Asgeirsson D, Axelsson J, Rippe C, Rippe B. Similarity of permeabilities for Ficoll, pullulan, charge-modified albumin and native albumin across the rat peritoneal membrane.
Acta Physiol (Oxf) 2009;
196:427-33. [PMID:
19141139 DOI:
10.1111/j.1748-1716.2009.01955.x]
[Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM
Compared to neutral globular proteins, neutral polysaccharides, such as dextran, pullulan and Ficoll, appear hyperpermeable across the glomerular filtration barrier. This has been attributed to an increased flexibility and/or asymmetry of polysaccharides. The present study investigates whether polysaccharides are hyperpermeable also across the continuous capillaries in the rat peritoneum.
METHODS
In anaesthetized Wistar rats, FITC-Ficoll or FITC-pullulan together with (125)I-human serum albumin (RISA) or neutralized (125)I-bovine serum albumin (nBSA) were given intravenously, after which peritoneal dialysis (PD) using conventional PD fluid (Gambrosol 1.5%) was performed for 120 min. Concentrations of FITC-polysaccharides and radioactive albumin species in plasma and dialysis fluid were analysed with high-performance size exclusion chromatography and a gamma counter respectively. Transperitoneal clearance values were calculated for polysaccharides in the molecular radius range 36-150 A, and for RISA and nBSA.
RESULTS
Ficoll and pullulan showed more or less identical permeabilities, compared to RISA and nBSA, across the peritoneal membrane. Although RISA-clearance, 5.50 +/- 0.28 (microL min(-1); +/-SEM), tended to be lower than the clearances of Ficoll(36A) (6.55 +/- 0.25), pullulan(36A) (6.08 +/- 0.22) and nBSA (6.56 +/- 0.23), the difference was not statistically significant. This is in contrast to the hyperpermeability exhibited by polysaccharides across the glomerular filtration barrier and also contrasts with the charge selectivity of the latter.
CONCLUSION
The phenomenon of molecular flexibility is more important for a macromolecule's permeability through the glomerular filter than across the continuous peritoneal capillary endothelium. Furthermore, it seems that charge plays a subordinate role in the steady-state transport across the combined peritoneal capillary-interstitial barrier.
Collapse