1
|
Hernandez CC, Shen Y, Hu N, Shen W, Narayanan V, Ramsey K, He W, Zou L, Macdonald RL. GABRG2 Variants Associated with Febrile Seizures. Biomolecules 2023; 13:414. [PMID: 36979350 PMCID: PMC10046037 DOI: 10.3390/biom13030414] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Febrile seizures (FS) are the most common form of epilepsy in children between six months and five years of age. FS is a self-limited type of fever-related seizure. However, complicated prolonged FS can lead to complex partial epilepsy. We found that among the GABAA receptor subunit (GABR) genes, most variants associated with FS are harbored in the γ2 subunit (GABRG2). Here, we characterized the effects of eight variants in the GABAA receptor γ2 subunit on receptor biogenesis and channel function. Two-thirds of the GABRG2 variants followed the expected autosomal dominant inheritance in FS and occurred as missense and nonsense variants. The remaining one-third appeared as de novo in the affected probands and occurred only as missense variants. The loss of GABAA receptor function and dominant negative effect on GABAA receptor biogenesis likely caused the FS phenotype. In general, variants in the GABRG2 result in a broad spectrum of phenotypic severity, ranging from asymptomatic, FS, genetic epilepsy with febrile seizures plus (GEFS+), and Dravet syndrome individuals. The data presented here support the link between FS, epilepsy, and GABRG2 variants, shedding light on the relationship between the variant topological occurrence and disease severity.
Collapse
Affiliation(s)
- Ciria C. Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yanwen Shen
- Department of Pediatrics, Seventh Medical Center of Chinese PLA General Hospital, Beijing 100010, China
| | - Ningning Hu
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | - Wen He
- Department of Pediatrics, Seventh Medical Center of Chinese PLA General Hospital, Beijing 100010, China
| | - Liping Zou
- Department of Pediatrics, Seventh Medical Center of Chinese PLA General Hospital, Beijing 100010, China
| | - Robert L. Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
2
|
Hernandez CC, Tian X, Hu N, Shen W, Catron MA, Yang Y, Chen J, Jiang Y, Zhang Y, Macdonald RL. Dravet syndrome-associated mutations in GABRA1, GABRB2 and GABRG2 define the genetic landscape of defects of GABA A receptors. Brain Commun 2021; 3:fcab033. [PMID: 34095830 PMCID: PMC8176149 DOI: 10.1093/braincomms/fcab033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 12/29/2022] Open
Abstract
Dravet syndrome is a rare, catastrophic epileptic encephalopathy that begins in the first year of life, usually with febrile or afebrile hemiclonic or generalized tonic-clonic seizures followed by status epilepticus. De novo variants in genes that mediate synaptic transmission such as SCN1A and PCDH19 are often associated with Dravet syndrome. Recently, GABAA receptor subunit genes (GABRs) encoding α1 (GABRA1), β3 (GABRB3) and γ2 (GABRG2), but not β2 (GABRB2) or β1 (GABRB1), subunits are frequently associated with Dravet syndrome or Dravet syndrome-like phenotype. We performed next generation sequencing on 870 patients with Dravet syndrome and identified nine variants in three different GABRs. Interestingly, the variants were all in genes encoding the most common GABAA receptor, the α1β2γ2 receptor. Mutations in GABRA1 (c.644T>C, p. L215P; c.640C>T, p. R214C; c.859G>A; V287I; c.641G>A, p. R214H) and GABRG2 (c.269C>G, p. T90R; c.1025C>T, p. P342L) presented as de novo cases, while in GABRB2 two variants were de novo (c.992T>C, p. F331S; c.542A>T, p. Y181F) and one was autosomal dominant and inherited from the maternal side (c.990_992del, p.330_331del). We characterized the effects of these GABR variants on GABAA receptor biogenesis and channel function. We found that defects in receptor gating were the common deficiency of GABRA1 and GABRB2 Dravet syndrome variants, while mainly trafficking defects were found with the GABRG2 (c.269C>G, p. T90R) variant. It seems that variants in α1 and β2 subunits are less tolerated than in γ2 subunits, since variant α1 and β2 subunits express well but were functionally deficient. This suggests that all of these GABR variants are all targeting GABR genes that encode the assembled α1β2γ2 receptor, and regardless of which of the three subunits are mutated, variants in genes coding for α1, β2 and γ2 receptor subunits make them candidate causative genes in the pathogenesis of Dravet syndrome.
Collapse
Affiliation(s)
- Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48198, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - XiaoJuan Tian
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
- Department of Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Ningning Hu
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Mackenzie A Catron
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37240, USA
| | - Ying Yang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
| | - Jiaoyang Chen
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
| | - Yuwu Jiang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Yuehua Zhang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
| | - Robert L Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| |
Collapse
|
3
|
Hernandez CC, Zhang Y, Hu N, Shen D, Shen W, Liu X, Kong W, Jiang Y, Macdonald RL. GABA A Receptor Coupling Junction and Pore GABRB3 Mutations are Linked to Early-Onset Epileptic Encephalopathy. Sci Rep 2017; 7:15903. [PMID: 29162865 PMCID: PMC5698489 DOI: 10.1038/s41598-017-16010-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 10/11/2017] [Indexed: 12/17/2022] Open
Abstract
GABAA receptors are brain inhibitory chloride ion channels. Here we show functional analyses and structural simulations for three de novo missense mutations in the GABAA receptor β3 subunit gene (GABRB3) identified in patients with early-onset epileptic encephalopathy (EOEE) and profound developmental delay. We sought to obtain insights into the molecular mechanisms that might link defects in GABAA receptor biophysics and biogenesis to patients with EOEE. The mutant residues are part of conserved structural domains such as the Cys-loop (L170R) and M2-M3 loop (A305V) that form the GABA binding/channel gating coupling junction and the channel pore (T288N), which are functionally coupled during receptor activation. The mutant coupling junction residues caused rearrangements and formation of new hydrogen bonds in the open state, while the mutant pore residue reshaped the pore cavity. Whereas mutant coupling junction residues uncoupled during activation and caused gain of function, the mutant pore residue favoured low conductance receptors and differential sensitivity to diazepam and loss of function. These data reveal novel molecular mechanisms by which EOEE-linked mutations affect GABAA receptor function.
Collapse
Affiliation(s)
- Ciria C Hernandez
- Department of Neurology, Vanderbilt University, Nashville, TN., 37240-7915., USA. .,University of Michigan, Life Sciences Institute, 210 Washtenaw Ave., Room 6115, Ann Arbor, MI, 48109-2216, USA.
| | - Yujia Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Ningning Hu
- Department of Neurology, Vanderbilt University, Nashville, TN., 37240-7915., USA
| | - Dingding Shen
- The Graduate Program of Neuroscience, Vanderbilt University, Nashville, 37240-7915., TN, USA
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University, Nashville, TN., 37240-7915., USA
| | - Xiaoyan Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Weijing Kong
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Yuwu Jiang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.
| | - Robert L Macdonald
- Department of Neurology, Vanderbilt University, Nashville, TN., 37240-7915., USA.
| |
Collapse
|
4
|
Leidenheimer NJ. Cognate Ligand Chaperoning: a Novel Mechanism for the Post-translational Regulation of Neurotransmitter Receptor Biogenesis. Front Cell Neurosci 2017; 11:245. [PMID: 28860972 PMCID: PMC5559506 DOI: 10.3389/fncel.2017.00245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/02/2017] [Indexed: 11/13/2022] Open
Abstract
The functional unit for inter-neuronal communication in the central nervous system is the neuronal synapse. The number of postsynaptic neurotransmitter receptors at the cell surface is an important determinant of synaptic efficacy and plasticity. A diverse array of post-translational processes regulate postsynaptic receptor number, including receptor exocytosis, lateral diffusion, surface stabilization, endocytosis, and recycling, thus highlighting the importance of mechanisms that control postsynaptic receptor levels. Another putative post-translational mechanism for regulating receptor surface expression is cognate ligand chaperoning. It has been proposed that neurotransmitters function as cognate ligand chaperones by binding, within the endoplasmic reticulum (ER) lumen, to their nascent neurotransmitter receptors and facilitating receptor biogenesis. Here we discuss proof-of-concept evidence that small molecules can selectively facilitate the biogenesis of their targets and examine the specific evidence in support of cognate ligand chaperoning of neurotransmitter receptor biogenesis.
Collapse
Affiliation(s)
- Nancy J Leidenheimer
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences CenterShreveport, LA, United States
| |
Collapse
|
5
|
Shen D, Hernandez CC, Shen W, Hu N, Poduri A, Shiedley B, Rotenberg A, Datta AN, Leiz S, Patzer S, Boor R, Ramsey K, Goldberg E, Helbig I, Ortiz-Gonzalez XR, Lemke JR, Marsh ED, Macdonald RL. De novo GABRG2 mutations associated with epileptic encephalopathies. Brain 2017; 140:49-67. [PMID: 27864268 PMCID: PMC5226060 DOI: 10.1093/brain/aww272] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/05/2016] [Accepted: 09/10/2016] [Indexed: 12/17/2022] Open
Abstract
Epileptic encephalopathies are a devastating group of severe childhood onset epilepsies with medication-resistant seizures and poor developmental outcomes. Many epileptic encephalopathies have a genetic aetiology and are often associated with de novo mutations in genes mediating synaptic transmission, including GABAA receptor subunit genes. Recently, we performed next generation sequencing on patients with a spectrum of epileptic encephalopathy phenotypes, and we identified five novel (A106T, I107T, P282S, R323W and F343L) and one known (R323Q) de novo GABRG2 pathogenic variants (mutations) in eight patients. To gain insight into the molecular basis for how these mutations contribute to epileptic encephalopathies, we compared the effects of the mutations on the properties of recombinant α1β2γ2L GABAA receptors transiently expressed in HEK293T cells. Using a combination of patch clamp recording, immunoblotting, confocal imaging and structural modelling, we characterized the effects of these GABRG2 mutations on GABAA receptor biogenesis and channel function. Compared with wild-type α1β2γ2L receptors, GABAA receptors containing a mutant γ2 subunit had reduced cell surface expression with altered subunit stoichiometry or decreased GABA-evoked whole-cell current amplitudes, but with different levels of reduction. While a causal role of these mutations cannot be established directly from these results, the functional analysis together with the genetic information suggests that these GABRG2 variants may be major contributors to the epileptic encephalopathy phenotypes. Our study further expands the GABRG2 phenotypic spectrum and supports growing evidence that defects in GABAergic neurotransmission participate in the pathogenesis of genetic epilepsies including epileptic encephalopathies.
Collapse
Affiliation(s)
- Dingding Shen
- 1 The Graduate Program of Neuroscience, Vanderbilt University, Nashville, TN 37232, USA
| | - Ciria C Hernandez
- 2 Department of Neurology, Vanderbilt University, Nashville, TN 37240, USA
| | - Wangzhen Shen
- 2 Department of Neurology, Vanderbilt University, Nashville, TN 37240, USA
| | - Ningning Hu
- 2 Department of Neurology, Vanderbilt University, Nashville, TN 37240, USA
| | - Annapurna Poduri
- 3 Epilepsy Genetics Program and the Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
- 4 Harvard Medical School, Boston, MA 02115, USA
| | - Beth Shiedley
- 3 Epilepsy Genetics Program and the Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alex Rotenberg
- 3 Epilepsy Genetics Program and the Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alexandre N Datta
- 5 Division of Pediatric Neurology and Developmental Medicine, University of Basel Children's Hospital, Basel 4056, Switzerland
| | - Steffen Leiz
- 6 Clinic for Children and Adolescents Dritter Orden, Divison of Neuropediatrics, München, 80638 Germany
| | - Steffi Patzer
- 7 Clinic for Children and Adolescents, Halle/Saale, 06097 Germany
| | - Rainer Boor
- 8 Department of Pediatric Neurology, Kiel University, Kiel 24118 Germany; Northern German Epilepsy Centre for Children and Adolescents, Schwentinental - Raisdorf, 24223 Germany
| | - Kerri Ramsey
- 9 Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, 85004 AZ, USA
| | - Ethan Goldberg
- 10 Departments of Neurology and Paediatrics, Division of Child Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- 11 Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ingo Helbig
- 10 Departments of Neurology and Paediatrics, Division of Child Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- 11 Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xilma R Ortiz-Gonzalez
- 10 Departments of Neurology and Paediatrics, Division of Child Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- 11 Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Johannes R Lemke
- 12 Institute of Human Genetics, University of Leipzig Hospitals and Clinics, Leipzig, 04103 Germany
| | - Eric D Marsh
- 10 Departments of Neurology and Paediatrics, Division of Child Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- 11 Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert L Macdonald
- 2 Department of Neurology, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
6
|
Janve VS, Hernandez CC, Verdier KM, Hu N, Macdonald RL. Epileptic encephalopathy de novo GABRB mutations impair γ-aminobutyric acid type A receptor function. Ann Neurol 2016; 79:806-825. [PMID: 26950270 PMCID: PMC5014730 DOI: 10.1002/ana.24631] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The Epi4K Consortium recently identified 4 de novo mutations in the γ-aminobutyric acid type A (GABAA ) receptor β3 subunit gene GABRB3 and 1 in the β1 subunit gene GABRB1 in children with one of the epileptic encephalopathies (EEs) Lennox-Gastaut syndrome (LGS) and infantile spasms (IS). Because the etiology of EEs is often unknown, we determined the impact of GABRB mutations on GABAA receptor function and biogenesis. METHODS GABAA receptor α1 and γ2L subunits were coexpressed with wild-type and/or mutant β3 or β1 subunits in HEK 293T cells. Currents were measured using whole cell and single channel patch clamp techniques. Surface and total expression levels were measured using flow cytometry. Potential structural perturbations in mutant GABAA receptors were explored using structural modeling. RESULTS LGS-associated GABRB3(D120N, E180G, Y302C) mutations located at β+ subunit interfaces reduced whole cell currents by decreasing single channel open probability without loss of surface receptors. In contrast, IS-associated GABRB3(N110D) and GABRB1(F246S) mutations at β- subunit interfaces produced minor changes in whole cell current peak amplitude but altered current deactivation by decreasing or increasing single channel burst duration, respectively. GABRB3(E180G) and GABRB1(F246S) mutations also produced spontaneous channel openings. INTERPRETATION All 5 de novo GABRB mutations impaired GABAA receptor function by rearranging conserved structural domains, supporting their role in EEs. The primary effect of LGS-associated mutations was reduced GABA-evoked peak current amplitudes, whereas the major impact of IS-associated mutations was on current kinetic properties. Despite lack of association with epilepsy syndromes, our results suggest GABRB1 as a candidate human epilepsy gene. Ann Neurol 2016;79:806-825.
Collapse
Affiliation(s)
- Vaishali S Janve
- Graduate Program of Neuroscience, Vanderbilt University, Nashville, TN
| | | | | | - Ningning Hu
- Department of Neurology, Vanderbilt University, Nashville, TN
| | | |
Collapse
|
7
|
Wang P, Eshaq RS, Meshul CK, Moore C, Hood RL, Leidenheimer NJ. Neuronal gamma-aminobutyric acid (GABA) type A receptors undergo cognate ligand chaperoning in the endoplasmic reticulum by endogenous GABA. Front Cell Neurosci 2015; 9:188. [PMID: 26041994 PMCID: PMC4435044 DOI: 10.3389/fncel.2015.00188] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/28/2015] [Indexed: 01/01/2023] Open
Abstract
GABAA receptors mediate fast inhibitory neurotransmission in the brain. Dysfunction of these receptors is associated with various psychiatric/neurological disorders and drugs targeting this receptor are widely used therapeutic agents. Both the efficacy and plasticity of GABAA receptor-mediated neurotransmission depends on the number of surface GABAA receptors. An understudied aspect of receptor cell surface expression is the post-translational regulation of receptor biogenesis within the endoplasmic reticulum (ER). We have previously shown that exogenous GABA can act as a ligand chaperone of recombinant GABAA receptors in the early secretory pathway leading us to now investigate whether endogenous GABA facilitates the biogenesis of GABAA receptors in primary cerebral cortical cultures. In immunofluorescence labeling experiments, we have determined that neurons expressing surface GABAA receptors contain both GABA and its degradative enzyme GABA transaminase (GABA-T). Treatment of neurons with GABA-T inhibitors, a treatment known to increase intracellular GABA levels, decreases the interaction of the receptor with the ER quality control protein calnexin, concomittantly increasing receptor forward-trafficking and plasma membrane insertion. The effect of GABA-T inhibition on the receptor/calnexin interaction is not due to the activation of surface GABAA or GABAB receptors. Consistent with our hypothesis that GABA acts as a cognate ligand chaperone in the ER, immunogold-labeling of rodent brain slices reveals the presence of GABA within the rough ER. The density of this labeling is similar to that present in mitochondria, the organelle in which GABA is degraded. Lastly, the effect of GABA-T inhibition on the receptor/calnexin interaction was prevented by pretreatment with a GABA transporter inhibitor. Together, these data indicate that endogenous GABA acts in the rough ER as a cognate ligand chaperone to facilitate the biogenesis of neuronal GABAA receptors.
Collapse
Affiliation(s)
- Ping Wang
- Department of Biochemistry and Molecular Biology, Louisiana State University, Health Sciences Center-Shreveport Shreveport, LA, USA
| | - Randa S Eshaq
- Department of Biochemistry and Molecular Biology, Louisiana State University, Health Sciences Center-Shreveport Shreveport, LA, USA
| | - Charles K Meshul
- Veterans Hospital Portland/Research Services/Neurocytology Laboratory and Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Cynthia Moore
- Veterans Hospital Portland/Research Services/Neurocytology Laboratory and Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Rebecca L Hood
- Veterans Hospital Portland/Research Services/Neurocytology Laboratory and Department of Behavioral Neuroscience, Oregon Health & Science University Portland, OR, USA
| | - Nancy J Leidenheimer
- Department of Biochemistry and Molecular Biology, Louisiana State University, Health Sciences Center-Shreveport Shreveport, LA, USA
| |
Collapse
|
8
|
Huang X, Hernandez CC, Hu N, Macdonald RL. Three epilepsy-associated GABRG2 missense mutations at the γ+/β- interface disrupt GABAA receptor assembly and trafficking by similar mechanisms but to different extents. Neurobiol Dis 2014; 68:167-79. [PMID: 24798517 PMCID: PMC4169075 DOI: 10.1016/j.nbd.2014.04.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/22/2014] [Accepted: 04/25/2014] [Indexed: 11/23/2022] Open
Abstract
We compared the effects of three missense mutations in the GABAA receptor γ2 subunit on GABAA receptor assembly, trafficking and function in HEK293T cells cotransfected with α1, β2, and wildtype or mutant γ2 subunits. The mutations R82Q and P83S were identified in families with genetic epilepsy with febrile seizures plus (GEFS+), and N79S was found in a single patient with generalized tonic-clonic seizures (GTCS). Although all three mutations were located in an N-terminal loop that contributes to the γ+/β- subunit-subunit interface, we found that each mutation impaired GABAA receptor assembly to a different extent. The γ2(R82Q) and γ2(P83S) subunits had reduced α1β2γ2 receptor surface expression due to impaired assembly into pentamers, endoplasmic reticulum (ER) retention and degradation. In contrast, γ2(N79S) subunits were efficiently assembled into GABAA receptors with only minimally altered receptor trafficking, suggesting that N79S was a rare or susceptibility variant rather than an epilepsy mutation. Increased structural variability at assembly motifs was predicted by R82Q and P83S, but not N79S, substitution, suggesting that R82Q and P83S substitutions were less tolerated. Membrane proteins with missense mutations that impair folding and assembly often can be "rescued" by decreased temperatures. We coexpressed wildtype or mutant γ2 subunits with α1 and β2 subunits and found increased surface and total levels of both wildtype and mutant γ2 subunits after decreasing the incubation temperature to 30°C for 24h, suggesting that lower temperatures increased GABAA receptor stability. Thus epilepsy-associated mutations N79S, R82Q and P83S disrupted GABAA receptor assembly to different extents, an effect that could be potentially rescued by facilitating protein folding and assembly.
Collapse
Affiliation(s)
- Xuan Huang
- The Graduate Program of Neuroscience, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Ciria C Hernandez
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Ningning Hu
- Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Robert L Macdonald
- The Graduate Program of Neuroscience, Vanderbilt University Medical Center, Nashville, TN 37212, USA; Departments of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA.
| |
Collapse
|
9
|
Todd E, Gurba KN, Botzolakis EJ, Stanic AK, Macdonald RL. GABAA receptor biogenesis is impaired by the γ2 subunit febrile seizure-associated mutation, GABRG2(R177G). Neurobiol Dis 2014; 69:215-24. [PMID: 24874541 DOI: 10.1016/j.nbd.2014.05.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 05/08/2014] [Accepted: 05/17/2014] [Indexed: 01/17/2023] Open
Abstract
A missense mutation in the GABAA receptor γ2L subunit, R177G, was reported in a family with complex febrile seizures (FS). To gain insight into the mechanistic basis for these genetic seizures, we explored how the R177G mutation altered the properties of recombinant α1β2γ2L GABAA receptors expressed in HEK293T cells. Using a combination of electrophysiology, flow cytometry, and immunoblotting, we found that the R177G mutation decreased GABA-evoked whole-cell current amplitudes by decreasing cell surface expression of α1β2γ2L receptors. This loss of receptor surface expression resulted from endoplasmic reticulum (ER) retention of mutant γ2L(R177G) subunits, which unlike wild-type γ2L subunits, were degraded by ER-associated degradation (ERAD). Interestingly, when compared to the condition of homozygous γ2L(R177G) subunit expression, disproportionately low levels of γ2L(R177G) subunits reached the cell surface with heterozygous expression, indicating that wild-type γ2L subunits possessed a competitive advantage over mutant γ2L(R177G) subunits for receptor assembly and/or forward trafficking. Inhibiting protein synthesis with cycloheximide demonstrated that the R177G mutation primarily decreased the stability of an intracellular pool of unassembled γ2L subunits, suggesting that the mutant γ2L(R177G) subunits competed poorly with wild-type γ2L subunits due to impaired subunit folding and/or oligomerization. Molecular modeling confirmed that the R177G mutation could disrupt intrasubunit salt bridges, thereby destabilizing secondary and tertiary structure of γ2L(R177G) subunits. These findings support an emerging body of literature implicating defects in GABAA receptor biogenesis in the pathogenesis of genetic epilepsies (GEs) and FS.
Collapse
Affiliation(s)
- Emily Todd
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37232, USA
| | - Katharine N Gurba
- Program in Neuroscience, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | - Robert L Macdonald
- Department of Neurology, Vanderbilt University, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
10
|
Ishii A, Kanaumi T, Sohda M, Misumi Y, Zhang B, Kakinuma N, Haga Y, Watanabe K, Takeda S, Okada M, Ueno S, Kaneko S, Takashima S, Hirose S. Association of nonsense mutation in GABRG2 with abnormal trafficking of GABAA receptors in severe epilepsy. Epilepsy Res 2014; 108:420-32. [PMID: 24480790 DOI: 10.1016/j.eplepsyres.2013.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 12/07/2013] [Accepted: 12/16/2013] [Indexed: 11/29/2022]
Abstract
Mutations in GABRG2, which encodes the γ2 subunit of GABAA receptors, can cause both genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome. Most GABRG2 truncating mutations associated with Dravet syndrome result in premature termination codons (PTCs) and are stably translated into mutant proteins with potential dominant-negative effects. This study involved search for mutations in candidate genes for Dravet syndrome, namely SCN1A, 2A, 1B, 2B, GABRA1, B2, and G2. A heterozygous nonsense mutation (c.118C>T, p.Q40X) in GABRG2 was identified in dizygotic twin girls with Dravet syndrome and their apparently healthy father. Electrophysiological studies with the reconstituted GABAA receptors in HEK cells showed reduced GABA-induced currents when mutated γ2 DNA was cotransfected with wild-type α1 and β2 subunits. In this case, immunohistochemistry using antibodies to the α1 and γ2 subunits of GABAA receptor showed granular staining in the soma. In addition, microinjection of mutated γ2 subunit cDNA into HEK cells severely inhibited intracellular trafficking of GABAA receptor subunits α1 and β2, and retention of these proteins in the endoplasmic reticulum. The mutated γ2 subunit-expressing neurons also showed impaired axonal transport of the α1 and β2 subunits. Our findings suggested that different phenotypes of epilepsy, e.g., GEFS+ and Dravet syndrome (which share similar abnormalities in causative genes) are likely due to impaired axonal transport associated with the dominant-negative effects of GABRG2.
Collapse
Affiliation(s)
- Atsushi Ishii
- Department of Pediatrics, Fukuoka University, Fukuoka, Japan; Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan
| | - Takeshi Kanaumi
- Department of Pediatrics, Fukuoka University, Fukuoka, Japan; Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan
| | - Miwa Sohda
- Division of Oral Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshio Misumi
- Department of Cell Biology, Fukuoka University, Fukuoka, Japan
| | - Bo Zhang
- Department of Biochemistry, Fukuoka University, Fukuoka, Japan
| | - Naoto Kakinuma
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Yoshiko Haga
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuyoshi Watanabe
- Faculty of Health and Medical Sciences, Aichi Shukutoku University, Nagakute, Japan
| | - Sen Takeda
- Department of Anatomy and Cell Biology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Motohiro Okada
- Division of Neuroscience, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Shinya Ueno
- Rehabilitation Medicine, Institute of Brain Science, Japan
| | - Sunao Kaneko
- Department of Neuropsychiatry, Hirosaki University, Hirosaki, Japan; North Tohoku Epilepsy Center, Minato Hospital, Hachinohe, Japan
| | - Sachio Takashima
- Yanagawa Institute for Developmental Disabilities, Child Neurology, International University of Health and Welfare, Yanagawa, Japan
| | - Shinichi Hirose
- Department of Pediatrics, Fukuoka University, Fukuoka, Japan; Central Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Japan.
| |
Collapse
|
11
|
Fatemi SH, Folsom TD, Rooney RJ, Thuras PD. Expression of GABAA α2-, β1- and ε-receptors are altered significantly in the lateral cerebellum of subjects with schizophrenia, major depression and bipolar disorder. Transl Psychiatry 2013; 3:e303. [PMID: 24022508 PMCID: PMC3784760 DOI: 10.1038/tp.2013.64] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/17/2013] [Accepted: 07/10/2013] [Indexed: 12/15/2022] Open
Abstract
There is abundant evidence that dysfunction of the γ-aminobutyric acid (GABA)ergic signaling system is implicated in the pathology of schizophrenia and mood disorders. Less is known about the alterations in protein expression of GABA receptor subunits in brains of subjects with schizophrenia and mood disorders. We have previously demonstrated reduced expression of GABA(B) receptor subunits 1 and 2 (GABBR1 and GABBR2) in the lateral cerebella of subjects with schizophrenia, bipolar disorder and major depressive disorder. In the current study, we have expanded these studies to examine the mRNA and protein expression of 12 GABA(A) subunit proteins (α1, α2, α3, α5, α6, β1, β2, β3, δ, ε, γ2 and γ3) in the lateral cerebella from the same set of subjects with schizophrenia (N=9-15), bipolar disorder (N=10-15) and major depression (N=12-15) versus healthy controls (N=10-15). We found significant group effects for protein levels of the α2-, β1- and ε-subunits across treatment groups. We also found a significant group effect for mRNA levels of the α1-subunit across treatment groups. New avenues for treatment, such as the use of neurosteroids to promote GABA modulation, could potentially ameliorate GABAergic dysfunction in these disorders.
Collapse
Affiliation(s)
- S H Fatemi
- Division of Neuroscience Research, Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA,Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN, USA,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA,Division of Neuroscience Research, Department of Psychiatry, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA. E-mail:
| | - T D Folsom
- Division of Neuroscience Research, Department of Psychiatry, University of Minnesota Medical School, Minneapolis, MN, USA
| | | | - P D Thuras
- Department of Psychiatry, VA Medical Center Minneapolis, MN, USA
| |
Collapse
|
12
|
Tretter V, Mukherjee J, Maric HM, Schindelin H, Sieghart W, Moss SJ. Gephyrin, the enigmatic organizer at GABAergic synapses. Front Cell Neurosci 2012; 6:23. [PMID: 22615685 PMCID: PMC3351755 DOI: 10.3389/fncel.2012.00023] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 04/23/2012] [Indexed: 11/17/2022] Open
Abstract
GABAA receptors are clustered at synaptic sites to achieve a high density of postsynaptic receptors opposite the input axonal terminals. This allows for an efficient propagation of GABA mediated signals, which mostly result in neuronal inhibition. A key organizer for inhibitory synaptic receptors is the 93 kDa protein gephyrin that forms oligomeric superstructures beneath the synaptic area. Gephyrin has long been known to be directly associated with glycine receptor β subunits that mediate synaptic inhibition in the spinal cord. Recently, synaptic GABAA receptors have also been shown to directly interact with gephyrin and interaction sites have been identified and mapped within the intracellular loops of the GABAA receptor α1, α2, and α3 subunits. Gephyrin-binding to GABAA receptors seems to be at least one order of magnitude weaker than to glycine receptors (GlyRs) and most probably is regulated by phosphorylation. Gephyrin not only has a structural function at synaptic sites, but also plays a crucial role in synaptic dynamics and is a platform for multiple protein-protein interactions, bringing receptors, cytoskeletal proteins and downstream signaling proteins into close spatial proximity.
Collapse
Affiliation(s)
- Verena Tretter
- Department of Biochemistry and Molecular Biology, Center for Brain Research, Medical University Vienna Vienna, Austria
| | | | | | | | | | | |
Collapse
|
13
|
Fatemi SH, Folsom TD, Kneeland RE, Liesch SB. Metabotropic glutamate receptor 5 upregulation in children with autism is associated with underexpression of both Fragile X mental retardation protein and GABAA receptor beta 3 in adults with autism. Anat Rec (Hoboken) 2011; 294:1635-45. [PMID: 21901840 PMCID: PMC3177171 DOI: 10.1002/ar.21299] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 05/13/2010] [Indexed: 11/08/2022]
Abstract
Recent work has demonstrated the impact of dysfunction of the GABAergic signaling system in brain and the resultant behavioral pathologies in subjects with autism. In animal models, altered expression of Fragile X mental retardation protein (FMRP) has been linked to downregulation of GABA receptors. Interestingly, the autistic phenotype is also observed in individuals with Fragile X syndrome. This study was undertaken to test previous theories relating abnormalities in levels of FMRP to GABA(A) receptor underexpression. We observed a significant reduction in levels of FMRP in the vermis of adults with autism. Additionally, we found that levels of metabotropic glutamate receptor 5 (mGluR5) protein were significantly increased in vermis of children with autism versus age and postmortem interval matched controls. There was also a significant decrease in level of GABA(A) receptor beta 3 (GABRβ3) protein in vermis of adult subjects with autism. Finally, we found significant increases in glial fibrillary acidic protein in vermis of both children and adults with autism when compared with controls. Taken together, our results provide further evidence that altered FMRP expression and increased mGluR5 protein production potentially lead to altered expression of GABA(A) receptors.
Collapse
Affiliation(s)
- S Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, Minneapolis, USA.
| | | | | | | |
Collapse
|
14
|
Fatemi SH, Folsom TD. Dysregulation of fragile × mental retardation protein and metabotropic glutamate receptor 5 in superior frontal cortex of individuals with autism: a postmortem brain study. Mol Autism 2011; 2:6. [PMID: 21548960 PMCID: PMC3488976 DOI: 10.1186/2040-2392-2-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 05/06/2011] [Indexed: 12/26/2022] Open
Abstract
Background Fragile X syndrome is caused by loss of function of the fragile X mental retardation 1 (FMR1) gene and shares multiple phenotypes with autism. We have previously found reduced expression of the protein product of FMR1 (FMRP) in vermis of adults with autism. Methods In the current study, we have investigated levels of FMRP in the superior frontal cortex of people with autism and matched controls using Western blot analysis. Because FMRP regulates the translation of multiple genes, we also measured protein levels for downstream molecules metabotropic glutamate receptor 5 (mGluR5) and γ-aminobutyric acid (GABA) A receptor β3 (GABRβ3), as well as glial fibrillary acidic protein (GFAP). Results We observed significantly reduced levels of protein for FMRP in adults with autism, significantly increased levels of protein for mGluR5 in children with autism and significantly increased levels of GFAP in adults and children with autism. We found no change in expression of GABRβ3. Our results for FMRP, mGluR5 and GFAP confirm our previous work in the cerebellar vermis of people with autism. Conclusion These changes may be responsible for cognitive deficits and seizure disorder in people with autism.
Collapse
Affiliation(s)
- S Hossein Fatemi
- Division of Neuroscience Research, Department of Psychiatry, University of Minnesota Medical School, 420 Delaware Street SE, MMC 392, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
15
|
Alò R, Avolio E, Di Vito A, Carelli A, Facciolo RM, Canonaco M. Distinct α subunit variations of the hypothalamic GABAA receptor triplets (αβγ) are linked to hibernating state in hamsters. BMC Neurosci 2010; 11:111. [PMID: 20815943 PMCID: PMC2944354 DOI: 10.1186/1471-2202-11-111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 09/06/2010] [Indexed: 12/01/2022] Open
Abstract
Background The structural arrangement of the γ-aminobutyric acid type A receptor (GABAAR) is known to be crucial for the maintenance of cerebral-dependent homeostatic mechanisms during the promotion of highly adaptive neurophysiological events of the permissive hibernating rodent, i.e the Syrian golden hamster. In this study, in vitro quantitative autoradiography and in situ hybridization were assessed in major hypothalamic nuclei. Reverse Transcription Reaction-Polymerase chain reaction (RT-PCR) tests were performed for specific GABAAR receptor subunit gene primers synthases of non-hibernating (NHIB) and hibernating (HIB) hamsters. Attempts were made to identify the type of αβγ subunit combinations operating during the switching ON/OFF of neuronal activities in some hypothalamic nuclei of hibernators. Results Both autoradiography and molecular analysis supplied distinct expression patterns of all α subunits considered as shown by a strong (p < 0.01) prevalence of α1 ratio (over total α subunits considered in the present study) in the medial preoptic area (MPOA) and arcuate nucleus (Arc) of NHIBs with respect to HIBs. At the same time α2 subunit levels proved to be typical of periventricular nucleus (Pe) and Arc of HIB, while strong α4 expression levels were detected during awakening state in the key circadian hypothalamic station, i.e. the suprachiasmatic nucleus (Sch; 60%). Regarding the other two subunits (β and γ), elevated β3 and γ3 mRNAs levels mostly characterized MPOA of HIBs, while prevalently elevated expression concentrations of the same subunits were also typical of Sch, even though this time during the awakening state. In the case of Arc, notably elevated levels were obtained for β3 and γ2 during hibernating conditions. Conclusion We conclude that different αβγ subunits are operating as major elements either at the onset of torpor or during induction of the arousal state in the Syrian golden hamster. The identification of a brain regional distribution pattern of distinct GABAAR subunit combinations may prove to be very useful for highlighting GABAergic mechanisms functioning at least during the different physiological states of hibernators and this may have interesting therapeutic bearings on neurological sleeping disorders.
Collapse
Affiliation(s)
- Raffaella Alò
- Comparative Neuroanatomy Laboratory, Ecology Department, University of Calabria, Ponte Pietro Bucci, 87030 Arcavacata di Rende, Cosenza, Italy.
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Bracamontes JR, Steinbach JH. Multiple modes for conferring surface expression of homomeric beta1 GABAA receptors. J Biol Chem 2008; 283:26128-36. [PMID: 18650446 DOI: 10.1074/jbc.m801292200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gamma-aminobutyric acid type A (GABA(A)) receptor assembles from individual subunits to form ligand-gated ion channels. Human (h) beta3 subunits assemble to form homomeric surface receptors in somatic cells, but hbeta1 subunits do not. We have identified three distinct sets of amino acid residues in the N-terminal extracellular domain of the hbeta1 subunit, which when mutated to the homologous residue in hbeta3 allow expression as a functional homomeric receptor. The three sets likely result in three modes of assembly. Mode 1 expression results from a single amino acid change at residue hbeta1 Asp-37. Mode 2 expression results from mutations of residues between positions 44 and 73 together with residues between positions 169 and 173. Finally, mode 3 results from the mutations A45V and K196R. Examination of homology-based structural models indicates that many of the residues are unlikely to be involved in physical inter-subunit interactions, suggesting that a major alteration is stabilization of an assembly competent form of the subunit. These mutations do not, however, have a major effect on the surface expression of heteromeric receptors which include the alpha1 subunit.
Collapse
Affiliation(s)
- John R Bracamontes
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
18
|
Abstract
Incorporation of the epsilon subunit into the GABAA receptor has been suggested to confer unusual, but variable, biophysical and pharmacological characteristics to both recombinant and native receptors. Due to their structural similarity with the gamma subunits, epsilon subunits have been assumed to substitute at the single position of the gamma subunit in assembled receptors. However, prior work suggests that functional variability in epsilon-containing receptors may reflect alternative sites of incorporation and of not just one, but possibly multiple epsilon subunits in the pentameric receptor complex. Here we present data indicating that increased expression of epsilon, in conjunction with alpha2 and beta3 subunits, results in expression of GABAA receptors with correspondingly altered rectification, deactivation and levels of spontaneous openings, but not increased total current density. We also provide data that the epsilon subunit, like the beta3 subunit, can self-export and data from chimeric receptors suggesting that similarities between the assembly domains of the beta3 and the epsilon subunits may allow the epsilon subunit to replace the beta, as well as the gamma, subunit. The substitution of an epsilon for a beta, as well as the gamma subunit and formation of receptors with alternative patterns of assembly with respect to epsilon incorporation may underlie the observed variability in both biophysical and pharmacological properties noted not only in recombinant, but also in native receptors.
Collapse
Affiliation(s)
- Brian L Jones
- Department of Physiology, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
19
|
Rosen A, Bali M, Horenstein J, Akabas MH. Channel opening by anesthetics and GABA induces similar changes in the GABAA receptor M2 segment. Biophys J 2007; 92:3130-9. [PMID: 17293408 PMCID: PMC1852347 DOI: 10.1529/biophysj.106.094490] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
For many general anesthetics, their molecular basis of action involves interactions with GABA(A) receptors. Anesthetics produce concentration-dependent effects on GABA(A) receptors. Low concentrations potentiate submaximal GABA-induced currents. Higher concentrations directly activate the receptors. Functional effects of anesthetics have been characterized, but little is known about the conformational changes they induce. We probed anesthetic-induced conformational changes in the M2 membrane-spanning, channel-lining segment using disulfide trapping between engineered cysteines. Previously, we showed that oxidation by copper phenanthroline in the presence of GABA of the M2 6' cysteine mutants, alpha(1)T261Cbeta(1)T256C and alpha(1)beta(1)T256C resulted in formation of an intersubunit disulfide bond between the adjacent beta-subunits that significantly increased the channels' spontaneous open probability. Oxidation in GABA's absence had no effect. We examined the effect on alpha(1)T261Cbeta(1)T256C and on alpha(1)beta(1)T256C of oxidation by copper phenanthroline in the presence of potentiating and directly activating concentrations of the general anesthetics propofol, pentobarbital, and isoflurane. Oxidation in the presence of potentiating concentration of anesthetics had little effect. Oxidation in the presence of directly activating anesthetic concentrations significantly increased the channels' spontaneous open probability. We infer that activation by anesthetics and GABA induces a similar conformational change at the M2 segment 6' position that is related to channel opening.
Collapse
Affiliation(s)
- Ayelet Rosen
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
20
|
Sarto-Jackson I, Furtmueller R, Ernst M, Huck S, Sieghart W. Spontaneous cross-link of mutated alpha1 subunits during GABA(A) receptor assembly. J Biol Chem 2006; 282:4354-4363. [PMID: 17148454 DOI: 10.1074/jbc.m609676200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
gamma-Aminobutyric acid, type A (GABA(A)) receptor alpha1 subunits containing a cysteine mutation at a position in the channel mouth (H109C) surprisingly formed a spontaneous cross-link with each other in receptors composed of alpha1H109C, beta3, and gamma2 subunits. Cross-linking of two alpha1H109C subunits did not significantly change the affinity of [(3)H]muscimol or [(3)H]Ro15-1788 binding in alpha1H109Cbeta3gamma2 receptors, but GABA displayed a reduced potency for activating chloride currents. On reduction of the disulfide bond, however, GABA activation as well as diazepam modulation was similar in mutated and wild-type receptors, suggesting that these receptors exhibited the same subunit stoichiometry and arrangement. Disulfide bonds could not be reoxidized by copper phenanthroline after having been reduced in completely assembled receptors, suggesting that cross-linking can only occur at an early stage of assembly. The cross-link of alpha1H109C subunits and the subsequent transport of the resulting homodimers to the cell surface caused a reduction of the intracellular pool of alpha1H109C subunits and a reduced formation of completely assembled receptors. The formation of alpha1H109C homodimers as well as of correctly assembled GABA(A) receptors containing cross-linked alpha1H109C subunits could indicate that homodimerization of alpha1 subunits via contacts located in the channel mouth might be one starting point of GABA(A) receptor assembly. Alternatively the assembly mechanism might have started with the formation of heterodimers followed by a cross-link of mutated alpha1 subunits at the heterotrimeric stage. The formation of cross-linked alpha1H109C homodimers would then have occurred independently in a separate pathway.
Collapse
Affiliation(s)
- Isabella Sarto-Jackson
- Division of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna and A-1090 Vienna, Austria
| | - Roman Furtmueller
- Division of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna and A-1090 Vienna, Austria
| | - Margot Ernst
- Division of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna and A-1090 Vienna, Austria
| | - Sigismund Huck
- Division of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna and A-1090 Vienna, Austria
| | - Werner Sieghart
- Division of Biochemistry and Molecular Biology, Center for Brain Research, Medical University of Vienna and A-1090 Vienna, Austria; Section of Biochemical Psychiatry, University Clinic for Psychiatry, A-1090 Vienna, Austria.
| |
Collapse
|
21
|
Mizielinska S, Greenwood S, Connolly CN. The role of GABAA receptor biogenesis, structure and function in epilepsy. Biochem Soc Trans 2006; 34:863-7. [PMID: 17052216 DOI: 10.1042/bst0340863] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Maintaining the correct balance in neuronal activation is of paramount importance to normal brain function. Imbalances due to changes in excitation or inhibition can lead to a variety of disorders ranging from the clinically extreme (e.g. epilepsy) to the more subtle (e.g. anxiety). In the brain, the most common inhibitory synapses are regulated by GABAA (γ-aminobutyric acid type A) receptors, a role commensurate with their importance as therapeutic targets. Remarkably, we still know relatively little about GABAA receptor biogenesis. Receptors are constructed as pentameric ion channels, with α and β subunits being the minimal requirement, and the incorporation of a γ subunit being necessary for benzodiazepine modulation and synaptic targeting. Insights have been provided by the discovery of several specific assembly signals within different GABAA receptor subunits. Moreover, a number of recent studies on GABAA receptor mutations associated with epilepsy have further enhanced our understanding of GABAA receptor biogenesis, structure and function.
Collapse
Affiliation(s)
- S Mizielinska
- Neuroscience Institute, Ninewells Medical School, University of Dundee, Dundee DD1 9SY, UK
| | | | | |
Collapse
|
22
|
Hirose S. A new paradigm of channelopathy in epilepsy syndromes: Intracellular trafficking abnormality of channel molecules. Epilepsy Res 2006; 70 Suppl 1:S206-17. [PMID: 16860540 DOI: 10.1016/j.eplepsyres.2005.12.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2005] [Revised: 12/01/2005] [Accepted: 12/01/2005] [Indexed: 10/24/2022]
Abstract
Mutations in genes encoding ion channels in brain neurons have been identified in various epilepsy syndromes. In neuronal networks, "gain-of-function" of channels in excitatory neurotransmission could lead to hyper-excitation while "loss-of-function" in inhibitory transmission impairs neuronal inhibitory system, both of which can result in epilepsy. A working hypothesis to view epilepsy as a disorder of channel or "channelopathy" seems rational to explore the pathogenesis of epilepsy. However, the imbalance resulting from channel dysfunction is not sufficient to delineate the pathogenesis of all epilepsy syndromes of which the underlying channel abnormalities have been verified. Mutations identified in epilepsy, mainly in genes encoding subunits of GABA(A) receptors, undermine intracellular trafficking, thus leading to retention of channel molecules in the endoplasmic reticulum (ER). This process may cause ER stress followed by apoptosis, which is a known pathomechanism of certain neurodegenerative disorders. Thus, the pathomechanism of "channel trafficking abnormality" may provide a new paradigm to channelopathy to unsolved questions underlying epilepsy, such as differences between generalized epilepsy with febrile seizures plus and severe myoclonic epilepsy in infancy, which share the causative genetic abnormalities in the same genes and hence are so far considered to be within the spectrum of one disease entity or allelic variants.
Collapse
Affiliation(s)
- Shinichi Hirose
- Department of Pediatrics, Fukuoka University, 45-1,7-chome Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan.
| |
Collapse
|
23
|
Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, Gudz T, Macklin WB, Lewis DA, Fox RJ, Rudick R, Mirnics K, Trapp BD. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 2006; 59:478-89. [PMID: 16392116 DOI: 10.1002/ana.20736] [Citation(s) in RCA: 615] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Degeneration of chronically demyelinated axons is a major cause of irreversible neurological disability in multiple sclerosis (MS) patients. Development of neuroprotective therapies will require elucidation of the molecular mechanisms by which neurons and axons degenerate. METHODS We report ultrastructural changes that support Ca2+-mediated destruction of chronically demyelinated axons in MS patients. We compared expression levels of 33,000 characterized genes in postmortem motor cortex from six control and six MS brains matched for age, sex, and postmortem interval. As reduced energy production is a major contributor to Ca2+-mediated axonal degeneration, we focused on changes in oxidative phosphorylation and inhibitory neurotransmission. RESULTS Compared with controls, 488 transcripts were decreased and 67 were increased (p < 0.05, 1.5-fold) in the MS cortex. Twenty-six nuclear-encoded mitochondrial genes and the functional activities of mitochondrial respiratory chain complexes I and III were decreased in the MS motor cortex. Reduced mitochondrial gene expression was specific for neurons. In addition, pre-synaptic and postsynaptic components of GABAergic neurotransmission and the density of inhibitory interneuron processes also were decreased in the MS cortex. INTERPRETATION Our data supports a mechanism whereby reduced ATP production in demyelinated segments of upper motor neuron axons impacts ion homeostasis, induces Ca2+-mediated axonal degeneration, and contributes to progressive neurological disability in MS patients.
Collapse
Affiliation(s)
- Ranjan Dutta
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sarto-Jackson I, Ramerstorfer J, Ernst M, Sieghart W. Identification of amino acid residues important for assembly of GABA receptor alpha1 and gamma2 subunits. J Neurochem 2006; 96:983-95. [PMID: 16412095 DOI: 10.1111/j.1471-4159.2005.03626.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Comparative models of GABA(A) receptors composed of alpha1 beta3 gamma2 subunits were generated using the acetylcholine-binding protein (AChBP) as a template and were used for predicting putative engineered cross-link sites between the alpha1 and the gamma2 subunit. The respective amino acid residues were substituted by cysteines and disulfide bond formation between subunits was investigated on co-transfection into human embryonic kidney (HEK) cells. Although disulfide bond formation between subunits could not be observed, results indicated that mutations studied influenced assembly of GABA(A) receptors. Whereas residue alpha1A108 was important for the formation of assembly intermediates with beta3 and gamma2 subunits consistent with its proposed location at the alpha1(+) side of GABA(A) receptors, residues gamma2T125 and gamma2P127 were important for assembly with beta3 subunits. Mutation of each of these residues also caused an impaired expression of receptors at the cell surface. In contrast, mutated residues alpha1F99C, alpha1S106C or gamma2T126C only impaired the formation of receptors at the cell surface when co-expressed with subunits in which their predicted interaction partner was also mutated. These data are consistent with the prediction that the mutated residue pairs are located close to each other.
Collapse
Affiliation(s)
- Isabella Sarto-Jackson
- Division of Biochemistry and Molecular Biology, Centre for Brain Research, Medical University of Vienna, Austria
| | | | | | | |
Collapse
|
25
|
Gallagher MJ, Song L, Arain F, Macdonald RL. The juvenile myoclonic epilepsy GABA(A) receptor alpha1 subunit mutation A322D produces asymmetrical, subunit position-dependent reduction of heterozygous receptor currents and alpha1 subunit protein expression. J Neurosci 2004; 24:5570-8. [PMID: 15201329 PMCID: PMC6729321 DOI: 10.1523/jneurosci.1301-04.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Individuals with autosomal dominant juvenile myoclonic epilepsy are heterozygous for a GABA(A) receptor alpha1 subunit mutation (alpha1A322D). GABA(A) receptor alphabetagamma subunits are arranged around the pore in a beta-alpha-beta-alpha-gamma sequence (counterclockwise from the synaptic cleft). Therefore, each alpha1 subunit has different adjacent subunits, and heterozygous expression of alpha1(A322D), beta, and gamma subunits could produce receptors with four different subunit arrangements: beta-alpha1-beta-alpha1-gamma (wild type); beta-alpha1(A322D)-beta-alpha1-gamma (Het(betaalphabeta)); beta-alpha1-beta-alpha1(A322D)-gamma (Het(betaalphagamma));beta-alpha1(A322D)-beta-alpha1(A322D)-gamma (homozygous). Expression of a 1:1 mixture of wild-type andalpha1(A322D) subunits with beta2S and gamma2S subunits (heterozygous transfection) produced smaller currents than wild type and much larger currents than homozygous mutant transfections. Western blot and biotinylation assays demonstrated that the amount of total and surface alpha1 subunit from heterozygous transfections was also intermediate between those of wild-type and homozygous mutant transfections. alpha1(A322D) mutations were then made in covalently tethered triplet (gamma2S-beta2S-alpha1) and tandem (beta2S-alpha1) concatamers to target selectively alpha1(A322D) to each of the asymmetric alpha1 subunits. Coexpression of mutant and wild-type concatamers resulted in expression of either Het(betaalphabeta) or Het(betaalphagamma) receptors. Het(betaalphabeta) currents were smaller than wild type and much larger than Het(betaalphagamma) and homozygous currents. Furthermore, Het(betaalphabeta) transfections contained less beta-alpha concatamer than wild type but more than both Het(betaalphagamma) and homozygous mutant transfections. Thus, whole-cell currents and protein expression of heterozygous alpha1(A322D)beta2Sgamma2S receptors depended on the position of the mutant alpha1 subunit, and GABA(A) receptor currents in heterozygous individuals likely result primarily from wild-type and Het(betaalphabeta) receptors with little contribution from Het(betaalphagamma) and homozygous receptors.
Collapse
Affiliation(s)
- Martin J Gallagher
- Department of Neurology, Vanderbilt University, Nashville, Tennessee 37212, USA
| | | | | | | |
Collapse
|
26
|
Sancar F, Czajkowski C. A GABAA Receptor Mutation Linked to Human Epilepsy (γ2R43Q) Impairs Cell Surface Expression of αβγ Receptors. J Biol Chem 2004; 279:47034-9. [PMID: 15342642 DOI: 10.1074/jbc.m403388200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A mutation in the gamma2 subunit of the gamma-aminobutyric acid (GABA) type A receptor (GABAR), which changes an arginine to a glutamine at position 43 (R43Q), is linked to familial idiopathic epilepsies. We used radioligand binding, immunoblotting, and immunofluorescence techniques to examine the properties of wild-type alpha1beta2gamma2 and mutant alpha1beta2gamma2R43Q GABARs expressed in HEK 293 cells. The gamma2R43Q mutation had no affect on the binding affinity of the benzodiazepine flunitrazepam. However, in cells expressing alpha1beta2gamma2R43Q GABARs, the number of binding sites for [3H]flunitrazepam relative to wild-type receptors was decreased 75%. Using surface protein biotinylation, affinity purification, and immunoblotting, we demonstrated that expression of cell surface alpha1beta2gamma2R43Q GABARs was decreased. Surface immunostaining of HEK 293 cells expressing alpha1beta2gamma2R43Q GABARs confirmed that surface expression of the gamma2R43Q subunit was reduced. These data demonstrate that the gamma2R43Q mutation impairs expression of cell surface GABARs. A deficit in surface GABAR expression would reduce synaptic inhibition and result in neuronal hyperexcitability, which could explain why families possessing the gamma2R43Q subunit have epilepsy.
Collapse
Affiliation(s)
- Feyza Sancar
- Department of Physiology and Neuroscience Training Program, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
27
|
Boyd GW, Doward AI, Kirkness EF, Millar NS, Connolly CN. Cell surface expression of 5-hydroxytryptamine type 3 receptors is controlled by an endoplasmic reticulum retention signal. J Biol Chem 2003; 278:27681-7. [PMID: 12750374 DOI: 10.1074/jbc.m304938200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two subunits of the 5-hydroxytryptamine type 3 (5-HT3) have been identified (5-HT3A and 5-HT3B) that assemble into homomeric (5-HT3A) and heteromeric (5-HT3A+5-HT3B) complexes. Unassembled 5-HT3B subunits are efficiently retained within the cell. In this study, we address the mechanism controlling the release of 5-HT3B from the endoplasmic reticulum (ER). An analysis of chimeric 5-HT3A receptor(R).5-HT3BR constructs suggests the presence of elements downstream of the first transmembrane domain of 5-HT3B subunits that inhibit cell surface expression. To investigate this possibility, truncated 5-HT3B subunits were constructed and assessed for their ability to access the cell surface in COS-7 and ts201 cells. Using this approach, we have identified the presence of an ER retention signal located within the first cytoplasmic loop between transmembrane domains I and II of 5-HT3B. Transplantation of this signal (CRAR) into the homologous region of 5-HT3A results in the ER retention of this subunit until rescued by co-assembly with wild-type 5-HT3A. The mutation of this ER retention signal in 5-HT3B (5-HT3BSGER) does not lead to cell surface expression, suggesting the presence of other signals or mechanisms to control the surface expression of 5-HT3BRs. The generation of truncated 5-HT3BSGER constructs confirmed that the CRAR signal does play an important role in the ER retention of 5-HT3B.
Collapse
Affiliation(s)
- Gary W Boyd
- Department of Pharmacology and Neuroscience, Ninewells Medical School, University of Dundee, Dundee DD1 9SY, Scotland
| | | | | | | | | |
Collapse
|