Abstract
In patients requiring coronary or peripheral vascular bypass procedures, autogenous arterial or vein grafts remain as the conduit of choice even in the case of redo patients. It is in this class of redo patients that often natural tissue of suitable quality becomes unavailable; so that prosthetic material is then used. Prosthetic grafts are liable to fail due to graft occlusion caused by surface thrombogenicity and lack of elasticity. To prevent this, seeding of the graft lumen with endothelial cells has been undertaken and recent clinical studies have evidenced patency rates approaching reasonable vein grafts. Recent advances have also looked at developing a completely artificial biological graft engineered from the patient's cells with surface and viscoelastic properties similar to autogenous vessels. This review encompasses both endothelialisation of grafts and the construction of biological cardiovascular conduits.
Collapse
Affiliation(s)
- Dina S Vara
- Biomaterial and Tissue Engineering Centre (BTEC), University Department of Surgery, Royal Free and University College Medical School, University College London, Rowland Hill Street, London NW3 2PF, UK
| | | | | | | | | | | |
Collapse
|