1
|
Cole RH, Moussawi K, Joffe ME. Opioid modulation of prefrontal cortex cells and circuits. Neuropharmacology 2024; 248:109891. [PMID: 38417545 PMCID: PMC10939756 DOI: 10.1016/j.neuropharm.2024.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024]
Abstract
Several neurochemical systems converge in the prefrontal cortex (PFC) to regulate cognitive and motivated behaviors. A rich network of endogenous opioid peptides and receptors spans multiple PFC cell types and circuits, and this extensive opioid system has emerged as a key substrate underlying reward, motivation, affective behaviors, and adaptations to stress. Here, we review the current evidence for dysregulated cortical opioid signaling in the pathogenesis of psychiatric disorders. We begin by providing an introduction to the basic anatomy and function of the cortical opioid system, followed by a discussion of endogenous and exogenous opioid modulation of PFC function at the behavioral, cellular, and synaptic level. Finally, we highlight the therapeutic potential of endogenous opioid targets in the treatment of psychiatric disorders, synthesizing clinical reports of altered opioid peptide and receptor expression and activity in human patients and summarizing new developments in opioid-based medications. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Rebecca H Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Moussawi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Norman H, D'Souza MS. Endogenous opioid system: a promising target for future smoking cessation medications. Psychopharmacology (Berl) 2017; 234:1371-1394. [PMID: 28285326 DOI: 10.1007/s00213-017-4582-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 02/24/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND Nicotine addiction continues to be a health challenge across the world. Despite several approved medications, smokers continue to relapse. Several human and animal studies have evaluated the role of the endogenous opioid system as a potential target for smoking cessation medications. METHODS In this review, studies that have elucidated the role of the mu (MORs), delta (DORs), and kappa (KORs) opioid receptors in nicotine reward, nicotine withdrawal, and reinstatement of nicotine seeking will be discussed. Additionally, the review will discuss discrepancies in the literature and therapeutic potential of the endogenous opioid system, and suggest studies to address gaps in knowledge with respect to the role of the opioid receptors in nicotine dependence. RESULTS Data available till date suggest that blockade of the MORs and DORs decreased the rewarding effects of nicotine, while activation of the MORs and DORs decreased nicotine withdrawal-induced aversive effects. In contrast, activation of the KORs decreased the rewarding effects of nicotine, while blockade of the KORs decreased nicotine withdrawal-induced aversive effects. Interestingly, blockade of the MORs and KORs attenuated reinstatement of nicotine seeking. In humans, MOR antagonists have shown benefits in select subpopulations of smokers and further investigation is required to realize their full therapeutic potential. CONCLUSION Future work must assess the influence of polymorphisms in opioid receptor-linked genes in nicotine dependence, which will help in both identifying individuals vulnerable to nicotine addiction and the development of opioid-based smoking cessation medications. Overall, the endogenous opioid system continues to be a promising target for future smoking cessation medications.
Collapse
Affiliation(s)
- Haval Norman
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH, 45810, USA
| | - Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, 525 S Main Street, Ada, OH, 45810, USA.
| |
Collapse
|
3
|
Hadjiconstantinou M, Neff NH. Nicotine and endogenous opioids: Neurochemical and pharmacological evidence. Neuropharmacology 2011; 60:1209-20. [DOI: 10.1016/j.neuropharm.2010.11.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/03/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
|
4
|
Trigo JM, Martin-García E, Berrendero F, Robledo P, Maldonado R. The endogenous opioid system: a common substrate in drug addiction. Drug Alcohol Depend 2010; 108:183-94. [PMID: 19945803 DOI: 10.1016/j.drugalcdep.2009.10.011] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 09/30/2009] [Accepted: 10/28/2009] [Indexed: 12/17/2022]
Abstract
Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits that involve several neurotransmitters. One of the neurochemical systems that plays a pivotal role in different aspects of addiction is the endogenous opioid system (EOS). Opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within these reward circuits. Chronic exposure to the different prototypical drugs of abuse, including opioids, alcohol, nicotine, psychostimulants and cannabinoids has been reported to produce significant alterations within the EOS, which seem to play an important role in the development of the addictive process. In this review, we will describe the adaptive changes produced by different drugs of abuse on the EOS, and the current knowledge about the contribution of each component of this neurobiological system to their addictive properties.
Collapse
Affiliation(s)
- José Manuel Trigo
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, PRBB, Barcelona, Spain
| | | | | | | | | |
Collapse
|
5
|
Maldonado R. [The endogenous opioid system and drug addiction]. ANNALES PHARMACEUTIQUES FRANÇAISES 2010; 68:3-11. [PMID: 20176158 PMCID: PMC3444724 DOI: 10.1016/j.pharma.2009.12.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 12/14/2009] [Accepted: 12/14/2009] [Indexed: 11/15/2022]
Abstract
Drug addiction is a chronic brain disorder leading to complex adaptive changes within the brain reward circuits. Several neurotransmitters, including the endogenous opioid system are involved in these changes. The opioid system plays a pivotal role in different aspects of addiction. Thus, opioid receptors and endogenous opioid peptides are largely distributed in the mesolimbic system and modulate dopaminergic activity within the reward circuits. Opioid receptors and peptides are selectively involved in several components of the addictive processes induced by opioids, cannabinoids, psychostimulants, alcohol and nicotine. This review is focused on the contribution of each component of the endogenous opioid system in the addictive properties of the different drugs of abuse.
Collapse
Affiliation(s)
- R Maldonado
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Espagne.
| |
Collapse
|
6
|
Do Carmo GP, Folk JE, Rice KC, Chartoff E, Carlezon WA, Negus SS. The selective non-peptidic delta opioid agonist SNC80 does not facilitate intracranial self-stimulation in rats. Eur J Pharmacol 2008; 604:58-65. [PMID: 19133255 DOI: 10.1016/j.ejphar.2008.12.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 12/09/2008] [Accepted: 12/10/2008] [Indexed: 11/30/2022]
Abstract
Delta opioid receptor agonists are under development for a variety of clinical applications, and some findings in rats raise the possibility that agents with this mechanism have abuse liability. The present study assessed the effects of the non-peptidic delta opioid agonist SNC80 in an assay of intracranial self-stimulation (ICSS) in rats. ICSS was examined at multiple stimulation frequencies to permit generation of frequency-response rate curves and evaluation of curve shifts produced by experimental manipulations. Drug-induced leftward shifts in ICSS frequency-rate curves are often interpreted as evidence of abuse liability. However, SNC80 (1.0-10 mg/kg s.c.; 10-56 mg/kg i.p.) failed to alter ICSS frequency-rate curves at doses up to those that produced convulsions in the present study or other effects (e.g. antidepressant effects) in previous studies. For comparison, the monoamine releaser d-amphetamine (0.1-1.0 mg/kg, i.p.) and the kappa agonist U69,593 (0.1-0.56 mg/kg, i.p.) produced dose-dependent leftward and rightward shifts, respectively, in ICSS frequency-rate curves, confirming the sensitivity of the procedure to drug effects. ICSS frequency-rate curves were also shifted by two non-pharmacological manipulations (reductions in stimulus intensity and increases in response requirement). Thus, SNC80 failed to facilitate or attenuate ICSS-maintained responding under conditions in which other pharmacological and non-pharmacological manipulations were effective. These results suggest that non-peptidic delta opioid receptor agonists have negligible abuse-related effects in rats.
Collapse
Affiliation(s)
- Gail Pereira Do Carmo
- Alcohol and Drug Abuse Research Center, McLean Hospital-Harvard Medical School, Belmont, MA 02478, United States
| | | | | | | | | | | |
Collapse
|
7
|
David V, Matifas A, Gavello-Baudy S, Decorte L, Kieffer BL, Cazala P. Brain regional Fos expression elicited by the activation of mu- but not delta-opioid receptors of the ventral tegmental area: evidence for an implication of the ventral thalamus in opiate reward. Neuropsychopharmacology 2008; 33:1746-59. [PMID: 17895918 DOI: 10.1038/sj.npp.1301529] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Both mu-opioid receptors (MORs) and delta-opioid receptors (DORs) are expressed in the ventral tegmental area (VTA) and are thought to be involved in the addictive properties of opiates. However, their respective contributions to opiate reward remain unclear. We used intracranial self-administration (ICSA) to study the rewarding effects of morphine microinjections into the VTA of male and female MOR-/- and DOR-/- mice. In brains of mice tested for intra-VTA morphine self-administration, we analyzed regional Fos protein expression to investigate the neural circuitry underlying this behavior. Male and female WT and DOR-/- mice exhibited similar self-administration performances, whereas knockout of the MOR gene abolished intra-VTA morphine self-administration at all doses tested. Naloxone (4 mg/kg) disrupted this behavior in WT and DOR mutants, without triggering physical signs of withdrawal. Morphine ICSA was associated with an increase in Fos within the nucleus accumbens, striatum, limbic cortices, amygdala, hippocampus, the lateral mammillary nucleus (LM), and the ventral posteromedial thalamus (VPM). This latter structure was found to express high levels of Fos exclusively in self-administering WT and DOR-/- mice. Abolition of morphine reward in MOR-/- mice was associated with a decrease in Fos-positive neurons in the mesocorticolimbic dopamine system, amygdala, hippocampus (CA1), LM, and a complete absence within the VPM. We conclude that (i) VTA MORs, but not DORs, are critical for morphine reward and (ii) the role of VTA-thalamic projections in opiate reward deserves to be further explored.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Behavior, Animal/drug effects
- Brain/anatomy & histology
- Brain/drug effects
- Brain/metabolism
- Cell Count/methods
- Conditioning, Operant/drug effects
- Female
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morphine/administration & dosage
- Naloxone/pharmacology
- Narcotic Antagonists/pharmacology
- Narcotics/administration & dosage
- Neurons/drug effects
- Neurons/metabolism
- Oncogene Proteins v-fos/genetics
- Oncogene Proteins v-fos/metabolism
- Reaction Time/drug effects
- Reaction Time/physiology
- Receptors, Opioid, delta/deficiency
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/deficiency
- Receptors, Opioid, mu/metabolism
- Self Administration
- Ventral Tegmental Area/cytology
- Ventral Tegmental Area/drug effects
- Ventral Tegmental Area/metabolism
Collapse
Affiliation(s)
- Vincent David
- Centre de Neurosciences Intégratives et Cognitives, CNRS UMR 5228/Universités de Bordeaux 1 et 2, Talence, France.
| | | | | | | | | | | |
Collapse
|
8
|
Do Carmo GP, Mello NK, Rice KC, Folk JE, Negus SS. Effects of the selective delta opioid agonist SNC80 on cocaine- and food-maintained responding in rhesus monkeys. Eur J Pharmacol 2006; 547:92-100. [PMID: 16934797 PMCID: PMC1850968 DOI: 10.1016/j.ejphar.2006.06.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2006] [Revised: 06/27/2006] [Accepted: 06/28/2006] [Indexed: 11/27/2022]
Abstract
Delta agonists such as SNC80 ((+)-4-[(aR)-a-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N,N-diethylbenzamide) produce some cocaine-like behavioral effects and warrant evaluation as candidate "agonist" medications for cocaine abuse. The present study examined acute and chronic effects of the systemically active delta agonist SNC80 on cocaine- and food-maintained responding in rhesus monkeys. Acute SNC80 (0.32-3.2 mg/kg, i.m.) pretreatment dose-dependently decreased cocaine self-administration (0.0032 mg/kg/injection), but doses of SNC80 that decreased cocaine self-administration also decreased food-maintained responding. In chronic studies, SNC80 (0.32-3.2 mg/kg/h, i.v.) was delivered for 7 days, and food or cocaine (0.01 mg/kg/injection) was available during 4 daily components of food availability and 4 daily components of drug availability. Chronic SNC80 (1.8 mg/kg/h) tended to decrease cocaine self-administration but produced greater reductions in food-maintained responding. A higher dose of 3.2 mg/kg/h SNC80 eliminated both cocaine- and food-maintained responding and produced profound sedation in one monkey and was not tested in other monkeys. These findings indicate that SNC80 produced dose-dependent and non-selective reductions in cocaine self-administration. These results suggest that SNC80 is unlikely to be useful as a treatment for cocaine dependence.
Collapse
Affiliation(s)
- Gail Pereira Do Carmo
- Alcohol and Drug Abuse Research Center, McLean Hospital - Harvard Medical School, Belmont, MA 02478, USA
| | | | | | | | | |
Collapse
|
9
|
Jha SH, Knapp CM, Kornetsky C. Effects of morphine on brain-stimulation reward thresholds in young and aged rats. Pharmacol Biochem Behav 2004; 79:483-90. [PMID: 15582019 DOI: 10.1016/j.pbb.2004.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 08/23/2004] [Accepted: 08/24/2004] [Indexed: 11/23/2022]
Abstract
Mesolimbic opioid systems are altered with aging; however, the effects of these changes on the rewarding actions of opioids have not been examined. The present experiment assessed differences in the responsiveness of brain reward pathways in young and aged rats to the effects of morphine using the brain-stimulation reward (BSR) model. Aged (24 months) and young (5 months) male F344/BNF1 rats were stereotaxically implanted with a bipolar stainless steel electrode into the lateral hypothalamic (LH) region of the medial forebrain bundle. Thresholds were determined using the rate-independent psychophysical method. Each animal was tested after the administration of saline or morphine at 0.5, 1, 2.5, 5 and 10 mg/kg doses. A significant difference in the mean baseline threshold between aged (99.8+/-6 microA) and young rats (149.1+/-14 microA) was observed. Although in both groups morphine lowered the BSR threshold, there were no significant differences between the groups except at the 10-mg/kg dose, the difference did approach significance. This study indicates that there are baseline differences in the rewarding threshold in the two groups, that morphine lowers the threshold in young and aged animals and that the hedonic effects produced by morphine, for the most, part remain preserved in aged animals.
Collapse
Affiliation(s)
- Shivkumar H Jha
- Department of Psychiatry, Boston University School of Medicine, 715 Albany Street, R-620, Boston, MA 02118, USA
| | | | | |
Collapse
|
10
|
Kornetsky C. Brain-stimulation reward, morphine-induced oral stereotypy, and sensitization: implications for abuse. Neurosci Biobehav Rev 2004; 27:777-86. [PMID: 15019427 DOI: 10.1016/j.neubiorev.2003.11.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Early professionals believed that it was unlikely that anyone but the emotionally unstable received pleasure and became addicted to narcotic drugs. This position was well entrenched and influenced much of the thinking well into the latter half of the last century. Although the discovery of a brain reward system was made early in the 1950's it was not until 20 years later that this discovery was applied to the study of the mechanisms involved in the rewarding aspects of abused substances. Along this vein results will be shown in which opiate antagonist block the dopamine agonist activation of the brain reward system as well as the corollary. Sensitization of the reward system suggests that a driving force for drug use is 'liking' and not just 'wanting.' Basal changes in cerebral metabolic rates of glucose are seen in the presence of cues associated with morphine experience, giving evidence for the role of drug related cues in craving. Finally we asked the question 'Do old rats have as much fun as young rats?'
Collapse
Affiliation(s)
- Conan Kornetsky
- Departments of Psychiatry and Pharmacology, Boston University School of Medicine, 715 Albany Street, L-602 Boston, MA 02118, USA.
| |
Collapse
|
11
|
Malanga CJ, Kosofsky BE. Does drug abuse beget drug abuse? Behavioral analysis of addiction liability in animal models of prenatal drug exposure. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 147:47-57. [PMID: 14741750 DOI: 10.1016/j.devbrainres.2003.09.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Prenatal exposure to drugs of abuse is the single largest preventable cause of developmental compromise of American children today. In the clinical population, it is difficult to determine the independent effects of gestational exposure to a single drug on brain development, in part due to the confounding effects of additional risk factors that are encountered in the substance-abusing population. The enormous clinical and societal problem of gestational toxicity of drugs of abuse, both legal and illegal, has driven the need to develop and investigate animal models of gestational drug exposure in which these variables can be controlled. More specifically, as clinical data are gathered suggesting an increased liability to substance abuse among children of drug-abusing mothers, a mechanistic understanding of the lasting effects of early drug exposure on the developing brain and the behavioral repertoire of the developing animal is crucial. In this review we summarize experimental animal research that investigates the role of drug exposure in utero on the functional development of specific brain circuits that are involved in the reinforcing effects of drugs of abuse, and on the behaviors that are mediated by these brain reward systems.
Collapse
Affiliation(s)
- C J Malanga
- Laboratory of Molecular and Developmental Neuroscience, Department of Neurology, Massachusetts General Hospital East, CNY-149, Room 2508 149 13th Street, Charlestown, MA 02129, USA
| | | |
Collapse
|
12
|
Duvauchelle CL, Fleming SM, Kornetsky C. Prefrontal cortex infusions of SCH 23390 cause immediate and delayed effects on ventral tegmental area stimulation reward. Brain Res 1998; 811:57-62. [PMID: 9804893 DOI: 10.1016/s0006-8993(98)00952-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A reward-relevant relationship between dopamine projection regions of the ventral tegmental area (VTA) was investigated through the use of brain stimulation reward (BSR) thresholds. Using a rate-free method, changes in VTA BSR thresholds were determined after intracranial injections of the dopamine D1 antagonist, SCH 23390 into the prefrontal cortex (PFC), or the nucleus accumbens (NAcc). Reward thresholds assessed immediately after the infusion of SCH 23390 into the NAcc (0.5 microgram/0.5 microliter/side) were significantly higher than those assessed just after saline infusions, indicating a drug-induced attenuation of the rewarding effects of the brain stimulation. The effects of this dose subsided when tested 24 h later. Conversely, intra-PFC infusions of SCH 23390 at the same dose (0.5 microgram/0.5 microliter/side) resulted in lowered BSR thresholds when rats were tested immediately after infusion. In addition, animals tested 24 h after receiving the lowest dose (0.125 microgram/0.5 microliter/side) demonstrated a robust delayed threshold-lowering effect. These immediate and delayed effects of the intra-PFC dopamine antagonist demonstrate a facilitation of VTA BSR and are consistent with the view that PFC dopamine serves a modulatory role over important reward elements within the NAcc. The deferred effects of intra-prefrontal cortex DA receptor blockade on brain stimulation reward thresholds may reflect adaptive responses of subcortical structures to changes in PFC dopamine neurotransmission. It has been suggested that neural adjustments of this type may underlie long term changes in central nervous system functioning brought about by disease, drug use or behavioral conditioning.
Collapse
Affiliation(s)
- C L Duvauchelle
- Boston University School of Medicine, Departments of Psychiatry and Pharmacology, 715 Albany Street, L-602, Boston, MA 02118, USA
| | | | | |
Collapse
|
13
|
Duvauchelle CL, Sapoznik T, Kornetsky C. The synergistic effects of combining cocaine and heroin ("speedball") using a progressive-ratio schedule of drug reinforcement. Pharmacol Biochem Behav 1998; 61:297-302. [PMID: 9768564 DOI: 10.1016/s0091-3057(98)00098-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The relative reinforcing value of cocaine/heroin combination ("speedball") was compared in the rat using a progressive-ratio (PR) reinforcement schedule. The initial training for all rats was a combined dose of 18 microg/kg/inj of heroin (H) plus 300 microg/kg/inj of cocaine (C). Break points for the training dose and individual component doses were determined for half and double the training dose. Of the three doses of each treatment, only C yielded the expected monotonic increase in break point as a function of dose. Also, break points for C (300 and 600 microg/kg/inj) was greater than for the combination of C and H (18 H/300 C and 36 H/600 C microg/kg/inj), suggesting a greater reward value for C alone. The doses for these three drug treatments that produced saline level break points were then determined. At these lower doses, significant break points were obtained with the H/C combination at which the respective doses of H or C had break points identical to those of saline. These lower dose results indicate that the combination is clearly synergistic and that the discrepancy with doses at the opposite end of the dose response curve suggest that the PR schedule is vulnerable to drug-induced motor effects.
Collapse
Affiliation(s)
- C L Duvauchelle
- Boston University School of Medicine, Department of Psychiatry, MA 02118-2394, USA
| | | | | |
Collapse
|
14
|
Abstract
This paper is the twentieth installment of our annual review of research concerning the opiate system. It summarizes papers published during 1997 that studied the behavioral effects of the opiate peptides and antagonists, excluding the purely analgesic effects, although stress-induced analgesia is included. The specific topics covered this year include stress; tolerance and dependence; eating and drinking; alcohol; gastrointestinal, renal, and hepatic function; mental illness and mood; learning, memory, and reward; cardiovascular responses; respiration and thermoregulation; seizures and other neurologic disorders; electrical-related activity; general activity and locomotion; sex, pregnancy, and development; immunologic responses; and other behaviors.
Collapse
Affiliation(s)
- G A Olson
- Department of Psychology, University of New Orleans, LA 70148, USA
| | | | | | | |
Collapse
|