1
|
Robinson SL, Thiele TE. A role for the neuropeptide somatostatin in the neurobiology of behaviors associated with substances abuse and affective disorders. Neuropharmacology 2020; 167:107983. [PMID: 32027909 DOI: 10.1016/j.neuropharm.2020.107983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/07/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
In recent years, neuropeptides which display potent regulatory control of stress-related behaviors have been extensively demonstrated to play a critical role in regulating behaviors associated with substance abuse and affective disorders. Somatostatin (SST) is one neuropeptide known to significantly contribute to emotionality and stress behaviors. However, the role of SST in regulating behavior has received relatively little attention relative to other stress-involved peptides, such as neuropeptide Y or corticotrophin releasing factor. This review characterizes our current understanding of the role of SST and SST-expressing cells in general in modulating several behaviors intrinsically linked to substance abuse and affective disorders, specifically: anxiety and fear; stress and depression; feeding and drinking; and circadian rhythms. We further summarize evidence of a direct role for the SST system, and specifically somatostatin receptors 2 and 4, in substance abuse disorders. This article is part of the special issue on 'Neuropeptides'.
Collapse
Affiliation(s)
- Stacey L Robinson
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Todd E Thiele
- Department of Psychology & Neuroscience, University of North Carolina, Chapel Hill, NC, 27599, USA; Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
2
|
Tran M, Kuhn JA, Bráz JM, Basbaum AI. Neuronal aromatase expression in pain processing regions of the medullary and spinal cord dorsal horn. J Comp Neurol 2017. [PMID: 28649695 DOI: 10.1002/cne.24269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In both acute and chronic pain conditions, women tend to be more sensitive than men. This sex difference may be regulated by estrogens, such as estradiol, that are synthesized in the spinal cord and brainstem and act locally to influence pain processing. To identify a potential cellular source of local estrogen, here we examined the expression of aromatase, the enzyme that catalyzes the conversion of testosterone to estradiol. Our studies focused on primary afferent neurons and on their central targets in the spinal cord and medulla as well as in the nucleus of the solitary tract, the target of nodose ganglion-derived visceral afferents. Immunohistochemical staining in an aromatase reporter mouse revealed that many neurons in laminae I and V of the spinal cord dorsal horn and caudal spinal trigeminal nucleus and in the nucleus of the solitary tract express aromatase. The great majority of these cells also express inhibitory interneuron markers. We did not find sex differences in aromatase expression and neither the pattern nor the number of neurons changed in a sciatic nerve transection model of neuropathic pain or in the Complete Freund's adjuvant model of inflammatory pain. A few aromatase neurons express Fos after cheek injection of capsaicin, formalin, or chloroquine. In total, given their location, these aromatase neurons are poised to engage nociceptive circuits, whether it is through local estrogen synthesis or inhibitory neurotransmitter release.
Collapse
Affiliation(s)
- May Tran
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Julia A Kuhn
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - João M Bráz
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, San Francisco, California
| |
Collapse
|
3
|
Shi TJS, Xiang Q, Zhang MD, Barde S, Kai-Larsen Y, Fried K, Josephson A, Glück L, Deyev SM, Zvyagin AV, Schulz S, Hökfelt T. Somatostatin and its 2A receptor in dorsal root ganglia and dorsal horn of mouse and human: expression, trafficking and possible role in pain. Mol Pain 2014; 10:12. [PMID: 24521084 PMCID: PMC3943448 DOI: 10.1186/1744-8069-10-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 02/06/2014] [Indexed: 12/30/2022] Open
Abstract
Background Somatostatin (SST) and some of its receptor subtypes have been implicated in pain signaling at the spinal level. In this study we have investigated the role of SST and its sst2A receptor (sst2A) in dorsal root ganglia (DRGs) and spinal cord. Results SST and sst2A protein and sst2 transcript were found in both mouse and human DRGs, sst2A-immunoreactive (IR) cell bodies and processes in lamina II in mouse and human spinal dorsal horn, and sst2A-IR nerve terminals in mouse skin. The receptor protein was associated with the cell membrane. Following peripheral nerve injury sst2A-like immunoreactivity (LI) was decreased, and SST-LI increased in DRGs. sst2A-LI accumulated on the proximal and, more strongly, on the distal side of a sciatic nerve ligation. Fluorescence-labeled SST administered to a hind paw was internalized and retrogradely transported, indicating that a SST-sst2A complex may represent a retrograde signal. Internalization of sst2A was seen in DRG neurons after systemic treatment with the sst2 agonist octreotide (Oct), and in dorsal horn and DRG neurons after intrathecal administration. Some DRG neurons co-expressed sst2A and the neuropeptide Y Y1 receptor on the cell membrane, and systemic Oct caused co-internalization, hypothetically a sign of receptor heterodimerization. Oct treatment attenuated the reduction of pain threshold in a neuropathic pain model, in parallel suppressing the activation of p38 MAPK in the DRGs Conclusions The findings highlight a significant and complex role of the SST system in pain signaling. The fact that the sst2A system is found also in human DRGs and spinal cord, suggests that sst2A may represent a potential pharmacologic target for treatment of neuropathic pain.
Collapse
Affiliation(s)
- Tie-Jun Sten Shi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 505] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
5
|
Stengel A, Rivier J, Taché Y. Modulation of the adaptive response to stress by brain activation of selective somatostatin receptor subtypes. Peptides 2013; 42:70-7. [PMID: 23287111 PMCID: PMC3633742 DOI: 10.1016/j.peptides.2012.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/21/2012] [Accepted: 12/21/2012] [Indexed: 01/06/2023]
Abstract
Somatostatin-14 was discovered in 1973 in the hypothalamus as a peptide inhibiting growth hormone release. Somatostatin interacts with five receptor subtypes (sst(1-5)) which are widely distributed in the brain with a distinct, but overlapping, expression pattern. During the last few years, the development of highly selective peptide agonists and antagonists provided new insight to characterize the role of somatostatin receptor subtypes in the pleiotropic actions of somatostatin. Recent evidence in rodents indicates that the activation of selective somatostatin receptor subtypes in the brain blunts stress-corticotropin-releasing factor (CRF) related ACTH release (sst2/5), sympathetic-adrenal activaton (sst5), stimulation of colonic motility (sst1), delayed gastric emptying (sst5), suppression of food intake (sst2) and the anxiogenic-like (sst2) response. These findings suggest that brain somatostatin signaling pathways may play an important role in dampening CRF-mediated endocrine, sympathetic, behavioral and visceral responses to stress.
Collapse
Affiliation(s)
- Andreas Stengel
- CURE: Digestive Diseases Research Center and Center for Neurovisceral Sciences & Women's Health, Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Division of Psychosomatic Medicine & Obesity Center Berlin, Department of Medicine, Charité Medical Center and University, Berlin, Germany
| | - Jean Rivier
- Peptide Biology Laboratories, Salk Institute, La Jolla, California, USA
| | - Yvette Taché
- CURE: Digestive Diseases Research Center and Center for Neurovisceral Sciences & Women's Health, Digestive Diseases Division, David Geffen School of Medicine at UCLA and VA Greater Los Angeles Healthcare System, Los Angeles, California, USA
- Address: CURE: Digestive Diseases Research Center, Building 115, Room 117, VA Greater Los Angeles Healthcare System, 11301 Wilshire Boulevard, Los Angeles, CA 90073, Phone: 310-312-9275, Fax: 1-310-268-4963,
| |
Collapse
|
6
|
Yeung M, Treit D. The anxiolytic effects of somatostatin following intra-septal and intra-amygdalar microinfusions are reversed by the selective sst2 antagonist PRL2903. Pharmacol Biochem Behav 2011; 101:88-92. [PMID: 22210489 DOI: 10.1016/j.pbb.2011.12.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/10/2011] [Accepted: 12/14/2011] [Indexed: 11/30/2022]
Abstract
Somatostatin (SST) is a polypeptide with two biological isoforms (SST14, and SST28), and five SST receptor subtypes (sst1-5). Together, they mediate a number of neural and hormonal functions. Recently, we found that intracerebroventricular (ICV), intra-amygdalar, and intra-septal microinfusions of SST14, SST28, and a selective sst2 receptor agonist L-779976 all produced anxiolytic-like effects in the elevated plus-maze, a widely used animal model of anxiety. The receptor specificity of these anxiolytic-like effects, however, has not been conclusively established. Accordingly, the anxiolytic effects of SST in the elevated plus-maze were assessed following intra-septal or intra-amygalar microinfusions of 1) SST (1.5μg per hemisphere), 2) the highly selective sst2 receptor antagonist PRL2903 (1.5μg per hemisphere), or 3) the combination of SST and PRL2903 (each 1.5μg per hemisphere). Antagonism of the anxiolytic effects of SST in the plus-maze by PRL2903 should result in open-arm exploration that is equivalent to that of 4) vehicle-injected control rats. Both intra-septal and intra-amygdalar microinfusions of SST produced anxiolytic effects in the elevated plus-maze, consistent with results found previously after ICV microinfusions (see Engin et al., 2008; Engin and Treit, 2009; Yeung et al., 2011). More importantly, infusion of PRL2903 completely reversed the anxiolytic effects of SST in both the amygdala and the septum. These results show that somatostatin's anxiolytic effects are mediated by sst2 receptors contained in the amygdala and septum of the rat brain.
Collapse
Affiliation(s)
- Michelle Yeung
- Department of Psychology, University of Alberta, P-449 Biological, Sciences Building, Edmonton, AB, Canada T6G 2E9
| | | |
Collapse
|
7
|
Engin E, Treit D. Anxiolytic and antidepressant actions of somatostatin: the role of sst2 and sst3 receptors. Psychopharmacology (Berl) 2009; 206:281-9. [PMID: 19609508 DOI: 10.1007/s00213-009-1605-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 06/26/2009] [Indexed: 12/21/2022]
Abstract
RATIONALE AND OBJECTIVES Somatostatin is a cyclic polypeptide that inhibits the release of a variety of regulatory hormones (e.g., growth hormone, insulin, glucagon, and thyrotropin). Somatostatin is also widely distributed within the central nervous system (CNS), acting both as a neurotransmitter and as a neuromodulator. Recently, we showed that intracerebroventricular (i.c.v.) administration of somatostatin reduced anxiety-like and depression-like behaviors in animal models. The somatostatin receptor subtypes that are involved in these behavioral effects, however, have not been investigated. In the CNS, the neurotransmitter actions of somatostatin are mediated through five G-protein coupled receptors (sst1 to sst5). MATERIALS AND METHODS We examined the behavioral effects of i.c.v. microinfusions of different doses of selective agonists of each of the five somatostatin receptor subtypes. Their behavioral effects were assessed in the elevated plus-maze and the forced swim apparatus, rodent models of anxiolytic and antidepressant drug effects, respectively. RESULTS Anxiety-like behavior was reduced following i.c.v. infusions of a selective sst2 receptor agonist, but not after infusions of the other four receptor agonists. An antidepressant-like effect was observed following infusions of either sst2 or sst3 agonists. CONCLUSIONS The results add to our nascent understanding of the role of somatostatin in anxiety- and depression-like behavior and suggest a clinical role for somatostatin agonists for the simultaneous treatment of anxiety and depression, which are often comorbid.
Collapse
Affiliation(s)
- Elif Engin
- Department of Psychology, Centre for Neuroscience, University of Alberta, Edmonton, T6G 2E9, AB, Canada
| | | |
Collapse
|
8
|
Spier AD, Fabre V, de Lecea L. Cortistatin radioligand binding in wild-type and somatostatin receptor-deficient mouse brain. ACTA ACUST UNITED AC 2005; 124:179-86. [PMID: 15544857 DOI: 10.1016/j.regpep.2004.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Revised: 07/10/2004] [Accepted: 07/12/2004] [Indexed: 10/26/2022]
Abstract
Cortistatin-14 (CST-14) is a recently discovered member of the somatostatin family of neuropeptides. It shares 11 of its 14 amino acids with somatostatin-14 (SRIF-14). In the present study, binding sites for cortistatin-14 in the mouse brain were examined and compared to those for somatostatin using iodinated cortistatin-14 and iodinated somatostatin-14. By in vitro receptor autoradiography, high densities of cortistatin-14 and somatostatin-14 specific binding sites were detected in the cortex, hippocampal formation, basolateral amygdala and medial habenula. Unlabeled 100 nM cortistatin-14 inhibited iodinated somatostatin-14 binding in the hippocampus, but not in the cortex or amygdaloid nuclei. In somatostatin receptor subtype-2 knock-out (KO) mice, autoradiographic iodinated somatostatin-14 binding was observed in the hippocampus and habenula but was removed in the cortex and amygdaloid nuclei, specific iodinated cortistatin-14 binding sites were found in the hippocampus, habenula and throughout the cortex. We conclude that the somatostatin receptor subtype-2 is responsible for somatostatin binding in cortical and amygdaloid regions and that cortistatin predominantly interacts with the same receptors as somatostatin.
Collapse
Affiliation(s)
- Avron D Spier
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
9
|
Schwetz I, Naliboff B, Munakata J, Lembo T, Chang L, Matin K, Ohning G, Mayer EA. Anti-hyperalgesic effect of octreotide in patients with irritable bowel syndrome. Aliment Pharmacol Ther 2004; 19:123-31. [PMID: 14687174 DOI: 10.1111/j.1365-2036.2004.01774.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Octreotide has been found to be beneficial in the treatment of chronic pain, although the mechanisms underlying its therapeutic effect are incompletely understood. AIMS To assess the effect of octreotide on perceptual responses to rectal distension in irritable bowel syndrome patients and healthy controls at baseline and following the experimental induction of rectal hyperalgesia. METHODS In study 1, rectal perception thresholds for discomfort were determined in seven irritable bowel syndrome patients and eight healthy controls on three separate days using a computer-controlled barostat. Subjects received saline, low-dose and high-dose octreotide in a random double-blind fashion. In study 2, perceptual responses to rectal distension were obtained in nine irritable bowel syndrome patients and seven controls before and after repetitive high-pressure mechanical sigmoid stimulation. RESULTS Octreotide increased the discomfort thresholds in irritable bowel syndrome patients, but not in controls, without changing rectal compliance. Repetitive sigmoid stimulation resulted in decreased rectal discomfort thresholds in the patient group only. In irritable bowel syndrome patients, octreotide prevented the sensitizing effect of repetitive sigmoid stimulation on rectal discomfort thresholds. CONCLUSIONS Octreotide effectively increased discomfort thresholds in irritable bowel syndrome patients, but not in controls, at baseline and during experimentally induced rectal hyperalgesia. These findings suggest that octreotide exerts primarily an anti-hyperalgesic rather than analgesic effect on visceral perception.
Collapse
Affiliation(s)
- I Schwetz
- CNS/WH: Center for Neurovisceral Sciences and Women's Health, Los Angeles, CA 90073, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kang TC, An SJ, Park SK, Hwang IK, Seo MO, Kim HS, Kang JH, Kwon OS, Won MH. The somatostatin receptors in the normal and epileptic hippocampus of the gerbil: subtype-specific localization and its alteration. Brain Res 2003; 986:91-102. [PMID: 12965233 DOI: 10.1016/s0006-8993(03)03192-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the distribution of somatostatin receptors (SSTs) in the hippocampi of SR (seizure-resistant) and SS (seizure-sensitive) gerbils in order to characterize the alterations in SST expressions induced by seizure activity. SST2A immunodensity in the hippocampus of SS gerbils was lower than that of SR gerbils, though its localization in the hippocampus was similar in both SR and SS gerbils. SST3 immunodensity in the hippocampus of SS gerbils was lower than in SR gerbils. In SR gerbils, strong SST4 immunoreactivity was detected in the dentate gyrus and in the CA3 region, in contrast little immunoreactivity was detected in these regions in SS gerbils. In SR and SS gerbils, the strong SST5 immunoreactivity in the hippocampus was also detected in the stratum oriens of the CA2-3 regions and the septal area of CA1 region. However, SST5 immunodensity in the stratum radiatum in SS gerbils was lower than in SR gerbils. These results are the first comprehensive description of the distribution of SSTs in the normal and epileptic hippocampus of gerbils, and suggest that these alterations in the hippocampus of the SS gerbil may be related with a regulatory mechanism for seizure activity in these seizure prone animals.
Collapse
Affiliation(s)
- Tae-Cheon Kang
- Department of Anatomy, College of Medicine, Hallym University, Chunchon, Kangwon-Do 200-702, South Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Humphrey P, Hicks G, Feniuk W, Schindler M. Somatostatin Receptors in Analgesia. Pain 2003. [DOI: 10.1201/9780203911259.ch55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Allen JP, Hathway GJ, Clarke NJ, Jowett MI, Topps S, Kendrick KM, Humphrey PPA, Wilkinson LS, Emson PC. Somatostatin receptor 2 knockout/lacZ knockin mice show impaired motor coordination and reveal sites of somatostatin action within the striatum. Eur J Neurosci 2003; 17:1881-95. [PMID: 12752788 DOI: 10.1046/j.1460-9568.2003.02629.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The peptide somatostatin can modulate the functional output of the basal ganglia. The exact sites and mechanisms of this action, however, are poorly understood, and the physiological context in which somatostatin acts is unknown. Somatostatin acts as a neuromodulator via a family of five 7-transmembrane G protein-coupled receptors, SSTR1-5, one of which, SSTR2, is known to be functional in the striatum. We have investigated the role of SSTR2 in basal ganglia function using mice in which Sstr2 has been inactivated and replaced by the lacZ reporter gene. Analysis of Sstr2lacZ expression in the brain by beta-galactosidase histochemistry demonstrated a widespread pattern of expression. By comparison to previously published in situ hybridization and immunohistochemical data, Sstr2lacZ expression was shown to accurately recapitulate that of Sstr2 and thus provided a highly sensitive model to investigate cell-type-specific expression of Sstr2. In the striatum, Sstr2 expression was identified in medium spiny projection neurons restricted to the matrix compartment and in cholinergic interneurons. Sstr2 expression was not detected in any other nuclei of the basal ganglia except for a sparse number of nondopaminergic neurons in the substantia nigra. Microdialysis in the striatum showed Sstr2-null mice were selectively refractory to somatostatin-induced dopamine and glutamate release. In behavioural tests, Sstr2-null mice showed normal levels of locomotor activity and normal coordination in undemanding tasks. However, in beam-walking, a test of fine motor control, Sstr2-null mice were severely impaired. Together these data implicate an important neuromodulatory role for SSTR2 in the striatum.
Collapse
Affiliation(s)
- Jeremy P Allen
- Department of Neurobiology, The Babraham Institute, Babraham, Cambridge, CB2 AT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Somatostatin-induced regulation of SST(2A) receptor expression and cellsurface availability in central neurons: role of receptor internalization. J Neurosci 2000. [PMID: 10934240 DOI: 10.1523/jneurosci.20-16-05932.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To investigate the effects of somatostatin (somatotropin release-inhibiting factor, SRIF) on the regulation of SST(2A) receptors in mammalian brain, we examined how blockade of SRIF release or stimulation by the SRIF analog [d-Trp(8)]-SRIF would affect the expression and cell surface availability of SST(2A) receptors in rat brain slices. First, we measured the intensity of SST(2A) immunoreactivity, using quantitative light microscopic immunocytochemistry, and levels of SST(2A) mRNA, using semiquantitative RT-PCR, under conditions of acute SRIF release blockade. Incubation of slices from the claustrum or basolateral amygdala, two regions previously shown to contain high concentrations of SST(2A) receptors, in Ca(2+)-free Ringer's for 40 min induced a decrease in the intensity of SST(2A) receptor immunoreactivity and concentration of SST(2A) mRNA as compared with control values obtained in Ca(2+)-supplemented Ringer's. These effects were counteracted in a dose-dependent manner by the addition of 10-100 nm [d-Trp(8)]-SRIF to the Ca(2+)-free medium. Furthermore, both of these effects were abolished in the presence of the endocytosis inhibitors phenylarsine oxide or hyperosmolar sucrose, suggesting that they were dependent on receptor internalization. Electron microscopic immunogold labeling confirmed the existence of an agonist-induced internalization of SST(2A) receptors in central neurons. At a high (10 microm), but not at a low (10 nm), concentration of agonist this internalization resulted in a significant decrease in cell surface receptor density, irrespective of the presence of Ca(2+) in the medium. Taken together, these results suggest that ligand-induced endocytosis is responsible for rapid transcriptional (increase in SST(2A) expression) and trafficking (loss of cell surface receptors) events involved in the control of the somatostatinergic signal.
Collapse
|
14
|
Selmer IS, Schindler M, Humphrey PP, Emson PC. Immunohistochemical localization of the somatostatin sst(4) receptor in rat brain. Neuroscience 2000; 98:523-33. [PMID: 10869846 DOI: 10.1016/s0306-4522(00)00147-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The biological actions of the neuromodulator somatostatin are mediated through a family of G-protein-coupled receptors, of which five members, sst(1-5), have been identified. Although the messenger RNA distribution of the sst(4) receptor has been reported, no information about the distribution of the receptor protein in the central nervous system is available. We have therefore raised a polyclonal peptide antibody against a rat carboxy-terminal sst(4) peptide. The selectivity of the affinity-purified antibody was demonstrated by western blotting of membrane proteins isolated from Chinese hamster ovary-K1 cells expressing the recombinant sst(4) receptor and from the rat hippocampus. This resulted in both cases in the identification of a single band of approximately 42,000 mol. wt. Furthermore, the sst(4) receptor antibody selectively labelled Chinese hamster ovary-K1 cells expressing the recombinant sst(4) receptor in immunocytochemistry. No cross-reactivity was observed with other recombinant somatostatin receptors. Immunohistochemistry on adult rat brain sections showed the sst(4) receptor to have a widespread distribution. This included labelling of cell bodies as well as processes in the cerebral cortex, hippocampus and several nuclei in the brainstem. All signals were absent following antibody preabsorption with the synthetic sst(4) peptide. This study provides the first detailed analysis of the distribution of sst(4) receptor protein in the rat brain.
Collapse
Affiliation(s)
- I S Selmer
- Department of Neurobiology, The Babraham Institute, Babraham Hall, CB2 4AT, Cambridge, UK
| | | | | | | |
Collapse
|
15
|
Selmer I, Schindler M, Allen JP, Humphrey PP, Emson PC. Advances in understanding neuronal somatostatin receptors. REGULATORY PEPTIDES 2000; 90:1-18. [PMID: 10828487 DOI: 10.1016/s0167-0115(00)00108-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has long been considered that somatostatin acts as a neuromodulator in the mammalian central nervous system but its precise physiological roles remain elusive. Early studies to identify somatostatin-binding sites revealed a widespread heterogeneous pattern, especially in the CNS. More recently, a family of somatostatin receptors have been identified, of which five genes (sst(1-5)) have been cloned. In this review, we discuss current data describing the localisation of the five receptor types. Recent progress in understanding their function has been made using high-affinity, selective receptor ligands and transgenic animal technology. Finally, the therapeutic potential for somatostatin receptor-selective compounds as analgesics is considered.
Collapse
Affiliation(s)
- I Selmer
- Department of Neurobiology, The Babraham Institute, Babraham Hall, CB2 4EF, Cambridge, UK.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Somatostatin mediates its diverse physiological effects through a family of five G-protein-coupled receptors (sst(1)-sst(5)); however, knowledge about the distribution of individual somatostatin receptor proteins in mammalian brain is incomplete. In the present study, we have examined the regional and subcellular distribution of the somatostatin receptor sst(4) in the rat CNS by raising anti-peptide antisera to the C-terminal tail of sst(4). The specificity of affinity-purified antibodies was demonstrated using immunofluorescent staining of HEK 293 cells stably transfected with an epitope-tagged sst(4) receptor. In Western blotting, the antiserum reacted specifically with a broad band in rat brain, which migrated at approximately 70 kDa before and approximately 50 kDa after enzymatic deglycosylation. sst(4)-Like immunoreactivity was most prominent in many forebrain regions, including the cerebral cortex, hippocampus, striatum, amygdala, and hypothalamus. Analysis at the electron microscopic level revealed that sst(4)-expressing neurons target this receptor preferentially to their somatodendritic domain. Like the sst(2A) receptor, sst(4)-immunoreactive dendrites were often closely apposed by somatostatin-14-containing fibers and terminals. However, unlike the sst(2A) receptor, sst(4) was not internalized in response to intracerebroventricular administration of somatostatin-14. After percussion trauma of the cortex, neuronal sst(4) receptors progressively declined at the sites of damage. This decline coincided with an induction of sst(4) expression in cells with a glial-like morphology. Together, this study provides the first description of the distribution of immunoreactive sst(4) receptor proteins in rat brain. We show that sst(4) is strictly somatodendritic and most likely functions in a postsynaptic manner. In addition, the sst(4) receptor may have a previously unappreciated function during the neuronal degeneration-regeneration process.
Collapse
|
17
|
Hervieu G, Emson PC. Visualisation of somatostatin receptor sst(3) in the rat central nervous system. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 71:290-303. [PMID: 10521583 DOI: 10.1016/s0169-328x(99)00201-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Somatostatin actions are mediated through G-protein coupled receptors named sst(1) to sst(5). We used an affinity-purified polyclonal antibody AS-69, directed against a specific N-terminal peptide sequence of sst(3) to determine the immunohistochemical distribution of the sst(3) receptor in the rat and human brain. The specificity of the antibody was shown by Western blotting experiments using an N-terminal sst(3) fusion protein. Enzymatic deglycosylation experiments were combined to blotting experiments on a sst(3)-transfected cell line and rat brain membrane proteins and with immunocytochemistry on the sst(3)-transfected cell line. These studies showed that the antibody detected the deglycosylated sst(3) receptor protein. Immunohistochemical staining showed that sst(3) immunoreactivity recognised by this N-terminal antiserum was widely distributed throughout the brain with cells and processes labelled in the cerebral cortex, regions of the limbic system (including the hippocampal formation, some amygdaloid regions, some basal ganglia nuclei and regions from the nucleus basalis complex), the habenula, the hypothalamus, the thalamus, different mesencephalic structures (substantia nigra, zona incerta, superior colliculus), the reticular formation, the cerebellum. The distribution of immunoreactivity was in good general agreement with that predicted from the localisation of sst(3) mRNA and radio-ligand binding studies; however, due to the preference of AS-69 towards the deglycosylated receptor, it appears that the sst(3) immunoreactivity detected may correspond largely to the deglycosylated receptor. This study on the immunohistochemical distribution of the sst(3) receptor in the brain may provide a better understanding of the central actions of somatotropin release-inhibiting factor (SRIF).
Collapse
Affiliation(s)
- G Hervieu
- Laboratory of Cognitive and Molecular Neuroscience, Department of Neurobiology, Babraham Institute, Cambridge, UK
| | | |
Collapse
|
18
|
Helboe L, Hay-Schmidt A, Stidsen CE, M�ller M. Immunohistochemical localization of the somatostatin receptor subtype 2 (sst2) in the central nervous system of the golden hamster (Mesocricetus auratus). J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990308)405:2<247::aid-cne8>3.0.co;2-v] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Händel M, Schulz S, Stanarius A, Schreff M, Erdtmann-Vourliotis M, Schmidt H, Wolf G, Höllt V. Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience 1999; 89:909-26. [PMID: 10199624 DOI: 10.1016/s0306-4522(98)00354-6] [Citation(s) in RCA: 298] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recently, five members of the somatostatin receptor family have been cloned. However, little is known about their cellular and subcellular localization in the central nervous system. Using specific anti-peptide antisera, we observed somatostatin receptor 3-like immunoreactivity in many brain regions, including the cerebral cortex, hippocampus, hypothalamus, amygdala and cerebellum. In all of these regions (except for the cerebellar cortex), somatostatin receptor 3-like immunoreactivity was selectively targeted to 4-8-microm-long rod-shaped profiles which did not co-localize with axonal or dendritic markers. One immunoreactive profile was always associated with one neuronal cell body. This staining pattern was resistant to colchicine treatment and showed a closely overlapping distribution with somatostatin receptor 3 messenger RNA, suggesting that the receptor protein is not transported over long distances. Electron microscopic analysis revealed that somatostatin receptor 3-like immunoreactivity is localized to the plasma membrane of neuronal cilia which extended into an intercellular pocket and showed a 9+0 filament pattern in their basal body and proximal segments. Thus, somatostatin receptor 3 demonstrates a unique example of a G-protein-coupled receptor not localized to "classical" pre- or postsynaptic sites, but selectively targeted to neuronal cilia. The presence of the somatostatin receptor 3 receptor on neuronal cilia suggests that these presumably non-motile cilia may not merely represent developmental remnants, but rather function as chemical sensors of the immediate milieu.
Collapse
Affiliation(s)
- M Händel
- Department of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Schulz S, Schreff M, Schmidt H, Händel M, Przewlocki R, Höllt V. Immunocytochemical localization of somatostatin receptor sst2A in the rat spinal cord and dorsal root ganglia. Eur J Neurosci 1998; 10:3700-8. [PMID: 9875349 DOI: 10.1046/j.1460-9568.1998.00386.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intrathecal administration of octreotide, a stable somatostatin analogue, provides pain relief in patients, and locally applied somatostatin inhibits firing of nociceptive dorsal horn neurons. In the present study, we have raised polyclonal antibodies that specifically detect the somatostatin receptor sst2A and used these antisera for immunocytochemical localization of the receptor protein in the rat spinal cord and dorsal root ganglia. In the superficial layers of the dorsal horn, sst2A-like immunoreactivity (Li) formed a dense network consisting of neuronal perikarya and dendrites which were often closely apposed by, but not co-contained within, somatostatin-14-immunoreactive nerve fibres and terminals. sst2A-Li was resistant to dorsal rhizotomy and did not colocalize with either substance P or calcitonin gene-related peptide suggesting that sst2A-Li was not located to primary afferents, but rather confined to second-order spinal neurons. The position of sst2A-Li perikarya and dendrites in the dorsal horn appeared to be similar to those containing mu-opioid receptor-Li; however, double labelling experiments revealed no instances of coexistence of these two receptors. sst2A-Li was also observed in the dorsal root ganglia predominantly targeted to the somatic plasmalemma of medium size neurons distinct from those expressing somatostatin-14 or delta-opioid receptors. Thus, the present results not only provide a morphological substrate for spinal octreotide analgesia but also show that somatostatin and opioids are poised to modulate nociceptive transmission by distinct anatomical systems.
Collapse
Affiliation(s)
- S Schulz
- Department of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Schulz S, Schmidt H, Händel M, Schreff M, Höllt V. Differential distribution of alternatively spliced somatostatin receptor 2 isoforms (sst2A and sst2B) in rat spinal cord. Neurosci Lett 1998; 257:37-40. [PMID: 9857960 DOI: 10.1016/s0304-3940(98)00803-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently shown that the cytoplasmic tail of the somatostatin receptor sst2 undergoes alternative splicing giving rise to two isoforms, SSt2A and sst2B. In the present study, we have raised polyclonal antibodies that specifically detect either sst2A or sst2B and used these antisera for immunocytochemical localization of the receptor proteins in the rat spinal cord. sst2A-immunoreactivity formed a dense network consisting of neuronal perikarya and dendrites in the superficial layers of the dorsal horn. In contrast, prominent sst2B-immunoreactivity was found on neuronal perikarya and proximal dendrites throughout the gray matter of the spinal cord. Taken together, we show that alternative carboxy-terminal splicing is involved in cell-specific expression of somatostatin receptor sst2 isoforms in rat spinal cord, and that sst2A and sst2B mediate effects of somatostatin at different cellular sites.
Collapse
Affiliation(s)
- S Schulz
- Department of Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | |
Collapse
|
22
|
Hervieu G, Emson PC. The localization of somatostatin receptor 1 (sst1) immunoreactivity in the rat brain using an N-terminal specific antibody. Neuroscience 1998; 85:1263-84. [PMID: 9681962 DOI: 10.1016/s0306-4522(98)00024-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The biological actions of somatostatin are mediated via a family of G protein-coupled receptors named sst1 to sst5. We used an affinity-purified polyclonal antibody AS-65, directed against a specific N-terminal peptide sequence of sst1 to determine the immunohistochemical distribution of N-terminal sst1 immunoreactivity in the rat brain. The specificity of the antibody was shown by western blotting experiments using an N-terminal sst1 fusion protein. Enzymatic deglycosylation experiments were combined with blotting experiments on a sst1-transfected cell line and rat brain membrane proteins and with immunocytochemistry on an sst1-transfected cell line. These studies showed that the antibody detected the deglycosylated sst1 receptor protein. Immunohistochemical staining showed that sst1 immunoreactivity (presumably the deglycosylated receptor) recognised by this N-terminal antiserum was widely distributed throughout the brain with cells and processes labelled in the cerebral cortex, regions of the limbic system (including the hippocampal formation and some basal ganglia nuclei), the epithalamus, the thalamus, different subthalamic structures (subthalamic nucleus, zona incerta), the colliculi, the hypothalamus, the reticular formation, the cerebellum and regions of the trigeminal nerve complex. The distribution of immunoreactivity was in good general agreement with that predicted from the localization of sst1 messenger RNA and radioligand binding studies. This study on the immunohistochemical distribution of the sst1 receptor in the brain will provide a better understanding of the central actions of somatostatin at its receptor types.
Collapse
Affiliation(s)
- G Hervieu
- Department of Neurobiology, The Babraham Institute, Cambridge, UK
| | | |
Collapse
|
23
|
Hervieu G, Emson PC. Visualisation of non-glycosylated somatostatin receptor two (ngsst2) immunoreactivity in the rat central nervous system. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 58:138-55. [PMID: 9685616 DOI: 10.1016/s0169-328x(98)00120-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The biological actions of the neuropeptides somatostatin-14 and -28 are receptor-mediated. To date, five G protein-coupled receptors sst1 to sst5 have been characterised pharmacologically and their genes have been cloned. In this study, we used an affinity-purified polyclonal antibody (AS-68) raised against a specific N-terminal peptide sequence of sst2 to localise N-terminal sst2-immunoreactive regions in the rat brain and the cervical spinal cord. The specificity of the antiserum was demonstrated by Western and slot blotting experiments using a N-terminal sst2 fusion protein. Further blotting experiments with a sst2(A)-transfected cell line and rat CNS membrane proteins showed that the antibody detected the non-glycosylated and/or non-sialated receptor. A strong signal using an sst2(A)-transfected CHO-K1 cell line was obtained only if the cells had been treated with N-Glycosidase F prior to the immunochemical detection. Two variants of sst2 (sst2(A) and sst2(B)) have been identified by cloning procedures and gene expression studies in the rodents. They differ in their carboxy-termini: AS-68 would, however, be able to recognise the non-glycosylated form of both these variants. We present here the central nervous system distribution of non-glycosylated sst2-immunoreactivity in the rat using this N-terminal antibody. The sst2 non-glycosylated N-terminal like immunoreactivity was distributed throughout the brain with cells and processes labelled in the cerebral cortex and the basal ganglia (neostriatum, substantia nigra), in the limbic system (hippocampal formation, amygdala), in the diencephalon (epithalamus, thalamus, hypothalamus), the superior colliculus, the periaqueductal grey matter and some of the reticular formation nuclei. The distribution of the non-glycosylated sst2-like immunoreactivity detected here was consistent with that predicted from the localisation of sst2 mRNA and SRIF-ligand binding studies.
Collapse
Affiliation(s)
- G Hervieu
- Laboratory of Cognitive and Molecular Neuroscience, Department of Neurobiology, The Babraham Institute, Cambridge CB2 4AT, UK
| | | |
Collapse
|
24
|
Hicks GA, Feniuk W, Humphrey PP. Outward current produced by somatostatin (SRIF) in rat anterior cingulate pyramidal cells in vitro. Br J Pharmacol 1998; 124:252-8. [PMID: 9630367 PMCID: PMC1565374 DOI: 10.1038/sj.bjp.0701824] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. A high density of receptors for somatostatin (SRIF) exists in the anterior cingulate cortex but their function is unknown. Whole-cell patch clamp recordings were made from visualized deep layer pyramidal cells of the rat anterior cingulate cortex contained in isolated brain slices to investigate the putative effects of SRIF and to identify the receptor subtype(s) involved. 2. SRIF (1-1000 nM) produced a concentration-dependent outward current which was associated with an increased membrane conductance, was sensitive to Ba2+ (300 microM - 1 mM), and was absent in the presence of a maximal concentration of the GABA(B) receptor agonist, baclofen (100 microM). These observations suggest the outward current was carried by K+ ions. 3. SRIF analogues also elicited outward currents with a rank potency order of (EC50, nM): octreotide (1.8)>BIM-23027 (3.7)>SRIF (20)=L-362,855 (20). BIM-23056 was without agonist or antagonist activity. Responses to L-362,855 were unlike those to the other agonists since they were sustained for the duration of the application. 4. The sst2 receptor antagonist, L-Tyr8Cyanamid 154806 (1 microM), had no effect alone but partially reversed responses to submaximal concentrations of SRIF (100 nM, 44+/-6% reversal) and L-362,855 (100 nM, 70+/-6% reversal) and fully reversed the response to BIM-23027 (10 nM). In contrast, L-Tyr8Cyanamid 154806 did not antagonize the response to baclofen (10 microM). 5. We conclude that SRIF activates a K+ conductance in anterior cingulate pyramidal neurones via an action predominantly at sst2 receptors.
Collapse
Affiliation(s)
- G A Hicks
- Glaxo Institute of Applied Pharmacology, Department of Pharmacology, University of Cambridge
| | | | | |
Collapse
|
25
|
Interrelationships between somatostatin sst2A receptors and somatostatin-containing axons in rat brain: evidence for regulation of cell surface receptors by endogenous somatostatin. J Neurosci 1998. [PMID: 9437026 DOI: 10.1523/jneurosci.18-03-01056.1998] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Using an antipeptide antibody, we reported previously on the distribution of the somatostatin sst2A receptor subtype in rat brain. Depending on the region, immunolabeled receptors were either confined to neuronal perikarya and dendrites or distributed diffusely in tissue. To investigate the functional significance of these distribution patterns, we examined the regional and cellular relationships between somatostatin axons and sst2A receptors in the rat CNS, using double-labeling immunocytochemistry. Light and confocal microscopy revealed a significant correlation (p < 0.02) between the distribution of somatodendritic sst2A receptor immunoreactivity and that of somatostatin terminal fields, both quantitatively and qualitatively. Furthermore, in regions of somatodendritic labeling, a subpopulation of sst2A-immunoreactive cells was also immunopositive for somatostatin, suggesting that a subset of sst2A receptors consists of autoreceptors. By contrast, in regions displaying diffuse sst2A labeling only moderate to low densities of somatostatin terminals were observed, and no significant relationship was found between terminal density and receptor immunoreactivity. At the electron microscopic level, areas expressing somatodendritic sst2A labeling were found by immunogold cytochemistry to display low proportions of membrane-associated, as compared with intracellular, receptors. Conversely, in regions displaying diffuse sst2A receptor labeling, receptors were predominantly associated with neuronal plasma membranes, a finding consistent with the high density of sst2 binding sites previously visualized in these areas by autoradiography. Double-labeling studies demonstrated that in the former but not in the latter regions, sst2A-immunoreactive somata and dendrites were heavily contacted by somatostatin axon terminals. Taken together, these results suggest that the low incidence of membrane-associated receptors observed in regions of somatodendritic sst2A labeling may be caused by downregulation of cell surface receptors by endogenous somatostatin, possibly through ligand-induced receptor internalization.
Collapse
|
26
|
Tallent MK, Siggins GR. Somatostatin depresses excitatory but not inhibitory neurotransmission in rat CA1 hippocampus. J Neurophysiol 1997; 78:3008-18. [PMID: 9405520 DOI: 10.1152/jn.1997.78.6.3008] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In rat CA1 hippocampal pyramidal neurons (HPNs), somatostatin (SST) has inhibitory postsynaptic actions, including hyperpolarization of the membrane at rest and augmentation of the K+ M-current. However, the effects of SST on synaptic transmission in this brain region have not been well-characterized. Therefore we used intracellular voltage-clamp recordings in rat hippocampal slices to assess the effects of SST on pharmacologically isolated synaptic currents in HPNs. SST depressed both (R, S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate and N-methyl--aspartate (NMDA) receptor-mediated excitatory postsynaptic currents (EPSCs) in a reversible manner, with an apparent IC50 of 22 nM and a maximal effect at 100 nM. In contrast, SST at concentrations up to 5 microM had no direct effects on either gamma-aminobutyric acid-A (GABAA) or GABAB receptor-mediated inhibitory postsynaptic currents (IPSCs). The depression of EPSCs by SST was especially robust during hyperexcited states when polysynaptic EPSCs were present, suggesting that this peptide could play a compensatory role during seizurelike activity. SST effects were greatly attenuated by the alkylating agent N-ethylmaleimide, thus implicating a transduction mechanism involving the Gi/Go family of G-proteins. Use of 2 M Cs+ in the recording electrode blocked the postsynaptic modulation of K+ currents by SST, but did not alter the effects of SST on EPSCs, indicating that postsynaptic K+ currents are not involved in this action of SST. However, 2 mM external Ba2+ blocked the effect of SST on EPSCs, suggesting that presynaptic K+ channels or other presynaptic mechanisms may be involved. These findings and previous results from our laboratory show that SST has multiple inhibitory effects in hippocampus.
Collapse
Affiliation(s)
- M K Tallent
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
27
|
Koenig JA, Edwardson JM, Humphrey PP. Somatostatin receptors in Neuro2A neuroblastoma cells: ligand internalization. Br J Pharmacol 1996; 120:52-9. [PMID: 9117098 PMCID: PMC1564337 DOI: 10.1038/sj.bjp.0700859] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. Receptor-dependent internalization of somatostatin (SRIF) agonists has been a matter of controversy probably because [125I]Tyr11-SRIF-14 is rapidly degraded. We have studied the internalization of a stable somatostatin analogue, [125I]-BIM-23027, in a neuronal cell line, Neuro2A, which natively expresses somatostatin sst2 receptors. 2. Incubation of Neuro2A cells with [125I]-BIM-23027 at 37 degrees C resulted in a time-dependent internalization of the ligand, which reached a maximum at 30 min. Acid-washing showed that cell-surface binding of the ligand accounted for only 34% of total binding at this time. Internalization was dramatically reduced at 15 degrees C. 3. Internalization of [125I]-BIM-23027 was prevented by inclusion of unlabelled somatostatin receptor agonists in a concentration-dependent manner. The IC50 values for inhibition of [125I]-BIM-23027 internalization were approximately 100 fold lower than for inhibition of [125I]-BIM-23027 binding to membrane homogenates but followed the same rank order of potencies. 4. Disruption of G-protein coupling by treatment with pertussis toxin caused a 60% reduction in internalization of ligand. A combination of antimycin (50 nM) and deoxyglucose (50 mM) pretreatment, which leads to a depletion of cellular ATP, decreased internalization of [125I]-BIM-23027 by 66% of control and increased the proportion of surface-bound ligand. Hypertonic sucrose, which prevents clathrin-mediated endocytosis, reversibly abolished the internalization of ligand without increasing the proportion bound at the cell surface. 5. After internalization of [125I]-BIM-23027, approximately half of the ligand was recycled back to the extracellular medium within 20 min at 37 degrees C. This finding suggests that the intracellular content of [125I]-BIM-23027 reaches a steady state which is determined by the rates of both internalization and recycling of the ligand. In contrast to studies in which the internalization of [125I]-Tyr11-SRIF-14 was examined, neither internalized nor recycled [125I]-BIM-23027 was degraded to its component amino acids. 6. These findings indicate that the somatostatin agonist, [125I]-BIM-23027, is internalized in a receptor-dependent manner which involves clathrin-coated pits in Neuro2A cells. Furthermore, much of the internalized ligand is rapidly recycled back to the extracellular medium without undergoing significant degradation.
Collapse
|
28
|
Koenig JA, Edwardson JM, Humphrey PP. Somatostatin receptors in Neuro2A neuroblastoma cells: operational characteristics. Br J Pharmacol 1996; 120:45-51. [PMID: 9117097 PMCID: PMC1564336 DOI: 10.1038/sj.bjp.0700858] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1. We have used somatostatin (SRIF) receptor subtype-selective ligands to determine some of the operational characteristics of somatostatin receptors in Neuro2A mouse neuroblastoma cells. The potent SRIF1-receptor selective ligand, BIM-23027, was able to displace completely the specific binding of radioiodinated somatostatin, [125I]-Tyr11-SRIF-14, with a pIC50 of 10.3, suggesting that Neuro2A cells contain predominantly receptors of the SRIF1 receptor group. The rank order of affinities for several somatostatin analogues tested in competition studies, together with the high affinity of BIM-23027, indicate that the majority of receptors in Neuro2A cells are of the sst2 subtype. 2. The stable radioligand, [125I]-BIM-23027, bound with high affinity (Kd = 13 pM, Bmax = 0.2 pmol mg-1 protein) to Neuro2A cell membranes, but its binding was only partially reversible at room temperature and below. Thus at 4 degrees C, only 36% of the bound ligand dissociated within 2 h. In contrast, 60% of the ligand dissociated at 15 degrees C and 89% of the ligand dissociated at 37 degrees C. 3. Equilibrium binding of [125I]-BIM-23027 was partially (25%) inhibited by 10 microM GTP, and by 120 mM NaCl (42% inhibition) but this inhibition was increased to 75% when sodium chloride and GTP were added together. This effect of GTP and sodium chloride was also seen in dissociation experiments. After incubation to equilibrium with [125I]-BIM-23027, dissociation was initiated with excess unlabelled ligand in the presence of GTP (10 microM) and sodium chloride (120 mM). Under these conditions 67% of the ligand dissociated at 4 degrees C, 81% at 15 degrees C and 93% at 37 degrees C. Binding was totally inhibited by pretreatment of cells with pertussis toxin. 4. Functionally, BIM-23027 inhibited forskolin-stimulated cyclic AMP accumulation in a concentration-dependent manner with an IC50 of 1.0 nM and a maximal inhibition of 37%. This effect was abolished by pretreatment of the cells with pertussis toxin. However, unlike in studies reported with the recombinant sst2 receptor, no rise in intracellular calcium concentration was observed with SRIF-14. 5. We conclude that Neuro2A cells provide a stable neuronal cell line for the study of functionally coupled endogenous somatostatin receptors of the sst2 type. In addition, we have found that activation of the receptor is associated with ligand-receptor internalisation.
Collapse
|