1
|
Cho Y, Jeong WY, Hwang S, Na S, Park H, Heo S, Park S, Lim KJ, Shin HS, Son J. Development of a simultaneous analytical method for the dietary exposure determination of β-Carboline alkaloids in foods. Food Chem 2024; 460:140546. [PMID: 39068799 DOI: 10.1016/j.foodchem.2024.140546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
As β-carboline (βC) alkaloids, posing potential health risks, are present in a wide variety of foods, determining the exposure degrees of food to these alkaloids from dietary activity is key to ensuring food safety. Here, we developed a rapid and sensitive simultaneous analytical method for six βC alkaloids in food. We optimized the buffered QuEChERS method, which includes a clean-up process through dispersive solid phase extraction, to extract the target compounds from food matrices; then, these compounds were detected via liquid chromatography-tandem mass spectrometry. We established calibration ranges for each target compound and matrix within the range of 0.05-250 μg/kg, and verified linearity (R2 ≥ 0.99) and limit of quantitation (≤1.63 μg/kg). Furthermore, we validated trueness (85.8%-118.8%) and precision (≤18.7%) at three levels within the calibration range, including the lowest and highest concentrations. Finally, we employed the developed method to determine the βC alkaloid contents in 304 samples of 41 food items and dietary exposure of six βC alkaloids resulting from daily intake. Although βC alkaloids were detected in 86.2% of the samples, exposure level to the 41 food items was insufficient to cause toxicity.
Collapse
Affiliation(s)
- Yoeseph Cho
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Woo Yeon Jeong
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Sungmin Hwang
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul 03722, Republic of Korea.
| | - Sunhwan Na
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hana Park
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul 03722, Republic of Korea.
| | - Soohyun Heo
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul 03722, Republic of Korea.
| | - Saeyeon Park
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul 03722, Republic of Korea.
| | - Kyung-Jik Lim
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea.
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
2
|
Zhu Y, Cheng F, Lu X, Ma X, Reyanggu A, Bakri M, Maiwulanjiang M. Profiling the volatile compounds of Peganum harmala L. Based on multiple sample preparation coupled with gas chromatography-mass spectrometry analysis and explored its antidepressants-like activity. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1243:124232. [PMID: 38971075 DOI: 10.1016/j.jchromb.2024.124232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Peganum harmala L., a traditional medicinal plant in China, is renowned for its significant alkaloid content in seeds and roots exhibiting a wide range of pharmacological activities, including antidepressant, antiseptic, and antiviral. However, the volatile composition of the herb remained unclear. Apart from that, the extraction of volatile compounds through essential oil presents challenges due to the low yield and the degradation of volatile active compounds at high temperatures. This study used multiple sample preparation methods including headspace (HS), needle trap device (NTD), and liquid-liquid extraction (LLE) coupled with gas chromatography-mass spectrometry (GC-MS) to analyze the volatile compounds from the areal part of P. harmala L.. A total of 93 compounds were identified with NTD facilitating the first detection of harmine among the volatile organic compounds. Through network pharmacology and protein interaction analysis, the compounds' potential therapeutic targets of the compounds were explored, and 23 key targets were obtained (AKT1, ALB, PTGS2, MAOA, etc). KEGG pathway enrichment analysis indicated significant involvement in neuroactive ligand-receptor interactions and serotonergic synapses. The results enhanced the understanding of P. harmala's pharmacological mechanisms and supported its ethnopharmacological use.
Collapse
Affiliation(s)
- Yueyue Zhu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, PR China; College of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 101408, PR China
| | - Feng Cheng
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, PR China; College of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 101408, PR China
| | - Xiuxiang Lu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, PR China; College of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 101408, PR China
| | - Xueping Ma
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, PR China; College of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 101408, PR China
| | - Abula Reyanggu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, PR China; College of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 101408, PR China
| | - Mahinur Bakri
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, PR China
| | - Maitinuer Maiwulanjiang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, PR China.
| |
Collapse
|
3
|
Senapati D, Sharma V, Rath SK, Rai U, Panigrahi N. Functional implications and therapeutic targeting of androgen response elements in prostate cancer. Biochimie 2023; 214:188-198. [PMID: 37460038 DOI: 10.1016/j.biochi.2023.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
The androgen receptor (AR) plays an essential role in the growth and progression of prostate cancer (CaP). Ligand-activated AR inside the nucleus binds to the androgen response element (ARE) of the target genes in dimeric form and recruits transcriptional machinery to facilitate gene transcription. Pharmacological compounds that inhibit the AR action either bind to the ligand binding domain (LBD) or interfere with the interactions of AR with other co-regulatory proteins, slowing the progression of the disease. However, the emergence of resistance to conventional treatment makes clinical management of CaP difficult. Resistance has been associated with activation of androgen/AR axis that restores AR transcriptional activity. Activated AR signaling in resistance cases can be mediated by several mechanisms including AR amplification, gain-of-function AR mutations, androgen receptor variant (ARVs), intracrine androgen production, and overexpression of AR coactivators. Importantly, in castration resistant prostate cancer, ARVs lacking the LBD become constitutively active and promote hormone-independent development, underlining the need to concentrate on the other domain or the AR-DNA interface for the identification of novel actionable targets. In this review, we highlight the plasticity of AR-DNA binding and explain how fine-tuning AR's cooperative interactions with DNA translate into developing an alternative strategy to antagonize AR activity.
Collapse
Affiliation(s)
- Dhirodatta Senapati
- GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India.
| | - Vikas Sharma
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Santosh Kumar Rath
- School of Pharmaceuticals and Population Health Informatics, DIT University, Dehradun, Uttarakhand, India
| | - Uddipak Rai
- School of Pharmaceuticals and Population Health Informatics, DIT University, Dehradun, Uttarakhand, India
| | - Naresh Panigrahi
- GITAM School of Pharmacy, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
4
|
Mutagenic potential and structural alerts of phytotoxins. Food Chem Toxicol 2023; 173:113562. [PMID: 36563927 DOI: 10.1016/j.fct.2022.113562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022]
Abstract
Toxic plant-produced chemicals, so-called phytotoxins, constitute a category of natural compounds belonging to a diversity of chemical classes. Some of them (e.g., alkaloids, terpenes, saponins) are associated with high toxic potency, while for many of others no toxicological data is available. In this study, the mutagenic potential of 1586 phytotoxins, as obtained from a publicly available database, was investigated applying different in silico approaches. (Q)SAR models (including statistical-based and rule-based systems) were used for the prediction of bacterial in vitro mutagenicity (Ames test) and the results from multiple tools were combined to assign consensus predicted values (i.e., positive, negative, inconclusive). The overall consensus outcome was then employed to investigate relationships between structural features of classes of phytotoxins and potential mutagenicity, allowing the identification of structural alerts raising a specific concern. The results highlighted that about 10% of the screened compounds were predicted to have mutagenic potential and the critical classes of concern, such as alkaloids, were further investigated in terms of subclasses (e.g., indole alkaloids, isoquinoline alkaloids), getting a deeper insight into the mutagenic potential of possible naturally occurring chemicals in plant materials and their structural alerts.
Collapse
|
5
|
Colares JR, Hartmann RM, Schemitt EG, Fonseca SRB, Brasil MS, Picada JN, Dias AS, Bueno AF, Marroni CA, Marroni NP. Melatonin prevents oxidative stress, inflammatory activity, and DNA damage in cirrhotic rats. World J Gastroenterol 2022; 28:348-364. [PMID: 35110954 PMCID: PMC8771613 DOI: 10.3748/wjg.v28.i3.348] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/24/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cirrhosis is an important health problem characterized by a significant change in liver parenchyma. In animals, this can be reproduced by an experimental model of bile duct ligation (BDL). Melatonin (MLT) is a physiological hormone synthesized from serotonin that has been studied for its beneficial properties, including its antioxidant potential.
AIM To evaluate MLT’s effects on oxidative stress, the inflammatory process, and DNA damage in an experimental model of secondary biliary cirrhosis.
METHODS Male Wistar rats were divided into 4 groups: Control (CO), CO + MLT, BDL, and BDL + MLT. MLT was administered (20 mg/kg) daily beginning on day 15 after biliary obstruction. On day 29 the animals were killed. Blood samples, liver tissue, and bone marrow were collected for further analysis.
RESULTS BDL caused changes in biochemical and histological parameters and markers of inflammatory process. Thiobarbituric acid (0.46 ± 0.01) reactive substance levels, superoxide dismutase activity (2.30 ± 0.07) and nitric oxide levels (2.48 ± 0.36) were significantly lower (P < 0.001) n the groups that received MLT. DNA damage was also lower (P < 0.001) in MLT-treated groups (171.6 ± 32.9) than the BDL-only group (295.5 ± 34.8). Tissue damage and the expression of nuclear factor kappa B, interleukin-1β, Nrf2, NQO1 and Hsp70 were significantly lower in animals treated with MLT (P < 0.001).
CONCLUSION When administered to rats with BDL-induced secondary biliary cirrhosis, MLT effectively restored the evaluated parameters.
Collapse
Affiliation(s)
- Josieli R Colares
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Renata M Hartmann
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Elizângela G Schemitt
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Sandielly R B Fonseca
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Marilda S Brasil
- Biological Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Jaqueline N Picada
- Cellular and Molecular Biology Program, Lutheran University of Brazil (ULBRA), Canoas 92425-900, Brazil
| | - Alexandre S Dias
- Pneumological Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Aline F Bueno
- Pneumological Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| | - Cláudio A Marroni
- Posgraduate Program in Hepatology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre 90050-170, Brazil
| | - Norma P Marroni
- Medical Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
- Biological Sciences Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Brazil
| |
Collapse
|
6
|
Sikkink KL, Hostager R, Kobiela ME, Fremling N, Johnston K, Zambre A, Snell-Rood EC. Tolerance of Novel Toxins through Generalized Mechanisms: Simulating Gradual Host Shifts of Butterflies. Am Nat 2020; 195:485-503. [PMID: 32097036 DOI: 10.1086/707195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Organisms encounter a wide range of toxic compounds in their environments, from chemicals that serve anticonsumption or anticompetition functions to pollutants and pesticides. Although we understand many detoxification mechanisms that allow organisms to consume toxins typical of their diet, we know little about why organisms vary in their ability to tolerate entirely novel toxins. We tested whether variation in generalized stress responses, such as antioxidant pathways, may underlie variation in reactions to novel toxins and, if so, their associated costs. We used an artificial diet to present cabbage white butterfly caterpillars (Pieris rapae) with plant material containing toxins not experienced in their evolutionary history. Families that maintained high performance (e.g., high survival, fast development time, large body size) on diets containing one novel toxic plant also performed well when exposed to two other novel toxic plants, consistent with a generalized response. Variation in constitutive (but not induced) expression of genes involved in oxidative stress responses was positively related to performance on the novel diets. While we did not detect reproductive trade-offs of this generalized response, there was a tendency to have less melanin investment in the wings, consistent with the role of melanin in oxidative stress responses. Taken together, our results support the hypothesis that variation in generalized stress responses, such as genes involved in oxidative stress responses, may explain the variation in tolerance to entirely novel toxins and may facilitate colonization of novel hosts and environments.
Collapse
|
7
|
da Silva FC, Picada JN, Romão NF, Sobral FDOS, Lemos D, Schons SDV, de Mello TL, Silva WM, Oliveira RDS, Lucas CP, Pereira P, Chaves VC, Reginatto FH, Ferraz ADBF. Antigenotoxic and antimutagenic effects of Myrciaria dubia juice in mice submitted to ethanol 28-day treatment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:956-968. [PMID: 31570063 DOI: 10.1080/15287394.2019.1671279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Myrciaria dubia is a native plant from the Amazon region which produces red-purplish fruit rich in antioxidant compounds such as ascorbic acid, carotenoids, and phenolic. M. dubia fruit is used to prepare juices considered to possess high nutritional content providing health benefits. The aim of this study was to examine the ability of M. dubia juice to protect DNA against genomic instability induced by sub-acute ethanol consumption attributed to oxidative stress. Mice were treated for 28 days with juice at 25% and 50% diluted in distilled water or with the diluted combination juice plus ethanol (5 g/kg). The genotoxic/antigenotoxic and mutagenic/antimutagenic effects were assessed using comet assay in blood, liver, and kidney and micronucleus (MN) test with bone marrow. In addition, the mutagenicity was also evaluated using Salmonella/microsome assay. Phytochemical compounds were determined using HPLC/PDA/MS/MS. The juice did not induce genotoxic effects in blood, kidney, and liver cells at both doses. In combination with ethanol, the juice reduced the alcohol-mediated DNA damage in all tissues analyzed. Further, the juice did not produce mutagenic effects and decreased mutagenicity induced by ethanol in the bone marrow. The anthocyanins were major compounds detected by HPLC/PDA/MS/MS, which modulated genotoxic and mutagenic effects initiated by ethanol and at least in part appeared responsible for the observed antigenotoxic and antimutagenic effects of M. dubia juice.
Collapse
Affiliation(s)
| | | | - Natalia Faria Romão
- Biological Sciences Department, São Lucas Ji-Paraná University Center (UniSL) , Ji-Paraná , Brazil
| | | | - Daniela Lemos
- Biological Sciences Department, São Lucas Ji-Paraná University Center (UniSL) , Ji-Paraná , Brazil
| | - Sandro de Vargas Schons
- Environmental Sciences, Universidade Federal de Rondônia. Norte Sul Avenue , Rolim de Moura , Brazil
| | - Taciane Letícia de Mello
- Environmental Sciences, Universidade Federal de Rondônia. Norte Sul Avenue , Rolim de Moura , Brazil
| | - Waldiene Melo Silva
- Biological Sciences Department, São Lucas Ji-Paraná University Center (UniSL) , Ji-Paraná , Brazil
| | | | - Cláudia Perboni Lucas
- Biological Sciences Department, São Lucas Ji-Paraná University Center (UniSL) , Ji-Paraná , Brazil
| | - Patrícia Pereira
- Laboratory of Neuropharmacology and Preclinical Toxicology, Federal University of Rio Grande do Sul (UFRGS) , Porto Alegre , Brazil
| | - Vitor Clasen Chaves
- Biotechnology and Biosciences, Center for Biological Sciences, Federal University of Santa Catarina , Florianópolis , Brazil
| | - Flavio Henrique Reginatto
- Biotechnology and Biosciences, Center for Biological Sciences, Federal University of Santa Catarina , Florianópolis , Brazil
| | | |
Collapse
|
8
|
Wang Y, Wang H, Zhang L, Zhang Y, Sheng Y, Deng G, Li S, Cao N, Guan H, Cheng X, Wang C. Subchronic toxicity and concomitant toxicokinetics of long-term oral administration of total alkaloid extracts from seeds of Peganum harmala Linn: A 28-day study in rats. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111866. [PMID: 30970283 DOI: 10.1016/j.jep.2019.111866] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The seeds of Peganum harmala Linn, in which the most abundant active compounds are harmaline and harmine, have been widely used as a traditional medicine in various countries to treat a broad spectrum of diseases including asthma, cough, depression, Parkinson's and Alzheimer's diseases. However, few studies on long-term or subchronic toxicity of seeds of P. harmala were reported after overdose. AIM OF THE STUDY To investigate the subchronic toxicity and concomitant toxicokinetics of total alkaloid extracts from seeds of P. harmala (TAEP) after oral administration for four weeks in rats. MATERIALS AND METHODS The subchronic toxicity and concomitant toxicokinetics of TAEP were evaluated after 28-day oral administration in rats at daily dose levels of 15, 45, and 150 mg/kg. The signs of toxicity and mortality were monitored and recorded daily. The body weight and average food consumption were measured weekly. The analyses of hematology, biochemistry, urine, relative organ weights and histopathology were conducted at the termination of treatment and recovery phase. For concomitant toxicokinetics study, the plasma toxicokinetic parameters, tissue distribution, and excretion of predominant ingredients harmaline and harmine in TAEP and metabolites harmalol and harmol were tested. RESULTS Following initial repeated exposure to high-dose (150 mg/kg/day) of TAEP excitotoxic reaction, such as tremor, was observed, but tolerated on the fourth day after multiple dosing. The significant alterations in blood glucose and lipid metabolism in liver were observed, but recovered after four weeks of drug withdrawal. The no-observed-adverse-effect level (NOAEL) of TAEP was considered to be 45 mg/kg/day under the present study conditions. There were no significant gender differences in most indexes of subchronic toxicity throughout the experimental period with the exception of food consumption and body weight. In concomitant toxicokinetics study, the alterations of dynamic characteristic for harmaline, harmine and metabolite harmol after multiple oral administration at three doses had been observed. Harmaline, harmine and metabolites harmalol and harmol were widely distributed in organs and there was no accumulation in the tissues examined. The reduction of harmaline and metabolite harmalol in brain after multiple dosing at dose of 150 mg/kg might be closely related to the tremor tolerance. The main excretory pathway for metabolites harmalol and harmol was urinary excretion via kidney. CONCLUSIONS The results revealed that TAEP at doses of 15 and 45 mg/kg/day in rats might be safe. Excitotoxic reaction such as tremor occurred initially at dose of 150 mg/kg/day, however, the toxicity was tolerant and reversible. In addition, harmaline and harmine in TAEP had a quick absorption into blood and metabolized to harmalol and harmol, and there was no drug accumulation in the detected tissues. Further studies should be investigated to clarify the mechanisms of tremor tolerance and neurotoxicity of TAEP.
Collapse
Affiliation(s)
- Youxu Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Hanxue Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China; Shanghai TCM-integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai, 200082, China
| | - Liuhong Zhang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Yunpeng Zhang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Yuchen Sheng
- Drug Safety Evaluation and Research Center of Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China
| | - Gang Deng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Shuping Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Ning Cao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Huida Guan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai R&D Centre for Standardization of Chinese Medicines, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
9
|
Ghosh T, Sarkar S, Bhattacharjee P, Jana GC, Hossain M, Pandya P, Bhadra K. In vitro relationship between serum protein binding to beta-carboline alkaloids: a comparative cytotoxic, spectroscopic and calorimetric assays. J Biomol Struct Dyn 2019; 38:1103-1118. [PMID: 30909826 DOI: 10.1080/07391102.2019.1595727] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The work highlighted interaction of harmalol, harmaline and harmine with human serum albumin by biophysical and biochemical assays. Presence of serum protein in the media negatively affects the cytotoxicity of the alkaloids. MTT assay indicates concentration-dependent growth inhibitory effect of the alkaloids on A375, MDA-MB-231, HeLa, A549, ACHN and HepG2 cell, having maximum cytotoxicity with GI50 value of 6.5 μM on ACHN by harmine in 1% of fetal bovine serum. Detail cytotoxic studies on ACHN cell by harmine, the most cytotoxic among the three, reveal nucleosomal fragmentation, formation of comet tail, generation of reactive oxygen species, decreased mitochondrial membrane potential, up regulation of p53, caspase 3 and significant increase in G2/M population that made the cancer cells prone to apoptosis. Furthermore, the findings unequivocally pointed out that harmine binds strongly to the protein with a binding constant of 5.53 × 104 M-1 followed by harmaline and least with harmalol. Thermodynamic results revealed enthalpy dominated, entropy favored, 1:1 binding. Molecular docking and circular dichroism suggested changed conformation of protein by partial unfolding on complexation. Further supported by infrared analysis where protein secondary structure was altered with a major decrease of α-helix from 53.68% (free protein) to 8-11% and change in β-sheet from 25.31% (free protein) to 1-6% upon binding, inducing partial protein destabilization. Site markers demonstrated site I (subdomain IIA) binding of the alkaloids to the protein. The results serve as data for the future development of serum protein-based targeted drugs. AbbreviationsCD: circular dichroism; FBS: fetal bovine serumFRETForster resonance energy transferFTIRFourier transform infraredHSAhuman serum albumin; ROS: reactive oxygen speciesCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Tapas Ghosh
- Department of Zoology, University of Kalyani, Nadia, West Bengal, India
| | - Sarita Sarkar
- Department of Zoology, University of Kalyani, Nadia, West Bengal, India.,Bose Institute, Kolkata, India
| | | | - Gopal Chandra Jana
- Department of Zoology, University of Kalyani, Nadia, West Bengal, India.,Vidyasagar University, Midnapore, West Bengal, India
| | - Maidul Hossain
- Department of Zoology, University of Kalyani, Nadia, West Bengal, India.,Vidyasagar University, Midnapore, West Bengal, India
| | - Prateek Pandya
- Department of Zoology, University of Kalyani, Nadia, West Bengal, India.,Amity Institute of Forensic Sciences, Amity University, Noida, Uttar Pradesh, India
| | - Kakali Bhadra
- Department of Zoology, University of Kalyani, Nadia, West Bengal, India
| |
Collapse
|
10
|
Kummrow F, Maselli BS, Lanaro R, Costa JL, Umbuzeiro GA, Linardi A. Mutagenicity of Ayahuasca and Their Constituents to the Salmonella/Microsome Assay. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:269-276. [PMID: 30488498 DOI: 10.1002/em.22263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 06/09/2023]
Abstract
Ayahuasca is a beverage used in religious rituals of indigenous and nonindigenous groups, and its therapeutic potential has been investigated. Ayahuasca is obtained by decoction of the Banisteriopsis caapi that contains β-carbolines (harmine, harmaline, and tetrahydroharmine) plus Psychotria viridis that contains N,N-dimethyltryptamine. Although plants used in folk medicine are recognized as safe, many of them have genotoxic potential. The Salmonella/microsome assay is usually the first line of the mutagenicity evaluation of products intended for therapeutic use. Our objective was to evaluate the mutagenicity of ayahuasca beverage and their constituents using the Salmonella/microsome assay with TA98 and TA100. We analyzed two ayahuasca samples, and also beverage samples prepared each individual plant P. viridis and B. caapi. Harmine and harmaline were also tested. All beverage samples were chemically characterized and both ayahuasca samples could be considered representative of the beverages consumed in religious rituals. Both ayahuasca samples were mutagenic for TA98 and TA100 with and without S9, with similar potencies. The beverage obtained from P. viridis was not mutagenic, and beverage obtained from B. caapi was mutagenic for TA98 with and without S9. Harmine was nonmutagenic and harmaline was mutagenic only for TA98 without S9. Harmaline fully explain the mutagenicity observed with TA98 without S9 of both ayahuasca samples and the B. caapi beverage samples. We conclude that the ayahuasca samples are mutagenic and this effect is partially explained by harmaline, one of the β-carbolines present in the beverage. Other mutagenic compounds seem to be present and need to be further investigated. Environ. Mol. Mutagen. 60:269-276, 2019. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Fábio Kummrow
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (Unifesp), Diadema, São Paulo, Brazil
| | - Bianca S Maselli
- Pharmaceutical Sciences Faculty, University of São Paulo (USP), São Paulo, Brazil
| | - Rafael Lanaro
- Poison Control Center, Faculty of Medical Sciences, State University of Campinas, Campinas (Unicamp), São Paulo, Brazil
| | - José Luis Costa
- Poison Control Center, Faculty of Medical Sciences, State University of Campinas, Campinas (Unicamp), São Paulo, Brazil
| | - Gisela A Umbuzeiro
- School of Technology, State University of Campinas (Unicamp), Limeira, São Paulo, Brazil
| | - Alessandra Linardi
- Department of Physiological Sciences, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| |
Collapse
|
11
|
Jiao Y, Yan Y, He Z, Gao D, Qin F, Lu M, Xie M, Chen J, Zeng M. Inhibitory effects of catechins on β-carbolines in tea leaves and chemical model systems. Food Funct 2018; 9:3126-3133. [DOI: 10.1039/c7fo02053h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The profile of 18 heterocyclic amines from seven categories (including β-carbolines) in tea leaves during green and black tea processing procedures, as well as commercial tea products was screened by ultrahigh-performance liquid chromatography with tandem mass spectrometry.
Collapse
Affiliation(s)
- Ye Jiao
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- International Joint Laboratory on Food Safety
| | - Yan Yan
- Institute of Agro-products Processing
- Anhui Academy of Agricultural Science
- Hefei 230031
- China
| | - Zhiyong He
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- International Joint Laboratory on Food Safety
| | - Daming Gao
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- International Joint Laboratory on Food Safety
| | - Fang Qin
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- International Joint Laboratory on Food Safety
| | - Mei Lu
- Department of Food Science and Technology
- University of Nebraska-Lincoln
- Lincoln
- USA
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology
- Nanchang University
- Nanchang
- China
| | - Jie Chen
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- International Joint Laboratory on Food Safety
| | - Maomao Zeng
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- China
- International Joint Laboratory on Food Safety
| |
Collapse
|
12
|
Bhattacharjee P, Ghosh T, Sarkar S, Pandya P, Bhadra K. Binding affinity and in vitro
cytotoxicity of harmaline targeting different motifs of nucleic acids: An ultimate drug designing approach. J Mol Recognit 2017; 31. [PMID: 29243872 DOI: 10.1002/jmr.2687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/22/2017] [Accepted: 10/22/2017] [Indexed: 01/18/2023]
Affiliation(s)
| | - Tapas Ghosh
- Department of Zoology; University of Kalyani; Kalyani Nadia, West Bengal India
| | - Sarita Sarkar
- Department of Zoology; University of Kalyani; Kalyani Nadia, West Bengal India
| | - Prateek Pandya
- Amity Institute of Forensic Sciences; Amity University; Noida Uttar Pradesh India
| | - Kakali Bhadra
- Department of Zoology; University of Kalyani; Kalyani Nadia, West Bengal India
| |
Collapse
|
13
|
Li S, Zhang Y, Deng G, Wang Y, Qi S, Cheng X, Ma Y, Xie Y, Wang C. Exposure Characteristics of the Analogous β-Carboline Alkaloids Harmaline and Harmine Based on the Efflux Transporter of Multidrug Resistance Protein 2. Front Pharmacol 2017; 8:541. [PMID: 28871225 PMCID: PMC5566973 DOI: 10.3389/fphar.2017.00541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/03/2017] [Indexed: 12/17/2022] Open
Abstract
Harmaline and harmine occur naturally in plants and are distributed endogenously in human and animal tissues. The two β-carboline alkaloids possess potential for treating Alzheimer's disease, Parkinson's disease, depression and other central nervous system diseases. However, studies have showed that the two compounds have similar structures but with quite different bioavailability. The aim of this study was to elucidate the exposure difference and characterize the in vitro transport, metabolism, and pharmacokinetic properties of harmaline and harmine. The results showed that the harmaline and harmine transport across the Caco-2 and MDCK cell monolayers was varied as the time, concentration, pH and temperature changed. The absorption of harmaline and harmine was significantly decreased when ES (OATPs inhibitor), TEA (OCTs/OCTNs substrate), NaN3 (adenosine triphosphate inhibitor), or sodium vanadate (ATPase Na+/K+-dependent inhibitor) was added. However, when given MK571 and probenecid (the typical MRP2 inhibitor), the PappAB of harmine was increased (1.62- and 1.27-folds), and the efflux ratio was decreased from 1.59 to 0.98 and from 1.59 to 1.19, respectively. In addition, the uptake ratio of harmine at 1 μM was >2.65 in the membrane vesicles expressing human MRP2. Furthermore, harmine could slightly up-regulate the expression of MRP2, which implying harmine might be the substrate of MRP2. Particularly, the CLint-value for harmine was ~1.49-folds greater than that of harmaline in human liver microsomes. It was worth noting that the F-value of harmine was increased 1.96-folds after harmine co-administration with probenecid. To summarize, comprehensive analysis indicated that harmaline and harmine were absorbed by transcellular passive diffusion and a pH- and Na+-dependent mechanism might be mediated by OATPs and OCTs/OCTNs. MRP2 but MDR1 or BCRP might be involved in the transport of harmine. Furthermore, harmine was more unstable and easily metabolized than harmaline. All these findings suggested that harmine not only appears be an MRP2 substrate, but also possesses weak metabolic stability, and eventually leads to a low oral bioavailability. Taken together, the elucidated absorption, transport, metabolism as well as pharmacokinetic characteristics of harmaline and harmine provide useful information for designing delivery systems, pharmacological applications and avoiding drug-drug interactions.
Collapse
Affiliation(s)
- Shuping Li
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Yunpeng Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Gang Deng
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Yuwen Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Shenglan Qi
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Xuemei Cheng
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese MedicineShanghai, China.,Shanghai R&D Centre for Standardization of Chinese MedicinesShanghai, China
| | - Yueming Ma
- Laboratory of Pharmacokinetics, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Yan Xie
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese MedicineShanghai, China
| | - Changhong Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese MedicineShanghai, China.,Shanghai R&D Centre for Standardization of Chinese MedicinesShanghai, China
| |
Collapse
|
14
|
Li S, Cheng X, Wang C. A review on traditional uses, phytochemistry, pharmacology, pharmacokinetics and toxicology of the genus Peganum. JOURNAL OF ETHNOPHARMACOLOGY 2017; 203:127-162. [PMID: 28359849 DOI: 10.1016/j.jep.2017.03.049] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 05/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The plants of the genus Peganum have a long history as a Chinese traditional medicine for the treatment of cough, hypertension, diabetes, asthma, jaundice, colic, lumbago, and many other human ailments. Additionally, the plants can be used as an amulet against evil-eye, dye and so on, which have become increasingly popular in Asia, Iran, Northwest India, and North Africa. AIM OF THE REVIEW The present paper reviewed the ethnopharmacology, phytochemistry, analytical methods, biological activities, metabolism, pharmacokinetics, toxicology, and drug interaction of the genus Peganum in order to assess the ethnopharmacological use and to explore therapeutic potentials and future opportunities for research. MATERIALS AND METHODS Information on studies of the genus Peganum was gathered via the Internet (using Google Scholar, Baidu Scholar, Elsevier, ACS, Pudmed, Web of Science, CNKI and EMBASE) and libraries. Additionally, information was also obtained from some local books, PhD and MS's dissertations. RESULTS The genus Peganum has played an important role in traditional Chinese medicine. The main bioactive metabolites of the genus include alkaloids, flavonoids, volatile oils, etc. Scientific studies on extracts and formulations revealed a wide range of pharmacological activities, such as cholinesterase and monoamine oxidase inhibitory activities, antitumor, anti-hypertension, anticoagulant, antidiabetic, antimicrobial, insecticidal, antiparasidal, anti-leishmaniasis, antioxidant, and anti-inflammatory. CONCLUSIONS Based on this review, there is some evidence for extracts' pharmacological effects on Alzheimer's and Parkinson's diseases, cancer, diabetes, hypertension. Some indications from ethnomedicine have been confirmed by pharmacological effects, such as the cholinesterase, monoamine oxidase and DNA topoisomerase inhibitory activities, hypoglycemic and vasodilation effects of this genus. The available literature showed that most of the activities of the genus Peganum can be attributed to the active alkaloids. Data regarding many aspects of the genus such as mechanisms of actions, metabolism, pharmacokinetics, toxicology, potential drug interactions with standard-of-care medications is still limited which call for additional studies particularly in humans. Further assessments and clinical trials should be performed before it can be integrated into medicinal practices.
Collapse
Affiliation(s)
- Shuping Li
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai 201210, China; The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201210, China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai 201210, China; The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201210, China; Shanghai R&D Centre for Standardization of Chinese Medicines, 199 Guoshoujing Road, Shanghai 201210, China
| | - Changhong Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201210, China; The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai 201210, China; The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, 1200 Cailun Rood, Shanghai 201210, China; Shanghai R&D Centre for Standardization of Chinese Medicines, 199 Guoshoujing Road, Shanghai 201210, China.
| |
Collapse
|
15
|
Muz M, Krauss M, Kutsarova S, Schulze T, Brack W. Mutagenicity in Surface Waters: Synergistic Effects of Carboline Alkaloids and Aromatic Amines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1830-1839. [PMID: 28045503 DOI: 10.1021/acs.est.6b05468] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
For decades, mutagenicity has been observed in many surface waters with a possible link to the presence of aromatic amines. River Rhine is a well-known example of this phenomenon but responsible compound(s) are still unknown. To identify the mutagenic compounds, we applied effect-directed analysis (EDA) utilizing novel analytical and biological approaches to a water sample extract from the lower Rhine. We could identify 21 environmental contaminants including two weakly mutagenic aromatic amines, and the known alkaloid comutagen norharman along with two related β-carboline alkaloids, carboline, and 5-carboline, which were reported the first time in surface waters. Results of mixture tests showed a strong synergism of the identified aromatic amines not only with norharman, but also with carboline and 5-carboline. Additionally, other nitrogen-containing compounds also contributed to the mutagenicity when aromatic amines were present. Thus, comutagenicity of β-carboline alkaloids with aromatic amines is shown to occur in surface waters. These results strongly suggest that surface water mutagenicity is highly complex and driven by synergistic mechanisms of a complex compound mixture (of which many are yet unidentified) rather than by single compounds. Therefore, mixture effects should be considered not only from mutagens alone, but also including possible comutagens and nonmutagenic compounds.
Collapse
Affiliation(s)
- Melis Muz
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15, 04318 Leipzig, Germany
- RWTH Aachen University , Department of Ecosystem Analyses, Institute for Environmental Research,Worringerweg 1, 52074 Aachen, Germany
| | - Martin Krauss
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15, 04318 Leipzig, Germany
| | - Stela Kutsarova
- Laboratory of Mathematical Chemistry, University "Prof. Assen Zlatarov" , 1 Yakimov Street, 8010 Bourgas, Bulgaria
| | - Tobias Schulze
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15, 04318 Leipzig, Germany
| | - Werner Brack
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15, 04318 Leipzig, Germany
- RWTH Aachen University , Department of Ecosystem Analyses, Institute for Environmental Research,Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
16
|
DNA binding and apoptotic induction ability of harmalol in HepG2: Biophysical and biochemical approaches. Chem Biol Interact 2016; 258:142-52. [DOI: 10.1016/j.cbi.2016.08.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 08/06/2016] [Accepted: 08/29/2016] [Indexed: 11/23/2022]
|
17
|
Li S, Teng L, Liu W, Cheng X, Jiang B, Wang Z, Wang C. Interspecies metabolic diversity of harmaline and harmine in in vitro
11 mammalian liver microsomes. Drug Test Anal 2016; 9:754-768. [DOI: 10.1002/dta.2028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/31/2016] [Accepted: 06/05/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Shuping Li
- Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine; Shanghai China
| | - Liang Teng
- Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine; Shanghai China
- Pharmacy Department; the First Affiliated Hospital of Xinjiang Medical University; Urumqi China
| | - Wei Liu
- Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine; Shanghai China
| | - Xuemei Cheng
- Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine; Shanghai China
- Shanghai R&D Centre for Standardization of Chinese Medicines; Shanghai China
| | - Bo Jiang
- Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine; Shanghai China
| | - Zhengtao Wang
- Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine; Shanghai China
- Shanghai R&D Centre for Standardization of Chinese Medicines; Shanghai China
| | - Changhong Wang
- Institute of Chinese Materia Medica; Shanghai University of Traditional Chinese Medicine; The MOE Key Laboratory for Standardization of Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine; Shanghai China
- Shanghai R&D Centre for Standardization of Chinese Medicines; Shanghai China
| |
Collapse
|
18
|
Bhattacharjee P, Sarkar S, Pandya P, Bhadra K. Targeting different RNA motifs by beta carboline alkaloid, harmalol: a comparative photophysical, calorimetric, and molecular docking approach. J Biomol Struct Dyn 2016; 34:2722-2740. [DOI: 10.1080/07391102.2015.1126694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
19
|
Evaluation of mutagenic and genotoxic activities of lobeline and its modulation on genomic instability induced by ethanol. Life Sci 2014; 103:73-8. [PMID: 24727238 DOI: 10.1016/j.lfs.2014.03.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 03/01/2014] [Accepted: 03/29/2014] [Indexed: 12/19/2022]
Abstract
AIM Lobeline is a natural alkaloid derived from Lobelia inflata that has been investigated as a clinical candidate for the treatment of alcoholism. In a pre-clinical trial, lobeline decreased the preference for and consumption of ethanol, due to the modulation of the nicotinic acetylcholine receptor. However, the interaction between lobeline and ethanol is poorly known and thus there are safety concerns. The present study was conducted to evaluate the mutagenic and genotoxic effects of lobeline and assess its modulation of ethanol-induced toxicological effects. MAIN METHODS CF-1 male mice were divided into five groups. Groups received an intraperitoneal injection of saline solution, lobeline (5 or 10mg/kg), ethanol (2.5 g/kg), or lobeline plus ethanol, once a day for three consecutive days. Genotoxicity was evaluated in peripheral blood using the alkaline comet assay. The mutagenicity was evaluated using both Salmonella/microsome assay in TA1535, TA97a, TA98, TA100, and TA102 Salmonella typhimurium strains and the micronucleus test in bone marrow. Possible liver and kidney injuries were evaluated using biochemical analysis. KEY FINDINGS Lobeline did not show genotoxic or mutagenic effects and did not increase the ethanol-induced genotoxic effects in blood. Lobeline also protected blood cells against oxidative damage induced by hydrogen peroxide. Biochemical parameters were not altered, indicating no liver or kidney injuries or alterations in lipid and carbohydrate metabolisms. SIGNIFICANCE These findings suggest that lobeline does not induce gene or chromosomal mutations, and that this lack of genetic toxicity is maintained in the presence of ethanol, providing further evidence of the safety of this drug to treat alcohol dependence.
Collapse
|
20
|
Sarkar S, Bhadra K. Binding of alkaloid harmalol to DNA: Photophysical and calorimetric approach. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 130:272-80. [DOI: 10.1016/j.jphotobiol.2013.11.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 11/16/2022]
|
21
|
Abstract
OBJECTIVES Comprehensively review the evidence regarding the use of ayahuasca, an Amerindian medicine traditionally used to treat many different illnesses and diseases, to treat some types of cancer. METHODS An in-depth review of the literature was conducted using PubMed, books, institutional magazines, conferences and online texts in nonprofessional sources regarding the biomedical knowledge about ayahuasca in general with a specific focus in its possible relations to the treatment of cancer. RESULTS At least nine case reports regarding the use of ayahuasca in the treatment of prostate, brain, ovarian, uterine, stomach, breast, and colon cancers were found. Several of these were considered improvements, one case was considered worse, and one case was rated as difficult to evaluate. A theoretical model is presented which explains these effects at the cellular, molecular, and psychosocial levels. Particular attention is given to ayahuasca's pharmacological effects through the activity of N,N-dimethyltryptamine at intracellular sigma-1 receptors. The effects of other components of ayahuasca, such as harmine, tetrahydroharmine, and harmaline, are also considered. CONCLUSION The proposed model, based on the molecular and cellular biology of ayahuasca's known active components and the available clinical reports, suggests that these accounts may have consistent biological underpinnings. Further study of ayahuasca's possible antitumor effects is important because cancer patients continue to seek out this traditional medicine. Consequently, based on the social and anthropological observations of the use of this brew, suggestions are provided for further research into the safety and efficacy of ayahuasca as a possible medicinal aid in the treatment of cancer.
Collapse
Affiliation(s)
- Eduardo E Schenberg
- Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil; Instituto Plantando Consciencia, São Paulo, Brazil
| |
Collapse
|
22
|
Evaluation of Acute 13-Week Subchronic Toxicity and Genotoxicity of the Powdered Root of Tongkat Ali (Eurycoma longifolia Jack). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:102987. [PMID: 24062779 PMCID: PMC3767077 DOI: 10.1155/2013/102987] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 12/17/2022]
Abstract
Tongkat Ali (Eurycoma longifolia) is an indigenous traditional herb in Southern Asia. Its powdered root has been processed to produce health supplements, but no detailed toxicology report is available. In this study, neither mutagenicity nor clastogenicity was noted, and acute oral LD50 was more than 6 g/kg b.w. After 4-week subacute and 13-week subchronic exposure paradigms (0, 0.6, 1.2, and 2 g/kg b.w./day), adverse effects attributable to test compound were not observed with respect to body weight, hematology, serum biochemistry, urinalysis, macropathology, or histopathology. However, the treatment significantly reduced prothrombin time, partial thromboplastin time, blood urea nitrogen, creatinine, aspartate aminotransferase, creatine phosphate kinase, lactate dehydrogenase, and cholesterol levels, especially in males (P < 0.05). These changes were judged as pharmacological effects, and they are beneficial to health. The calculated acceptable daily intake (ADI) was up to 1.2 g/adult/day. This information will be useful for product development and safety management.
Collapse
|
23
|
Harmine is a potent antimalarial targeting Hsp90 and synergizes with chloroquine and artemisinin. Antimicrob Agents Chemother 2012; 56:4207-13. [PMID: 22615284 DOI: 10.1128/aac.00328-12] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown an antimalarial effect of total alkaloids extracted from leaves of Guiera senegalensis from Mali in West Africa. We independently observed that the beta-carboline alkaloid harmine obtained from a natural product library screen inhibited Plasmodium falciparum heat shock protein 90 (PfHsp90) ATP-binding domain. In this study, we confirmed harmine-PfHsp90-specific affinity using surface plasmon resonance analysis (dissociation constant [K(d)] of 40 μM). In contrast, the related compound harmalol bound human Hsp90 (HsHsp90) (K(d) of 224 μM) more tightly than PfHsp90 (K(d) of 7,010 μM). Site-directed mutagenesis revealed that Arg98 in PfHsp90 is essential for harmine selectivity. In keeping with our model indicating that Hsp90 inhibition affords synergistic combinations with existing antimalarials, we demonstrated that harmine potentiates the effect of chloroquine and artemisinin in vitro and in the Plasmodium berghei mouse model. These findings have implications for the development of novel therapeutic combinations that are synergistic with existing antimalarials.
Collapse
|
24
|
Picada JN, Dos Santos BDJN, Celso F, Monteiro JD, Da Rosa KM, Camacho LR, Vieira LR, Freitas TM, Da Silva TG, Pontes VM, Pereira P. Neurobehavioral and genotoxic parameters of antipsychotic agent aripiprazole in mice. Acta Pharmacol Sin 2011; 32:1225-32. [PMID: 21841809 DOI: 10.1038/aps.2011.77] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM Aripiprazole is an antipsychotic agent to treat schizophrenia, which acts through dopamine D(2) partial agonism, serotonin 5-HT(1A) partial agonism and 5-HT(2A) antagonism. This study was designed to evaluate the neurobehavioral effects and genotoxic/mutagenic activities of the agent, as well as its effects on lipoperoxidation. METHODS Open field and inhibitory avoidance tasks were used. Thirty min before performing the behavioral tasks, adult male CF-1 mice were administered aripiprazole (1, 3 or 10 mg/kg, ip) once for the acute treatment, or the same doses for 5 d for the subchronic treatment. Genotoxic effects were assessed using comet assay in the blood and brain tissues. Mutagenic effects were evaluated using bone marrow micronucleus test. Lipoperoxidation was assessed with thiobarbituric acid reactive substances (TBARS). RESULTS Acute and subchronic treatments significantly decreased the number of crossing and rearing in the open field task. Acute treatment significantly increased the step-down latency for both the short- and long-term memory in the inhibitory avoidance task. Subchronic treatments with aripiprazole (3 and 10 mg/kg) caused significant DNA strain-break damage in peripheral blood but not in the brain. Mutagenic effect was not detected in the acute and subchronic treatments. Nor TBARS levels in the liver were affected. CONCLUSION Aripiprazole improved memory, but could impair motor activities in mice. The drug increased DNA damage in blood, but did not show mutagenic effects, suggesting that it might affect long-term genomic stability.
Collapse
|
25
|
Flores ÉM, Cappelari SE, Pereira P, Picada JN. Effects of memantine, a non-competitive N-methyl-D-aspartate receptor antagonist, on genomic stability. Basic Clin Pharmacol Toxicol 2011; 109:413-7. [PMID: 21699656 DOI: 10.1111/j.1742-7843.2011.00744.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Memantine is an aminoadamantane drug useful in neurodegenerative diseases, with beneficial effects on cognitive functions. Some studies have shown that memantine protects brain cells, thereby decreasing glutamate excitotoxicity. This study evaluated the genotoxic/antigenotoxic and mutagenic effects of memantine in CF-1 mice, following standardized protocols. Memantine was administered i.p. at 7.5, 15 or 30 mg/kg for three consecutive days. Blood and brain samples were collected to assess DNA damage using the alkaline comet assay. The mutagenic effect was assessed using the bone marrow micronucleus test. In addition, possible antioxidant effects were evaluated measuring the survival of Saccharomyces cerevisiae yeast strains [wild-type (WT) and isogenic mutants lacking superoxide dismutase] to cotreatment of memantine plus hydrogen peroxide. Memantine decreased DNA oxidative damage mainly in brain tissue. This antigenotoxic effect corroborated an increase observed in the survival of S. cerevisiae WT strain against hydrogen peroxide-induced damage. Furthermore, memantine did not increase the micronucleus frequency. The overall results indicate that memantine showed no mutagenic activity, did not cause DNA damage in the blood and brain tissues and showed antigenotoxic effects in brain tissue.
Collapse
Affiliation(s)
- Édina Madeira Flores
- Laboratório de Genética Toxicológica, Programa de Pós-Graduação em Genética e Toxicologia Aplicada, ULBRA, Canoas, RS, Brazil
| | | | | | | |
Collapse
|
26
|
Zayed R. Efficient in vitro elicitation of β-carboline alkaloids in transformed root cultures of Peganum harmala. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.bfopcu.2011.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
27
|
Nakagawa Y, Suzuki T, Ishii H, Ogata A, Nakae D. Mitochondrial dysfunction and biotransformation of β-carboline alkaloids, harmine and harmaline, on isolated rat hepatocytes. Chem Biol Interact 2010; 188:393-403. [DOI: 10.1016/j.cbi.2010.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/30/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
|
28
|
Lopes JJ, Marx C, Ingrassia R, Picada JN, Pereira P, Ferraz ADBF. Neurobehavioral and toxicological activities of two potentially CNS-acting medicinal plants of Piper genus. ACTA ACUST UNITED AC 2010; 64:9-14. [PMID: 20579860 DOI: 10.1016/j.etp.2010.05.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 04/28/2010] [Accepted: 05/25/2010] [Indexed: 11/17/2022]
Abstract
Plants from the genus Piper are economically useful and some species have been indicated because of their medicinal properties in the central nervous system. However, few studies about toxicity and neurobehavioral effects have been conducted. In this study, two Piper species, P. amalago and P. mikanianum were investigated in rats to determine acute toxicity and to evaluate the ansiogenic/ansiolytic properties in the elevated plus-maze and the effects on locomotion and exploration in an open field. Additionally, genotoxic activities were evaluated, using the comet assay in several tissues and the micronucleus assay in bone marrow. The phytochemical analysis of both Piper species leaves suggests the presence of amide, essential oils, flavonoids and phenolic compounds. The LD(50) of P. amalago and P. mikanianum were estimated as 2,545 and 1,661 mg/kg, respectively. The behavioral and genotoxic parameters were determined after an intraperitoneal administration of P. amalago (250 or 420 mg/kg) or P. mikanianum (160 or 270 mg/kg). Both plants decreased the number of entries and time spent in the open arms in the plus-maze test, indicating an anxiogenic effect. Only P. mikanianum affected locomotion and exploration in the open field behavior test. No genotoxic or mutagenic effect was observed. Our results suggest that these Piper species act on the central nervous system, without induce genetic toxicity.
Collapse
Affiliation(s)
- Janaina Jardim Lopes
- Laboratório de Farmacologia e Toxicologia, Programa de Pós-Graduação em Genética e Toxicologia Aplicada, ULBRA, Canoas, RS, Brazil
| | | | | | | | | | | |
Collapse
|
29
|
Kaefer V, Semedo JG, Silva Kahl VF, Von Borowsky RG, Gianesini J, Ledur Kist TB, Pereira P, Picada JN. DNA damage in brain cells and behavioral deficits in mice after treatment with high doses of amantadine. J Appl Toxicol 2010; 30:745-53. [DOI: 10.1002/jat.1550] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/26/2010] [Accepted: 04/29/2010] [Indexed: 12/25/2022]
|
30
|
Rodrigues CRF, Dias JH, de Mello RN, Richter MF, Picada JN, Ferraz ABF. Genotoxic and antigenotoxic properties of Baccharis trimera in mice. JOURNAL OF ETHNOPHARMACOLOGY 2009; 125:97-101. [PMID: 19539021 DOI: 10.1016/j.jep.2009.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 05/28/2009] [Accepted: 06/06/2009] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baccharis trimera (Less.) (Asteraceae) is a native plant from Brazil. Also known as "carqueja", it is popularly used to treat liver diseases, diabetes, as well as digestive disorders, mainly by women with lower socioeconomic status. AIM OF THE STUDY The aim of the present study was to investigate the in vivo genotoxic/antigenotoxic and mutagenic potential of this plant, using the comet and the micronucleus assays. MATERIAL AND METHODS Female adult mice were treated with 500, 1000 or 2000 mg/kg of B. trimera aqueous extract (Bt-AE) by gavage for three consecutive days. RESULTS Independently of the dose, no genotoxic effect was observed in blood and liver samples analyzed by the comet assay. Conversely, B. trimera showed an antigenotoxic effect in blood from treated mice, thus protecting cells against oxidative DNA damage induced by the ex vivo treatment with hydrogen peroxide. In addition, Bt-AE showed in vitro antioxidant activity, assessed by DPPH and xanthine oxidase assays, suggesting that the observed antigenotoxic effects might be related to its antioxidant properties. CONCLUSIONS However, the extract increased the frequency of micronucleus in bone marrow of treated mice, indicating a chromosomal mutagenic activity. Thus, medicines prepared from this plant should be used with caution, although the results also suggest antigenotoxic effects for B. trimera aqueous extract.
Collapse
Affiliation(s)
- Carmem R F Rodrigues
- Programa de Pós-Graduação em Genética e Toxicologia Aplicada, Universidade Luterana do Brasil (ULBRA), Av. Farroupilha 8001, Prédio 22, 4 degrees andar, CEP 92450-900 Bairro São José, Canoas, RS, Brazil
| | | | | | | | | | | |
Collapse
|
31
|
Rodrigues CRF, Dias JH, Semedo JG, da Silva J, Ferraz ABF, Picada JN. Mutagenic and genotoxic effects of Baccharis dracunculifolia (D.C.). JOURNAL OF ETHNOPHARMACOLOGY 2009; 124:321-324. [PMID: 19397982 DOI: 10.1016/j.jep.2009.04.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 04/06/2009] [Accepted: 04/19/2009] [Indexed: 05/27/2023]
Abstract
Baccharis dracunculifolia (D.C.) (Asteraceae), a native plant to Brazil known as "vassourinha" or "alecrim-do-campo", is the most important botanical source of a Brazilian propolis called green propolis. The leaf extracts of this plant have been used to treat liver and digestive disorders. It has been recognized that green propolis can induce mutagenic effects at high doses, but no study reporting possible mutagenic effects by Baccharis dracunculifolia extracts in the maximum tolerated dose has been conducted. The aim of the present study was to investigate the genotoxic and mutagenic effects of this plant in vivo. Adult CF-1 mice were treated with 0.5g/kg, 1.0g/kg or 2.0g/kg of an aqueous extract of Baccharis dracunculifolia by gavage for 3 consecutive days. Blood and liver samples were collected to detect DNA damage using the comet assay, while bone marrow samples were used to assess chromosome mutations by the micronucleus test. The extract increased the DNA damage in blood and liver tissues and the frequency of micronucleus in bone marrow. These findings suggest genotoxic and mutagenic effects of Baccharis dracunculifolia comparable to green propolis in mice.
Collapse
Affiliation(s)
- Carmem R F Rodrigues
- Programa de Pós-Graduação em Genética e Toxicologia Aplicada, Universidade Luterana do Brasil (ULBRA), Canoas, RS, Brazil
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Androgen receptor (AR) inhibitors are used to treat multiple human diseases, including hirsutism, benign prostatic hypertrophy, and prostate cancer, but all available anti-androgens target only ligand binding, either by reduction of available hormone or by competitive antagonism. New strategies are needed, and could have an important impact on therapy. One approach could be to target other cellular mechanisms required for receptor activation. In prior work, we used a cell-based assay of AR conformation change to identify non-ligand inhibitors of AR activity. Here, we characterize 2 compounds identified in this screen: pyrvinium pamoate, a Food and Drug Administration-approved drug, and harmol hydrochloride, a natural product. Each compound functions by a unique, non-competitive mechanism and synergizes with competitive antagonists to disrupt AR activity. Harmol blocks DNA occupancy by AR, whereas pyrvinium does not. Pyrvinium inhibits AR-dependent gene expression in the prostate gland in vivo, and induces prostate atrophy. These results highlight new therapeutic strategies to inhibit AR activity.
Collapse
|
33
|
A spectroscopic study of the interaction of the fluorescent beta-carboline-3-carboxylic acid N-methylamide with DNA constituents: nucleobases, nucleosides and nucleotides. J Fluoresc 2008; 18:961-72. [PMID: 18470601 DOI: 10.1007/s10895-008-0355-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 02/25/2008] [Indexed: 10/22/2022]
Abstract
Interaction between beta-carboline-3-carboxylic acid N-methylamide, betaCMAM, and nucleobases, nucleosides and nucleotides is studied in the ground state with UV-visible, (1)H NMR and (31)P NMR spectroscopies and in the first excited state, with steady-state and time-resolved fluorescence spectroscopy. Job plots show a predominant 1:1 interaction in both electronic states. Association constants are estimated from changes in the absorption spectra, and show that the strongest interaction is produced with the nucleosides: 2'-deoxyadenosine (dAdo) and thymidine (Thd), and with the mononucleotides: 2'-deoxycytidine 5'- monophosphate (5'-dCMP) and uridine 5'- monophosphate (5'-UMP). These results are corroborated by the upfield shifts of two (1)H NMR resonances of the betaCMAM indole group. The (31)P NMR resonance of nucleotides is shifted downfield, suggesting the presence of electrostatic or hydrogen bond interaction with betaCMAM. In the first electronic singlet excited state, static and dynamic quenching of betaCMAM emission is achieved upon addition of nucleobases, nucleosides and nucleotides. This has been analysed using Stern-Volmer kinetics.
Collapse
|
34
|
Jiménez J, Riverón-Negrete L, Abdullaev F, Espinosa-Aguirre J, Rodríguez-Arnaiz R. Cytotoxicity of the beta-carboline alkaloids harmine and harmaline in human cell assays in vitro. ACTA ACUST UNITED AC 2008; 60:381-9. [PMID: 18430551 DOI: 10.1016/j.etp.2007.12.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 12/19/2007] [Indexed: 10/22/2022]
Abstract
beta-Carboline alkaloids are natural products widely distributed in plants and also found in alcoholic beverages, well-cooked foods and tobacco smoke. Various authors have reported genotoxic activities of several carboline in prokaryotic and eukaryotic cells that have been attributed to their abilities to intercalate into DNA. But studies on the genotoxic and on the cytotoxic potencies in human cells in vitro are not found in the literature. In the present study the toxicities of one full aromatic beta-carboline alkaloid (harmine) and one dihydro-beta-carboline alkaloid (harmaline) were evaluated by means of two in vitro human cell assays: the cytochalasin-B blocked micronucleus (CBMN) assay and the viability/colony formation assay with four different human cultured non-transformed (CCD18Lu) and transformed (HeLa, C33A and SW480) cells. Neither alkaloid was able to induce micronuclei levels above that of control levels in a wide range of doses tested; although, harmine at the highest concentrations assayed induced apoptotic as well as necrotic cells. Harmine produced a good viability of all cell lines assayed (control and tumor) while harmaline significantly reduced the viability of transformed and non-transformed cell lines in a dose-dependent manner. Harmine displayed a dose-dependent inhibitory effect on cell proliferation against all human carcinoma cells, but the SW480 transformed cell line showed a higher sensitivity. These results suggested that harmine was identified as a useful inhibitor of tumor development.
Collapse
Affiliation(s)
- Judith Jiménez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510 Coyoacán, México, DF, Mexico
| | | | | | | | | |
Collapse
|
35
|
Monsef-Esf HR, Faramarzi MA, Mortezaee V, Amini M, Rouini MR. Determination of Harmine and Harmaline in Peganum harmala Seeds by High-Performance Liquid Chromatography. ACTA ACUST UNITED AC 2008. [DOI: 10.3923/jas.2008.1761.1765] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Vercelino R, Tieppo J, Dias AS, Marroni CA, Garcia E, Meurer L, Picada JN, Marroni NP. N-acetylcysteine effects on genotoxic and oxidative stress parameters in cirrhotic rats with hepatopulmonary syndrome. Basic Clin Pharmacol Toxicol 2008; 102:370-6. [PMID: 18341514 DOI: 10.1111/j.1742-7843.2007.00181.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The aim of this study was to evaluate the potential antioxidant effects of N-acetylcysteine in hepatopulmonary syndrome, a complication of cirrhosis, using an experimental model of common bile duct ligation in rats. Male Wistar rats were divided into four experimental groups: CBDL (animals submitted to common bile duct ligation); Sham (animals submitted to simulated common bile duct ligation); Sham + N-acetylcysteine, and CBDL + N-acetylcysteine. N-acetylcysteine (10 mg/kg, intraperitoneally) was administered for 2 weeks starting on day 14 after surgery. Some alterations in the liver integrity were investigated by evaluation of serum enzymes aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and arterial blood gases. Lipoperoxidation by thiobarbituric acid-reactive substances assay, superoxide dismutase activity and total nitrates was measured as parameters of oxidative stress, performed on lung homogenates. Micronucleus assay in bone marrow and comet assay in lung, liver and blood were performed to assess the genotoxic effects by oxidative stress. The results showed an improvement in the enzymatic parameters and arterial blood gases, a reduction of lipoperoxidation and in the total nitrates after treatment with N-acetylcysteine. Histological analysis showed vasodilatation in the lung, which was reversed by N-acetylcysteine. Micronuclei frequency and DNA damage in lung and liver were increased in the CBDL group. N-Acetylcysteine caused no genotoxic effect and did not influence the induction of micronucleus in bone marrow and DNA damage in lung and liver. The results suggest protective effects after treatment with N-acetylcysteine in cirrhotic rats with hepatopulmonary syndrome.
Collapse
Affiliation(s)
- Rafael Vercelino
- Laboratory of Experimental Hepatology and Physiology, Porto Alegre Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
37
|
García-Zubiri IX, Burrows HD, Seixas de Melo JS, Pina J, Monteserín M, Tapia MJ. Effects of the interaction between beta-carboline-3-carboxylic acid N-methylamide and polynucleotides on singlet oxygen quantum yield and DNA oxidative damage. Photochem Photobiol 2008; 83:1455-64. [PMID: 18028221 DOI: 10.1111/j.1751-1097.2007.00187.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The complexation of beta-carboline-3-carboxylic acid N-methylamide (betaCMAM) with the sodium salts of the nucleotides polyadenylic (Poly A), polycytidylic (Poly C), polyguanylic (Poly G), polythymidylic (Poly T) and polyuridylic (Poly U) acids, and with double stranded (dsDNA) and single stranded deoxyribonucleic acids (ssDNA) was studied at pH 4, 6 and 9. Predominant 1:1 complex formation is indicated from Job plots. Association constants were determined using the Benesi-Hildebrand equation. BetaCMAM-sensitized singlet oxygen quantum yields were determined at pH 4, 6 and 9, and the effects on this of adding oligonucleotides, dsDNA and ssDNA were studied at the three pH values. With dsDNA, the effect on betaCMAM triplet state formation was also determined through triplet-triplet transient absorption spectra. To evaluate possible oxidative damage of DNA following singlet oxygen betaCMAM photosensitization, we used thiobarbituric acid-reactivity assays and electrophoretic separation of DNA assays. The results showed no oxidative damage at the level of DNA degradation or strand break.
Collapse
|
38
|
Osorio EJ, Robledo SM, Bastida J. Alkaloids with antiprotozoal activity. THE ALKALOIDS. CHEMISTRY AND BIOLOGY 2008; 66:113-90. [PMID: 19025098 DOI: 10.1016/s1099-4831(08)00202-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Edison J Osorio
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Química-Farmacéutica, Universidad de Antioquia, A. A. 1226, Medellín, Colombia.
| | | | | |
Collapse
|
39
|
García-Zubiri IX, Burrows HD, Sérgio Seixas de Melo J, Pina J, Monteserín M, Tapia MJ. Effects of the Interaction Between ?-Carboline-3-carboxylic acid N-Methylamide and Polynucleotides on Singlet Oxygen Quantum Yield and DNA Oxidative Damage. Photochem Photobiol 2007. [DOI: 10.1111/j.0031-8655.2007.00187.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Moura DJ, Richter MF, Boeira JM, Pêgas Henriques JA, Saffi J. Antioxidant properties of -carboline alkaloids are related to their antimutagenic and antigenotoxic activities. Mutagenesis 2007; 22:293-302. [PMID: 17545209 DOI: 10.1093/mutage/gem016] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The beta-carboline alkaloids found in medical plants and in a variety of foods, beverages and cigarette smoke have a range of action in various biological systems. In vitro studies have demonstrated that these alkaloids can act as scavengers of reactive oxygen species. In this paper, we report the in vivo antioxidative properties of the aromatic (harmane, harmine, harmol) and dihydro-beta-carbolines (harmaline and harmalol) studied by using Saccharomyces cerevisiae strains proficient and deficient in antioxidant defenses. Their antimutagenic activity was also assayed in S. cerevisiae and the antigenotoxicity was tested by the comet assay in V79 cell line, when both eukaryotic systems were exposed to H(2)O(2). We show that the alkaloids have a significant protective effect against H(2)O(2) and paraquat oxidative agents in yeast cells, and that their ability to scavenge hydroxyl radicals contributes to their antimutagenic and antigenotoxic effects.
Collapse
Affiliation(s)
- Dinara Jaqueline Moura
- Departamento de Biofísica/Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | | | | | | | | |
Collapse
|
41
|
Tieppo J, Vercelino R, Dias AS, Silva Vaz MF, Silveira TR, Marroni CA, Marroni NP, Henriques JAP, Picada JN. Evaluation of the protective effects of quercetin in the hepatopulmonary syndrome. Food Chem Toxicol 2007; 45:1140-6. [PMID: 17306429 DOI: 10.1016/j.fct.2006.12.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 12/18/2006] [Accepted: 12/25/2006] [Indexed: 11/21/2022]
Abstract
The hepatopulmonary syndrome (HPS) occurs when intrapulmonary dilatation causes hypoxemia in cirrhosis. The free radicals may play a significant contributory role in the progression of HPS, and flavonoid agents could protect against deleterious effects of free radicals. The flavonoid quercetin was evaluated in an experimental model of biliary cirrhosis induced by bile duct ligation (BDL) in rats. Quercetin was administered at 50mg/kg for 14 days to cirrhotic and non-cirrhotic rats. Bone marrow was extracted from animals to analyze micronuclei. Lung, liver and blood were extracted to detect DNA damage using the comet assay. The results showed that the micronuclei and DNA damages to lung and liver were increased in BDL rats. Quercetin caused no damage to the DNA while decreasing the occurrence of micronucleated cells in bone marrow as well as DNA damage to lung and liver in cirrhotic rats. Quercetin showed antimutagenic activity against hydroperoxides as evaluated by the oxidative stress sensitive bacterial strains TA102 Salmonella typhimurium and IC203 Escherichia coli, suggesting protection by free radical scavenging. In Saccharomyces cerevisie yeast strains lacking mitochondrial or cytosolic superoxide dismutase, these results indicate that quercetin protects cells by induction of antioxidant enzymes. The present study is the first report of genotoxic/antigenotoxic effects of quercetin in a model of animal cirrhosis. In this model, quercetin was not able to induce genotoxicity and, conversely, it increased the genomic stability in the cirrhotic rats, suggesting beneficial effects, probably by its antioxidant properties.
Collapse
Affiliation(s)
- J Tieppo
- Hospital de Clínicas de Porto Alegre, HCPA/Universidade Federal do Rio Grande do Sul, UFRGS, 90035-903, Laboratório de Hepatologia Experimental, Fisiologia, Ramiro Barcelos, 2350 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Moura DJ, Rorig C, Vieira DL, Henriques JAP, Roesler R, Saffi J, Boeira JM. Effects of β-carboline alkaloids on the object recognition task in mice. Life Sci 2006; 79:2099-104. [PMID: 16904699 DOI: 10.1016/j.lfs.2006.07.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 06/21/2006] [Accepted: 07/05/2006] [Indexed: 11/24/2022]
Abstract
beta-carboline alkaloids are found in several medicinal plants and display a variety of actions on the central nervous, muscular and cardiovascular systems. The aim of the present study was to evaluate the effects of systemic administration of beta-carboline alkaloids on object recognition in mice. Adult Swiss mice received an intra-peritoneal injection (i.p.) of alkaloids (1.0, 2.5 or 5.0 mg/kg) 30 min before training in an object recognition task. The fully aromatic beta-carbolines, harmine and harmol, induced an enhancement of short-term memory (STM) at all doses tested when compared to controls. Harmaline, a dihydro beta-carboline and inverse agonist of the MK-801 binding site on the N-methyl-d-aspartate (NMDA) receptor, also induced an enhancement of both short-term memory (STM) and long-term memory (LTM). These results demonstrate that systemic administration of beta-carboline alkaloids can improve object recognition memory in mice.
Collapse
Affiliation(s)
- Dinara Jaqueline Moura
- Departamento de Biofísica/Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
43
|
Chen Q, Chao R, Chen H, Hou X, Yan H, Zhou S, Peng W, Xu A. Antitumor and neurotoxic effects of novel harmine derivatives and structure-activity relationship analysis. Int J Cancer 2005; 114:675-82. [PMID: 15609303 DOI: 10.1002/ijc.20703] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Beta-carboline alkaloids such as harmine are present in medicinal plants such as Peganum harmala that have been used as folk medicine in anticancer therapy. In our study, 9 harmine derivatives (including harmine) were investigated for their antitumor effects and acute toxicities in mice, and the structure-activity relationship (SAR) was also analyzed. Administration of these compounds resulted in tumor inhibition rates of 15.3-49.5% in mice bearing Lewis Lung Cancer, sarcoma180 or HepA tumor, with the highest value of 49.5% from compound 6. Acute toxicity studies showed that all these compounds except compounds 2 and 5 caused remarkable acute neurotoxicities manifested by tremble, twitch and jumping. SAR analysis indicated that the formate substitution at R3 of the tricyclic skeleton reduced their neurotoxicity, while the short alkyl or aryl substitution at R9 increased the antitumor activity. The harmine and its derivatives resulted in in vitro cytotoxicity (IC50) values of 0.011-0.021 micromol/ml in HepG2 cells, with compound 8 being the most potent among all agents tested. Compounds 1, 6, 7 and 8 induced apoptosis in HepG2 cells, with the highest apoptotic rate (55.34%) from compound 6. Western blotting analysis demonstrated that compound 6 completely inhibited the expression of Bcl-2 gene, and compounds 1 and 8 produced a significant inhibition by 40 and 60%, respectively, compared to the control, while compound 7 did not alter the level of Bcl-2. Compounds 1, 6, 7 and 8 upregulated the expression of death receptor Fas by approximately 50-120%. All these findings indicate that compounds with both substitutions at R3 and R9 (such as compound 5) have high antitumor activity and low toxicity, which might be chosen as lead molecules for further development. Further studies on the effects of harmine derivatives on key regulators for tumor cell apoptosis are needed.
Collapse
Affiliation(s)
- Qi Chen
- Department of Biochemistry and Center for Biopharmaceutical Research, School of Life Sciences, Sun Yat-sen University, Guangzhou, Peoples Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lopes MILE, Saffi J, Echeverrigaray S, Henriques JAP, Salvador M. Mutagenic and antioxidant activities of Croton lechleri sap in biological systems. JOURNAL OF ETHNOPHARMACOLOGY 2004; 95:437-445. [PMID: 15507372 DOI: 10.1016/j.jep.2004.08.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 07/31/2004] [Accepted: 08/30/2004] [Indexed: 05/24/2023]
Abstract
The sap of Croton lechleri Muell.-Arg (Euphorbiaceae), called Dragon's blood, is used in folk medicine as a cicatrizant, anti-inflammatory and to treat cancer. In this research, the antioxidant activity of Croton lechleri sap was evaluated against the yeast Saccharomyces cerevisiae and against maize plantlets treated with the oxidative agents apomorphine and hydrogen peroxide. The mutagenic activity of the sap was also analyzed using the Salmonella/microsome assay (Salmonella typhimurium TA97a, TA98, TA100, TA102, TA1535) and in cells of the yeast Saccharomyces cerevisiae. The results showed that Croton lechleri sap possesses significant antioxidant activity against the oxidative damages induced by apomorphine in Saccharomyces cerevisiae under all the conditions studied. However, in the case of hydrogen peroxide, antioxidant activity of the sap was detected only in cells in the stationary phase of growth. The sap was also able to protect cells of the maize plantlets from the toxic effect of apomorphine. This sap showed mutagenic activity for strain TA1535 of Salmonella typhimurium in the presence of metabolic activation and a weak mutagenic activity for strain TA98. These strains detect base pair substitutions and frameshift mutations, respectively. Mutagenicity was also observed in a haploid Saccharomyces cerevisiae strain XV185-14c for the lys1-1, his1-7 locus-specific reversion and hom3-10 frameshift mutations.
Collapse
Affiliation(s)
- Maria Inez Lopes e Lopes
- Instituto de Biotecnologia da Universidade de Caxias do Sul (UCS), Rua Francisco Getúlio Vargas, 1130 Caxias do Sul, RS, Brazil
| | | | | | | | | |
Collapse
|
45
|
Abstract
The aromatic beta-carbolines norharman and harman have been implicated in a number of human diseases including Parkinson's disease, tremor, addiction and cancer. It has been shown that these compounds are normal body constituents formed endogenously but external sources have been identified. Here, we summarise literature data on levels of norharman and harman in fried meat and fish, meat extracts, alcoholic drinks, and coffee brews. Other sources include edible and medicinal plants but tobacco smoke has been identified as a major source. Exposure levels from these different dietary sources are estimated to a maximum of 4 microg norharman per kg body weight (bw) per day and 1 microg harman per kg bw per day. Exposure via tobacco smoke depends on smoking habits and type of cigarettes but can be estimated to 1.1 microg/kg bw for norharman and 0.6 microg/kg bw for harman per package of cigarettes smoked. Studies on toxicokinetics indicate that inhalative exposure leads to a rapid increase in plasma levels and high bioavailability of norharman and harman. Oral bioavailability is lower but there are indications that sublingual absorption may increase dietary uptake of beta-carbolines. Endogenous formation can be estimated to be 50-100 ng/kg bw per day for norharman and about 20 ng/kg bw per day for harman but these rates may increase with high intake of precursors. Biomarker studies on plasma levels of beta-carbolines reported on elevated levels of norharman, harman or both in diseased patients, alcoholics and following tobacco smoking or consumption of beta-carboline-containing food. Cigarette smoking has been identified as major influence but dietary exposure may contribute to exposure.
Collapse
Affiliation(s)
- W Pfau
- Umweltmedizin Hamburg eV and Institute of Experimental and Clinical Toxicology, Hamburg University, Vogt-Kölln-Strasse 30, 22527 Hamburg, Germany.
| | | |
Collapse
|
46
|
Di Giorgio C, Delmas F, Ollivier E, Elias R, Balansard G, Timon-David P. In vitro activity of the β-carboline alkaloids harmane, harmine, and harmaline toward parasites of the species Leishmania infantum. Exp Parasitol 2004; 106:67-74. [PMID: 15172213 DOI: 10.1016/j.exppara.2004.04.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2002] [Revised: 04/01/2004] [Accepted: 04/05/2004] [Indexed: 11/29/2022]
Abstract
Harmane, harmine, and harmaline were investigated for their in vitro antileishmanial activity toward parasites of the species Leishmania infantum. Harmane and Harmine displayed a moderate antiproliferative activity toward human monocytes and exerted a weak antileishmanial activity toward both the promastigote and the amastigote forms of the parasite. Their mechanism of action on the promastigote form of the parasite involved interactions with DNA metabolism leading to an accumulation of parasites in the S-G(2)M phases of the cell-cycle. Harmaline, at the contrary, was deprived from toxicity toward human cells and Leishmania promastigotes, however it exerted a strong antileishmanial activity toward the intracellular amastigote form of the parasite. This property was shown to partly result from the capacity of the molecule to prevent parasite internalization within macrophages by inhibiting Leishmania PKC activity.
Collapse
Affiliation(s)
- C Di Giorgio
- Laboratoire de Parasitologie, Hygiène et Zoologie Facultè de Pharmacie, 27 Bd. Jean Moulin, 13385 Marseille cedex 05, France.
| | | | | | | | | | | |
Collapse
|
47
|
Yu AM, Idle JR, Krausz KW, Küpfer A, Gonzalez FJ. Contribution of individual cytochrome P450 isozymes to the O-demethylation of the psychotropic beta-carboline alkaloids harmaline and harmine. J Pharmacol Exp Ther 2003; 305:315-22. [PMID: 12649384 DOI: 10.1124/jpet.102.047050] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The psychotropic beta-carboline alkaloids, showing high affinity for 5-hydroxytryptamine, dopamine, benzodiazepine, and imidazoline receptors and the stimulation of locus coeruleus neurons, are formed endogenously from tryptophan-derived indolealkylamines through the Pictet-Spengler condensation with aldehydes in both plants and mammals. Cytochromes P450 1A1 (18.5), 1A2 (20), and 2D6 (100) catalyzed the O-demethylation of harmaline, and CYP1A1 (98.5), CYP1A2 (35), CYP2C9 (16), CYP2C19 (30), and CYP2D6 (115) catalyzed that of harmine (relative activities). The dehydrogenation/aromatization of harmaline to harmine was not carried out by aromatase (CYP19), CYP1A2, CYP2C9, CYP2D6, CYP3A4, pooled recombinant cytochromes P450, or human liver microsomes (HLMs). Kinetic parameters were calculated for the O-demethylations mediated by each isozyme and by pooled HLMs. K(cat) (min(-1)) and K(m) Awake M) values for harmaline were: CYP1A1, 10.8 and 11.8; CYP1A2, 12.3 and 13.3; CYP2C9, 5.3 and 175; CYP2C19, 10.3 and 160; and CYP2D6, 39.9 and 1.4. Values for harmine were: CYP1A1, 45.2 and 52.2; CYP1A2, 9.2 and 14.7; CYP2C9, 11.9 and 117; CYP2C19, 21.4 and 121; and CYP2D6, 29.7 and 7.4. Inhibition studies using monoclonal antibodies confirmed that CYP1A2 and CYP2D6 were the major isozymes contributing to both harmaline (20% and 50%, respectively) and harmine (20% and 30%) O-demethylations in pooled HLMs. The turnover numbers for CYP2D6 are among the highest ever reported for a CYP2D6 substrate. Finally, CYP2D6-transgenic mice were found to have increased harmaline and harmine O-demethylase activities as compared with wild-type mice. These findings suggest a role for polymorphic CYP2D6 in the pharmacology and toxicology of harmine and harmaline.
Collapse
Affiliation(s)
- Ai-Ming Yu
- Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
48
|
Ancolio C, Azas N, Mahiou V, Ollivier E, Di Giorgio C, Keita A, Timon-David P, Balansard G. Antimalarial activity of extracts and alkaloids isolated from six plants used in traditional medicine in Mali and Sao Tome. Phytother Res 2002; 16:646-9. [PMID: 12410545 DOI: 10.1002/ptr.1025] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Methanol and chloroform extracts were prepared from various parts of four plants collected in Mali: Guiera senegalensis (Gmel.) Combretaceae, Feretia apodanthera (Del.) Rubiaceae, Combretum micranthum (Don.) Combretaceae, Securidaca longepedunculata (Fres.) Polygalaceae and two plants -collected in Sao Tome: Pycnanthus angolensis (Welw.) Myristicaceae and Morinda citrifolia (Benth.) Rubiaceae were assessed for their in vitro antimalarial activity and their cytotoxic effects on human monocytes (THP1 cells) by flow cytometry. The methanol extract of leaves of Feretia apodanthera and the chloroform extract of roots of Guiera senegalensis exhibited a pronounced antimalarial activity. Two alkaloids isolated from the active extract of Guiera senegalensis, harman and tetrahydroharman, showed antimalarial activity (IC(50) lower than 4 microg/mL) and displayed low toxicity against THP1. Moreover, the decrease of THP1 cells in S phase of the cell cycle, after treatment with harman and tetrahydroharman, was probably due to an inhibition of total protein synthesis.
Collapse
Affiliation(s)
- C Ancolio
- Laboratoire de Pharmacognosie, faculté de Pharmacie, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Boeira JM, Viana AF, Picada JN, Henriques JAP. Genotoxic and recombinogenic activities of the two beta-carboline alkaloids harman and harmine in Saccharomyces cerevisiae. Mutat Res 2002; 500:39-48. [PMID: 11890933 DOI: 10.1016/s0027-5107(01)00294-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The cytotoxical beta-carboline alkaloids harman and harmine occur in medical plants and in a variety of foods, alcoholic beverages, and industrial waste. We applied them to the yeast Saccharomyces cerevisiae to test for putative genotoxicity, mutagenicity and recombinogenicity and to determine whether harman and harmine produced repairable DNA damage. Harmine was more cytotoxic than harman for exponentially growing haploid and diploid cells. Only harmine-induced crossing-over and mitotic gene conversion but both alkaloids were frameshift mutagens in yeast. Mutants defective in excision-resynthesis repair (rad3 and rad1), in error-prone repair (rad6) and in recombinational repair (rad52) showed enhanced sensitivity to harmine and harman, but the ranking of sensitivities was different for the two alkaloids. It appears that both alkaloids are probably capable of inducing DNA single and/or double strand breaks. An epistatic interaction was shown between rad3-e5 and rad52-1 mutants alleles, indicating that excision-resynthesis and strand-break repair may have common steps in the repair of DNA damage induced by these alkaloids. The non-epistatic interaction observed in rad1Delta rad6Delta double mutants indicated that both excision-resynthesis and error-prone repair are independently involved in repair of harman- and harmine-induced DNA lesions.
Collapse
Affiliation(s)
- Jane Marlei Boeira
- Departamento de Biofísica e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Av. Bento Gonçalves 9500, Prédio 43421, Campus Do Vale, Caixa Postal 15005, CEP 91501-970, Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
50
|
Abstract
Threshold dose/concentration values, such as the lowest effective dose, minimum effective dose or the lowest effective concentration (LED, MED or LEC, respectively) are in use as an alternative to the mutagen potency measures based on the 'rate' measurements (e.g., the slope of the initial part of the dose-response curve). In this respect, several statistical procedures for the corresponding so-called 'dose finding' were proposed during the last decades. However, most of them disregard the discrete nature of responses such as the plate colony count in the Ames Salmonella assay. When the plate counts agree with the Poisson assumption, two procedures considered here seem to be appropriate for the dose finding. One is based on the stepwise collapsing of the homogeneous control and dose counts; another consists of constructing the confidence limits for the mutation induction factor (MIF). When the dose and control counts are non-overlapping, the simple 'visual' non-parametric estimation of LED is possible. Applicability and validity of the methods is demonstrated with the two data sets on the mutagenicity of the beta-carboline alkaloid, harmine, and one of the oxidation products of apomorphine.
Collapse
Affiliation(s)
- N N Khromov-Borisov
- Departamento de Biofísica e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil.
| | | | | |
Collapse
|