1
|
Jankowska A, Satała G, Partyka A, Wesołowska A, Bojarski AJ, Pawłowski M, Chłoń-Rzepa G. Discovery and Development of Non-Dopaminergic Agents for the Treatment of Schizophrenia: Overview of the Preclinical and Early Clinical Studies. Curr Med Chem 2019; 26:4885-4913. [PMID: 31291870 DOI: 10.2174/0929867326666190710172002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 02/05/2023]
Abstract
Schizophrenia is a chronic psychiatric disorder that affects about 1 in 100 people around the world and results in persistent emotional and cognitive impairments. Untreated schizophrenia leads to deterioration in quality of life and premature death. Although the clinical efficacy of dopamine D2 receptor antagonists against positive symptoms of schizophrenia supports the dopamine hypothesis of the disease, the resistance of negative and cognitive symptoms to these drugs implicates other systems in its pathophysiology. Many studies suggest that abnormalities in glutamate homeostasis may contribute to all three groups of schizophrenia symptoms. Scientific considerations also include disorders of gamma-aminobutyric acid-ergic and serotonergic neurotransmissions as well as the role of the immune system. The purpose of this review is to update the most recent reports on the discovery and development of non-dopaminergic agents that may reduce positive, negative, and cognitive symptoms of schizophrenia, and may be alternative to currently used antipsychotics. This review collects the chemical structures of representative compounds targeting metabotropic glutamate receptor, gamma-aminobutyric acid type A receptor, alpha 7 nicotinic acetylcholine receptor, glycine transporter type 1 and glycogen synthase kinase 3 as well as results of in vitro and in vivo studies indicating their efficacy in schizophrenia. Results of clinical trials assessing the safety and efficacy of the tested compounds have also been presented. Finally, attention has been paid to multifunctional ligands with serotonin receptor affinity or phosphodiesterase inhibitory activity as novel strategies in the search for dedicated medicines for patients with schizophrenia.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Anna Partyka
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Anna Wesołowska
- Department of Clinical Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Maciej Pawłowski
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grażyna Chłoń-Rzepa
- Department of Medicinal Chemistry, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
2
|
Menezes MM, Santini MA, Benvenga MJ, Marek GJ, Merchant KM, Mikkelsen JD, Svensson KA. The mGlu2/3 Receptor Agonists LY354740 and LY379268 Differentially Regulate Restraint-Stress-Induced Expression of c-Fos in Rat Cerebral Cortex. NEUROSCIENCE JOURNAL 2013; 2013:736439. [PMID: 26317098 PMCID: PMC4437333 DOI: 10.1155/2013/736439] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/27/2013] [Indexed: 11/23/2022]
Abstract
Metabotropic glutamate 2/3 (mGlu2/3) receptors have emerged as potential therapeutic targets due to the ability of mGlu2/3 receptor agonists to modulate excitatory transmission at specific synapses. LY354740 and LY379268 are selective and potent mGlu2/3 receptor agonists that show both anxiolytic- and antipsychotic-like effects in animal models. We compared the efficacy of LY354740 and LY379268 in attenuating restraint-stress-induced expression of the immediate early gene c-Fos in the rat prelimbic (PrL) and infralimbic (IL) cortex. LY354740 (10 and 30 mg/kg, i.p.) showed statistically significant and dose-related attenuation of stress-induced increase in c-Fos expression, in the rat cortex. By contrast, LY379268 had no effect on restraint-stress-induced c-Fos upregulation (0.3-10 mg/kg, i.p.). Because both compounds inhibit serotonin 2A receptor (5-HT2AR)-induced c-Fos expression, we hypothesize that LY354740 and LY379268 have different in vivo properties and that 5-HT2AR activation and restraint stress induce c-Fos through distinct mechanisms.
Collapse
Affiliation(s)
- M. M. Menezes
- Neuroscience Discovery, Eli Lilly & Company, Indianapolis, IN 46285, USA
| | - M. A. Santini
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - M. J. Benvenga
- Neuroscience Discovery, Eli Lilly & Company, Indianapolis, IN 46285, USA
| | - G. J. Marek
- Neuroscience Discovery, Eli Lilly & Company, Indianapolis, IN 46285, USA
- Abbott Laboratories, Global Pharmaceutical Research and Development, Neuroscience Clinical Development, Abbott Park, IL 60064-6075, USA
| | - K. M. Merchant
- Neuroscience Discovery, Eli Lilly & Company, Indianapolis, IN 46285, USA
| | - J. D. Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, 2100 Copenhagen, Denmark
| | - K. A. Svensson
- Neuroscience Discovery, Eli Lilly & Company, Indianapolis, IN 46285, USA
| |
Collapse
|
3
|
Pituitary volume in schizophrenia spectrum disorders. Schizophr Res 2013; 146:301-7. [PMID: 23522905 PMCID: PMC3760333 DOI: 10.1016/j.schres.2013.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 02/14/2013] [Accepted: 02/20/2013] [Indexed: 11/22/2022]
Abstract
INTRODUCTION There is converging evidence supporting hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis in schizophrenia spectrum disorders (SSD), such as schizotypal personality disorder (SPD), first-episode schizophrenia (FESZ) and chronic schizophrenia (CHSZ). Such an aberrant HPA activity might have volumetric consequences on the pituitary gland. However, previous magnetic resonance imaging (MRI) studies assessing pituitary volume (PV) in SSD are conflicting. The main objective of this study was to examine further PV in SSD. METHODS PV were manually traced on structural MRIs in 137 subjects, including subjects with SPD (n = 40), FESZ (n = 15), CHSZ (n = 15), and HC (n = 67). We used an ANCOVA to test PV between groups and gender while controlling for inter-subject variability in age, years of education, socioeconomic status, and whole brain volume. RESULTS Overall, women had larger PV than men, and within the male sample all SSD subjects had smaller PV than HC, statistically significant only for the SPD group. In addition, dose of medication, illness duration and age of onset were not associated with PV. CONCLUSION Chronic untreated HPA hyperactivity might account for smaller PV in SPD subjects, whereas the absence of PV changes in FESZ and CHSZ patients might be related to the normalizing effects of antipsychotics on PV. SPD studies offer a way to examine HPA related alterations in SSD without the potential confounds of medication effects.
Collapse
|
4
|
|
5
|
Zysk JR, Widzowski D, Sygowski LA, Knappenberger KS, Spear N, Elmore CS, Dorff P, Liu H, Doherty J, Chhajlani V. Absence of direct effects on the dopamine D2 receptor by mGluR2/3-selective receptor agonists LY 354,740 and LY 379,268. Synapse 2011; 65:64-8. [PMID: 20506301 DOI: 10.1002/syn.20817] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We previously reported the absence of high-affinity binding of the group II metabotropic glutamate receptor agonists LY 354,740 and LY 379,268 to the D2L dopamine receptor. A rebuttal to our findings has since been reported (see Introduction section); this study represents our response. Analysis by LCMS of LY 354,740 and LY 379,268 used in this study revealed the correct molecular mass for these compounds. Both LY 354,740 and LY 379,268 exhibited potent agonist activity for mGluR₂ in the ³⁵S-GTPγS assay. Functionally, neither compound displayed antagonist activity in the GTPγS assay with recombinant D₂. At concentrations up to 10 μM, both compounds failed to displace [³H]-raclopride, [³H]-PHNO, or [³H]-domperidone in filter-binding assays under isotonic (120 mM NaCl or N-methyl glucamine) or low-ionic strength (no NaCl or N-methyl glucamine) conditions. Some displacement of [³H]-domperidone (20-40%) was observed at 30 μM of LY 354,740 under low-ionic strength and under isotonic conditions in the absence of NaCl. No displacement of [³H]-domperidone was detected in a two site model at lower (<100 nM) concentrations of either compound. Moreover, no D₂ activity was observed for LY 354,740 or LY 379,268 in the CellKey™ (cellular dielectric spectroscopy) assay. In this communication, we discuss the possible reasons for differences in our study and the previously published work and implications of these studies for mechanisms of antipsychotic action.
Collapse
Affiliation(s)
- John R Zysk
- Neuroscience, CNS Discovery, AstraZeneca Pharmaceuticals, Wilmington, Delaware 19897, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Seeman P, Guan HC. Phencyclidine and glutamate agonist LY379268 stimulate dopamine D2High receptors: D2 basis for schizophrenia. Synapse 2009; 62:819-28. [PMID: 18720422 DOI: 10.1002/syn.20561] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
It has previously been reported that the glutamate ionotropic antagonist phencyclidine directly inhibits the release of prolactin in anterior pituitary cells in culture, suggesting that phencyclidine has a dopamine (DA)-like action on prolactin-releasing cells. It has also been reported that the glutamate metabotropic agonist LY379268 can stimulate the incorporation of [35S]GTP-gamma-S into DA D2Long receptors. The present study was done to examine whether such glutamatergic drugs had similar actions on the DA D2Short receptor. The present results show that phencyclidine, ketamine, and LY379268 also stimulated the incorporation of [35S]GTP-gamma-S into D2Short receptors. The proportion of D2Long and D2Short receptors existing in the high-affinity state were both markedly reduced by NaCl. While phencyclidine and LY379268 each stimulated the incorporation of GTP-gamma-S into D2Long and D2Short receptors, this stimulation was reduced by NaCl, with D2Short being much more sensitive than D2Long to the inhibition by NaCl. The binding of phencyclidine and LY379268 to D2High receptors in vivo was directly confirmed by the i.v. injection of phencyclidine and LY379268 in which 50% inhibited the binding of [3H]PHNO to the striatum ex vivo at 0.25 and 1.5 mg/kg, respectively. The results confirm that glutamate agonists and antagonists have a significant affinity for DA D2High receptors. The psychotogenic action of phencyclidine may stem from a combination or synergistic action of glutamate receptor antagonism and DA D2 agonism. In addition, the antipsychotic clinical action of LY379268 congeners such as LY404039 may be related to a combined or synergistic action of glutamate receptor stimulation together with a partial DA agonist action that reduces endogenous DA neurotransmission.
Collapse
Affiliation(s)
- Philip Seeman
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
7
|
Seeman P, Battaglia G, Corti C, Corsi M, Bruno V. Glutamate receptor mGlu2 and mGlu3 knockout striata are dopamine supersensitive, with elevated D2(High) receptors and marked supersensitivity to the dopamine agonist (+)PHNO. Synapse 2009; 63:247-51. [PMID: 19084908 DOI: 10.1002/syn.20607] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The finding that the mGlu2/3 metabotropic glutamate receptor agonist, LY404039, improves clinical symptoms in schizophrenia warrants a search for a possible interaction between mGlu2/3 receptors and dopamine D2 receptors. Here, this topic is examined in striatal tissue of mice lacking either mGlu2 or mGlu3 receptor. Such mice are known to be behaviorally supersensitive to dopamine receptor agonists. Therefore, to determine the basis of this dopamine supersensitivity, the proportion of dopamine D2(High) receptors was measured in the striata of mGlu2 and mGlu3 receptor knockout mice. The proportion of D2(High) receptors was found to be elevated by 220% in the striata of both knockouts. To measure the functional dopamine supersensitivity, the D2 agonist (+)PHNO was used to stimulate the incorporation of GTP-gamma-S in the striatal homogenates in the presence of drugs that blocked the dopamine D1, D3, and D5 receptors. Compared with control striata, the mGlu2 receptor knockout tissues were 67-fold more sensitive to (+)PHNO, while the mGlu3 receptor knockout tissues were 17-fold more sensitive. These data suggest that group II mGlu receptors-mGlu2 receptors in particular-may normally regulate D2 receptors by reducing the proportion of high-affinity D2 receptors in membranes. Such regulation may contribute to the antipsychotic action of mGlu2/3 receptor agonists.
Collapse
Affiliation(s)
- Philip Seeman
- Department of Pharmacology, Medical Science Building, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
8
|
Durand D, Pampillo M, Caruso C, Lasaga M. Role of metabotropic glutamate receptors in the control of neuroendocrine function. Neuropharmacology 2008; 55:577-83. [PMID: 18616955 DOI: 10.1016/j.neuropharm.2008.06.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 05/23/2008] [Accepted: 06/12/2008] [Indexed: 11/25/2022]
Abstract
Glutamate exerts its effects through binding and activation of two classes of specific receptors: ionotropic (iGluRs) and metabotropic (mGluRs). Group I mGluR includes mGluR1 and mGluR5 subtypes, group II includes mGluR2 and mGluR3 subtypes and group III includes the subtypes mGluR 4, 6, 7 and 8. Glutamate and its receptors are found in all key hypothalamic areas critically involved in reproduction and neuroendocrine function. To date, considerable data support an important role for iGluRs in the control of neuroendocrine function; however, the role of mGluRs as regulators of hypothalamic-pituitary function has not been clearly elucidated. mGluRs could be exerting a fine tune on the release of hypothalamic factors that regulate hormone release such as Substance P, GABA, alpha-MSH and CRH. Group II mGluR exert a direct inhibitory effect on anterior pituitary prolactin and GH secretion. Moreover, some group II mGluR agonists, like LY 354,740 and LY 379,268, can modulate PRL secretion from the anterior pituitary through their actions as dopamine receptor agonists. Evidence suggests a role for group III mGluR subtypes in stress-related behavioral disorders. Several reports indicate that selective ligands for mGluR subtypes have potential for the treatment of a wide variety of neurological and psychiatric disorders, including depression, anxiety disorders, schizophrenia, epilepsy and Alzheimer's disease among others. Since converging lines of evidence suggest a role for mGluRs subtypes in neuroendocrine regulation of hormone secretion, mGluRs neuroendocrine actions must be taken in consideration to insure proper treatment of these diseases. Moreover, discovery of selective agonists provides an opportunity to investigate the physiological role of mGluR subtypes and to directly test the neuroendocrine actions of mGluRs. Finally, mGluRs selective agonists may have an impact in the treatment of conditions involving chronic stress, such as depression and anxiety disorders, since they regulate neuroendocrine stress circuits involving the HPA axis and stress-sensitive hormones such as oxytocin and prolactin. This review aims to provide a survey of our current understanding of the effects of mGluR activation on neuroendocrine function.
Collapse
Affiliation(s)
- Daniela Durand
- Research Center in Reproduction, School of Medicine, University of Buenos Aires, Paraguay 2155, Piso 10, 1121 Buenos Aires, Argentina
| | | | | | | |
Collapse
|
9
|
Seeman P, Caruso C, Lasaga M. Dopamine partial agonist actions of the glutamate receptor agonists LY 354,740 and LY 379,268. Synapse 2008; 62:154-8. [PMID: 18000815 DOI: 10.1002/syn.20482] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Because glutamate compounds alter the release of dopamine and prolactin, the present study examined whether group II metabotropic receptor agonists, LY 354,740 and LY 379,268, had any direct in vitro action on dopamine D2 receptors on rat striatal tissue, cloned D2Long receptors, and prolactin release from anterior pituitary cells. In competition versus the D2-specific ligand [(3)H]domperidone, LY 354,740 had a dissociation constant of 24 nM at D2(High) (the functional high-affinity state of dopamine D2 receptors), while the value for LY 379,268 was 21 nM. LY 354,740 also stimulated by 50% the incorporation of [(35)S]-GTP-gamma-S at a concentration of 120 nM, but its maximal stimulation was only 22% of the maximum elicited by dopamine. LY 379,268 stimulated by 50% the incorporation of [(35)S]-GTP-gamma-S at 280 nM, but its maximal stimulation was also only 22% of the maximum elicited by dopamine. However, both LY 354,740 and LY 379,268 potently inhibited the dopamine-induced incorporation of [(35)S]-GTP-gamma-S with inhibitory Ki values of 43 nM and 30 nM, respectively. The release of prolactin from rat isolated anterior pituitary cells in culture was 50% inhibited by 20 nM LY 379,268 and by 100 nM LY 354,740. These Ki values are similar to those known for the mGluR II receptor, suggesting that these compounds may have both glutamate and dopamine actions in vivo. The dopamine agonist and antagonist actions of these compounds indicate that these drugs have properties of a dopamine partial agonist, and may, therefore, have antipsychotic action.
Collapse
Affiliation(s)
- Philip Seeman
- Department of Pharmacology, Medical Science Building 4344, University of Toronto, Toronto, Ontario, Canada M5S 1A8.
| | | | | |
Collapse
|
10
|
Imre G. The preclinical properties of a novel group II metabotropic glutamate receptor agonist LY379268. CNS DRUG REVIEWS 2008; 13:444-64. [PMID: 18078428 DOI: 10.1111/j.1527-3458.2007.00024.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activation of group II metabotropic glutamate (mGlu2/3) receptors reduces excessive glutamate release that is often associated with neurodegenerative and psychiatric disorders. This finding encouraged the search for potent and selective agonists as potential therapeutic agents. The search led to the discovery of LY379268 {(-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylic acid}, which is a highly potent and systemically available mGlu2/3 receptor agonist. LY379268 was effective in several animal models of stroke, epilepsy, drug abuse, schizophrenia, and pain. Suppression of motor activity is the major side effect of LY379268. Upon repeated administration tolerance develops to this side effect, while the therapeutic effects of LY379268 remain. To date, no clinical data with LY379268 are available. This review article summarizes the preclinical pharmacology of LY379268.
Collapse
Affiliation(s)
- Gabor Imre
- Department of Behavioral Pharmacology, Gedeon Richter Ltd., Budapest, Hungary.
| |
Collapse
|
11
|
Chapter 4.4 The glutamatergic system as a potential therapeutic target for the treatment of anxiety disorders. HANDBOOK OF ANXIETY AND FEAR 2008. [DOI: 10.1016/s1569-7339(07)00013-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
12
|
Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, Mosolov SN, Neznanov NG, Reznik AM, Smulevich AB, Tochilov VA, Johnson BG, Monn JA, Schoepp DD. Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 2007; 13:1102-7. [PMID: 17767166 DOI: 10.1038/nm1632] [Citation(s) in RCA: 768] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 07/24/2007] [Indexed: 01/03/2023]
Abstract
Schizophrenia is a chronic, complex and heterogeneous mental disorder, with pathological features of disrupted neuronal excitability and plasticity within limbic structures of the brain. These pathological features manifest behaviorally as positive symptoms (including hallucinations, delusions and thought disorder), negative symptoms (such as social withdrawal, apathy and emotional blunting) and other psychopathological symptoms (such as psychomotor retardation, lack of insight, poor attention and impulse control). Altered glutamate neurotransmission has for decades been linked to schizophrenia, but all commonly prescribed antipsychotics act on dopamine receptors. LY404039 is a selective agonist for metabotropic glutamate 2/3 (mGlu2/3) receptors and has shown antipsychotic potential in animal studies. With data from rodents, we provide new evidence that mGlu2/3 receptor agonists work by a distinct mechanism different from that of olanzapine. To clinically test this mechanism, an oral prodrug of LY404039 (LY2140023) was evaluated in schizophrenic patients with olanzapine as an active control in a randomized, three-armed, double-blind, placebo-controlled study. Treatment with LY2140023, like treatment with olanzapine, was safe and well-tolerated; treated patients showed statistically significant improvements in both positive and negative symptoms of schizophrenia compared to placebo (P < 0.001 at week 4). Notably, patients treated with LY2140023 did not differ from placebo-treated patients with respect to prolactin elevation, extrapyramidal symptoms or weight gain. These data suggest that mGlu2/3 receptor agonists have antipsychotic properties and may provide a new alternative for the treatment of schizophrenia.
Collapse
Affiliation(s)
- Sandeep T Patil
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Imre G, Salomons A, Jongsma M, Fokkema DS, Den Boer JA, Ter Horst GJ. Effects of the mGluR2/3 agonist LY379268 on ketamine-evoked behaviours and neurochemical changes in the dentate gyrus of the rat. Pharmacol Biochem Behav 2006; 84:392-9. [PMID: 16857251 DOI: 10.1016/j.pbb.2006.05.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 05/23/2006] [Accepted: 05/25/2006] [Indexed: 10/24/2022]
Abstract
One of the functions of group II metabotropic glutamate receptors (mGluR2/3) is to modulate glutamate release. Thus, targeting mGluR2/3s might be a novel treatment for several psychiatric disorders associated with inappropriate glutamatergic neurotransmission, such as schizophrenia. In an effort to evaluate the antipsychotic properties of LY379268, a potent and selective mGluR2/3 agonist, we examined its effect on ketamine-evoked hyperlocomotion and sensorimotor gating deficit (PPI) in rats, an animal model of schizophrenia. We also measured the ex vivo tissue level of glutamate (Glu), dopamine (DA) and serotonin (5-HT) as well as the DA metabolites DOPAC and the major 5-HT metabolite HIAA to determine the neurochemical effects of ketamine (12 mg/kg) and LY379268 (1 mg/kg) in the dentate gyrus (DG). While LY379268 (1-3 mg/kg) reduced ketamine-evoked hyperlocomotion (12 mg/kg), it could not restore ketamine-evoked PPI deficits (4-12 mg/kg). In the DG we found that ketamine decreased Glu and DA levels, as well as HIAA/5-HT turnover, and that LY379268 could prevent ketamine effects on Glu level but not on monoamine transmission. These results may indicate that the inability of LY379268 to reverse PPI deficits is attributable to its lack of effect on ketamine-induced changes in monoamine transmission, but that LY379268 can prevent ketamine-evoked changes in glutamate, which is sufficient to block hyperlocomotion. In addition to the partial effectiveness of LY379268 in the ketamine model of schizophrenia, we observed a dual effect of LY379268 on anxious states, whereby a low dose of this compound (1 mg/kg) produced anxiolytic effects, while a higher dose (3 mg/kg) appeared to be anxiogenic. Additional work is needed to address a possible role of LY379268 in schizophrenia and anxiety treatment.
Collapse
Affiliation(s)
- Gabor Imre
- Department of Psychiatry, University Medical Center Groningen, and University of Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
14
|
Witkin JM, Eiler II WJ. Antagonism of metabotropic glutamate group II receptors in the potential treatment of neurological and neuropsychiatric disorders. Drug Dev Res 2006. [DOI: 10.1002/ddr.20144] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Kellner M, Muhtz C, Stark K, Yassouridis A, Arlt J, Wiedemann K. Effects of a metabotropic glutamate(2/3) receptor agonist (LY544344/LY354740) on panic anxiety induced by cholecystokinin tetrapeptide in healthy humans: preliminary results. Psychopharmacology (Berl) 2005; 179:310-5. [PMID: 15821951 DOI: 10.1007/s00213-004-2025-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2004] [Accepted: 09/01/2004] [Indexed: 12/01/2022]
Abstract
RATIONALE Preclinical findings have repeatedly shown an anxiolytic-like action of agonists at metabotropic glutamate receptors type II, such as LY354740. OBJECTIVE We aimed to investigate the effect of LY544344, the prodrug of LY354740, upon experimental panic anxiety in humans. METHODS Twelve healthy human volunteers were treated orally with 80 mg bid LY544344 for 1 week in a randomized placebo-controlled cross-over study before 50 mug cholecystokinin tetrapeptide (CCK-4) was injected intravenously. We assessed CCK-induced panic and anxiety symptoms and measured stress hormone release. RESULTS While no significant treatment effect emerged in the entire sample, a significant reduction of the number of CCK-4-induced panic symptoms and of CCK-4-induced subjective anxiety ratings was detected after removing two subjects who did not show decreased CCK-4-elicited adrenocorticotropin (ACTH) release after LY544344 compared to placebo treatment. CONCLUSIONS Further studies are needed to clarify the potential of LY544344 as a new anxiolytic or antipanic drug.
Collapse
Affiliation(s)
- Michael Kellner
- Department of Psychiatry and Psychotherapy, University Hospital Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|