1
|
Gad El-Hak HN, Mohallal EME, Abomosallam M. Reproductive and developmental safety evaluation of Thymelaea hirsuta (L.) leaves aqueous extract in Wistar albino rats. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118729. [PMID: 39182699 DOI: 10.1016/j.jep.2024.118729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The popularity of herbal medicine is expanding globally due to the common belief that herbal products are natural and nontoxic. Thymelaea hirsuta leaves are traditionally used for the treatment of recurrent abortion in humans and animals. However, a lack of safety evaluation of the plant, particularly in pregnant women, raises serious concerns regarding its potential embryotoxic effects. AIM OF THE STUDY Therefore, the present study investigated the safety of Thymelaea hirsuta leaves aqueous extract (THLE) during pregnancy and lactation following maternal rat treatment. MATERIALS AND METHODS THLE phytochemical compounds were identified using high-performance liquid chromatography (HPLC). THLE was orally administered to pregnant rats and lactating dams at dosages of 0, 250, 500, and 1000 mg/kg/day. At the end of the study, dam s' and pups' body weights, serum biochemical and hematological indices, and histopathological changes were investigated. For the fetal observation and histopathological changes were also evaluated. RESULTS Our findings revealed that THLE is rich in different phenolic and flavonoid compounds. However, biochemical and hormonal parameters such as ALT, AST, and prolactin were significantly increased in dams treated with a higher dosage of THLE when compared to the control dams (P ≤ 0.05). Additionally, external, visceral and skeletal examinations of fetuses revealed a marked increase of malformation rates in treated fetuses. CONCLUSIONS The results revealed that higher oral dosing of THLE during pregnancy could affect embryonic development in rats, while lower doses are safe and can be used during pregnancy and lactation to attain its beneficial effects.
Collapse
Affiliation(s)
| | | | - Mohamed Abomosallam
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt.
| |
Collapse
|
2
|
Costa TJ, Barros PR, Arce C, Santos JD, da Silva-Neto J, Egea G, Dantas AP, Tostes RC, Jiménez-Altayó F. The homeostatic role of hydrogen peroxide, superoxide anion and nitric oxide in the vasculature. Free Radic Biol Med 2021; 162:615-635. [PMID: 33248264 DOI: 10.1016/j.freeradbiomed.2020.11.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/08/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023]
Abstract
Reactive oxygen and nitrogen species are produced in a wide range of physiological reactions that, at low concentrations, play essential roles in living organisms. There is a delicate equilibrium between formation and degradation of these mediators in a healthy vascular system, which contributes to maintaining these species under non-pathological levels to preserve normal vascular functions. Antioxidants scavenge reactive oxygen and nitrogen species to prevent or reduce damage caused by excessive oxidation. However, an excessive reductive environment induced by exogenous antioxidants may disrupt redox balance and lead to vascular pathology. This review summarizes the main aspects of free radical biochemistry (formation, sources and elimination) and the crucial actions of some of the most biologically relevant and well-characterized reactive oxygen and nitrogen species (hydrogen peroxide, superoxide anion and nitric oxide) in the physiological regulation of vascular function, structure and angiogenesis. Furthermore, current preclinical and clinical evidence is discussed on how excessive removal of these crucial responses by exogenous antioxidants (vitamins and related compounds, polyphenols) may perturb vascular homeostasis. The aim of this review is to provide information of the crucial physiological roles of oxidation in the endothelium, vascular smooth muscle cells and perivascular adipose tissue for developing safer and more effective vascular interventions with antioxidants.
Collapse
Affiliation(s)
- Tiago J Costa
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil.
| | | | - Cristina Arce
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Barcelona, Spain; Institut de Nanociencies i Nanotecnologia (IN2UB), University of Barcelona, Barcelona, Spain
| | | | - Júlio da Silva-Neto
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Gustavo Egea
- Department of Biomedical Sciences, University of Barcelona School of Medicine and Health Sciences, Barcelona, Spain; Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)-University of Barcelona, Barcelona, Spain; Institut de Nanociencies i Nanotecnologia (IN2UB), University of Barcelona, Barcelona, Spain
| | - Ana Paula Dantas
- Institut Clínic del Tòrax, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rita C Tostes
- Pharmacology Department, Ribeirao Preto Medical School, University of São Paulo, Brazil
| | - Francesc Jiménez-Altayó
- Department of Pharmacology, Therapeutics and Toxicology, Neuroscience Institute, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
3
|
|
4
|
Bhullar KS, Hubbard BP. Lifespan and healthspan extension by resveratrol. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1209-18. [PMID: 25640851 DOI: 10.1016/j.bbadis.2015.01.012] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/15/2015] [Accepted: 01/20/2015] [Indexed: 01/02/2023]
Abstract
A number of small molecules with the ability to extend the lifespan of multiple organisms have recently been discovered. Resveratrol, amongst the most prominent of these, has gained widespread attention due to its ability to extend the lifespan of yeast, worms, and flies, and its ability to protect against age-related diseases such as cancer, Alzheimer's, and diabetes in mammals. In this review, we discuss the origins and molecular targets of resveratrol and provide an overview of its effects on the lifespan of simple model organisms and mammals. We also examine the unique ability of resveratrol to extend the healthy years, or healthspan, of mammals and its potential to counteract the symptoms of age-related disease. Finally, we explore the many scientific, medical, and economic challenges faced when translating these findings to the clinic, and examine potential approaches for realizing the possibility of human lifespan extension. This article is part of a Special Issue entitled: Resveratrol: Challenges in translating pre-clinical findings to improved patient outcomes.
Collapse
Affiliation(s)
- Khushwant S Bhullar
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Basil P Hubbard
- Department of Pharmacology, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| |
Collapse
|
5
|
Seifirad S, Ghaffari A, Amoli MM. The antioxidants dilemma: are they potentially immunosuppressants and carcinogens? Front Physiol 2014; 5:245. [PMID: 25071590 PMCID: PMC4094884 DOI: 10.3389/fphys.2014.00245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/13/2014] [Indexed: 12/31/2022] Open
Affiliation(s)
- Soroush Seifirad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran, Iran
| | - Alireza Ghaffari
- Department of Internal Medicine, Tabriz University of Medical Sciences Tabriz, Iran
| | - Mahsa M Amoli
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran, Iran
| |
Collapse
|
6
|
Lu LY, Ou N, Lu QB. Antioxidant induces DNA damage, cell death and mutagenicity in human lung and skin normal cells. Sci Rep 2013; 3:3169. [PMID: 24201298 PMCID: PMC3821017 DOI: 10.1038/srep03169] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/23/2013] [Indexed: 12/31/2022] Open
Abstract
Clinical trials have shown that antioxidant supplementation increased the risk of lung and skin cancers, but the underlying molecular mechanism is unknown. Here, we show that epigallocatechin gallate (EGCG) as an exemplary antioxidant induced significant death and DNA damage in human lung and skin normal cells through a reductive mechanism. Our results show direct evidence of reductive DNA damage in the cells. We found that EGCG was much more toxic against normal cells than H₂O₂ and cisplatin as toxic and cancer-causing agents, while EGCG at low concentrations (≤100 μM) increased slightly the lung cancer cell viability. EGCG induced DNA double-strand breaks and apoptosis in normal cells and enhanced the mutation frequency. These results provide a compelling explanation for the clinical results and unravel a new reductive damaging mechanism in cellular processes. This study therefore provides a fresh understanding of aging and diseases, and may lead to effective prevention and therapies.
Collapse
Affiliation(s)
- Linda Y. Lu
- Department of Physics and Astronomy and Departments of Biology and Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Ning Ou
- Department of Physics and Astronomy and Departments of Biology and Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Qing-Bin Lu
- Department of Physics and Astronomy and Departments of Biology and Chemistry, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
7
|
Mercorelli B, Lembo D, Palù G, Loregian A. Early inhibitors of human cytomegalovirus: state-of-art and therapeutic perspectives. Pharmacol Ther 2011; 131:309-29. [PMID: 21570424 PMCID: PMC7112563 DOI: 10.1016/j.pharmthera.2011.04.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 04/05/2011] [Indexed: 12/31/2022]
Abstract
Human cytomegalovirus (HCMV) infection is associated with severe morbidity and mortality in immunocompromised individuals, mainly transplant recipients and AIDS patients, and is the most frequent cause of congenital malformations in newborn children. To date, few drugs are licensed for the treatment of HCMV infections, most of which target the viral DNA polymerase and suffer from many drawbacks, including long-term toxicity, low potency, and poor bioavailability. In addition, the emergence of drug-resistant viral strains is becoming an increasing problem for disease management. Finally, none of the current anti-HCMV drugs have been approved for the treatment of congenital infections. For all these reasons, there is still a strong need for new anti-HCMV drugs with novel mechanisms of action. The first events of the virus replication cycle, including attachment, entry, immediate-early gene expression, and immediate-early functions—in particular that of Immediate-Early 2 protein—represent attractive targets for the development of novel antiviral compounds. Such inhibitors would block not only the expression of viral immediate-early proteins, which play a key role in the pathogenesis of HCMV infection, but also the host immunomodulation and the changes to cell physiology induced by the first events of virus infection. This review describes the current knowledge on the initial phases of HCMV replication, their validation as potential novel antiviral targets, and the development of compounds that block such processes.
Collapse
Affiliation(s)
- Beatrice Mercorelli
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, 35121 Padova, Italy
| | | | | | | |
Collapse
|
8
|
Environmental genotoxicants/carcinogens and childhood cancer: filling knowledge gaps. Curr Probl Pediatr Adolesc Health Care 2008; 38:50-63. [PMID: 18237856 DOI: 10.1016/j.cppeds.2007.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Erdman JW, Balentine D, Arab L, Beecher G, Dwyer JT, Folts J, Harnly J, Hollman P, Keen CL, Mazza G, Messina M, Scalbert A, Vita J, Williamson G, Burrowes J. Flavonoids and heart health: proceedings of the ILSI North America Flavonoids Workshop, May 31-June 1, 2005, Washington, DC. J Nutr 2007; 137:718S-737S. [PMID: 17311968 DOI: 10.1093/jn/137.3.718s] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This article provides an overview of current research on flavonoids as presented during a workshop entitled, "Flavonoids and Heart Health," held by the ILSI North America Project Committee on Flavonoids in Washington, DC, May 31 and June 1, 2005. Because a thorough knowledge and understanding about the science of flavonoids and their effects on health will aid in establishing dietary recommendations for bioactive components such as flavonoids, a systematic review of the science of select flavonoid classes (i.e., flavonols, flavones, flavanones, isoflavones, flavan-3-ols, anthocyanins, and proanthocyanidins) was presented. The objectives of the workshop were to 1) present and discuss current research on flavonoid intake and the relation between flavonoids and heart health; 2) develop information that could lead to expert consensus on the state-of-the-science of dietary intake of flavonoids on heart health; and 3) summarize and prioritize the research needed to establish the relations between specific flavonoids and heart health. Presentations included the basics of the biology of flavonoids, including the types and distribution in foods, analytical methodologies used to determine the amounts in foods, the bioavailability, the consumption patterns and potential biomarkers of intake, risk assessment and safety evaluation, structure/function claims, and the proposed mechanism(s) of the relation between certain flavonoids and heart health endpoints. Data presented support the concept that certain flavonoids in the diet can be associated with significant health benefits, including heart health. Research gaps were identified to help advance the science.
Collapse
Affiliation(s)
- John W Erdman
- University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Anderson LM. Environmental genotoxicants/carcinogens and childhood cancer: Bridgeable gaps in scientific knowledge. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2006; 608:136-56. [PMID: 16829162 DOI: 10.1016/j.mrgentox.2006.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 02/13/2006] [Indexed: 10/24/2022]
Abstract
Cancer in children is a major concern in many countries. An important question is whether these childhood cancers are caused by something, or are just tragic random events. Causation of at least some children's cancers is suggested by direct and indirect evidence, including epidemiological data, and animal studies that predict early life sensitivity of humans to carcinogenic effects. Candidate risk factors include genotoxic agents (chemicals and radiation), but also diet/nutrition, and infectious agents/immune responses. With regard to likelihood of risks posed by genotoxicants, there are pros and cons. The biological properties of fetuses and infants are consistent with sensitivity to preneoplastic genotoxic damage. Recent studies of genetic polymorphisms in carcinogen-metabolizing enzymes confirm a role for chemicals. On the other hand, in numerous epidemiological studies, associations between childhood cancers and exposure to genotoxicants, including tobacco smoke, have been weak and hard to reproduce. Possibly, sensitive genetic or ontogenetic subpopulations, and/or co-exposure situations need to be discovered to allow identification of susceptible individuals and their risk factors. Among the critical knowledge gaps needing to be bridged to aid in this effort include detailed tissue and cellular ontogeny of carcinogen metabolism and DNA repair enzymes, and associations of polymorphisms in DNA repair enzymes with childhood cancers. Perinatal bioassays in animals of specific environmental candidates, for example, benzene, could help guide epidemiology. Genetically engineered animal models could be useful for identification of chemical effects on specific genes. Investigations of interactions between factors may be key to understanding risk. Finally, fathers and newborn infants should receive more attention as especially sensitive targets.
Collapse
Affiliation(s)
- Lucy M Anderson
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, MD 21702, USA.
| |
Collapse
|