1
|
Ebrahim Soltani Z, Elahi M, Askari Rad M, Farsio S, Dehpour AR. "Niclosamide: A potential antipruritic agent by modulating serotonin pathway through metabotropic glutamate receptors (mGluRs)". Heliyon 2024; 10:e33050. [PMID: 38994087 PMCID: PMC11238049 DOI: 10.1016/j.heliyon.2024.e33050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Pruritus is an uncomfortable sensation induced by various pruritogens, including serotonin. Serotonin, acting as an inflammatory mediator, can activate a histamine-independent pathway. Consequently, many anti-pruritus medications, such as antihistamines, are not effective in adequately relieving patient symptoms. Niclosamide, an anthelmintic drug, has recently demonstrated an affinity for Metabotropic glutamate receptors (mGluRs). mGluRs are a group of receptors activated by glutamate, and they are involved in regulating neuronal excitability. In this study, we utilized mouse models of serotonergic itch and administered different doses of Niclosamide to examine the expression of mGluR1, mGluR5, and 5-HT2. The administration of 5 mg/kg Niclosamide successfully suppressed pruritus in the mice. Additionally, the levels of mGluR1, mGluR5, 5-HT2, and TRPV1 were significantly reduced. These findings suggest that Niclosamide holds promise as a potential antipruritic drug.
Collapse
Affiliation(s)
- Zahra Ebrahim Soltani
- Experimental Medicine Research Center, Tehran University Medical Science, Tehran, Iran
| | - Mohammad Elahi
- Center for Orthopedic Trans-disciplinary Applied Research, Tehran University of Medical Science, Tehran, Iran
| | - Maziyar Askari Rad
- Pain Research Center, Neuroscience Institute, Imam Khomeini Hospital Complex, School of Medicine, Tehran University Medical Science, Tehran, Iran
| | - Sara Farsio
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University Medical Science, Tehran, Iran
| |
Collapse
|
2
|
Galambos AR, Papp ZT, Boldizsár I, Zádor F, Köles L, Harsing LG, Al-Khrasani M. Glycine Transporter 1 Inhibitors: Predictions on Their Possible Mechanisms in the Development of Opioid Analgesic Tolerance. Biomedicines 2024; 12:421. [PMID: 38398023 PMCID: PMC10886540 DOI: 10.3390/biomedicines12020421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
The development of opioid tolerance in patients on long-term opioid analgesic treatment is an unsolved matter in clinical practice thus far. Dose escalation is required to restore analgesic efficacy, but at the price of side effects. Intensive research is ongoing to elucidate the underlying mechanisms of opioid analgesic tolerance in the hope of maintaining opioid analgesic efficacy. N-Methyl-D-aspartate receptor (NMDAR) antagonists have shown promising effects regarding opioid analgesic tolerance; however, their use is limited by side effects (memory dysfunction). Nevertheless, the GluN2B receptor remains a future target for the discovery of drugs to restore opioid efficacy. Mechanistically, the long-term activation of µ-opioid receptors (MORs) initiates receptor phosphorylation, which triggers β-arrestin-MAPKs and NOS-GC-PKG pathway activation, which ultimately ends with GluN2B receptor overactivation and glutamate release. The presence of glutamate and glycine as co-agonists is a prerequisite for GluN2B receptor activation. The extrasynaptic localization of the GluN2B receptor means it is influenced by the glycine level, which is regulated by astrocytic glycine transporter 1 (GlyT1). Enhanced astrocytic glycine release by reverse transporter mechanisms as a consequence of high glutamate levels or unconventional MOR activation on astrocytes could further activate the GluN2B receptor. GlyT1 inhibitors might inhibit this condition, thereby reducing opioid tolerance.
Collapse
Affiliation(s)
- Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| | - Zsolt Tamás Papp
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| | - Imre Boldizsár
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| | - Ferenc Zádor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| | - László Köles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary;
| | - Laszlo G. Harsing
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvá-rad tér 4, H-1445 Budapest, Hungary; (A.R.G.); (Z.T.P.); (I.B.); (F.Z.)
| |
Collapse
|
3
|
Xie RG, Xu GY, Wu SX, Luo C. Presynaptic glutamate receptors in nociception. Pharmacol Ther 2023; 251:108539. [PMID: 37783347 DOI: 10.1016/j.pharmthera.2023.108539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/19/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Chronic pain is a frequent, distressing and poorly understood health problem. Plasticity of synaptic transmission in the nociceptive pathways after inflammation or injury is assumed to be an important cellular basis for chronic, pathological pain. Glutamate serves as the main excitatory neurotransmitter at key synapses in the somatosensory nociceptive pathways, in which it acts on both ionotropic and metabotropic glutamate receptors. Although conventionally postsynaptic, compelling anatomical and physiological evidence demonstrates the presence of presynaptic glutamate receptors in the nociceptive pathways. Presynaptic glutamate receptors play crucial roles in nociceptive synaptic transmission and plasticity. They modulate presynaptic neurotransmitter release and synaptic plasticity, which in turn regulates pain sensitization. In this review, we summarize the latest understanding of the expression of presynaptic glutamate receptors in the nociceptive pathways, and how they contribute to nociceptive information processing and pain hypersensitivity associated with inflammation / injury. We uncover the cellular and molecular mechanisms of presynaptic glutamate receptors in shaping synaptic transmission and plasticity to mediate pain chronicity, which may provide therapeutic approaches for treatment of chronic pain.
Collapse
Affiliation(s)
- Rou-Gang Xie
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Sheng-Xi Wu
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| | - Ceng Luo
- Department of Neurobiology, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
4
|
Kinetic fingerprinting of metabotropic glutamate receptors. Commun Biol 2023; 6:104. [PMID: 36707695 PMCID: PMC9883448 DOI: 10.1038/s42003-023-04468-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Dimeric metabotropic glutamate receptors (mGluRs) are abundantly expressed in neurons. In mammals, eight subunit isoforms, mGluR1-8, have been identified, forming the groups I, II, and III. We investigated receptor dimerization and kinetics of these mGluR isoforms in excised membrane patches by FRET and confocal patch-clamp fluorometry. We show that 5 out of 8 homodimeric receptors develop characteristic glutamate-induced on- and off-kinetics, as do 11 out of 28 heterodimers. Glutamate-responsive heterodimers were identified within each group, between groups I and II as well as between groups II and III, but not between groups I and III. The glutamate-responsive heterodimers showed heterogeneous activation and deactivation kinetics. Interestingly, mGluR7, not generating a kinetic response in homodimers, showed fast on-kinetics in mGluR2/7 and mGluR3/7 while off-kinetics retained the speed of mGluR2 or mGluR3 respectively. In conclusion, glutamate-induced conformational changes in heterodimers appear within each group and between groups if one group II subunit is present.
Collapse
|
5
|
Mroczek M, Iyadurai S. Neuromuscular and Neuromuscular Junction Manifestations of the PURA-NDD: A Systematic Review of the Reported Symptoms and Potential Treatment Options. Int J Mol Sci 2023; 24:2260. [PMID: 36768582 PMCID: PMC9917016 DOI: 10.3390/ijms24032260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
PURA-related neurodevelopmental disorders (PURA-NDDs) are a rare genetic disease caused by pathogenic autosomal dominant variants in the PURA gene or a deletion encompassing the PURA gene. PURA-NDD is clinically characterized by neurodevelopmental delay, learning disability, neonatal hypotonia, feeding difficulties, abnormal movements, and epilepsy. It is generally considered to be central nervous system disorders, with generalized weakness, associated hypotonia, cognitive and development deficits in early development, and seizures in late stages. Although it is classified predominantly as a central nervous syndrome disorder, some phenotypic features, such as myopathic facies, respiratory insufficiency of muscle origin, and myopathic features on muscle biopsy and electrodiagnostic evaluation, point to a peripheral (neuromuscular) source of weakness. Patients with PURA-NDD have been increasingly identified in exome-sequenced cohorts of patients with neuromuscular- and congenital myasthenic syndrome-like phenotypes. Recently, fluctuating weakness noted in a PURA-NDD patient, accompanied by repetitive nerve stimulation abnormalities, suggested the disease to be a channelopathy and, more specifically, a neuromuscular junction disorder. Treatment with pyridostigmine or salbutamol led to clinical improvement of neuromuscular function in two reported cases. The goal of this systematic retrospective review is to highlight the motor symptoms of PURA-NDD, to further describe the neuromuscular phenotype, and to emphasize the role of potential treatment opportunities of the neuromuscular phenotype in the setting of the potential role of PURA protein in the neuromuscular junction and the muscles.
Collapse
Affiliation(s)
- Magdalena Mroczek
- Center for Cardiovascular Genetics & Gene Diagnostics, Foundation for People with Rare Diseases, 8952 Schlieren, Switzerland
| | - Stanley Iyadurai
- Division of Neurology, Johns Hopkins All Children’s Hospital, 501 6th Ave S, St. Petersburg, FL 33701, USA
| |
Collapse
|
6
|
Mazzitelli M, Presto P, Antenucci N, Meltan S, Neugebauer V. Recent Advances in the Modulation of Pain by the Metabotropic Glutamate Receptors. Cells 2022; 11:2608. [PMID: 36010684 PMCID: PMC9406805 DOI: 10.3390/cells11162608] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 01/22/2023] Open
Abstract
Metabotropic glutamate receptors (mGluR or mGlu) are G-protein coupled receptors activated by the binding of glutamate, the main classical neurotransmitter of the nervous system. Eight different mGluR subtypes (mGluR1-8) have been cloned and are classified in three groups based on their molecular, pharmacological and signaling properties. mGluRs mediate several physiological functions such as neuronal excitability and synaptic plasticity, but they have also been implicated in numerous pathological conditions including pain. The availability of new and more selective allosteric modulators together with the canonical orthosteric ligands and transgenic technologies has led to significant advances in our knowledge about the role of the specific mGluR subtypes in the pathophysiological mechanisms of various diseases. Although development of successful compounds acting on mGluRs for clinical use has been scarce, the subtype-specific-pharmacological manipulation might be a compelling approach for the treatment of several disorders in humans, including pain; this review aims to summarize and update on preclinical evidence for the roles of different mGluRs in the pain system and discusses knowledge gaps regarding mGluR-related sex differences and neuroimmune signaling in pain.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Shakira Meltan
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
7
|
Wistrom E, Chase R, Smith PR, Campbell ZT. A compendium of validated pain genes. WIREs Mech Dis 2022; 14:e1570. [PMID: 35760453 PMCID: PMC9787016 DOI: 10.1002/wsbm.1570] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 12/30/2022]
Abstract
The development of novel pain therapeutics hinges on the identification and rigorous validation of potential targets. Model organisms provide a means to test the involvement of specific genes and regulatory elements in pain. Here we provide a list of genes linked to pain-associated behaviors. We capitalize on results spanning over three decades to identify a set of 242 genes. They support a remarkable diversity of functions spanning action potential propagation, immune response, GPCR signaling, enzymatic catalysis, nucleic acid regulation, and intercellular signaling. Making use of existing tissue and single-cell high-throughput RNA sequencing datasets, we examine their patterns of expression. For each gene class, we discuss archetypal members, with an emphasis on opportunities for additional experimentation. Finally, we discuss how powerful and increasingly ubiquitous forward genetic screening approaches could be used to improve our ability to identify pain genes. This article is categorized under: Neurological Diseases > Genetics/Genomics/Epigenetics Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Eric Wistrom
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Rebecca Chase
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Patrick R. Smith
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA
| | - Zachary T. Campbell
- Department of Biological SciencesUniversity of Texas at DallasRichardsonTexasUSA,Center for Advanced Pain StudiesUniversity of Texas at DallasRichardsonTexasUSA
| |
Collapse
|
8
|
Abstract
INTRODUCTION Migraine is a common and disabling neurological disorder. A greater understanding of the pathophysiological mechanisms underlying migraine has led to the availability of specific new drugs targeting calcitonin gene-related peptide (CGRP). The success of the CGRP inhibitors validates research efforts into migraine-specific therapies. AREAS COVERED There are additional promising therapeutic targets that will be covered in this paper, focusing on the pain phase. They include pituitary adenylate cyclase-activating polypeptide (PACAP), the orexinergic system, the nitric oxide signaling pathway specifically neuronal nitric oxide synthase inhibitors (nNOSi), and metabotropic glutamate receptor 5 (mGluR5). EXPERT OPINION Based on currently available research; the targets discussed in this paper are all on equal footing with each other in terms of their potential as effective novel migraine therapies. There is a need for more clinical trials to pinpoint which of these potential drug targets will be effective for migraine preventio.
Collapse
Affiliation(s)
- Oyindamola Ogunlaja
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College, London, UK
| | - Nazia Karsan
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College, London, UK
| | - Peter Goadsby
- NIHR-Wellcome Trust King's Clinical Research Facility, King's College, London, UK.,Department of Neurology, University of California, Los Angeles, CA, USA
| |
Collapse
|
9
|
NFAT5 Deficiency Alleviates Formalin-Induced Inflammatory Pain Through mTOR. Int J Mol Sci 2021; 22:ijms22052587. [PMID: 33806698 PMCID: PMC7961436 DOI: 10.3390/ijms22052587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 01/13/2023] Open
Abstract
Nuclear factor of activated T cells (NFAT5) is a well-known transcription factor that regulates the expression of genes involved in osmotic stress. However, the role of NFAT5 in inflammatory pain remains unknown. Here, we studied the function of NFAT5 in inflammatory pain using NFAT5-heterozygous (Het) mice. To study inflammatory pain, we injected 10 µL of 2% formalin into the right hind paws of mice and monitored pain behaviors, such as licking, lifting, and flinching, for 60 min. After the first 15 min (phase I), there were no significant differences in pain behaviors between wild-type (WT) and NFAT5-Het mice. However, from 15–60 min (phase II), NFAT5-Het mice displayed significantly fewer pain behaviors compared to WT mice. Further, the expression levels of inflammatory-pain-related factors, including c-Fos, phosphorylated extracellular signal-regulated kinase (p-ERK), and phosphorylated n-methyl-D-aspartate receptor subunit 2B (p-NR2B), were significantly elevated in the spinal dorsal neurons of formalin-treated WT mice but was not elevated in NFAT5-Het mice. Similarly, c-Fos, p-ERK, and p-NR2B levels were significantly higher in glutamate-treated PC12 neuronal cells but were not affected by Nfat5 silencing in glutamate-treated PC12 cells. Altogether, our findings suggest that NFAT5 deficiency may mitigate formalin-induced inflammatory pain by upregulating mammalian target of rapamycin (mTOR) expression and downregulating its downstream factors in spinal dorsal neurons. Therefore, NFAT5 is a potential therapeutic target for the treatment of inflammatory pain.
Collapse
|
10
|
Zhu YF, Linher-Melville K, Wu J, Fazzari J, Miladinovic T, Ungard R, Zhu KL, Singh G. Bone cancer-induced pain is associated with glutamate signalling in peripheral sensory neurons. Mol Pain 2021; 16:1744806920911536. [PMID: 32133928 PMCID: PMC7059229 DOI: 10.1177/1744806920911536] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We previously identified that several cancer cell lines known to induce
nociception in mouse models release glutamate in vitro. Although the mechanisms
of glutamatergic signalling have been characterized primarily in the central
nervous system, its importance in the peripheral nervous system has been
recognized in various pathologies, including cancer pain. We therefore
investigated the effect of glutamate on intracellular electrophysiological
characteristics of peripheral sensory neurons in an immunocompetent rat model of
cancer-induced pain based on surgical implantation of mammary rat metastasis
tumour-1 cells into the distal epiphysis of the right femur. Behavioural
evidence of nociception was detected using von Frey tactile assessment. Activity
of sensory neurons was measured by intracellular electrophysiological recordings
in vivo. Glutamate receptor expression at the mRNA level in relevant dorsal root
ganglia was determined by reverse transcription polymerase chain reaction using
rat-specific primers. Nociceptive and non-nociceptive mechanoreceptor neurons
exhibiting changes in neural firing patterns associated with increased
nociception due to the presence of a bone tumour rapidly responded to
sulphasalazine injection, an agent that pharmacologically blocks non-vesicular
glutamate release by inhibiting the activity of the system
xC− antiporter. In addition, both types of
mechanoreceptor neurons demonstrated excitation in response to intramuscular
glutamate injection near the femoral head, which corresponds to the location of
cancer cell injection to induce the bone cancer-induced pain model. Therefore,
glutamatergic signalling contributes to cancer pain and may be a factor in
peripheral sensitization and induced tactile hypersensitivity associated with
bone cancer-induced pain.
Collapse
Affiliation(s)
- Yong Fang Zhu
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Katja Linher-Melville
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jianhan Wu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jennifer Fazzari
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Tanya Miladinovic
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Robert Ungard
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Kan Lun Zhu
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Gurmit Singh
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
11
|
The metabotropic glutamate receptor 5 negative allosteric modulator fenobam: pharmacokinetics, side effects, and analgesic effects in healthy human subjects. Pain 2021; 161:135-146. [PMID: 31568235 DOI: 10.1097/j.pain.0000000000001695] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Metabotropic glutamate receptor 5 (mGlu5) has been shown to modulate nociception in animals, but no mGlu5 antagonists have been developed commercially as analgesics. The mGlu5 antagonist fenobam [N-(3-chlorophenyl)-N'-(4,5-dihydro-1-methyl-4-oxo-1H-imidazole-2-yl)urea] was originally evaluated for development as a nonbenzodiazepine anxiolytic. Fenobam is analgesic in numerous mouse pain models, acting exclusively through mGlu5 blockade. Furthermore, fenobam showed no signs of analgesic tolerance with up to 2 weeks of daily dosing in mice. Analgesic effects of fenobam in humans have not been reported. The purpose of this investigation was to evaluate fenobam pharmacokinetics and analgesic effects in humans. We first evaluated single-dose oral fenobam disposition in a parallel-group dose-escalation study in healthy volunteers. A second investigation tested the analgesic effects of fenobam in an established experimental human pain model of cutaneous sensitization using capsaicin cream and heat, in a double-blind placebo-controlled study. The primary outcome measure was the area of hyperalgesia and allodynia around the area applied with heat/capsaicin. Secondary outcome measures included nociception, measured as pain rating on a visual analog scale, heat pain detection threshold, and effects on cognition and mood. Fenobam plasma exposures showed considerable interindividual variability and were not linear with dose. Fenobam reduced sensitization vs placebo at a single timepoint (peak plasma concentration); we found no other difference between fenobam and placebo. Our results suggest highly variable fenobam disposition and minimal analgesic effects at the dose tested. We suggest that future studies testing analgesic effects of mGlu5 blockade are warranted, but such studies should use molecules with improved pharmacokinetic profiles.
Collapse
|
12
|
Niu Y, Zeng X, Qin G, Zhang D, Zhou J, Chen L. Downregulation of metabotropic glutamate receptor 5 alleviates central sensitization by activating autophagy via inhibiting mTOR pathway in a rat model of chronic migraine. Neurosci Lett 2020; 743:135552. [PMID: 33352285 DOI: 10.1016/j.neulet.2020.135552] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
Central sensitization is one of the important pathological mechanisms of chronic migraine (CM). Metabolic glutamate receptor 5 (mGluR5) mediates pain by activating various intracellular pathways. However, whether mGluR5 contributes to central sensitization in CM and the exact mechanism remains unclear. Male rats were used to establish a CM model by repeated infusions of inflammatory soup (IS) for 7 days to stimulate the activation of the dural nociceptor. The mechanical and thermal thresholds were used to evaluate allodynia, and central sensitization was assessed by measuring calcitonin gene-related peptide (CGRP) and substance P (SP). Microtubule associated protein 1 light chain 3 (LC3) and p62/SQSTM1 were used to assess autophagy. We found that the expression of mGluR5 in the trigeminal nucleus caudalis (TNC) of CM rats was significantly increased. In addition, the downregulation of mGluR5 activated autophagy by inhibiting the mTOR pathway. Moreover, the activation of autophagy alleviated allodynia and central sensitization in CM rats. This study identified a novel strategy for the treatment of CM; the downregulation of mGluR5 in a rat model of CM decreased the expression of the inflammatory factor interleukin-1 beta (IL-1β) and the central sensitization-associated proteins CGRP and SP by activating autophagy via inhibiting the mTOR pathway.
Collapse
Affiliation(s)
- Yingying Niu
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoxu Zeng
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangcheng Qin
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dunke Zhang
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiying Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lixue Chen
- Laboratory Research Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
13
|
Abstract
Pain is an essential protective mechanism that the body uses to alert or prevent further damage. Pain sensation is a complex event involving perception, transmission, processing, and response. Neurons at different levels (peripheral, spinal cord, and brain) are responsible for these pro- or antinociceptive activities to ensure an appropriate response to external stimuli. The terminals of these neurons, both in the peripheral endings and in the synapses, are equipped with G protein-coupled receptors (GPCRs), voltage- and ligand-gated ion channels that sense structurally diverse stimuli and inhibitors of neuronal activity. This review will focus on the largest class of sensory proteins, the GPCRs, as they are distributed throughout ascending and descending neurons and regulate activity at each step during pain transmission. GPCR activation also directly or indirectly controls the function of co-localized ion channels. The levels and types of some GPCRs are significantly altered in different pain models, especially chronic pain states, emphasizing that these molecules could be new targets for therapeutic intervention in chronic pain.
Collapse
Affiliation(s)
- Tao Che
- Department of Anesthesiology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, United States.,Center for Clinical Pharmacology, St. Louis College of Pharmacology and Washington University in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
14
|
Wang S, Du J, Shao F, Wang W, Sun H, Shao X, Liang Y, Liu B, Fang J, Fang J. Electroacupuncture Regulates Pain Transition by Inhibiting the mGluR5-PKCε Signaling Pathway in the Dorsal Root Ganglia. J Pain Res 2020; 13:1471-1483. [PMID: 32606913 PMCID: PMC7311359 DOI: 10.2147/jpr.s251948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
Background Acute pain can transition to chronic pain, presenting a major clinical challenge. Electroacupuncture (EA) can partly prevent the transition from acute to chronic pain. However, little is known about the mechanisms underlying the effect of EA. This study investigated the effect of EA on pain transition and the activation of metabotropic glutamate receptor 5 (mGluR5)–protein kinase C epsilon (PKCε) signaling pathway in the dorsal root ganglia (DRG). Methods The hyperalgesic priming model was established by the sequential intraplantar injection of carrageenan (1%, 100 μL) and prostaglandin E2 (PGE2) into the left hind paw of rats. EA treatment (2/100 Hz, 30 min, once/day) was applied at bilateral Zusanli (ST36) and Kunlun (BL60) acupoints in rats. Von Frey filaments were used to investigate the mechanical withdrawal threshold (MWT) at different time points. The protein expression levels of mGluR5 and PKCε in the ipsilateral L4-L6 DRGs of rats were detected by Western blot. Some pharmacological experiments were performed to evaluate the relationship between mGluR5, PKCε and the MWT. It was also used to test the effects of EA on the expression levels of mGluR5 and PKCε and changes in the MWT. Results Sequential injection of carrageenan and PGE2 significantly decreased the MWT of rats and up-regulated the expression level of mGluR5 and PKCε in the ipsilateral L4-L6 DRGs. EA can reverse the hyperalgesic priming induced by sequential injection of carrageenan/PGE and down-regulate the protein expression of mGluR5 and PKCε. Glutamate injection instead of PGE2 can mimic the hyperalgesic priming model. Pharmacological blocking of mGluR5 with specific antagonist MTEP can prevent the hyperalgesic priming and inhibit the activation of PKCε in DRGs. Furthermore, EA also produced analgesic effect on the hyperalgesic priming rats induced by carrageenan/mGluR5 injection and inhibited the high expression of PKCε. Sham EA produced none analgesic and regulatory effect. Conclusion EA can regulate pain transition and it may relate with its inhibitory effect on the activation of mGluR5-PKCε signaling pathway in the DRGs.
Collapse
Affiliation(s)
- Sisi Wang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, People's Republic of China
| | - Junying Du
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, People's Republic of China
| | - Fangbing Shao
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, People's Republic of China
| | - Wen Wang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, People's Republic of China
| | - Haiju Sun
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, People's Republic of China
| | - Xiaomei Shao
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, People's Republic of China
| | - Yi Liang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, People's Republic of China
| | - Boyi Liu
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, People's Republic of China
| | - Jianqiao Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, People's Republic of China
| | - Junfan Fang
- Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou 310053, People's Republic of China
| |
Collapse
|
15
|
Luo L, Huang M, Zhang Y, Wang W, Ma X, Shi H, Worley PF, Kim DK, Fedorovich SV, Jiang W, Xu T. Disabling phosphorylation at the homer ligand of the metabotropic glutamate receptor 5 alleviates complete Freund's adjuvant-induced inflammatory pain. Neuropharmacology 2020; 170:108046. [DOI: 10.1016/j.neuropharm.2020.108046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 02/23/2020] [Accepted: 03/06/2020] [Indexed: 10/24/2022]
|
16
|
Abstract
In the peripheral nervous system, the vast majority of axons are accommodated within the fibre bundles that constitute the peripheral nerves. Axons within the nerves are in close contact with myelinating glia, the Schwann cells that are ideally placed to respond to, and possibly shape, axonal activity. The mechanisms of intercellular communication in the peripheral nerves may involve direct contact between the cells, as well as signalling via diffusible substances. Neurotransmitter glutamate has been proposed as a candidate extracellular molecule mediating the cross-talk between cells in the peripheral nerves. Two types of experimental findings support this idea: first, glutamate has been detected in the nerves and can be released upon electrical or chemical stimulation of the nerves; second, axons and Schwann cells in the peripheral nerves express glutamate receptors. Yet, the studies providing direct experimental evidence that intercellular glutamatergic signalling takes place in the peripheral nerves during physiological or pathological conditions are largely missing. Remarkably, in the central nervous system, axons and myelinating glia are involved in glutamatergic signalling. This signalling occurs via different mechanisms, the most intriguing of which is fast synaptic communication between axons and oligodendrocyte precursor cells. Glutamate receptors and/or synaptic axon-glia signalling are involved in regulation of proliferation, migration, and differentiation of oligodendrocyte precursor cells, survival of oligodendrocytes, and re-myelination of axons after damage. Does synaptic signalling exist between axons and Schwann cells in the peripheral nerves? What is the functional role of glutamate receptors in the peripheral nerves? Is activation of glutamate receptors in the nerves beneficial or harmful during diseases? In this review, we summarise the limited information regarding glutamate release and glutamate receptors in the peripheral nerves and speculate about possible mechanisms of glutamatergic signalling in the nerves. We highlight the necessity of further research on this topic because it should help to understand the mechanisms of peripheral nervous system development and nerve regeneration during diseases.
Collapse
Affiliation(s)
- Ting-Jiun Chen
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Centre, Washington, DC, USA
| | - Maria Kukley
- Group of Neuron Glia Interaction, University of Tübingen; Research Institute of Ophthalmology, Tübingen University Hospital, Tübingen, Germany
| |
Collapse
|
17
|
Ferreira RS, Dos Santos NAG, Bernardes CP, Sisti FM, Amaral L, Fontana ACK, Dos Santos AC. Caffeic Acid Phenethyl Ester (CAPE) Protects PC12 Cells Against Cisplatin-Induced Neurotoxicity by Activating the AMPK/SIRT1, MAPK/Erk, and PI3k/Akt Signaling Pathways. Neurotox Res 2019; 36:175-192. [PMID: 31016689 DOI: 10.1007/s12640-019-00042-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 01/01/2023]
Abstract
Peripheral sensory neuropathy (PSN) is a well-known side effect of cisplatin characterized by axonal damage. In the early stage of neurotoxicity, cisplatin affects proteins that modulate neurite outgrowth and neuroplasticity, without inducing mitochondrial damage or apoptosis. There are no preventive therapies for cisplatin-induced peripheral neuropathy; therefore, measures to improve axonal growth and connectivity would be beneficial. Caffeic acid phenethyl ester (CAPE) is a bioactive component of propolis with neurotrophic and neuroprotective activities. We have recently showed that CAPE protects against cisplatin-induced neurotoxicity by activating NGF high-affinity receptors (trkA) and inducing neuroplasticity. We have now assessed other potential early targets of cisplatin and additional mechanisms involved in the neuroprotection of CAPE. Cisplatin reduced axonal cytoskeletal proteins (F-actin and β-III-tubulin) without inducing oxidative damage in PC12 cells. It also reduced energy-related proteins (AMPK α, p-AMPK α, and SIRT1) and glucose uptake. At this stage of neurotoxicity, glutamate excitotoxicity is not involved in the toxicity of cisplatin. CAPE attenuated the downregulation of the cytoskeleton and energy-related markers as well as SIRT1 and phosphorylated AMPK α. Moreover, the neuroprotective mechanism of CAPE also involves the activation of the neurotrophic signaling pathways MAPK/Erk and PI3k/Akt. The PI3K/Akt pathway is involved in the upregulation of SIRT1 induced by CAPE, but not in the upregulation of cytoskeletal proteins. Altogether, these findings suggest that the neuroprotective effect of CAPE against cisplatin-induced neurotoxicity involves both (a) a neurotrophic mechanism that mimics the mechanism triggered by the NGF itself and (b) a non-neurotrophic mechanism that upregulates the cytoskeletal proteins.
Collapse
Affiliation(s)
- Rafaela Scalco Ferreira
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Neife Aparecida Guinaim Dos Santos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carolina P Bernardes
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Flávia Malvestio Sisti
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lilian Amaral
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Andreia C K Fontana
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Antonio Cardozo Dos Santos
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
18
|
Pereira V, Goudet C. Emerging Trends in Pain Modulation by Metabotropic Glutamate Receptors. Front Mol Neurosci 2019; 11:464. [PMID: 30662395 PMCID: PMC6328474 DOI: 10.3389/fnmol.2018.00464] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Pain is an essential protective mechanism meant to prevent tissue damages in organisms. On the other hand, chronic or persistent pain caused, for example, by inflammation or nerve injury is long lasting and responsible for long-term disability in patients. Therefore, chronic pain and its management represents a major public health problem. Hence, it is critical to better understand chronic pain molecular mechanisms to develop innovative and efficient drugs. Over the past decades, accumulating evidence has demonstrated a pivotal role of glutamate in pain sensation and transmission, supporting glutamate receptors as promising potential targets for pain relieving drug development. Glutamate is the most abundant excitatory neurotransmitter in the brain. Once released into the synapse, glutamate acts through ionotropic glutamate receptors (iGluRs), which are ligand-gated ion channels triggering fast excitatory neurotransmission, and metabotropic glutamate receptors (mGluRs), which are G protein-coupled receptors modulating synaptic transmission. Eight mGluRs subtypes have been identified and are divided into three classes based on their sequence similarities and their pharmacological and biochemical properties. Of note, all mGluR subtypes (except mGlu6 receptor) are expressed within the nociceptive pathways where they modulate pain transmission. This review will address the role of mGluRs in acute and persistent pain processing and emerging pharmacotherapies for pain management.
Collapse
Affiliation(s)
- Vanessa Pereira
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, France
| | - Cyril Goudet
- IGF, CNRS, INSERM, Univ. de Montpellier, Montpellier, France
| |
Collapse
|
19
|
Radwani H, Roca-Lapirot O, Aby F, Lopez-Gonzalez MJ, Benazzouz R, Errami M, Favereaux A, Landry M, Fossat P. Group I metabotropic glutamate receptor plasticity after peripheral inflammation alters nociceptive transmission in the dorsal of the spinal cord in adult rats. Mol Pain 2018; 13:1744806917737934. [PMID: 29020860 PMCID: PMC5661751 DOI: 10.1177/1744806917737934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract The dorsal horn of the spinal cord is a crucial site for pain transmission and modulation. Dorsal horn neurons of the spinal cord express group I metabotropic glutamate receptors (group I mGluRs) that exert a complex role in nociceptive transmission. In particular, group I mGluRs promote the activation of L-type calcium channels, voltage-gated channels involved in short- and long-term sensitization to pain. In this study, we analyzed the role of group I mGluRs in spinal nociceptive transmission and the possible cooperation between these receptors and L-type calcium channels in the pathophysiology of pain transmission in the dorsal horn of the spinal cord. We demonstrate that the activation of group I mGluRs induces allodynia and L-type calcium channel-dependent increase in nociceptive field potentials following sciatic nerve stimulation. Surprisingly, in a model of persistent inflammation induced by complete Freund’s adjuvant, the activation of group I mGluRs induced an analgesia and a decrease in nociceptive field potentials. Among the group I mGluRs, mGluR1 promotes the activation of L-type calcium channels and increased nociceptive transmission while mGluR5 induces the opposite through the inhibitory network. These results suggest a functional switch exists in pathological conditions that can change the action of group I mGluR agonists into possible analgesic molecules, thereby suggesting new therapeutic perspectives to treat persistent pain in inflammatory settings.
Collapse
Affiliation(s)
- Houda Radwani
- Interdisciplinary institute for neuroscience (IINS), CNRS, UMR5297. Bordeaux. France
| | - Olivier Roca-Lapirot
- Interdisciplinary institute for neuroscience (IINS), CNRS, UMR5297. Bordeaux. France
| | - Franck Aby
- Interdisciplinary institute for neuroscience (IINS), CNRS, UMR5297. Bordeaux. France
| | | | - Rabia Benazzouz
- Interdisciplinary institute for neuroscience (IINS), CNRS, UMR5297. Bordeaux. France
| | - Mohammed Errami
- University of Abdelmalek Essaâdi, Faculty of Sciences, Laboratory: ''Physiology and Physiopathology''. Tetouan, Morocco
| | - Alexandre Favereaux
- Interdisciplinary institute for neuroscience (IINS), CNRS, UMR5297. Bordeaux. France
| | - Marc Landry
- Interdisciplinary institute for neuroscience (IINS), CNRS, UMR5297. Bordeaux. France
| | | |
Collapse
|
20
|
Serum response factor mediates nociceptor inflammatory pain plasticity. Pain Rep 2018; 3:e658. [PMID: 29922747 PMCID: PMC5999410 DOI: 10.1097/pr9.0000000000000658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/04/2018] [Accepted: 04/08/2018] [Indexed: 01/09/2023] Open
Abstract
Supplemental Digital Content is Available in the Text. Serum response factor upregulates A-Kinase Anchoring Protein 79/150 expression in afferent sensory neurons through metabotropic glutamate receptor signaling. Introduction: Chronic metabotropic glutamate receptor activation in nociceptive afferents may upregulate A-Kinase Anchoring Protein 150 (AKAP150) expression and/or function. Objectives: To quantify transcriptional changes in AKAP150 expression and/or function after long-term mGluR5 agonist exposure, and identify transcriptional elements responsible. Methods: Dorsal root ganglia (DRG) were dissected from Sprague-Dawley rats and cultured for biochemical analysis of AKAP150 expression after prolonged mGluR5 agonist exposure. Serum response factor (SRF) expression was knocked down through siRNA in cultures to demonstrate significance to AKAP150 upregulation. Serum response factor was also knocked down in vivo through intrathecal injections of specifically targeted oligonucleotides to demonstrate significance to hyperalgesic priming behavior in persistent mechanical hypersensitivity. Results: Serum response factor and AKAP150 are coexpressed in TRPV1(+) DRG neurons in intact DRG. Prolonged mGluR5 agonist exposure increases SRF-dependent transcription and AKAP150 expression in a manner sensitive to protein kinase C inhibition and SRF knock down. Serum response factor in vivo knock down reduces mechanical hyperalgesic priming. Conclusion: Serum response factor transcription plays an important role in transcriptional upregulation of AKAP and hyperalgesic priming behavior, and may contribute to the increased role of AKAP150 in the transition from acute to chronic pain.
Collapse
|
21
|
Abstract
There is substantial evidence indicating a role for glutamate in migraine. Levels of glutamate are higher in the brain and possibly also in the peripheral circulation in migraine patients, particularly during attacks. Altered blood levels of kynurenines, endogenous modulators of glutamate receptors, have been reported in migraine patients. Population genetic studies implicate genes that are involved with glutamate signaling in migraine, and gene mutations responsible for familial hemiplegic migraine and other familial migraine syndromes may influence glutamate signaling. Animal studies indicate that glutamate plays a key role in pain transmission, central sensitization, and cortical spreading depression. Multiple therapies that target glutamate receptors including magnesium, topiramate, memantine, and ketamine have been reported to have efficacy in the treatment of migraine, although with the exception of topiramate, the evidence for the efficacy of these therapies is not strong. Also, because all of these therapies have other mechanisms of action, it is not possible to conclude that the efficacy of these drugs is entirely due to their effects on glutamate receptors. Further studies are needed to more clearly delineate the possible roles of glutamate and its specific receptor subtypes in migraine and to identify new ways of targeting glutamate for migraine therapy.
Collapse
Affiliation(s)
- Jan Hoffmann
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246 Hamburg, Germany
| | - Andrew Charles
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles (UCLA), 635 Charles Young Drive, Los Angeles, CA 90095 USA
| |
Collapse
|
22
|
Fernández-Montoya J, Avendaño C, Negredo P. The Glutamatergic System in Primary Somatosensory Neurons and Its Involvement in Sensory Input-Dependent Plasticity. Int J Mol Sci 2017; 19:ijms19010069. [PMID: 29280965 PMCID: PMC5796019 DOI: 10.3390/ijms19010069] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/19/2017] [Accepted: 12/21/2017] [Indexed: 01/25/2023] Open
Abstract
Glutamate is the most common neurotransmitter in both the central and the peripheral nervous system. Glutamate is present in all types of neurons in sensory ganglia, and is released not only from their peripheral and central axon terminals but also from their cell bodies. Consistently, these neurons express ionotropic and metabotropic receptors, as well as other molecules involved in the synthesis, transport and release of the neurotransmitter. Primary sensory neurons are the first neurons in the sensory channels, which receive information from the periphery, and are thus key players in the sensory transduction and in the transmission of this information to higher centers in the pathway. These neurons are tightly enclosed by satellite glial cells, which also express several ionotropic and metabotropic glutamate receptors, and display increases in intracellular calcium accompanying the release of glutamate. One of the main interests in our group has been the study of the implication of the peripheral nervous system in sensory-dependent plasticity. Recently, we have provided novel evidence in favor of morphological changes in first- and second-order neurons of the trigeminal system after sustained alterations of the sensory input. Moreover, these anatomical changes are paralleled by several molecular changes, among which those related to glutamatergic neurotransmission are particularly relevant. In this review, we will describe the state of the art of the glutamatergic system in sensory ganglia and its involvement in input-dependent plasticity, a fundamental ground for advancing our knowledge of the neural mechanisms of learning and adaptation, reaction to injury, and chronic pain.
Collapse
Affiliation(s)
- Julia Fernández-Montoya
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, 28029 Madrid, Spain.
| | - Carlos Avendaño
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, 28029 Madrid, Spain.
| | - Pilar Negredo
- Department of Anatomy, Histology and Neuroscience, Medical School, Autonoma University of Madrid, 28029 Madrid, Spain.
| |
Collapse
|
23
|
Warnock G, Sommerauer M, Mu L, Pla Gonzalez G, Geistlich S, Treyer V, Schibli R, Buck A, Krämer SD, Ametamey SM. A first-in-man PET study of [ 18F]PSS232, a fluorinated ABP688 derivative for imaging metabotropic glutamate receptor subtype 5. Eur J Nucl Med Mol Imaging 2017; 45:1041-1051. [PMID: 29177707 DOI: 10.1007/s00259-017-3879-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/06/2017] [Indexed: 12/21/2022]
Abstract
PURPOSE Non-invasive imaging of metabotropic glutamate receptor 5 (mGlu5) in the brain using PET is of interest in e.g., anxiety, depression, and Parkinson's disease. Widespread application of the most widely used mGlu5 tracer, [11C]ABP688, is limited by the short physical half-life of carbon-11. [18F]PSS232 is a fluorinated analog with promising preclinical properties and high selectivity and specificity for mGlu5. In this first-in-man study, we evaluated the brain uptake pattern and kinetics of [18F]PSS232 in healthy volunteers. METHODS [18F]PSS232 PET was performed with ten healthy male volunteers aged 20-40 years. Seven of the subjects received a bolus injection and the remainder a bolus/infusion protocol. Cerebral blood flow was determined in seven subjects using [15O]water PET. Arterial blood activity was measured using an online blood counter. Tracer kinetics were evaluated by compartment modeling and parametric maps were generated for both tracers. RESULTS At 90 min post-injection, 59.2 ± 11.1% of total radioactivity in plasma corresponded to intact tracer. The regional first pass extraction fraction of [18F]PSS232 ranged from 0.41 ± 0.06 to 0.55 ± 0.03 and brain distribution pattern matched that of [11C]ABP688. Uptake kinetics followed a simple two-tissue compartment model. The volume of distribution of total tracer (V T, ml/cm3) ranged from 1.18 ± 0.20 for white matter to 2.91 ± 0.51 for putamen. The respective mean distribution volume ratios (DVR) with cerebellum as the reference tissue were 0.88 ± 0.06 and 2.12 ± 0.10, respectively. The tissue/cerebellum ratios of a bolus/infusion protocol (30/70 dose ratio) were close to the DVR values. CONCLUSIONS Brain uptake of [18F]PSS232 matched the distribution of mGlu5 and followed a two-tissue compartment model. The well-defined kinetics and the possibility to use reference tissue models, obviating the need for arterial blood sampling, make [18F]PSS232 a promising fluorine-18 labeled radioligand for measuring mGlu5 density in humans.
Collapse
Affiliation(s)
- Geoffrey Warnock
- Department of Nuclear Medicine, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Michael Sommerauer
- Department of Nuclear Medicine, University Hospital Zurich, 8091, Zurich, Switzerland.,Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Linjing Mu
- Department of Nuclear Medicine, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Gloria Pla Gonzalez
- Radiopharmaceutical Science, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog Weg 4, 8093, Zurich, Switzerland
| | - Susanne Geistlich
- Radiopharmaceutical Science, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog Weg 4, 8093, Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Roger Schibli
- Radiopharmaceutical Science, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog Weg 4, 8093, Zurich, Switzerland
| | - Alfred Buck
- Department of Nuclear Medicine, University Hospital Zurich, 8091, Zurich, Switzerland
| | - Stefanie D Krämer
- Radiopharmaceutical Science, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog Weg 4, 8093, Zurich, Switzerland
| | - Simon M Ametamey
- Radiopharmaceutical Science, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
24
|
Stepan AF, Claffey MM, Reese MR, Balan G, Barreiro G, Barricklow J, Bohanon MJ, Boscoe BP, Cappon GD, Chenard LK, Cianfrogna J, Chen L, Coffman KJ, Drozda SE, Dunetz JR, Ghosh S, Hou X, Houle C, Karki K, Lazzaro JT, Mancuso JY, Marcek JM, Miller EL, Moen MA, O'Neil S, Sakurada I, Skaddan M, Parikh V, Smith DL, Trapa P, Tuttle JB, Verhoest PR, Walker DP, Won A, Wright AS, Whritenour J, Zasadny K, Zaleska MM, Zhang L, Shaffer CL. Discovery and Characterization of (R)-6-Neopentyl-2-(pyridin-2-ylmethoxy)-6,7-dihydropyrimido[2,1-c][1,4]oxazin-4(9H)-one (PF-06462894), an Alkyne-Lacking Metabotropic Glutamate Receptor 5 Negative Allosteric Modulator Profiled in both Rat and Nonhuman Primates. J Med Chem 2017; 60:7764-7780. [PMID: 28817277 DOI: 10.1021/acs.jmedchem.7b00604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously observed a cutaneous type IV immune response in nonhuman primates (NHP) with the mGlu5 negative allosteric modulator (NAM) 7. To determine if this adverse event was chemotype- or mechanism-based, we evaluated a distinct series of mGlu5 NAMs. Increasing the sp3 character of high-throughput screening hit 40 afforded a novel morpholinopyrimidone mGlu5 NAM series. Its prototype, (R)-6-neopentyl-2-(pyridin-2-ylmethoxy)-6,7-dihydropyrimido[2,1-c][1,4]oxazin-4(9H)-one (PF-06462894, 8), possessed favorable properties and a predicted low clinical dose (2 mg twice daily). Compound 8 did not show any evidence of immune activation in a mouse drug allergy model. Additionally, plasma samples from toxicology studies confirmed that 8 did not form any reactive metabolites. However, 8 caused the identical microscopic skin lesions in NHPs found with 7, albeit with lower severity. Holistically, this work supports the hypothesis that this unique toxicity may be mechanism-based although additional work is required to confirm this and determine clinical relevance.
Collapse
Affiliation(s)
- Antonia F Stepan
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Michelle M Claffey
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Matthew R Reese
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Gayatri Balan
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Gabriela Barreiro
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Jason Barricklow
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Michael J Bohanon
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Brian P Boscoe
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Gregg D Cappon
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Lois K Chenard
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Julie Cianfrogna
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Laigao Chen
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Karen J Coffman
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Susan E Drozda
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Joshua R Dunetz
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Somraj Ghosh
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Xinjun Hou
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Christopher Houle
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Kapil Karki
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - John T Lazzaro
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Jessica Y Mancuso
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - John M Marcek
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Emily L Miller
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Mark A Moen
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Steven O'Neil
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Isao Sakurada
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Marc Skaddan
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Vinod Parikh
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Deborah L Smith
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Patrick Trapa
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Jamison B Tuttle
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Patrick R Verhoest
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Daniel P Walker
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Annie Won
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Ann S Wright
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Jessica Whritenour
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Kenneth Zasadny
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Margaret M Zaleska
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Lei Zhang
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| | - Christopher L Shaffer
- Neuroscience and Pain Medicinal Chemistry, ‡Pharmacokinetics, Dynamics, and Metabolism, and §Neuroscience and Pain Research Unit, Pfizer Inc. , Cambridge, Massachusetts 02139, United States.,Pharmaceutical Sciences, ⊥Pharmacokinetics, Dynamics, and Metabolism, #Biostatistics, Early Clinical Development, ∇Drug Safety Research and Development, and ○BioImaging Center, Pfizer Inc. , Groton, Connecticut 06340, United States
| |
Collapse
|
25
|
A-Kinase Anchoring Protein 79/150 Scaffolds Transient Receptor Potential A 1 Phosphorylation and Sensitization by Metabotropic Glutamate Receptor Activation. Sci Rep 2017; 7:1842. [PMID: 28500286 PMCID: PMC5431798 DOI: 10.1038/s41598-017-01999-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/05/2017] [Indexed: 01/20/2023] Open
Abstract
Mechanical pain serves as a base clinical symptom for many of the world’s most debilitating syndromes. Ion channels expressed by peripheral sensory neurons largely contribute to mechanical hypersensitivity. Transient Receptor Potential A 1 (TRPA1) is a ligand-gated ion channel that contributes to inflammatory mechanical hypersensitivity, yet little is known as to the post-translational mechanism behind its somatosensitization. Here, we utilize biochemical, electrophysiological, and behavioral measures to demonstrate that metabotropic glutamate receptor-induced sensitization of TRPA1 nociceptors stimulates targeted modification of the receptor. Type 1 mGluR5 activation increases TRPA1 receptor agonist sensitivity in an AKA-dependent manner. As a scaffolding protein for Protein Kinases A and C (PKA and PKC, respectively), AKAP facilitates phosphorylation and sensitization of TRPA1 in ex vivo sensory neuronal preparations. Furthermore, hyperalgesic priming of mechanical hypersensitivity requires both TRPA1 and AKAP. Collectively, these results identify a novel AKAP-mediated biochemical mechanism that increases TRPA1 sensitivity in peripheral sensory neurons, and likely contributes to persistent mechanical hypersensitivity.
Collapse
|
26
|
Palazzo E, Marabese I, Luongo L, Guida F, de Novellis V, Maione S. Nociception modulation by supraspinal group III metabotropic glutamate receptors. J Neurochem 2017; 141:507-519. [DOI: 10.1111/jnc.13725] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Enza Palazzo
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Ida Marabese
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Livio Luongo
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Francesca Guida
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Vito de Novellis
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| | - Sabatino Maione
- Department of Experimental Medicine; The Second University of Naples; Naples Italy
| |
Collapse
|
27
|
A-kinase anchoring protein 79/150 coordinates metabotropic glutamate receptor sensitization of peripheral sensory neurons. Pain 2016; 156:2364-2372. [PMID: 26172554 DOI: 10.1097/j.pain.0000000000000295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glutamate serves as the primary excitatory neurotransmitter in the nervous system. Previous studies have identified a role for glutamate and group I metabotropic receptors as targets for study in peripheral inflammatory pain. However, the coordination of signaling events that transpire from receptor activation to afferent neuronal sensitization has not been explored. Herein, we identify that scaffolding protein A-kinase anchoring protein 79/150 (AKAP150) coordinates increased peripheral thermal sensitivity after group I metabotropic receptor (mGluR5) activation. In both acute and persistent models of thermal somatosensory behavior, we report that mGluR5 sensitization requires AKAP150 expression. Furthermore, electrophysiological approaches designed to record afferent neuronal activity reveal that mGluR5 sensitization also requires functional AKAP150 expression. In dissociated primary afferent neurons, mGluR5 activation increases TRPV1 responses in an AKAP-dependent manner through a mechanism that induces AKAP association with TRPV1. Experimental results presented herein identify a mechanism of receptor-driven scaffolding association with ion channel targets. Importantly, this mechanism could prove significant in the search for therapeutic targets that repress episodes of acute pain from becoming chronic in nature.
Collapse
|
28
|
Kadow BT, Lyon TD, Zhang Z, Lamm V, Shen B, Wang J, Roppolo JR, de Groat WC, Tai C. Sympathetic β-adrenergic mechanism in pudendal inhibition of nociceptive and non-nociceptive reflex bladder activity. Am J Physiol Renal Physiol 2016; 311:F78-84. [PMID: 27170683 DOI: 10.1152/ajprenal.00180.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/09/2016] [Indexed: 01/24/2023] Open
Abstract
This study investigated the role of the hypogastric nerve and β-adrenergic mechanisms in the inhibition of nociceptive and non-nociceptive reflex bladder activity induced by pudendal nerve stimulation (PNS). In α-chloralose-anesthetized cats, non-nociceptive reflex bladder activity was induced by slowly infusing saline into the bladder, whereas nociceptive reflex bladder activity was induced by replacing saline with 0.25% acetic acid (AA) to irritate the bladder. PNS was applied at multiple threshold (T) intensities for inducing anal sphincter twitching. During saline infusion, PNS at 2T and 4T significantly (P < 0.01) increased bladder capacity to 184.7 ± 12.6% and 214.5 ± 10.4% of the control capacity. Propranolol (3 mg/kg iv) had no effect on PNS inhibition, but 3-[(2-methyl-4-thiazolyl)ethynyl]pyridine (MTEP; 1-3 mg/kg iv) significantly (P < 0.05) reduced the inhibition. During AA irritation, the control bladder capacity was significantly (P < 0.05) reduced to ∼22% of the saline control capacity. PNS at 2T and 4T significantly (P < 0.01) increased bladder capacity to 406.8 ± 47% and 415.8 ± 46% of the AA control capacity. Propranolol significantly (P < 0.05) reduced the bladder capacity to 276.3% ± 53.2% (at 2T PNS) and 266.5 ± 72.4% (at 4T PNS) of the AA control capacity, whereas MTEP (a metabotropic glutamate 5 receptor antagonist) removed the residual PNS inhibition. Bilateral transection of the hypogastric nerves produced an effect similar to that produced by propranolol. This study indicates that hypogastric nerves and a β-adrenergic mechanism in the detrusor play an important role in PNS inhibition of nociceptive but not non-nociceptive reflex bladder activity. In addition to this peripheral mechanism, a central nervous system mechanism involving metabotropic glutamate 5 receptors also has a role in PNS inhibition.
Collapse
Affiliation(s)
- Brian T Kadow
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Timothy D Lyon
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhaocun Zhang
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Urology, Qilu Hospital, Shandong University, Jinan, China; and
| | - Vladimir Lamm
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bing Shen
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jicheng Wang
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James R Roppolo
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William C de Groat
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Changfeng Tai
- Department of Urology, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
29
|
Chaskiel L, Paul F, Gerstberger R, Hübschle T, Konsman JP. Brainstem metabotropic glutamate receptors reduce food intake and activate dorsal pontine and medullar structures after peripheral bacterial lipopolysaccharide administration. Neuropharmacology 2016; 107:146-159. [PMID: 27016016 DOI: 10.1016/j.neuropharm.2016.03.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/20/2022]
Abstract
During infection-induced inflammation food intake is reduced. Vagal and brainstem pathways are important both in feeding regulation and immune-to-brain communication. Glutamate is released by vagal afferent terminals in the nucleus of the solitary tract and by its neurons projecting to the parabrachial nuclei. We therefore studied the role of brainstem glutamate receptors in spontaneous food intake of healthy animals and during sickness-associated hypophagia after peripheral administration of bacterial lipopolysaccharides or interleukin-1beta. Brainstem group I and II metabotropic, but not ionotropic, glutamate receptor antagonism increased food intake both in saline- and lipopolysaccharide-treated rats. In these animals, expression of the cellular activation marker c-Fos in the lateral parabrachial nuclei and lipopolysaccharide-induced activation of the nucleus of the solitary tract rostral to the area postrema were suppressed. Group I metabotropic glutamate receptors did not colocalize with c-Fos or neurons regulating gastric function in these structures. Group I metabotropic glutamate receptors were, however, found on raphé magnus neurons that were part of the brainstem circuit innervating the stomach and on trigeminal and hypoglossal motor neurons. In conclusion, our findings show that brainstem metabotropic glutamate receptors reduce food intake and activate the lateral parabrachial nuclei as well as the rostral nucleus of the solitary tract after peripheral bacterial lipopolysaccharide administration. They also provide insight into potential group I metabotropic glutamate receptor-dependent brainstem circuits mediating these effects.
Collapse
Affiliation(s)
- Léa Chaskiel
- CNRS, PsychoNeuroImmunologie, Nutrition et Génétique, UMR 5226, Bordeaux, France; Univ. Bordeaux, PsyNuGen, UMR 5226, Bordeaux, France
| | - Flora Paul
- CNRS, PsychoNeuroImmunologie, Nutrition et Génétique, UMR 5226, Bordeaux, France; Univ. Bordeaux, PsyNuGen, UMR 5226, Bordeaux, France
| | - Rüdiger Gerstberger
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
| | - Thomas Hübschle
- Institut für Veterinär-Physiologie und -Biochemie, Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
| | - Jan Pieter Konsman
- CNRS, PsychoNeuroImmunologie, Nutrition et Génétique, UMR 5226, Bordeaux, France; Univ. Bordeaux, PsyNuGen, UMR 5226, Bordeaux, France.
| |
Collapse
|
30
|
Gan X, Wu J, Ren C, Qiu CY, Li YK, Hu WP. Potentiation of acid-sensing ion channel activity by peripheral group I metabotropic glutamate receptor signaling. Pharmacol Res 2016; 107:19-26. [PMID: 26946972 DOI: 10.1016/j.phrs.2016.02.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 01/08/2016] [Accepted: 02/15/2016] [Indexed: 01/15/2023]
Abstract
Glutamate activates peripheral group I metabotropic glutamate receptors (mGluRs) and contributes to inflammatory pain. However, it is still not clear the mechanisms are involved in group I mGluR-mediated peripheral sensitization. Herein, we report that group I mGluRs signaling sensitizes acid-sensing ion channels (ASICs) in dorsal root ganglion (DRG) neurons and contributes to acidosis-evoked pain. DHPG, a selective group I mGluR agonist, can potentiate the functional activity of ASICs, which mediated the proton-induced events. DHPG concentration-dependently increased proton-gated currents in DRG neurons. It shifted the proton concentration-response curve upwards, with a 47.3±7.0% increase of the maximal current response to proton. Group I mGluRs, especially mGluR5, mediated the potentiation of DHPG via an intracellular cascade. DHPG potentiation of proton-gated currents disappeared after inhibition of intracellular Gq/11 proteins, PLCβ, PKC or PICK1 signaling. Moreover, DHPG enhanced proton-evoked membrane excitability of rat DRG neurons and increased the amplitude of the depolarization and the number of spikes induced by acid stimuli. Finally, peripherally administration of DHPG dose-dependently exacerbated nociceptive responses to intraplantar injection of acetic acid in rats. Potentiation of ASIC activity by group I mGluR signaling in rat DRG neurons revealed a novel peripheral mechanism underlying group I mGluRs involvement in hyperalgesia.
Collapse
Affiliation(s)
- Xiong Gan
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei 437100, PR China
| | - Jing Wu
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei 437100, PR China
| | - Cuixia Ren
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei 437100, PR China
| | - Chun-Yu Qiu
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei 437100, PR China
| | - Yan-Kun Li
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei 437100, PR China
| | - Wang-Ping Hu
- Institute of Ion Channels, Department of Pharmacology, Hubei University of Science and Technology, 88 Xianning Road, Xianning, Hubei 437100, PR China.
| |
Collapse
|
31
|
Galambos J, Domány G, Nógrádi K, Wágner G, Keserű GM, Bobok A, Kolok S, Mikó-Bakk ML, Vastag M, Sághy K, Kóti J, Szakács Z, Béni Z, Gál K, Szombathelyi Z, Greiner I. 4-Aryl-3-arylsulfonyl-quinolines as negative allosteric modulators of metabotropic GluR5 receptors: From HTS hit to development candidate. Bioorg Med Chem Lett 2016; 26:1249-52. [DOI: 10.1016/j.bmcl.2016.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 01/08/2016] [Accepted: 01/09/2016] [Indexed: 11/16/2022]
|
32
|
Peripheral NMDA Receptors Mediate Antidromic Nerve Stimulation-Induced Tactile Hypersensitivity in the Rat. Mediators Inflamm 2015; 2015:793624. [PMID: 26770021 PMCID: PMC4681795 DOI: 10.1155/2015/793624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/19/2015] [Indexed: 12/16/2022] Open
Abstract
We investigated the role of peripheral NMDA receptors (NMDARs) in antidromic nerve stimulation-induced tactile hypersensitivity outside the skin area innervated by stimulated nerve. Tetanic electrical stimulation (ES) of the decentralized L5 spinal nerve, which induced enlargement of plasma extravasation, resulted in tactile hypersensitivity in the L4 plantar dermatome of the hind-paw. When intraplantar (i.pl.) injection was administered into the L4 dermatome before ES, NMDAR and group-I metabotropic Glu receptor (mGluR) antagonists and group-II mGluR agonist but not AMPA/kainate receptor antagonist prevented ES-induced hypersensitivity. I.pl. injection of PKA or PKC inhibitors also prevented ES-induced hypersensitivity. When the same injections were administered after establishment of ES-induced hypersensitivity, hypersensitivity was partially reduced by NMDAR antagonist only. In naïve animals, i.pl. Glu injection into the L4 dermatome induced tactile hypersensitivity, which was blocked by NMDAR antagonist and PKA and PKC inhibitors. These results suggest that the peripheral release of Glu, induced by antidromic nerve stimulation, leads to the expansion of tactile hypersensitive skin probably via nociceptor sensitization spread due to the diffusion of Glu into the skin near the release site. In addition, intracellular PKA- and PKC-dependent mechanisms mediated mainly by NMDAR activation are involved in Glu-induced nociceptor sensitization and subsequent hypersensitivity.
Collapse
|
33
|
Sengmany K, Gregory KJ. Metabotropic glutamate receptor subtype 5: molecular pharmacology, allosteric modulation and stimulus bias. Br J Pharmacol 2015; 173:3001-17. [PMID: 26276909 DOI: 10.1111/bph.13281] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/30/2015] [Accepted: 07/26/2015] [Indexed: 12/12/2022] Open
Abstract
The metabotropic glutamate receptor subtype 5 (mGlu5 ) is a family C GPCR that has been implicated in various neuronal processes and, consequently, in several CNS disorders. Over the past few decades, GPCR-based drug discovery, including that for mGlu5 receptors, has turned considerable attention to targeting allosteric binding sites. Modulation of endogenous agonists by allosteric ligands offers the advantages of spatial and temporal fine-tuning of receptor activity, increased selectivity and reduced adverse effects with the potential to elicit improved clinical outcomes. Further, with greater appreciation of the multifaceted nature of the transduction of mGlu5 receptor signalling, it is increasingly apparent that drug discovery must take into consideration unique receptor conformations and the potential for stimulus-bias. This novel paradigm proposes that different ligands may differentially modulate distinct signalling pathways arising from the same receptor. We review our current understanding of the complexities of mGlu5 receptor signalling and regulation, and how these relate to allosteric ligands. Ultimately, a deeper appreciation of these relationships will provide the foundation for targeted drug design of compounds with increased selectivity, not only for the desired receptor but also for the desired signalling outcome from the receptor. Linked Articles This article is part of a themed section on Molecular Pharmacology of G Protein-Coupled Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.20/issuetoc.
Collapse
Affiliation(s)
- K Sengmany
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia
| | - K J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
34
|
Wen ZH, Chang YC, Jean YH. Excitatory amino acid glutamate: role in peripheral nociceptive transduction and inflammation in experimental and clinical osteoarthritis. Osteoarthritis Cartilage 2015; 23:2009-16. [PMID: 26521747 DOI: 10.1016/j.joca.2015.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/15/2015] [Accepted: 03/18/2015] [Indexed: 02/02/2023]
Abstract
Although a large proportion of patients with osteoarthritis (OA) show inflammation in their affected joints, the pathological role of inflammation in the development and progression of OA has yet to be clarified. Glutamate is considered an excitatory amino acid (EAA) neurotransmitter in the mammalian central nervous system (CNS). There are cellular membrane glutamate receptors and transporters for signal input modulation and termination as well as vesicular glutamate transporters (VGLUTs) for signal output through exocytotic release. Glutamate been shown to mediate intercellular communications in bone cells in a manner similar to synaptic transmission within the CNS. Glutamate-mediated events may also contribute to the pathogenesis and ongoing processes of peripheral nociceptive transduction and inflammation of experimental arthritis models as well as human arthritic conditions. This review will discuss the differential roles of glutamate signaling and blockade in peripheral neuronal and non-neuronal joint tissues, including bone remodeling systems and their potentials to impact OA-related inflammation and progression. This will serve to identify several potential targets to direct novel therapies for OA. Future studies will further elucidate the role of glutamate in the development and progression of OA, as well as its association with the clinical features of the disease.
Collapse
Affiliation(s)
- Z-H Wen
- Marine Biomedical Laboratory & Center for Translational Biopharmaceuticals, Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Taiwan
| | - Y-C Chang
- Marine Biomedical Laboratory & Center for Translational Biopharmaceuticals, Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Taiwan
| | - Y-H Jean
- Department of Orthopedic Surgery, Pingtung Christian Hospital, Pingtung, Taiwan.
| |
Collapse
|
35
|
Kolber BJ. mGluRs Head to Toe in Pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:281-324. [DOI: 10.1016/bs.pmbts.2014.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Masuoka T, Nakamura T, Kudo M, Yoshida J, Takaoka Y, Kato N, Ishibashi T, Imaizumi N, Nishio M. Biphasic modulation by mGlu5 receptors of TRPV1-mediated intracellular calcium elevation in sensory neurons contributes to heat sensitivity. Br J Pharmacol 2014; 172:1020-33. [PMID: 25297838 DOI: 10.1111/bph.12962] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 09/15/2014] [Accepted: 09/26/2014] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Elevation of glutamate, an excitatory amino acid, during inflammation and injury plays a crucial role in the reception and transmission of sensory information via ionotropic and metabotropic receptors. This study aimed to investigate the mechanisms underlying the biphasic effects of metabotropic glutamate mGlu5 receptor activation on responses to noxious heat. EXPERIMENTAL APPROACH We assessed the effects of intraplantar quisqualate, a non-selective glutamate receptor agonist, on heat and mechanical pain behaviours in mice. In addition, the effects of quisqualate on the intracellular calcium response and on membrane currents mediated by TRPV1 channels, were examined in cultured dorsal root ganglion neurons from mice. KEY RESULTS Activation of mGlu5 receptors in hind paw transiently increased, then decreased, the response to noxious heat. In sensory neurons, activation of mGlu5 receptors potentiated TRPV1-mediated intracellular calcium elevation, while terminating activation of mGlu5 receptors depressed it. TRPV1-induced currents were potentiated by activation of mGlu5 receptors under voltage clamp conditions and these disappeared after washout. However, voltage-gated calcium currents were inhibited by the mGlu5 receptor agonist, even after washout. CONCLUSIONS AND IMPLICATIONS These results suggest that, in sensory neurons, mGlu5 receptors biphasically modulate TRPV1-mediated intracellular calcium response via transient potentiation of TRPV1 channel-induced currents and persistent inhibition of voltage-gated calcium currents, contributing to heat hyper- and hypoalgesia.
Collapse
Affiliation(s)
- T Masuoka
- Department of Pharmacology, School of Medicine, Kanazawa Medical University, Uchinada, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Palazzo E, Marabese I, de Novellis V, Rossi F, Maione S. Supraspinal metabotropic glutamate receptors: a target for pain relief and beyond. Eur J Neurosci 2014; 39:444-54. [PMID: 24494684 DOI: 10.1111/ejn.12398] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 01/09/2023]
Abstract
Glutamate is the main excitatory neurotransmitter in the central nervous system, controlling the majority of synapses. Apart from neurodegenerative diseases, growing evidence suggests that glutamate is involved in psychiatric and neurological disorders, including pain. Glutamate signaling is mediated via ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). So far, drugs acting via modulation of glutamatergic system are few in number, and all are associated with iGluRs and important side effects. The glutamatergic system may be finely modulated by mGluRs. Signaling via these receptors is slower and longer-lasting, and permits fine-tuning of glutamate transmission. There have been eight mGluRs cloned to date (mGluR1-mGluR8), and these are further divided into three groups on the basis of sequence homology, pharmacological profile, and second messenger signaling. The pattern of expression of mGluRs along the pain neuraxis makes them suitable substrates for the design of novel analgesics. This review will focus on the supraspinal mGluRs, whose pharmacological manipulation generates a variety of effects, which depend on the synaptic location, the cell type on which they are located, and the expression in particular pain modulation areas, such as the periaqueductal gray, which plays a major role in the descending modulation of pain, and the central nucleus of the amygdala, which is an important center for the processing of emotional information associated with pain. A particular emphasis will also be given to the novel selective mGluR subtype ligands, as well as positive and negative allosteric modulators, which have permitted discrimination of the individual roles of the different mGluR subtypes, and subtle modulation of central nervous system functioning and related disorders.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Anaesthesiology, Surgery and Emergency, The Second University of Naples, Piazza Luigi Miraglia 2, 80138, Naples, Italy
| | | | | | | | | |
Collapse
|
38
|
Smeester BA, Lunzer MM, Akgün E, Beitz AJ, Portoghese PS. Targeting putative mu opioid/metabotropic glutamate receptor-5 heteromers produces potent antinociception in a chronic murine bone cancer model. Eur J Pharmacol 2014; 743:48-52. [PMID: 25239072 DOI: 10.1016/j.ejphar.2014.09.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/29/2014] [Accepted: 09/03/2014] [Indexed: 12/14/2022]
Abstract
The therapeutic management of chronic pain associated with many cancers is problematic due to the development of tolerance and other adverse effects during the disease progression. Recently we reported on a bivalent ligand (MMG22) containing both mu agonist and mGluR5 antagonist pharmacophores that produced potent antinociception in mice with LPS-induced acute inflammatory pain via a putative MOR-mGluR5 heteromer. In the present study we have investigated the antinociception of MMG22 in a mouse model of bone cancer pain to determine its effectiveness in reducing this type of chronic nociception. There was a 572-fold increase in the potency of MMG22 over a period of 3-21 days that correlated with the progressive increase in hyperalgesia induced by bone tumor growth following implantation of fibrosarcoma cells in mice. The enhancement of antinociception with the progression of the cancer is possibly due to inhibition of NMDA receptor-mediated hyperalgesia via antagonism of mGluR5 and concomitant activation of MOR by the MMG22-occupied heteromer. Notably, MMG22 was 3.6-million-fold more potent than morphine at PID 21. Since MMG22 exhibited a 250,000-times greater potency than that of a mixture of the mu opioid (M19) agonist and mGluR5 antagonist (MG20) monovalent ligands, the data suggest that targeting the putative MOR-mGluR5 heteromer is far superior to univalent interaction with receptors in reducing tumor-induced nociception. In view of the high potency, long duration (>24h) of action and minimal side effects, MMG22 has the potential to be a superior pharmacological agent than morphine and other opiates in the treatment of chronic cancer pain and to serve as a novel pharmacologic tool.
Collapse
Affiliation(s)
- Branden A Smeester
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, United States
| | - Mary M Lunzer
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Eyup Akgün
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Alvin J Beitz
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, United States
| | - Philip S Portoghese
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
39
|
Boye Larsen D, Ingemann Kristensen G, Panchalingam V, Laursen JC, Nørgaard Poulsen J, Skallerup Andersen M, Kandiah A, Gazerani P. Investigating the expression of metabotropic glutamate receptors in trigeminal ganglion neurons and satellite glial cells: implications for craniofacial pain. J Recept Signal Transduct Res 2014; 34:261-9. [PMID: 24495291 PMCID: PMC4162654 DOI: 10.3109/10799893.2014.885049] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/03/2014] [Accepted: 01/03/2014] [Indexed: 01/03/2023]
Abstract
CONTEXT/OBJECTIVE Previous studies have demonstrated that various subtypes of the metabotropic glutamate receptors (mGluRs) are expressed in the dorsal root ganglion (DRG) of the peripheral nervous system (PNS), implicating that glutamate potentially contributes to sensory transmission through these receptors. While mGluR expression has been investigated largely in the DRG, the present study focused on mGluR expression on neurons and satellite glial cells (SGCs) of the trigeminal ganglion (TG). MATERIALS AND METHODS To address the presence of mGluRs in rat TG neurons and their corresponding SGCs, the trigeminal ganglia from six adult male Wistar rats were isolated and immunohistochemistry and immunocytochemistry were performed. The expression of mGluR1α-, mGluR2/3- and mGluR8 on TG neurons and SGCs was investigated in tissue slices and isolated cells. RESULTS 35.1 ± 6.0% of the TG neurons were positive for mGluR1α, whereas 39.9 ± 7.7% and 55.5 ± 6.3% were positive for mGluR2/3 and mGluR8, respectively. Immunoreactive neurons expressing mGluRs were mainly medium- to large sized, with a smaller population of small-sized neurons showing immunoreactivity. The SGCs showed immunoreactivity toward mGluR1α and mGluR8, but not mGluR2/3, both in the tissue and in isolated cells. CONCLUSIONS Findings from the present study showed that trigeminal neurons express mGluR1α, mGluR2/3 and mGluR8, while SGCs only express mGluR1α and mGluR8. This novel evidence may advance investigations on a possible role of mGluRs in relation to trigeminal pain transmission within the craniofacial region.
Collapse
Affiliation(s)
- Dennis Boye Larsen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of MedicineAalborg University, Frederik Bajers Vej, Aalborg EastDenmark
| | - Gunda Ingemann Kristensen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of MedicineAalborg University, Frederik Bajers Vej, Aalborg EastDenmark
| | - Vinodenee Panchalingam
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of MedicineAalborg University, Frederik Bajers Vej, Aalborg EastDenmark
| | - Jens Christian Laursen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of MedicineAalborg University, Frederik Bajers Vej, Aalborg EastDenmark
| | - Jeppe Nørgaard Poulsen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of MedicineAalborg University, Frederik Bajers Vej, Aalborg EastDenmark
| | - Maria Skallerup Andersen
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of MedicineAalborg University, Frederik Bajers Vej, Aalborg EastDenmark
| | - Aginsha Kandiah
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of MedicineAalborg University, Frederik Bajers Vej, Aalborg EastDenmark
| | - Parisa Gazerani
- Center for Sensory-Motor Interaction, Department of Health Science and Technology, Faculty of MedicineAalborg University, Frederik Bajers Vej, Aalborg EastDenmark
| |
Collapse
|
40
|
Golubeva AV, Zhdanov AV, Mallel G, Dinan TG, Cryan JF. The mouse cyclophosphamide model of bladder pain syndrome: tissue characterization, immune profiling, and relationship to metabotropic glutamate receptors. Physiol Rep 2014; 2:e00260. [PMID: 24760514 PMCID: PMC4002240 DOI: 10.1002/phy2.260] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 02/17/2014] [Indexed: 01/08/2023] Open
Abstract
Abstract Painful bladder syndrome/Interstitial cystitis (PBS/IC) is a chronic disorder characterized clinically by recurring episodes of pelvic pain and increased urination frequency, significantly impairing patients' quality of life. Despite this, there is an unmet medical need in terms of effective diagnostics and treatment. Animal models are crucial in this endeavor. Systemic chronic administration of cyclophosphamide (CYP) in mice has been proposed as a relevant preclinical model of chronic bladder pain. However, molecular mechanisms underlying the pathogenesis of this model are lacking. Here, we show that mice, subjected to repetitive systemic injections of CYP, developed mild inflammatory response in bladder tissue characterized by submucosal edema, moderate increase in proinflammatory cytokine gene expression, and mastocytosis. No signs of massive inflammatory infiltrate, tissue hemorrhages, mucosal ulcerations and urothelium loss were observed. Instead, CYP treatment induced urothelium hyperplasia, accompanied by activation of proliferative signaling cascades, and a decrease in the expression of urothelium-specific markers. Metabotropic glutamate (mGlu) receptors have been implicated in chronic pain disorders. CYP administration induced differential changes in mGlu receptors mRNA levels in bladder tissue, without affecting gene expression at spinal cord level, pointing to the potential link between peripheral mGlu receptors and inflammation-induced bladder malfunction and hyperalgesia. Taken together, these data indicate that chronic CYP treatment in mice is a model of PBS mostly relevant to the major, nonulcerative subtype of the syndrome, characterized by a relatively unaltered mucosa and a sparse inflammatory response. This model can help to elucidate the pathogenetic mechanisms of the disease.
Collapse
Affiliation(s)
- Anna V. Golubeva
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | | | - Giuseppe Mallel
- Pathology Unit, Department of Clinical and Molecular Medicine, S. Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Timothy G. Dinan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Psychiatry, University College Cork, Cork, Ireland
| | - John F. Cryan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Anatomy & Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
41
|
Pourbasheer E, Aalizadeh R, Ganjali MR, Norouzi P, Banaei A. QSAR study of mGlu5 inhibitors by genetic algorithm-multiple linear regressions. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0896-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
42
|
|
43
|
Li B, Lu L, Tan X, Zhong M, Guo Y, Yi X. Peripheral metabotropic glutamate receptor subtype 5 contributes to inflammation-induced hypersensitivity of the rat temporomandibular joint. J Mol Neurosci 2013; 51:710-8. [PMID: 23807708 DOI: 10.1007/s12031-013-0052-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 06/13/2013] [Indexed: 01/15/2023]
Abstract
Temporomandibular disorders (TMD) comprise an assortment of clinical conditions characterized by pain in the temporomandibular joint (TMJ). TMD patients have a variety of symptoms, including jaw movement disorder and TMJ pain. Metabotropic glutamate receptor subtype 5 (mGluR5) was reported to be involved in pain processing in several animal models of neuropathic and inflammatory pain. In this study, the head withdrawal threshold and mGluR5 expression were investigated in rats with complete Freund's adjuvant (CFA)-induced TMJ inflammatory pain. CFA injection into the TMJ significantly decreased the mechanical head withdrawal thresholds relative to vehicle injection, and the effects were blocked by pre-injection of 2-methyl-6-(phenylethynyl)-pyridine (MPEP). mGluR5 expression in the trigeminal ganglion was predominantly increased in the CFA-injected group compared with the normal control group. Pretreatment with MPEP, a selective mGluR5 antagonist, reduced mGluR5 expression in the trigeminal ganglion compared with the CFA group, as measured by immunohistochemistry, western blotting, and RT-PCR. Significant differences in the proportion or intensity of mGluR5 expression were found in animals with inflammation versus control animals at the examined time point. These findings indicate a role for peripheral mGluR5 in CFA-induced nociceptive behavior and TMJ inflammation. Peripheral application of mGluR5 antagonists could provide therapeutic benefits for inflammatory TMJ pain.
Collapse
Affiliation(s)
- Bo Li
- Department of Oral Anatomy and Physiology, School of Stomatology, China Medical University, Shenyang, Liaoning, 110002, China
| | | | | | | | | | | |
Collapse
|
44
|
Kågedal M, Cselényi Z, Nyberg S, Raboisson P, Ståhle L, Stenkrona P, Varnäs K, Halldin C, Hooker AC, Karlsson MO. A positron emission tomography study in healthy volunteers to estimate mGluR5 receptor occupancy of AZD2066 - estimating occupancy in the absence of a reference region. Neuroimage 2013; 82:160-9. [PMID: 23668965 DOI: 10.1016/j.neuroimage.2013.05.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 04/29/2013] [Accepted: 05/06/2013] [Indexed: 11/27/2022] Open
Abstract
AZD2066 is a new chemical entity pharmacologically characterized as a selective, negative allosteric modulator of the metabotropic glutamate receptor subtype 5 (mGluR5). Antagonism of mGluR5 has been implicated in relation to various diseases such as anxiety, depression, and pain disorders. To support translation from preclinical results and previous experiences with this target in man, a positron emission tomography study was performed to estimate the relationship between AZD2066 plasma concentrations and receptor occupancy in the human brain, using the mGluR5 radioligand [(11)C]-ABP688. The study involved PET scans on 4 occasions in 6 healthy volunteers. The radioligand was given as a tracer dose alone and following oral treatment with different doses of AZD2066. The analysis was based on the total volume of distribution derived from each PET-assessment. A non-linear mixed effects model was developed where ten delineated brain regions of interest from all PET scans were included in one simultaneous fit. For comparison the analysis was also performed according to a method described previously by Lassen et al. (1995). The results of the analysis showed that the total volume of distribution decreased with increasing drug concentrations in all regions with an estimated Kipl of 1170 nM. Variability between individuals and occasions in non-displaceable volume of distribution could explain most of the variability in the total volume of distribution. The Lassen approach provided a similar estimate for Kipl, but the variability was exaggerated and difficult to interpret.
Collapse
|
45
|
Mally AD, Matsuta Y, Zhang F, Shen B, Wang J, Roppolo JR, de Groat WC, Tai C. Role of opioid and metabotropic glutamate 5 receptors in pudendal inhibition of bladder overactivity in cats. J Urol 2013; 189:1574-9. [PMID: 23022006 PMCID: PMC3690132 DOI: 10.1016/j.juro.2012.09.095] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 01/23/2023]
Abstract
PURPOSE We determined the role of opioid and metabotropic glutamate 5 receptors in the pudendal inhibition of bladder overactivity. MATERIALS AND METHODS Cystometrograms were performed in 11 cats under α-chloralose anesthesia by slowly infusing the bladder with saline or 0.25% acetic acid. Pudendal nerve stimulation at intensities of multiple times the threshold to induce observable anal twitching was applied during cystometrogram to inhibit the bladder overactivity induced by acetic acid irritation. Naloxone (0.1, 0.3 and 1 mg/kg intravenously) was administered to block opioid receptors, followed by MTEP (3 and 10 mg/kg intravenously) to block metabotropic glutamate 5 receptors. After each drug dose, pudendal inhibition of bladder overactivity was examined during cystometrogram. RESULTS Acetic acid irritated the bladder, induced bladder overactivity and significantly decreased mean ± SE bladder capacity to 23.6% ± 2.7% of saline control capacity. Pudendal nerve stimulation at 1 to 1.5 and 4 × threshold suppressed bladder overactivity and significantly increased mean capacity to 57.5% ± 8.1% (p = 0.0005) and 106% ± 15% (p = 0.0002), respectively, of saline control capacity. Naloxone had no effect on pudendal inhibition but MTEP eliminated the inhibition induced by low intensity stimulation and significantly decreased the inhibition induced by high intensity stimulation (p <0.05). Neither naloxone nor MTEP altered baseline bladder overactivity. CONCLUSIONS Opioid receptors are not involved in pudendal inhibition of bladder overactivity but metabotropic glutamate 5 receptors are partially involved. Understanding neurotransmitter mechanisms could improve the efficacy of neuromodulation therapy for overactive bladder and identify molecular targets for developing new drugs for overactive bladder.
Collapse
Affiliation(s)
- Abhijith D. Mally
- Departments of Urology (ADM, YM, FZ, BS, JW, CT) and Pharmacology and Chemical Biology (JRR, WCdG), University of Pittsburgh, Pittsburgh, Pennsylvania, and Department of Urology, China Rehabilitation Research Center, School of Rehabilitation Medicine, Capital Medical University (FZ), Beijing, People's Republic of China
| | - Yosuke Matsuta
- Departments of Urology (ADM, YM, FZ, BS, JW, CT) and Pharmacology and Chemical Biology (JRR, WCdG), University of Pittsburgh, Pittsburgh, Pennsylvania, and Department of Urology, China Rehabilitation Research Center, School of Rehabilitation Medicine, Capital Medical University (FZ), Beijing, People's Republic of China
| | - Fan Zhang
- Departments of Urology (ADM, YM, FZ, BS, JW, CT) and Pharmacology and Chemical Biology (JRR, WCdG), University of Pittsburgh, Pittsburgh, Pennsylvania, and Department of Urology, China Rehabilitation Research Center, School of Rehabilitation Medicine, Capital Medical University (FZ), Beijing, People's Republic of China
| | - Bing Shen
- Departments of Urology (ADM, YM, FZ, BS, JW, CT) and Pharmacology and Chemical Biology (JRR, WCdG), University of Pittsburgh, Pittsburgh, Pennsylvania, and Department of Urology, China Rehabilitation Research Center, School of Rehabilitation Medicine, Capital Medical University (FZ), Beijing, People's Republic of China
| | - Jicheng Wang
- Departments of Urology (ADM, YM, FZ, BS, JW, CT) and Pharmacology and Chemical Biology (JRR, WCdG), University of Pittsburgh, Pittsburgh, Pennsylvania, and Department of Urology, China Rehabilitation Research Center, School of Rehabilitation Medicine, Capital Medical University (FZ), Beijing, People's Republic of China
| | - James R. Roppolo
- Departments of Urology (ADM, YM, FZ, BS, JW, CT) and Pharmacology and Chemical Biology (JRR, WCdG), University of Pittsburgh, Pittsburgh, Pennsylvania, and Department of Urology, China Rehabilitation Research Center, School of Rehabilitation Medicine, Capital Medical University (FZ), Beijing, People's Republic of China
| | - William C. de Groat
- Departments of Urology (ADM, YM, FZ, BS, JW, CT) and Pharmacology and Chemical Biology (JRR, WCdG), University of Pittsburgh, Pittsburgh, Pennsylvania, and Department of Urology, China Rehabilitation Research Center, School of Rehabilitation Medicine, Capital Medical University (FZ), Beijing, People's Republic of China
| | - Changfeng Tai
- Departments of Urology (ADM, YM, FZ, BS, JW, CT) and Pharmacology and Chemical Biology (JRR, WCdG), University of Pittsburgh, Pittsburgh, Pennsylvania, and Department of Urology, China Rehabilitation Research Center, School of Rehabilitation Medicine, Capital Medical University (FZ), Beijing, People's Republic of China
| |
Collapse
|
46
|
Metabotropic glutamate antagonists alone and in combination with morphine: comparison across two models of acute pain and a model of persistent, inflammatory pain. Behav Pharmacol 2013; 22:785-93. [PMID: 21971021 DOI: 10.1097/fbp.0b013e32834d13a2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study examined the effects of the mGluR1 antagonist JNJ16259685 (JNJ) and the mGluR5 antagonist 2-methyl-6-phenylethynylpyridine (MPEP) alone and in combination with morphine in two acute pain models (hotplate, warm water tail-withdrawal), and a persistent, inflammatory pain model (capsaicin). In the hotplate and warm water tail-withdrawal procedures, JNJ and MPEP were ineffective when administered alone. In both procedures, JNJ potentiated morphine antinociception. In the hotplate procedure, MPEP potentiated morphine antinociception at the highest dose examined, whereas in the warm water tail-withdrawal procedure MPEP attenuated morphine antinociception at a moderate dose and potentiated morphine antinociception at a high dose. For both JNJ and MPEP, the magnitude of this morphine potentiation was considerably greater in the hotplate procedure. In the capsaicin procedure, the highest dose of MPEP produced intermediate levels of antihyperalgesia and also attenuated the effects of a dose of morphine that produced intermediate levels of antihyperalgesia. In contrast, JNJ had no effect when administered alone in the capsaicin procedure and did not alter morphine-induced antihyperalgesia. The present findings suggest that the effects produced by mGluR1 and mGluR5 antagonists alone and in combination with morphine can be differentiated in models of both acute and persistent pain.
Collapse
|
47
|
Metabotropic glutamate receptor 5 contributes to inflammatory tongue pain via extracellular signal-regulated kinase signaling in the trigeminal spinal subnucleus caudalis and upper cervical spinal cord. J Neuroinflammation 2012. [PMID: 23181395 PMCID: PMC3543209 DOI: 10.1186/1742-2094-9-258] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background In the orofacial region, limited information is available concerning pathological tongue pain, such as inflammatory pain or neuropathic pain occurring in the tongue. Here, we tried for the first time to establish a novel animal model of inflammatory tongue pain in rats and to investigate the roles of metabotropic glutamate receptor 5 (mGluR5)-extracellular signal-regulated kinase (ERK) signaling in this process. Methods Complete Freund’s adjuvant (CFA) was submucosally injected into the tongue to induce the inflammatory pain phenotype that was confirmed by behavioral testing. Expression of phosphorylated ERK (pERK) and mGluR5 in the trigeminal subnucleus caudalis (Vc) and upper cervical spinal cord (C1-C2) were detected with immunohistochemical staining and Western blotting. pERK inhibitor, a selective mGluR5 antagonist or agonist was continuously administered for 7 days via an intrathecal (i.t.) route. Local inflammatory responses were verified by tongue histology. Results Submucosal injection of CFA into the tongue produced a long-lasting mechanical allodynia and heat hyperalgesia at the inflamed site, concomitant with an increase in the pERK immunoreactivity in the Vc and C1-C2. The distribution of pERK-IR cells was laminar specific, ipsilaterally dominant, somatotopically relevant, and rostrocaudally restricted. Western blot analysis also showed an enhanced activation of ERK in the Vc and C1-C2 following CFA injection. Continuous i.t. administration of the pERK inhibitor and a selective mGluR5 antagonist significantly depressed the mechanical allodynia and heat hyperalgesia in the CFA-injected tongue. In addition, the number of pERK-IR cells in ipsilateral Vc and C1-C2 was also decreased by both drugs. Moreover, continuous i.t. administration of a selective mGluR5 agonist induced mechanical allodynia in naive rats. Conclusions The present study constructed a new animal model of inflammatory tongue pain in rodents, and demonstrated pivotal roles of the mGluR5-pERK signaling in the development of mechanical and heat hypersensitivity that evolved in the inflamed tongue. This tongue-inflamed model might be useful for future studies to further elucidate molecular and cellular mechanisms of pathological tongue pain such as burning mouth syndrome.
Collapse
|
48
|
Raboisson P, Breitholtz-Emanuelsson A, Dahllöf H, Edwards L, Heaton WL, Isaac M, Jarvie K, Kers A, Minidis AB, Nordmark A, Sheehan SM, Slassi A, Ström P, Terelius Y, Wensbo D, Wilson JM, Xin T, McLeod DA. Discovery and characterization of AZD9272 and AZD6538—Two novel mGluR5 negative allosteric modulators selected for clinical development. Bioorg Med Chem Lett 2012; 22:6974-9. [DOI: 10.1016/j.bmcl.2012.08.100] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 08/26/2012] [Accepted: 08/27/2012] [Indexed: 11/15/2022]
|
49
|
Peripheral nerve injury produces a sustained shift in the balance between glutamate release and uptake in the dorsal horn of the spinal cord. Pain 2012; 153:2422-2431. [PMID: 23021150 DOI: 10.1016/j.pain.2012.08.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 07/31/2012] [Accepted: 08/22/2012] [Indexed: 12/20/2022]
Abstract
Peripheral nerve injury provokes heightened excitability of primary sensory afferents including nociceptors, and elicits ectopic activity in lesioned and neighboring intact nerve fibers. The major transmitter released by sensory afferents in the superficial dorsal horn of the spinal cord is glutamate. Glutamate is critically involved in nociceptive signaling and the development of neuropathic pain. We recorded miniature excitatory postsynaptic currents (mEPSCs) from neurons in lamina II of the rat dorsal horn to assess spontaneous synaptic activity after spared nerve injury (SNI), a model of chronic neuropathic pain. Following SNI, the frequency of mEPSCs doubled, indicating heightened glutamate release from primary afferents or spinal interneurons. Consistent with this finding, glutamate concentrations in the cerebrospinal fluid were elevated at 1 and 4 weeks after SNI. Transmitter uptake was insufficient to prevent the rise in extracellular glutamate as the expression of glutamate transporters remained unchanged or decreased. 2-Methyl-6-(phenylethynyl)pyridine hydrochloride, an antagonist of metabotropic glutamate receptor 5 (mGluR5), reduced the frequency of mEPSCs to its preinjury level, suggesting a positive feedback mechanism that involves facilitation of transmitter release by mGluR5 activation in the presence of high extracellular glutamate. Treatment with the β-lactam antibiotic ceftriaxone increased the expression of glutamate transporter 1 (Glt1) in the dorsal horn after SNI, raised transmitter uptake, and lowered extracellular glutamate. Improving glutamate clearance prevented the facilitation of transmitter release by mGluR5 and attenuated neuropathic pain-like behavior. Balancing glutamate release and uptake after nerve injury should be an important target in the management of chronic neuropathic pain.
Collapse
|
50
|
Osikowicz M, Mika J, Przewlocka B. The glutamatergic system as a target for neuropathic pain relief. Exp Physiol 2012; 98:372-84. [PMID: 23002244 DOI: 10.1113/expphysiol.2012.069922] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian CNS. The understanding of glutamatergic transmission in the nervous system has been greatly expanded with the discovery and investigation of the family of ionotropic and metabotropic glutamate receptors (mGluRs). Metabotropic glutamate receptors are localized at nerve terminals, postsynaptic sites and glial cells and thus, they can influence and modulate the action of glutamate at different levels in the synapse. Moreover, there is substantial evidence of glial participation in glutamate nociceptive processes and neuropathic pain. Metabotropic glutamate receptors have been shown to play a role in neuropathic pain, which is one of the most troublesome illnesses because the therapy is still not satisfactory. Recently, the development of selective mGluR ligands has provided important tools for further investigation of the role of mGluRs in the modulation of chronic pain processing. This paper presents a review of the literature of glutamate receptors in neuropathic pain and the role of glia in these effects. Specifically, pharmacological interventions aimed at inhibiting group I mGluRs and/or potentiating group II and III mGluR-mediated signalling is discussed. Moreover, we introduce data about the role of glutamate transporters. They are responsible for the level of glutamate in the synaptic cleft and thus regulate the effects of all three groups of mGluRs and, in consequence, the activity of this system in nociceptive transmission. Additionally, the question of how the modulation of the glutamatergic system influences the effectiveness of analgesic drugs used in neuropathic pain therapy is addressed.
Collapse
Affiliation(s)
- Maria Osikowicz
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | | | | |
Collapse
|