1
|
Mishra B, Pathak D, Verma D, Gupta MK. Nanofibrous composite from chitosan-casein polyelectrolyte complex for rapid hemostasis in rat models in vivo. Int J Biol Macromol 2024; 269:131882. [PMID: 38677684 DOI: 10.1016/j.ijbiomac.2024.131882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/04/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Bleeding causes ∼5.8 million deaths globally; half of the patients die if rapid hemostasis is not achieved. Here, we report a chitosan-casein (CC)-based nanofibrous polyelectrolyte complex (PEC) that could clot blood within 10 s in the rat femoral artery model in vivo. The nanofiber formation by self-assembly was also optimized for process parameters (concentration, mixing ratio, pH, and ultrasonication). Results showed that increasing the concentration of chitosan from 10 % to 90 % in the formulation increased the productivity (r = 0.99) of PECs but led to increased blood clotting time (r = 0.90) due to an increase in zeta potential (r = 0.98), fiber diameter (r = 0.93), and decreased surface porosity (r = -0.99), absorption capacity (r = -0.99). The pH also influenced the zeta potential of PEC, with an optimized pH of 8.0 ± 0.1 yielding clear nanofibers. Sonication improved the segregation of nanofibers by promoting water removal. The optimized PECs containing chitosan and casein in the ratio of 30:70 (CC30) at a pH of 8.0 and dehydration under sonication could clot the blood within 9 ± 2 s in vitro and 9 ± 2 s in rat femoral artery puncture model. The CC30 formulation did not cause any irritation or corrosion on rat skin. Histopathology and immunohistochemistry of various organs showed that CC30 was biocompatible and non-immunogenic under in vivo conditions.
Collapse
Affiliation(s)
- Balaram Mishra
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Devendra Pathak
- Department of Veterinary Anatomy, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 140004, India
| | - Devendra Verma
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Odisha 769008, India; National Animal Resource Facility for Biomedical Research (NARFBR), Indian Council of Medical Research, Genome Valley, Telengana 500078, India.
| |
Collapse
|
2
|
Wu MY, Kuo YT, Kao IF, Yen SK. Porous Chitosan/Hydroxyapatite Composite Microspheres for Vancomycin Loading and Releasing. Pharmaceutics 2024; 16:730. [PMID: 38931852 PMCID: PMC11206644 DOI: 10.3390/pharmaceutics16060730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/20/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Porous chitosan/hydroxyapatite (Chi-HAp) composite microspheres were prepared in an aqueous solution containing chitosan, calcium nitrate, and ammonium dihydrogen phosphate by using a hydrothermal method at various temperatures. The investigation indicated that temperature significantly impacted the final product's appearance. Hydroxyapatite (HAp) coupled with dicalcium phosphate dihydrate (DCPD) flakes were obviously found at 65 and 70 °C, while the latter gradually disappeared at higher temperatures. Conversely, synthesis at 90 °C led to smaller particle sizes due to the broken chitosan chains. The microspheres synthesized at 75 °C were selected for further analysis, revealing porous structures with specific surface areas of 36.66 m2/g, pores ranging from 3 to 100 nm, and pore volumes of 0.58 cm3/g. Vancomycin (VCM), an antibiotic, was then absorbed on and released from the microspheres derived at 75 °C, with a drug entrapment efficiency of 20% and a release duration exceeding 20 days. The bacteriostatic activity of the VCM/composite microspheres against Staphylococcus aureus increased with the VCM concentration and immersion time, revealing a stable inhibition zone diameter of approximately 4.3 mm from 24 to 96 h, and this indicated the retained stability and efficacy of the VCM during the encapsulating process.
Collapse
Affiliation(s)
- Meng-Ying Wu
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan; (M.-Y.W.); (Y.-T.K.)
- Department of Orthopedics, National Defense Medical Center, Taipei 114, Taiwan
- Department of Orthopedics, Taichung Armed Forces General Hospital, Taichung 404, Taiwan
| | - Yi-Ting Kuo
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan; (M.-Y.W.); (Y.-T.K.)
| | - I-Fang Kao
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan; (M.-Y.W.); (Y.-T.K.)
| | - Shiow-Kang Yen
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan; (M.-Y.W.); (Y.-T.K.)
| |
Collapse
|
3
|
Peniche H, Razonado IA, Alcouffe P, Sudre G, Peniche C, Osorio-Madrazo A, David L. Wet-Spun Chitosan-Sodium Caseinate Fibers for Biomedicine: From Spinning Process to Physical Properties. Int J Mol Sci 2024; 25:1768. [PMID: 38339046 PMCID: PMC10855522 DOI: 10.3390/ijms25031768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
We designed and characterized chitosan-caseinate fibers processed through wet spinning for biomedical applications such as drug delivery from knitted medical devices. Sodium caseinate was either incorporated directly into the chitosan dope or allowed to diffuse into the chitosan hydrogel from a coagulation bath containing sodium caseinate and sodium hydroxide (NaOH). The latter route, where caseinate was incorporated in the neutralization bath, produced fibers with better mechanical properties for textile applications than those formed by the chitosan-caseinate mixed collodion route. The latter processing method consists of enriching a pre-formed chitosan hydrogel with caseinate, preserving the structure of the semicrystalline hydrogel without drastically affecting interactions involved in the chitosan self-assembly. Thus, dried fibers, after coagulation in a NaOH/sodium caseinate aqueous bath, exhibited preserved ultimate mechanical properties. The crystallinity ratio of chitosan was not significantly impacted by the presence of caseinate. However, when caseinate was incorporated into the chitosan dope, chitosan-caseinate fibers exhibited lower ultimate mechanical properties, possibly due to a lower entanglement density in the amorphous phase of the chitosan matrix. A standpoint is to optimize the chitosan-caseinate composition ratio and processing route to find a good compromise between the preservation of fiber mechanical properties and appropriate fiber composition for potential application in drug release.
Collapse
Affiliation(s)
- Hazel Peniche
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
- Biomaterials Center, University of Havana, Havana 10600, Cuba
| | - Ivy Ann Razonado
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
| | - Pierre Alcouffe
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
| | - Guillaume Sudre
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
| | - Carlos Peniche
- Faculty of Chemistry, University of Havana, Havana 10600, Cuba;
| | - Anayancy Osorio-Madrazo
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Jena Center for Soft Matter (JCSM), and Center for Energy and Environmental Chemistry Jena (CEEC), Friedrich Schiller University of Jena, 07743 Jena, Germany
- Laboratory of Organ Printing, University of Bayreuth, 95447 Bayreuth, Germany
| | - Laurent David
- Ingénierie des Matériaux Polymères (IMP), Universite Claude Bernard Lyon 1, INSA de Lyon, Universite J. Monnet, CNRS, UMR 5223, 69622 Villeurbanne CEDEX, France; (H.P.); (I.A.R.); (P.A.); (G.S.)
| |
Collapse
|
4
|
Wu MY, Huang SW, Kao IF, Yen SK. The Preparation and Characterization of Chitosan/Calcium Phosphate Composite Microspheres for Biomedical Applications. Polymers (Basel) 2024; 16:167. [PMID: 38256966 PMCID: PMC10820865 DOI: 10.3390/polym16020167] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
In this study, we successfully prepared porous composite microspheres composed of hydroxyapatite (HAp), di-calcium phosphate di-hydrated (DCPD), and chitosan through the hydrothermal method. The chitosan played a crucial role as a chelating agent to facilitate the growth of related calcium phosphates. The synthesized porous composite microspheres exhibit a specific surface area of 38.16 m2/g and a pore volume of 0.24 cm3/g, with the pore size ranging from 4 to 100 nm. Given the unique properties of chitosan and the exceptional porosity of these composite microspheres, they may serve as carriers for pharmaceuticals. After being annealed, the chitosan transforms into a condensed form and the DCPD transforms into Ca2P2O7 at 300 °C. Then, the Ca2P2O7 initially combines with HAp to transform into β tricalcium phosphate (β-TCP) at 500 °C where the chitosan is also completely combusted. Finally, the microspheres are composed of Ca2P2O7, β-TCP, and HAp, also making them suitable for applications such as injectable bone graft materials.
Collapse
Affiliation(s)
- Meng-Ying Wu
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan; (M.-Y.W.); (S.-W.H.)
- Department of Orthopedics, National Defense Medical Center, Taipei 114, Taiwan
- Department of Orthopedics, Taichung Armed Forces General Hospital, Taichung 404, Taiwan
| | - Shih-Wei Huang
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan; (M.-Y.W.); (S.-W.H.)
| | - I-Fang Kao
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan; (M.-Y.W.); (S.-W.H.)
| | - Shiow-Kang Yen
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan; (M.-Y.W.); (S.-W.H.)
| |
Collapse
|
5
|
Lukova P, Katsarov P. Contemporary Aspects of Designing Marine Polysaccharide Microparticles as Drug Carriers for Biomedical Application. Pharmaceutics 2023; 15:2126. [PMID: 37631340 PMCID: PMC10458623 DOI: 10.3390/pharmaceutics15082126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/05/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The main goal of modern pharmaceutical technology is to create new drug formulations that are safer and more effective. These formulations should allow targeted drug delivery, improved drug stability and bioavailability, fewer side effects, and reduced drug toxicity. One successful approach for achieving these objectives is using polymer microcarriers for drug delivery. They are effective for treating various diseases through different administration routes. When creating pharmaceutical systems, choosing the right drug carrier is crucial. Biomaterials have become increasingly popular over the past few decades due to their lack of toxicity, renewable sources, and affordability. Marine polysaccharides, in particular, have been widely used as substitutes for synthetic polymers in drug carrier applications. Their inherent properties, such as biodegradability and biocompatibility, make marine polysaccharide-based microcarriers a prospective platform for developing drug delivery systems. This review paper explores the principles of microparticle design using marine polysaccharides as drug carriers. By reviewing the current literature, the paper highlights the challenges of formulating polymer microparticles, and proposes various technological solutions. It also outlines future perspectives for developing marine polysaccharides as drug microcarriers.
Collapse
Affiliation(s)
- Paolina Lukova
- Department of Pharmacognosy and Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Plamen Katsarov
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute at Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
6
|
Khatibi SA, Ehsani A, Nemati M, Javadi A. Microencapsulation of
Zataria multiflora
Boiss. essential oil by complex coacervation using gelatin and gum arabic: Characterization, release profile, antimicrobial and antioxidant activities. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Seyed Amin Khatibi
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Ehsani
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Nutrition Research Center, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Mahboob Nemati
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Pharmaceutical and Food Control, Faculty of Pharmacy Tabriz University of Medical Sciences Tabriz Iran
| | - Afshin Javadi
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Food Hygiene, Tabriz Branch Islamic Azad University Tabriz Iran
| |
Collapse
|
7
|
Acuña-Avila PE, Cortes-Camargo S, Jiménez-Rosales A. Properties of micro and nano casein capsules used to protect the active components: A review. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021. [DOI: 10.1080/10942912.2021.1953069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Pedro Estanislao Acuña-Avila
- Departamento de Nanotecnología, Universidad Tecnológica De Zinacantepec, Santa María Del Monte Avenida Universidad Zinacantepec, Estado De México, México
| | - Stefani Cortes-Camargo
- Departamento de Nanotecnología, Universidad Tecnológica De Zinacantepec, Santa María Del Monte Avenida Universidad Zinacantepec, Estado De México, México
| | - Angélica Jiménez-Rosales
- Departamento de Nanotecnología, Universidad Tecnológica De Zinacantepec, Santa María Del Monte Avenida Universidad Zinacantepec, Estado De México, México
| |
Collapse
|
8
|
Tran PHL, Tran TTD. The Use of Natural Materials in Film Coating for Controlled Oral Drug Release. Curr Med Chem 2021; 28:1829-1840. [PMID: 32164506 DOI: 10.2174/0929867327666200312113547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/30/2020] [Accepted: 02/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although synthetic materials have been used in film coating processes for drug delivery for many years, substantial studies on natural materials have also been conducted because of their biodegradable and unique properties. METHODS Because of the ability to form and modify films for controlled oral drug delivery, increasing attention has been shown to these materials in the design of film coating systems in recent research. RESULTS This review aims to provide an overview of natural materials focusing on film coating for oral delivery, specifically in terms of their classification and their combinations in film coating formulations for adjusting the desired properties for controlled drug delivery. CONCLUSIONS Discussing natural materials and their potential applications in film coating would benefit the optimization of processes and strategies for future utilization.
Collapse
Affiliation(s)
| | - Thao Truong-Dinh Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
9
|
Chitosan grafted/cross-linked with biodegradable polymers: A review. Int J Biol Macromol 2021; 178:325-343. [PMID: 33652051 DOI: 10.1016/j.ijbiomac.2021.02.200] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/29/2022]
Abstract
Public perception of polymers has been drastically changed with the improved plastic management at the end of their life. However, it is widely recognised the need of developing biodegradable polymers, as an alternative to traditional petrochemical polymers. Chitosan (CH), a biodegradable biopolymer with excellent physiological and structural properties, together with its immunostimulatory and antibacterial activity, is a good candidate to replace other polymers, mainly in biomedical applications. However, CH has also several drawbacks, which can be solved by chemical modifications to improve some of its characteristics such as solubility, biological activity, and mechanical properties. Many chemical modifications have been studied in the last decade to improve the properties of CH. This review focussed on a critical analysis of the state of the art of chemical modifications by cross-linking and graft polymerization, between CH or CH derivatives and other biodegradable polymers (polysaccharides or proteins, obtained from microorganisms, synthetized from biomonomers, or from petrochemical products). Both techniques offer the option of including a wide variety of functional groups into the CH chain. Thus, enhanced and new properties can be obtained in accordance with the requirements for different applications, such as the release of drugs, the improvement of antimicrobial properties of fabrics, the removal of dyes, or as scaffolds to develop bone tissues.
Collapse
|
10
|
Yousry C, Amin MM, Elshafeey AH, El Gazayerly ON. Ultrahigh verapamil-loaded controlled release polymeric beads using superamphiphobic substrate: D-optimal statistical design, in vitro and in vivo performance. Drug Deliv 2018; 25:1448-1460. [PMID: 29902922 PMCID: PMC7011826 DOI: 10.1080/10717544.2018.1482974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/23/2018] [Accepted: 05/28/2018] [Indexed: 11/07/2022] Open
Abstract
Controlled-release multiparticulate systems of hydrophilic drugs usually suffer from poor encapsulation and rapid-release rate. In the present study, ultra-high loaded controlled release polymeric beads containing verapamil hydrochloride (VP) as hydrophilic model drug were efficiently prepared using superamphiphobic substrates aiming to improve patient compliance by reducing dosing frequency. Superamphiphobic substrates were fabricated using clean aluminum sheets etched with ammonia solution and were treated with 1.5% (w/v) perfluorodecyltriethoxysilane (PFDTS) alcoholic solution. The effect of the main polymer type (lactide/glycolide (PLGA) 5004A, PLGA 5010, and polycaprolactone (PCL)), copolymer (Eudragit RS100) content together with the effect of drug load on encapsulation efficiency (EE%) and in vitro drug release was statistically studied and optimized via D-optimal statistical design. In vivo pharmacokinetic study was carried out to compare the optimized system relative to the market product (Isoptin®). Results revealed that superamphiphobic substrates were successfully prepared showing a rough micro-sized hierarchical structured surface upon observing with scanning electron microscope and were confirmed by high contact angles of 151.60 ± 2.42 and 142.80°±05.23° for water and olive oil, respectively. The fabricated VP-loaded beads showed extremely high encapsulation efficiency exceeding 92.31% w/w. All the prepared systems exhibited a controlled release behavior with Q12 h ranging between 5.46 and 95.90%w/w. The optimized VP-loaded system composed of 150 mg (1.5% w/v) PCL without Eudragit RS100 together with 160 mg VP showed 2.7-folds mean residence time compared to the market product allowing once daily administration instead of three times per day.
Collapse
Affiliation(s)
- Carol Yousry
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Maha M. Amin
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed H. Elshafeey
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Omaima N. El Gazayerly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Huang Z, Chen W. Preparation and Characterization of Hot Melt Copolyester (PBTI) Ultrafine Particles and Their Effect on the Anti-Pilling Performance of Polyester/Cotton Fabrics. Polymers (Basel) 2018; 10:polym10101163. [PMID: 30961088 PMCID: PMC6403552 DOI: 10.3390/polym10101163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/04/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022] Open
Abstract
An ultrafine particle aqueous-phase system of hot melt copolyester was prepared by an inverse emulsion–precipitation method. Laser particle size analysis showed that the diameter of the obtained copolyester particles was mostly distributed between 20 and 100 nm. The structure of the copolymer was characterized by FT–IR and 1H-NMR, and the melting point of the particles was determined to be 125 °C, as measured by differential scanning calorimetry (DSC). Intrinsic viscosity analysis showed that the particle intrinsic viscosity decreased by 6.73% compared with that of the original copolyester. Polyester/cotton woven fabrics were padded with the ultrafine copolyester particles at different concentrations, and the corresponding SEM showed that the fibers were well bonded to each other. The pilling test results showed that these ultrafine copolyester granules improved the pilling performance of the polyester/cotton woven fabrics to a grade of 4.5–5.
Collapse
Affiliation(s)
- Zhichao Huang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Wenxing Chen
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
12
|
Misra S, Chopra K, Saikia UN, Sinha VR, Sehgal R, Modi M, Medhi B. Effect of mesenchymal stem cells and galantamine nanoparticles in rat model of Alzheimer's disease. Regen Med 2016; 11:629-46. [PMID: 27582416 DOI: 10.2217/rme-2016-0032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
AIM The present study investigated the efficacy of bone marrow-derived mesenchymal stem cells (BM-MSCs) in combination with galantamine hydrobromide-loaded solid lipid nanoparticles (GH-SLNs) in intracerebroventricular (ICV)-isoproterenol-induced rat model of Alzheimer's disease. MATERIALS & METHODS BM-MSCs were harvested by dissecting femur and tibia of 8-10-week-old Wistar rats. 1 × 10(6) cells were administered intravenously once in ICV-isoproterenol-induced rats followed by GH-SLNs (5 mg/kg) for 3 weeks. RESULTS & CONCLUSION ICV-isoproterenol resulted in significant memory deficit. The results demonstrated rapid regain of memory in isoproterenol-induced amnesic rats, following single intravenous administration of BM-MSCs and oral administration of GH-SLNs for 21 days. The combination of BM-MSCs and GH-SLNs produced a more pronounced protective effect, therefore, could be explored for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Shubham Misra
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Kanwaljit Chopra
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Uma Nahar Saikia
- Department of Histopathology, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Vivek Ranjan Sinha
- Pharmaceutics Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Manish Modi
- Department of Neurology, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education & Research, Chandigarh 160012, India
| |
Collapse
|
13
|
Chitosan based nanoparticles functionalized with peptidomimetic derivatives for oral drug delivery. N Biotechnol 2016; 33:23-31. [DOI: 10.1016/j.nbt.2015.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/27/2015] [Accepted: 07/28/2015] [Indexed: 01/08/2023]
|
14
|
Surface Deposition and Coalescence and Coacervation Phase Separation Methods: In Vitro Study and Compatibility Analysis of Eudragit RS30D, Eudragit RL30D, and Carbopol-PLA Loaded Metronidazole Microspheres. JOURNAL OF PHARMACEUTICS 2015; 2015:254930. [PMID: 26649228 PMCID: PMC4663742 DOI: 10.1155/2015/254930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 10/14/2015] [Accepted: 10/25/2015] [Indexed: 11/17/2022]
Abstract
Metronidazole (MTZ) has extremely broad spectrum of protozoal and antimicrobial activity and is clinically effective in trichomoniasis, amoebic colitis, and giardiasis. This study was performed to formulate and evaluate the MTZ loaded microspheres by coacervation phase separation and surface deposition and coalescence methods using different polymers like Gelatin, Carbopol 934P, Polylactic Acid (PLA), Eudragit RS30D, and Eudragit RL30D to acquire sustained release of drug. In vitro dissolution studies were carried out in phosphate buffer (pH 7.4) for 8 hours according to USP paddle method. The maximum and minimum release of MTZ from microspheres observed were 84.81% and 76.6% for coacervation and 95.07% and 80.07% for surface deposition method, respectively, after 8 hours. Release kinetics was studied in different mathematical release models. The SEM and FTIR studies confirm good spheres and smooth surface as well as interaction between drug and polymers. Though release kinetic is uncertain, the best fit was obtained with the Korsmeyer kinetic model with release exponent (n) lying between 0.45 and 0.89. In vitro studies showed that MTZ microspheres with different polymers might be a good candidate as sustained drug delivery system to treat bacterial infections.
Collapse
|
15
|
Santos MG, Bozza FT, Thomazini M, Favaro-Trindade CS. Microencapsulation of xylitol by double emulsion followed by complex coacervation. Food Chem 2015; 171:32-9. [DOI: 10.1016/j.foodchem.2014.08.093] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/19/2014] [Accepted: 08/21/2014] [Indexed: 10/24/2022]
|
16
|
Harsha SN, Aldhubiab BE, Nair AB, Alhaider IA, Attimarad M, Venugopala KN, Srinivasan S, Gangadhar N, Asif AH. Nanoparticle formulation by Büchi B-90 Nano Spray Dryer for oral mucoadhesion. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:273-82. [PMID: 25670882 PMCID: PMC4315564 DOI: 10.2147/dddt.s66654] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Diabetes is considered one of the main threats to global public health in this era. It is increasing rapidly in every part of the world; the prevalence of the disease will grow to the point where 366 million people will be affected by 2030. The prevalence of diabetes mellitus (DM) in the Saudi population is high, and the majority of patients suffer from type 2 DM. Marketed oral antidiabetic drugs have indicated poor tolerability during chronic treatments, and this contributes to the moderately large proportion of type 2 DM patients that remain inadequately managed. Vildagliptin nanospheres were prepared with aminated gelatin using a spray-drying method; narrow particle-size distribution was seen at 445 nm. The angle of repose was found to be θ <33.5°. The nanospheres appeared to be spherical with a smooth surface. The drug content and percentage yield of the nanospheres were found to be 76.2%±4.6% and 83%±2%, respectively. The nanosphere-swell profile was found to be 165%±7%. The pure drug was 100% dissolved in 30 minutes, and the nanosphere formulation took 12 hours to dissolve (97.5%±2%), and followed a Korsmeyer-Peppas kinetic model with an R (2) of 0.9838. The wash-off test of nanospheres found that they exhibited an excellent mucoadhesive property at 86.7% for 8 hours. The stability-study data showed no changes in the physicochemical properties of the nanospheres, and suggested that the nanospheres be stored below room temperature. The amount of vildagliptin retained was 1.6% within 3 hours, and in comparison with the gelatin vildagliptin nanoparticles formulation, the percentage that was retained was much higher (98.2% in 12 hours).
Collapse
Affiliation(s)
- Sree N Harsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Bander E Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ibrahim Abdulrahman Alhaider
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mahesh Attimarad
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Katharigatta N Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Nagesh Gangadhar
- Department of Pharmaceutics, East Point College of Pharmacy, Bangalore, India
| | - Afzal Haq Asif
- Department of Pharmacy Practice, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
17
|
Zhou M, Babgi B, Gupta S, Cavalieri F, Alghamdi Y, Aksu M, Ashokkumar M. Ultrasonic fabrication of TiO2/chitosan hybrid nanoporous microspheres with antimicrobial properties. RSC Adv 2015. [DOI: 10.1039/c4ra17109h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report a sonochemical method for the fabrication of stable TiO2–chitosan hybrid microspheres possessing nanoporous structure and antimicrobial properties.
Collapse
Affiliation(s)
- Meifang Zhou
- School of Chemistry
- The University of Melbourne
- Melbourne
- Australia
| | - Bandar Babgi
- Department of Chemistry
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Shweta Gupta
- School of Chemistry
- The University of Melbourne
- Melbourne
- Australia
| | - Francesca Cavalieri
- School of Chemistry
- The University of Melbourne
- Melbourne
- Australia
- Dipartimento di Scienze e Tecnologie Chimiche
| | - Yousef Alghamdi
- Department of Chemistry
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | - Mecit Aksu
- Department of Chemistry
- Faculty of Science
- King Abdulaziz University
- Jeddah 21589
- Saudi Arabia
| | | |
Collapse
|
18
|
Santos MG, Carpinteiro DA, Thomazini M, Rocha-Selmi GA, da Cruz AG, Rodrigues CE, Favaro-Trindade CS. Coencapsulation of xylitol and menthol by double emulsion followed by complex coacervation and microcapsule application in chewing gum. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.10.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Souza JM, Caldas AL, Tohidi SD, Molina J, Souto AP, Fangueiro R, Zille A. Properties and controlled release of chitosan microencapsulated limonene oil. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2014. [DOI: 10.1016/j.bjp.2014.11.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Haider M, Mohamed M, Ali M. Formulation and In vitro/In vivo Evaluation of Buccoadhesive
Discs for Controlled Release of Calcium Channel Antagonist. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/ajdd.2014.210.231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Chen Y, Liu J, Xia C, Zhao C, Ren Z, Zhang W. Immobilization of lipase on porous monodisperse chitosan microspheres. Biotechnol Appl Biochem 2014; 62:101-6. [DOI: 10.1002/bab.1242] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 05/07/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Yang Chen
- Beijing Key Laboratory of Membrane Science and Technology; Beijing University of Chemical Technology; Beijing People's Republic of China
| | - Junteng Liu
- Beijing Key Laboratory of Membrane Science and Technology; Beijing University of Chemical Technology; Beijing People's Republic of China
| | - Chunjie Xia
- Beijing Key Laboratory of Membrane Science and Technology; Beijing University of Chemical Technology; Beijing People's Republic of China
| | - Chenxi Zhao
- Beijing Key Laboratory of Membrane Science and Technology; Beijing University of Chemical Technology; Beijing People's Republic of China
| | - Zhongqi Ren
- Beijing Key Laboratory of Membrane Science and Technology; Beijing University of Chemical Technology; Beijing People's Republic of China
| | - Weidong Zhang
- Beijing Key Laboratory of Membrane Science and Technology; Beijing University of Chemical Technology; Beijing People's Republic of China
| |
Collapse
|
22
|
Amarnath K, Dhanabal J, Agarwal I, Seshadry S. Cytotoxicity induction by ethanolic extract of Acalypha indica loaded casein-chitosan microparticles in human prostate cancer cell line in vitro. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.bionut.2013.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Holowka EP, Bhatia SK. Controlled-Release Systems. Drug Deliv 2014. [DOI: 10.1007/978-1-4939-1998-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
24
|
Cota-Arriola O, Cortez-Rocha MO, Burgos-Hernández A, Ezquerra-Brauer JM, Plascencia-Jatomea M. Controlled release matrices and micro/nanoparticles of chitosan with antimicrobial potential: development of new strategies for microbial control in agriculture. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:1525-36. [PMID: 23512598 DOI: 10.1002/jsfa.6060] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 10/05/2012] [Accepted: 01/19/2013] [Indexed: 05/14/2023]
Abstract
The control of micro-organisms responsible for pre- and postharvest diseases of agricultural products, mainly viruses and fungi, is a problem that remains unresolved, together with the environmental impact of the excessive use of chemicals to tackle this problem. Current efforts are focused on the search for efficient alternatives for microbial control that will not result in damage to the environment or an imbalance in the existing biota. One alternative is the use of natural antimicrobial compounds such as chitosan, a linear cationic biopolymer, which is biodegradable, biocompatible and non-toxic, has filmogenic properties and is capable of forming matrices for the transport of active substances. The study of chitosan has attracted great interest owing to its ability to form complexes or matrices for the controlled release of active compounds such as micro- and nanoparticles, which, together with the biological properties of chitosan, has allowed a major breakthrough in the pharmaceutical and biomedical industries. Another important field of study is the development of chitosan-based matrices for the controlled release of active compounds in areas such as agriculture and food for the control of viruses, bacteria and fungi, which is one of the least exploited areas and holds much promise for future research.
Collapse
Affiliation(s)
- Octavio Cota-Arriola
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Col. Centro, Hermosillo, Sonora, CP 83000, Mexico
| | | | | | | | | |
Collapse
|
25
|
Nakagawa K, Kagemoto M. Characterization of casein-based nanoparticles formed upon freezing by in situ SAXS measurement. Colloids Surf B Biointerfaces 2013; 103:366-74. [DOI: 10.1016/j.colsurfb.2012.10.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/12/2012] [Accepted: 10/30/2012] [Indexed: 10/27/2022]
|
26
|
Ismail MF, Elmeshad AN, Salem NAH. Potential therapeutic effect of nanobased formulation of rivastigmine on rat model of Alzheimer's disease. Int J Nanomedicine 2013; 8:393-406. [PMID: 23378761 PMCID: PMC3558309 DOI: 10.2147/ijn.s39232] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Background To sustain the effect of rivastigmine, a hydrophilic cholinesterase inhibitor, nanobased formulations were prepared. The efficacy of the prepared rivastigmine liposomes (RLs) in comparison to rivastigmine solution (RS) was assessed in an aluminium chloride (AlCl3)-induced Alzheimer’s model. Methods Liposomes were prepared by lipid hydration (F1) and heating (F2) methods. Rats were treated with either RS or RLs (1 mg/kg/day) concomitantly with AlCl3 (50 mg/kg/day). Results The study showed that the F1 method produced smaller liposomes (67.51 ± 14.2 nm) than F2 (528.7 ± 15.5 nm), but both entrapped the same amount of the drug (92.1% ± 1.4%). After 6 hours, 74.2% ± 1.5% and 60.8% ± 2.3% of rivastigmine were released from F1 and F2, respectively. Both RLs and RS improved the deterioration of spatial memory induced by AlCl3, with RLs having a superior effect. Further biochemical measurements proved that RS and RLs were able to lower plasma C-reactive protein, homocysteine and asymmetric dimethy-larginine levels. RS significantly attenuated acetylcholinesterase (AChE) activity, whereas Na+/K+-adenosine triphosphatase (ATPase) activity was enhanced compared to the AlCl3-treated animals; however, RLs succeeded in normalization of AChE and Na+/K+ ATPase activities. Gene-expression profile showed that cotreatment with RS to AlCl3-treated rats succeeded in exerting significant decreases in BACE1, AChE, and IL1B gene expression. Normalization of the expression of the aforementioned genes was achieved by coadministration of RLs to AlCl3-treated rats. The profound therapeutic effect of RLs over RS was evidenced by nearly preventing amyloid plaque formation, as shown in the histopathological examination of rat brain. Conclusion RLs could be a potential drug-delivery system for ameliorating Alzheimer’s disease.
Collapse
|
27
|
Harsha S, Attimard M, Khan TA, Nair AB, Aldhubiab BE, Sangi S, Shariff A. Design and formulation of mucoadhesive microspheres of sitagliptin. J Microencapsul 2012. [DOI: 10.3109/02652048.2012.720722] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
28
|
Xie Y, Liu Y, Wang Y, Wang S, Jiang T. Chitosan matrix with three dimensionally ordered macroporous structure for nimodipine release. Carbohydr Polym 2012; 90:1648-55. [PMID: 22944429 DOI: 10.1016/j.carbpol.2012.07.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 07/12/2012] [Accepted: 07/18/2012] [Indexed: 11/26/2022]
Abstract
Three dimensionally ordered macroporous (3DOM) chitosan (3D-CS) matrix with interconnected pores in the nanometer range was developed as a drug carrier for the first time. 3D-CS was prepared using a template-assisted assembly and characterized by SEM, TGA, N(2) adsorption and FT-IR. As a model drug, nimodipine (NMDP) was incorporated into the pores of 3D-CS matrix. The solid state properties of NMDP-loaded samples were characterized by SEM, XRD, DSC and FT-IR. Dissolution studies showed that release behavior of the drug was markedly affected by the particle size of the matrix. With a relatively small matrix particle size, formulations of NMDP-3D-CS-0.5 and NMDP-3D-CS-1 exhibited rapid release patterns. However, on increasing the amount of carrier, release rate of the drug decreased. The pH-dependent slow-release characteristic of 3D-CS matrix delivery system was demonstrated by investigating the release behavior of NMDP at different pH values.
Collapse
Affiliation(s)
- Yuling Xie
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | | | | | | | | |
Collapse
|
29
|
Elzoghby AO, Abo El-Fotoh WS, Elgindy NA. Casein-based formulations as promising controlled release drug delivery systems. J Control Release 2011; 153:206-16. [DOI: 10.1016/j.jconrel.2011.02.010] [Citation(s) in RCA: 334] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/09/2011] [Indexed: 01/06/2023]
|
30
|
Shailesh T, Vipul P, Girishbhai J, Manish C. Preparation and in vitro Evaluation of Ethylcellulose Coated Egg Albumin Microspheres of Diltiazem Hydrochloride. J Young Pharm 2011; 2:27-34. [PMID: 21331187 PMCID: PMC3035880 DOI: 10.4103/0975-1483.62209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The aim of the present investigation was to develop sustained release ethylcellulose-coated egg albumin microspheres of diltiazem hydrochloride (DH) to improve patient compliance. The microspheres were prepared by the w/o emulsion thermal cross-linking method using different proportion of the polymer to drug ratio (1.0:1.0, 1.0:1.5 and 1.0:2.0). A 32 full factorial design was employed to optimize two independent variables, polymer to drug ratio (X1) and surfactant concentration (X2) on dependent variables, namely % drug loading, % drug release in 60 min (Y60) and the time required for 80 % drug release (t80) were selected as dependable variable. Optimized formulation was compared to its sustained release tablet available in market. The polymer to drug ratio was optimized to 1:1 at which a high drug entrapment efficiency 79.20% ± 0.7% and the geometric mean diameter 47.30 ± 1.5 mm were found. All batches showed a biphasic release pattern; initial burst release effect (55% DH in 1 h) and then were released completely within 6 h. In situ coating of optimized egg albumin DH microspheres using 7.5% ethylcellulose significantly reduced the burst effect and provided a slow release of DH for 8-10 h. Finally, it was concluded that ethylcellulose-coated egg albumin DH microspheres is suitable for oral SR devices in the treatment of angina pectoris, cardiac arrhythmias, and hypertension due to their size and release profile.
Collapse
Affiliation(s)
- Tp Shailesh
- Department of Pharmaceutics and Pharmaceutical Technology, Shri Sarvajanik Pharmacy College, Mehsana - 384 001, Gujarat, India
| | | | | | | |
Collapse
|
31
|
Dong Z, Ma Y, Hayat K, Jia C, Xia S, Zhang X. Morphology and release profile of microcapsules encapsulating peppermint oil by complex coacervation. J FOOD ENG 2011. [DOI: 10.1016/j.jfoodeng.2011.01.011] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Poovi G, Dhana leks U, Narayanan N, Neelakanta P. Preparation and Characterization of Repaglinide Loaded Chitosan Polymeric Nanoparticles. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/rjnn.2011.12.24] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Ko JA, Park HJ, Park YS, Hwang SJ, Park JB. Chitosan microparticle preparation for controlled drug release by response surface methodology. J Microencapsul 2010. [DOI: 10.3109/02652040309178089] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Xie S, Pan B, Wang M, Zhu L, Wang F, Dong Z, Wang X, Zhou W. Formulation, characterization and pharmacokinetics of praziquantel-loaded hydrogenated castor oil solid lipid nanoparticles. Nanomedicine (Lond) 2010; 5:693-701. [PMID: 20662641 DOI: 10.2217/nnm.10.42] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The purpose of this study was to formulate praziquantel (PZQ)-loaded hydrogenated castor oil (HCO) solid lipid nanoparticles (SLN) to enhance the bioavailability and prolong the systemic circulation of the drug. Materials & methods: PZQ was encapsulated into HCO nanoparticles by a hot homogenization and ultrasonication method. The physicochemical characteristics of SLN were investigated by optical microscope, scanning electron microscopy and photon correlation spectroscopy. Pharmacokinetics were studied after oral, subcutaneous and intramuscular administration in mice. Results: The diameter, polydispersivity index, ζ potential, encapsulation efficiency and loading capacity of the nanoparticles were 344.0 ± 15.1 nm, 0.31 ± 0.08, -16.7 ± 0.5 mV, 62.17 ± 6.53% and 12.43 ± 1.31%, respectively. In vitro release of PZQ-loaded HCO-SLN exhibited an initial burst release followed by a sustained release. SLN increased the bioavailability of PZQ by 14.9-, 16.1- and 2.6-fold, and extended the mean residence time of the drug from 7.6, 6.6 and 8.2 to 95.9, 151.6 and 48.2 h after oral, subcutaneous and intramuscular administration, respectively. Conclusion: The PZQ-loaded HCO-SLN could be a promising formulation to enhance the pharmacological activity of PZQ.
Collapse
Affiliation(s)
- Shuyu Xie
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan Road West, Beijing 100193, PR China
| | - Baoliang Pan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan Road West, Beijing 100193, PR China
| | - Ming Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan Road West, Beijing 100193, PR China
| | - Luyan Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan Road West, Beijing 100193, PR China
| | - Fenghua Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan Road West, Beijing 100193, PR China
| | - Zhao Dong
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan Road West, Beijing 100193, PR China
| | - Xiaofang Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, 2 Yuanmingyuan Road West, Beijing 100193, PR China
| | | |
Collapse
|
35
|
Peptu C, Buhus G, Popa M, Perichaud A, Costin D. Double Cross-linked Chitosan—Gelatin Particulate Systems for Ophthalmic Applications. J BIOACT COMPAT POL 2009. [DOI: 10.1177/0883911509350262] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gelatin/chitosan particles suitable for application in ocular drug administration were prepared by a two-step cross-linking process performed in an emulsion-phase separation system. The particles were characterized by scanning electron microscopy and laser diffractometry, and the diameters were 0.202—4.596 µm. The microparticles pH-dependent behavior was monitored by their mean diameter changes in aqueous environment. Adrenalin was drug used to study loading and release characteristics. The prepared particles were nontoxic, with the DL50 values of 6.9—8.19 g/kg body mass. The in vivo biocompatibility tests consisted of subcutaneous administration of a microparticle suspension in physiological serum followed by morpho histological analysis of the implantation site. The in vivo adrenalin ocular delivery was tested on both animals and a voluntary human patient to determine the adrenalin action and by tears. The particles showed good adherent properties without irritation to the patient; adrenalin was released cleared the ocular congestion.
Collapse
Affiliation(s)
- C.A. Peptu
- "Gh. Asachi" Technical University of Iasi, Department of Natural and Synthetic Polymers, D.Mangeron, 71A, 700050, Iasi, Romania
| | - G. Buhus
- "Gh. Asachi" Technical University of Iasi, Department of Natural and Synthetic Polymers, D.Mangeron, 71A, 700050, Iasi, Romania
| | - Marcel Popa
- "Gh. Asachi" Technical University of Iasi, Department of Natural and Synthetic Polymers, D.Mangeron, 71A, 700050, Iasi, Romania, ,
| | - A. Perichaud
- University of Provence, Department of Macromolecular Chemistry Pl. Victor Hugo, 13331, Marseille, France
| | - D. Costin
- The University of Medicine and Pharmacy "Gr.T.Popa," University Street, no. 16, 700115, Iasi, Romania
| |
Collapse
|
36
|
Nagda C, Chotai N, Patel S, Nagda D, Patel U, Soni T. Chitosan microspheres of aceclofenac: In vitro and in vivo evaluation. Pharm Dev Technol 2009; 15:442-51. [DOI: 10.3109/10837450903286503] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Shah S, Pal A, Kaushik VK, Devi S. Preparation and characterization of venlafaxine hydrochloride-loaded chitosan nanoparticles andin vitrorelease of drug. J Appl Polym Sci 2009. [DOI: 10.1002/app.29807] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
38
|
Andreani L, Cercená R, Ramos BG, Soldi V. Development and characterization of wheat gluten microspheres for use in a controlled release system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2009. [DOI: 10.1016/j.msec.2008.09.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
KONG X. PREPARATION OF MICROCAPSULES WITH ENCAPSULATED DODECANOL BY COMPLEX COACERVATION OF POLY[2-(METHACRYLOYLOXY)-ETHYLTRIMETHYL AMMONIUM CHLORIDE] AND ACACIA. ACTA POLYM SIN 2009. [DOI: 10.3724/sp.j.1105.2008.00797] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Drug-loaded casein beads: influence of different metal-types as cross-linkers and oleic acid as a plasticizer on some properties of the beads. J Drug Deliv Sci Technol 2009. [DOI: 10.1016/s1773-2247(09)50020-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Significant delivery of tacrine into the brain using magnetic chitosan microparticles for treating Alzheimer's disease. J Neurosci Methods 2008; 177:427-33. [PMID: 19041670 DOI: 10.1016/j.jneumeth.2008.10.036] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/25/2008] [Accepted: 10/31/2008] [Indexed: 11/20/2022]
Abstract
Alzheimer's disease (AD) is a progressive degenerative disorder of the brain characterized by a slow, progressive decline in cognitive function and behavior. As the disease advances, persons have a tough time with daily tasks like using the phone, cooking, handling money or driving the car. AD affects 15 million people worldwide and it has been estimated that AD affects 4.5 million Americans. Tacrine is a reversible cholinesterase inhibitor used for treating mild to moderate AD. In the present study, an attempt was made to target the anti-Alzheimer's drug tacrine in the brain by using magnetic chitosan microparticles. The magnetic chitosan microparticles were prepared by emulsion cross-linking. The formulated microparticles were characterized for process yield, drug loading capacity, particle size, in vitro release, release kinetics and magnetite content. The particle size was analyzed by scanning electron microscope. The magnetite content of the microparticles was determined by atomic absorption spectroscopy. For animal testing, the microparticles were injected intravenously after keeping a suitable magnet at the target region. The concentrations of tacrine at the target and non-target organs were analyzed by HPLC. The magnetic chitosan microparticles significantly increased the concentration of tacrine in the brain in comparison with the free drug.
Collapse
|
42
|
Şengel-Türk CT, HasÇİÇek C, Gönül N. Microsphere-based once-daily modified release matrix tablets for oral administration in angina pectoris. J Microencapsul 2008; 25:257-66. [DOI: 10.1080/02652040801967228] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Sengel CT, Hasçiçek C, Gönül N. Development andin-vitroevaluation of modified release tablets including ethylcellulose microspheres loaded with diltiazem hydrochloride. J Microencapsul 2008; 23:135-52. [PMID: 16754371 DOI: 10.1080/02652040500286474] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In this study, development of modified release tablet formulations containing diltiazem hydrochloride-loaded microspheres to be taken once rather than two or three times a day was attempted. For this purpose, ethylcellulose microspheres were prepared by emulsion-solvent evaporation technique. The influence of emulsifier type and drug/polymer ratio on production yield, encapsulation efficiency, particle size, surface morphology and in-vitro release characteristics of the microspheres was evaluated. Suitable microspheres were selected and tabletted using different tabletting agents, Ludipress, Cellactose80, Flow-Lac100 and excipients Compritol888 ATO, KollidonSR. Tablets were evaluated from the perspective of physical and in-vitro drug release characteristics. It was seen that type and ratio of the excipients played an important role in the tabletting of the microspheres. As a result, two tablet formulations containing 180 mg diltiazem hydrochloride and using either Compritol888 ATO or KollidonSR were designed successfully and maintained drug release for 24 h with zero order and Higuchi kinetics, respectively.
Collapse
Affiliation(s)
- Ceyda T Sengel
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ankara, Tandogan, Ankara, Turkey
| | | | | |
Collapse
|
44
|
Cara B, Moyano FJ, Gander B, Yúfera M. Development of a novel casein-protamine based microparticles for early feeding of fish larvae:In vitroevaluation. J Microencapsul 2008; 24:505-14. [PMID: 17654171 DOI: 10.1080/02652040701408877] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The objective of this study was to develop novel type of protein walled microparticles suitable for using in early feeding of fish larvae. METHODS The microparticles were made of casein and protamine through complex coacervation and did not require further cross-linking or use of environmentally problematic reagents. The methodology was oriented to generate microparticles with an appropriate size range for easy recognition and ingestion by fish larvae (50-200 microm), adequate floating properties in saline, sufficient stability in terms of protein leakage and appropriate digestibility by the gut enzymes of fish larvae. RESULTS Desired particle size and stability against protein leakages over 8 h were successfully achieved by optimizing the coacervation process conditions. The floating properties under static conditions were considered appropriate as a main particle fraction remained in suspension during at least 10 min. Very importantly, an enzyme extract from larval gut readily digested the particles. The digestibility of the casein-protamine particles was similar to that measured for Artemia nauplii and for two previously developed casein-based microparticles produced by interfacial polymerization and ionic gelation; the latter microparticle type had previously achieved good results of digestibility in early feeding of marine fish larvae. CONCLUSION The in vitro evaluation of the newly developed casein-protamine microparticles revealed promising characteristics as artificial larval feed. Thus, these particles merit further development with respect to entrapping nutrients and testing them in larval cultures for their nutritional value.
Collapse
Affiliation(s)
- Beatriz Cara
- Departamento de Biología Aplicada, EPS Universidad de Almería, Almería, Spain
| | | | | | | |
Collapse
|
45
|
Characteristics and degradation of chitosan/cellulose acetate microspheres with different model drugs. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s11706-008-0063-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Zhou HY, Chen XG, Zhang WF. In vitro and in vivo evaluation of mucoadhensiveness of chitosan/cellulose acetate multimicrospheres. J Biomed Mater Res A 2008; 83:1146-1153. [PMID: 17595024 DOI: 10.1002/jbm.a.31400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chitosan/cellulose acetate multimicrospheres (CCAM) with or without ranitidine (RT) were prepared by the method of W/O/W emulsion with no toxic reagents and had the size interval of 200-280 microm. The angles of repose were only a little more than 30 degrees and the maximum angles of one-plane-critical-stability (OPCS phi) were about 20 degrees . The CCAM had good suspension ability for the tapped density of CCAM was less than 0.127g/mL. The pH value affected the swelling ability of CCAM and the relative humidity had little effect on the characteristics of CCAM when it was not more than 75%. The CCAM system had good effect on the controlled release of RT in vitro and the release rate was almost 60% during 48 h. Furthermore the release of RT was not affected by pH value of release medium. The mucoadhesive tests showed that CCAM could retain in gastrointestinal tract for an extended period of time. There were 53.7% of CCAM remained in stomach after administered for 2(1/2) h and 98.9% of CCAM remained in stomach and small intestine after administered for 3(1/2) h. These results suggest that CCAM is a useful dosage form targeting the gastric mucosa or prolonging gastric residence time as a multiple-unit mucoadhesive system.
Collapse
Affiliation(s)
- Hui Yun Zhou
- College of Marine Life Science, Ocean University of China, Qingdao, People's Republic of China 266003
| | - Xi Guang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, People's Republic of China 266003
| | - Wei Fen Zhang
- College of Marine Life Science, Ocean University of China, Qingdao, People's Republic of China 266003
| |
Collapse
|
47
|
Wilson B, Samanta MK, Santhi K, Kumar KPS, Paramakrishnan N, Suresh B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer's disease. Brain Res 2008; 1200:159-68. [DOI: 10.1016/j.brainres.2008.01.039] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Revised: 12/06/2007] [Accepted: 01/11/2008] [Indexed: 10/22/2022]
|
48
|
Interference of chitosan in glucose analysis by high-performance liquid chromatography with evaporative light scattering detection. Anal Bioanal Chem 2008; 391:1183-8. [DOI: 10.1007/s00216-008-1832-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 11/27/2007] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
|
49
|
Liu H, Chen B, Mao Z, Gao C. Chitosan nanoparticles for loading of toothpaste actives and adhesion on tooth analogs. J Appl Polym Sci 2007. [DOI: 10.1002/app.27078] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Abstract
Porous chitosan-silicate hybrids were prepared by freeze-drying the precursor sol
solutions synthesized from chitosan and 3-glycidoxypropyltrimethoxysilane (GPTMS).
Degradability of and the release of cytochrome C in to phosphate buffer saline solution (PBS) were
examined as a function of the GPTMS content. The hybrids were less degradable with larger
GPTMS contents, and the cytochrome C release profile was so controllable as to give either burst
release or slow one due to the GPTMS content. Thus, the present porous chitosan-silicate hybrids
were considered applicable to drug delivery systems.
Collapse
|