1
|
Liu X, Zuo Z, Xie X, Gao S, Wu S, Gu W, Wang G. SLC24A-mediated calcium exchange as an indispensable component of the diatom cell density-driven signaling pathway. THE ISME JOURNAL 2024; 18:wrae039. [PMID: 38457651 PMCID: PMC10982851 DOI: 10.1093/ismejo/wrae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/09/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Diatom bloom is characterized by a rapid increase of population density. Perception of population density and physiological responses can significantly influence their survival strategies, subsequently impacting bloom fate. The population density itself can serve as a signal, which is perceived through chemical signals or chlorophyll fluorescence signals triggered by high cell density, and their intracellular signaling mechanisms remain to be elucidated. In this study, we focused on the model diatom, Phaeodactylum tricornutum, and designed an orthogonal experiment involving varying cell densities and light conditions, to stimulate the release of chemical signals and light-induced chlorophyll fluorescence signals. Utilizing RNA-Seq and Weighted Gene Co-expression Network Analysis, we identified four gene clusters displaying density-dependent expression patterns. Within these, a potential hub gene, PtSLC24A, encoding a Na+/Ca2+ exchanger, was identified. Based on molecular genetics, cellular physiology, computational structural biology, and in situ oceanic data, we propose a potential intracellular signaling mechanism related to cell density in marine diatoms using Ca2+: upon sensing population density signals mediated by chemical cues, the membrane-bound PtSLC24A facilitates the efflux of Ca2+ to maintain specific intracellular calcium levels, allowing the transduction of intracellular density signals, subsequently regulating physiological responses, including cell apoptosis, ultimately affecting algal blooms fate. These findings shed light on the calcium-mediated intracellular signaling mechanism of marine diatoms to changing population densities, and enhances our understanding of diatom bloom dynamics and their ecological implications.
Collapse
Affiliation(s)
- Xuehua Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong Province, China
| | - Zhicheng Zuo
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xiujun Xie
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong Province, China
| | - Shan Gao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong Province, China
| | - Songcui Wu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong Province, China
| | - Wenhui Gu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong Province, China
| | - Guangce Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao 266404, Shandong Province, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, Shandong Province, China
| |
Collapse
|
2
|
Omar NM, Prášil O, McCain JSP, Campbell DA. Diffusional Interactions among Marine Phytoplankton and Bacterioplankton: Modelling H 2O 2 as a Case Study. Microorganisms 2022; 10:821. [PMID: 35456871 PMCID: PMC9030875 DOI: 10.3390/microorganisms10040821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Marine phytoplankton vary widely in size across taxa, and in cell suspension densities across habitats and growth states. Cell suspension density and total biovolume determine the bulk influence of a phytoplankton community upon its environment. Cell suspension density also determines the intercellular spacings separating phytoplankton cells from each other, or from co-occurring bacterioplankton. Intercellular spacing then determines the mean diffusion paths for exchanges of solutes among co-occurring cells. Marine phytoplankton and bacterioplankton both produce and scavenge reactive oxygen species (ROS), to maintain intracellular ROS homeostasis to support their cellular processes, while limiting damaging reactions. Among ROS, hydrogen peroxide (H2O2) has relatively low reactivity, long intracellular and extracellular lifetimes, and readily crosses cell membranes. Our objective was to quantify how cells can influence other cells via diffusional interactions, using H2O2 as a case study. To visualize and constrain potentials for cell-to-cell exchanges of H2O2, we simulated the decrease of [H2O2] outwards from representative phytoplankton taxa maintaining internal [H2O2] above representative seawater [H2O2]. [H2O2] gradients outwards from static cell surfaces were dominated by volumetric dilution, with only a negligible influence from decay. The simulated [H2O2] fell to background [H2O2] within ~3.1 µm from a Prochlorococcus cell surface, but extended outwards 90 µm from a diatom cell surface. More rapid decays of other, less stable ROS, would lower these threshold distances. Bacterioplankton lowered simulated local [H2O2] below background only out to 1.2 µm from the surface of a static cell, even though bacterioplankton collectively act to influence seawater ROS. These small diffusional spheres around cells mean that direct cell-to-cell exchange of H2O2 is unlikely in oligotrophic habits with widely spaced, small cells; moderate in eutrophic habits with shorter cell-to-cell spacing; but extensive within phytoplankton colonies.
Collapse
Affiliation(s)
- Naaman M. Omar
- Department of Biology, Mount Allison University, Sackville, NB E4L1G7, Canada;
| | - Ondřej Prášil
- Center Algatech, Laboratory of Photosynthesis, Novohradska 237, CZ 37981 Trebon, Czech Republic;
| | - J. Scott P. McCain
- Department of Biology, Massachusetts Institute of Technology, Boston, MA 02142, USA;
| | - Douglas A. Campbell
- Department of Biology, Mount Allison University, Sackville, NB E4L1G7, Canada;
| |
Collapse
|
3
|
Qiu J, Su T, Wang X, Jiang L, Shang Y, Jin P, Xu J, Fan J, Li W, Li F. Comparative study of the physiological responses of Skeletonema costatum and Thalassiosira weissflogii to initial pCO 2 in batch cultures, with special reference to bloom dynamics. MARINE ENVIRONMENTAL RESEARCH 2022; 175:105581. [PMID: 35151949 DOI: 10.1016/j.marenvres.2022.105581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Extensive studies have documented the responses of diatoms to environmental drivers in the context of climate change. However, bloom dynamics are usually ignored in most studies. Here, we investigated the effects of the initial pCO2 on the bloom characteristics of two cosmopolitan diatoms, Skeletonema costatum and Thalassiosira weissflogii. Batch cultures with two initial pCO2 conditions (LC: 400 μatm; HC: 1000 μatm) were used to investigate bloom dynamics under current and ocean acidification scenarios. The simulated S. costatum bloom was characterized by fast accumulation, a rapid decline in biomass, and a shorter stationary phase. The T. weissflogii bloom had a longer stationary phase, and cell density remained at high levels after culturing for 19 days. The physiological performances of the two diatoms varied significantly in the different bloom phases. We found that the initial pCO2 has modulating effects on biomass accumulation and bloom dynamics for these two diatoms. The higher initial pCO2 enhanced the specific growth rate of T. weissflogii by 6% in the exponential phase, leading to higher cell densities, while 86% higher decay rates were observed in the HC cultures of S. costatum. Overall, ocean acidification may alter the dynamics of diatom blooms and may have profound impacts on the biological carbon pump.
Collapse
Affiliation(s)
- Jingmin Qiu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Tianci Su
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xin Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Lele Jiang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Yu Shang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Juntian Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jiale Fan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Wei Li
- College of Life and Environment Sciences, Huangshan University, Huangshan, 245041, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Futian Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, 222005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
4
|
Singh DV, Upadhyay AK, Singh R, Singh DP. Microalgal competence in urban wastewater management: phycoremediation and lipid production. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:831-841. [PMID: 34748446 DOI: 10.1080/15226514.2021.1979463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The present study was conducted to assess the strain aptness, phycoremediation potential and lipid yield in microalgae Chloroccocum humicola and Oscillatoria sp. Results revealed that microalgae treated with different concentration of wastewater (25%, 50%, 75% and 100%) recovered nutrients (Nitrogen: 50.55-85.90%, Phosphorus: 69.98-93.72%) and removed heavy metals (24.17-88.10%) from wastewater. Microalgae C. humicola showed significant reduction in physico-chemical parameters of wastewater at 25% and 50% respectively with considerable increase in lipid production (1.61 folds) at 50% wastewater concentration. In order to counterbalance the wastewater induced toxicity, both microalgae exhibited stimulated antioxidants viz., proline (1.26-4.04 folds), ascorbic acid (1.01-9.21 folds), cysteine (1.44-4.92 folds), catalase (0.99-3.63 folds), superoxide dismutase (1.15-1.43 folds) and glutathione reductase (1.43-6.67 folds) at different wastewater concentrations. Further, Fourier transforms infrared spectroscopy spectral elucidation of Chloroccocum humicola at 50% reflected high lipid peak in the regions 3000-2800 cm-1 as compared to Oscillatoria sp. Thus, growth characteristics, biochemical responses and lipid yield presented the suitability of the Chloroccocum humicola to be used in phycoremedation, resource recovery as well as lipid production, which may be further utilized as potent feedstock for third generation energy demand.
Collapse
Affiliation(s)
- Dig Vijay Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - A K Upadhyay
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - R Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - D P Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
5
|
Healthy herds in the phytoplankton: the benefit of selective parasitism. ISME JOURNAL 2021; 15:2163-2166. [PMID: 33664434 DOI: 10.1038/s41396-021-00936-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 11/08/2022]
Abstract
The impact of selective predation of weaker individuals on the general health of prey populations is well-established in animal ecology. Analogous processes have not been considered at microbial scales despite the ubiquity of microbe-microbe interactions, such as parasitism. Here we present insights into the biotic interactions between a widespread marine thraustochytrid and a diatom from the ecologically important genus Chaetoceros. Physiological experiments show the thraustochytrid targets senescent diatom cells in a similar way to selective animal predation on weaker prey individuals. This physiology-selective targeting of 'unhealthy' cells appears to improve the overall health (i.e., increased photosynthetic quantum yield) of the diatom population without impacting density, providing support for 'healthy herd' dynamics in a protist-protist interaction, a phenomenon typically associated with animal predators and their prey. Thus, our study suggests caution against the assumption that protist-protist parasitism is always detrimental to the host population and highlights the complexity of microbial interactions.
Collapse
|
6
|
Spooner DE, Honeyfield DC, Boggs K, Shull D, Wertz T, Sweet S. An Assessment of the Thiamine Status of Smallmouth Bass (Micropterus dolomieu) in the Susquehanna River Watershed. Northeast Nat (Steuben) 2020. [DOI: 10.1656/045.027.0401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Daniel E. Spooner
- Department of Biology, Lock Haven University, 301 W. Church Street, Lock Haven, PA 17745
| | - Dale C. Honeyfield
- United States Geological Survey, Northern Appalachian Research Branch, 176 Straight Run Road, Wellsboro, PA 16901
| | - Kristin Boggs
- United States Geological Survey, Northern Appalachian Research Branch, 176 Straight Run Road, Wellsboro, PA 16901
| | - Dustin Shull
- Department of Environmental Protection, Bureau of Clean Water, Rachel Carson Building, Harrisburg, PA 17105
| | - Tim Wertz
- Department of Environmental Protection, Bureau of Clean Water, Rachel Carson Building, Harrisburg, PA 17105
| | - Stephanie Sweet
- United States Geological Survey, Northern Appalachian Research Branch, 176 Straight Run Road, Wellsboro, PA 16901
| |
Collapse
|
7
|
Del Mondo A, Smerilli A, Sané E, Sansone C, Brunet C. Challenging microalgal vitamins for human health. Microb Cell Fact 2020; 19:201. [PMID: 33138823 PMCID: PMC7607653 DOI: 10.1186/s12934-020-01459-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/17/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Vitamins' deficiency in humans is an important threat worldwide and requires solutions. In the concept of natural biofactory for bioactive compounds production, microalgae represent one of the most promising targets filling many biotechnological applications, and allowing the development of an eco-sustainable production of natural bioactive metabolites. Vitamins are probably one of the cutting edges of microalgal diversity compounds. MAIN TEXT Microalgae can usefully provide many of the required vitamins in humans, more than terrestrial plants, for instance. Indeed, vitamins D and K, little present in many plants or fruits, are instead available from microalgae. The same occurs for some vitamins B (B12, B9, B6), while the other vitamins (A, C, D, E) are also provided by microalgae. This large panel of vitamins diversity in microalgal cells represents an exploitable platform in order to use them as natural vitamins' producers for human consumption. This study aims to provide an integrative overview on vitamins content in the microalgal realm, and discuss on the great potential of microalgae as sources of different forms of vitamins to be included as functional ingredients in food or nutraceuticals for the human health. We report on the biological roles of vitamins in microalgae, the current knowledge on their modulation by environmental or biological forcing and on the biological activity of the different vitamins in human metabolism and health protection. CONCLUSION Finally, we critically discuss the challenges for promoting microalgae as a relevant source of vitamins, further enhancing the interests of microalgal "biofactory" for biotechnological applications, such as in nutraceuticals or cosmeceuticals.
Collapse
Affiliation(s)
- Angelo Del Mondo
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy
| | - Arianna Smerilli
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy
| | - Elisabet Sané
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy.
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Istituto Nazionale Di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121, Napoli, Italy
| |
Collapse
|
8
|
Piotrowska-Niczyporuk A, Bajguz A, Talarek M, Bralska M, Zambrzycka E. The effect of lead on the growth, content of primary metabolites, and antioxidant response of green alga Acutodesmus obliquus (Chlorophyceae). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:19112-19123. [PMID: 26233754 DOI: 10.1007/s11356-015-5118-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 07/22/2015] [Indexed: 06/04/2023]
Abstract
Green unicellular alga Acutodesmus obliquus (Turpin) Hegewald et Hanagata (SAG strain no. 276-6) (Chlorophyceae) was used for determination of phytotoxicity of lead (Pb) at the range of concentrations 0.01-500 μM during 7 days of culture. The accumulation of Pb in algal cells was found to be increased in a concentration- and duration-dependent manner. The highest Pb uptake value was obtained in response to 500 μM Pb on the seventh day of cultivation. The decrease in the number and the size of cells and the contents of selected primary metabolites (photosynthetic pigments, monosaccharides, and proteins) in A. obliquus cells were observed under Pb stress. Heavy metal stimulated also formation of reactive oxygen species (hydrogen peroxide) and oxidative damage as evidenced by increased lipid peroxidation. On the other hand, the deleterious effects of Pb resulting from the cellular oxidative state can be alleviated by enzymatic (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase) and non-enzymatic (ascorbate, glutathione) antioxidant systems. These results suggest that A. obliquus is a promising bioindicator of heavy metal toxicity in aquatic environment, and it has been identified as good scavenger of Pb from aqueous solution.
Collapse
Affiliation(s)
- Alicja Piotrowska-Niczyporuk
- Department of Plant Biochemistry and Toxicology, Institute of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland.
| | - Andrzej Bajguz
- Department of Plant Biochemistry and Toxicology, Institute of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - Marta Talarek
- Department of Plant Biochemistry and Toxicology, Institute of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - Monika Bralska
- Department of Plant Biochemistry and Toxicology, Institute of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245, Bialystok, Poland
| | - Elżbieta Zambrzycka
- Department of Analytical Chemistry, Institute of Chemistry, University of Bialystok, Ciolkowskiego 1K, 15-245, Bialystok, Poland
| |
Collapse
|
9
|
Häubner N, Sylvander P, Vuori K, Snoeijs P. Abiotic stress modifies the synthesis of alpha-tocopherol and beta-carotene in phytoplankton species. JOURNAL OF PHYCOLOGY 2014; 50:753-759. [PMID: 26988459 DOI: 10.1111/jpy.12198] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/28/2014] [Indexed: 06/05/2023]
Abstract
We performed laboratory experiments to investi-gate whether the synthesis of the antioxidants α-tocopherol (vitamin E) and β-carotene in phytoplankton depends on changes in abiotic factors. Cultures of Nodularia spumigena, Phaeodactylum tricornutum, Skeletonema costatum, Dunaliella tertiolecta, Prorocentrum cordatum, and Rhodomonas salina were incubated at different tempe-ratures, photon flux densities and salinities for 48 h. We found that abiotic stress, within natural ecological ranges, affects the synthesis of the two antioxidants in different ways in different species. In most cases antioxidant production was stimulated by increased abiotic stress. In P. tricornutum KAC 37 and D. tertiolecta SCCAP K-0591, both good producers of this compound, α-tocopherol accumulation was negatively affected by environmentally induced higher photosystem II efficiency (Fv /Fm ). On the other hand, β-carotene accumulation was positively affected by higher Fv /Fm in N. spumigena KAC 7, P. tricornutum KAC 37, D. tertiolecta SCCAP K-0591 and R. salina SCCAP K-0294. These different patterns in the synthesis of the two compounds may be explained by their different locations and functions in the cell. While α-tocopherol is heavily involved in the protection of prevention of lipid peroxidation in membranes, β-carotene performs immediate photo-oxidative protection in the antennae complex of photosystem II. Overall, our results suggest a high variability in the antioxidant pool of natural aquatic ecosystems, which can be subject to short-term temperature, photon flux density and salinity fluctuations. The antioxidant levels in natural phytoplankton communities depend on species composition, the physiological condition of the species, and their respective strategies to deal with reactive oxygen species. Since α-tocopherol and β-carotene, as well as many other nonenzymatic antioxidants, are exclusively produced by photo-synthetic organisms, and are required by higher trophic levels through dietary intake, regime shifts in the phytoplankton as a result of large-scale environmental changes, such as climate change, may have serious consequences for aquatic food webs.
Collapse
Affiliation(s)
- Norbert Häubner
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18 D, Uppsala, SE-75236, Sweden
| | - Peter Sylvander
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, SE-10691, Sweden
| | - Kristiina Vuori
- Center of Excellence Evolutionary Genetics & Physiology, Department of Biology, Laboratory of Animal Physiology, University of Turku, Turku, FI-20014, Finland
| | - Pauline Snoeijs
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, SE-10691, Sweden
| |
Collapse
|
10
|
Sylvander P, Häubner N, Snoeijs P. The thiamine content of phytoplankton cells is affected by abiotic stress and growth rate. MICROBIAL ECOLOGY 2013; 65:566-77. [PMID: 23263236 DOI: 10.1007/s00248-012-0156-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/09/2012] [Indexed: 05/08/2023]
Abstract
Thiamine (vitamin B1) is produced by many plants, algae and bacteria, but by higher trophic levels, it must be acquired through the diet. We experimentally investigated how the thiamine content of six phytoplankton species belonging to five different phyla is affected by abiotic stress caused by changes in temperature, salinity and photon flux density. Correlations between growth rate and thiamine content per cell were negative for the five eukaryotic species, but not for the cyanobacterium Nodularia spumigena. We demonstrate a high variability in thiamine content among phytoplankton species, with the highest content in N. spumigena. Salinity was the factor with the strongest effect, followed by temperature and photon flux density, although the responses varied between the investigated phytoplankton species. Our results suggest that regime shifts in phytoplankton community composition through large-scale environmental changes has the potential to alter the thiamine availability for higher trophic levels. A decreased access to this essential vitamin may have serious consequences for aquatic food webs.
Collapse
Affiliation(s)
- Peter Sylvander
- Department of Systems Ecology, Stockholm University, Stockholm, Sweden.
| | | | | |
Collapse
|
11
|
Cirulis JT, Scott JA, Ross GM. Management of oxidative stress by microalgae. Can J Physiol Pharmacol 2013; 91:15-21. [PMID: 23368282 DOI: 10.1139/cjpp-2012-0249] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this review is to provide an overview of the current research on oxidative stress in eukaryotic microalgae and the antioxidant compounds microalgae utilize to control oxidative stress. With the potential to exploit microalgae for the large-scale production of antioxidants, interest in how microalgae manage oxidative stress is growing. Microalgae can experience increased levels of oxidative stress and toxicity as a result of environmental conditions, metals, and chemicals. The defence mechanisms for microalgae include antioxidant enzymes such as superoxide dismutase, catalase, peroxidases, and glutathione reductase, as well as non-enzymatic antioxidant molecules such as phytochelatins, pigments, polysaccharides, and polyphenols. Discussed herein are the 3 areas the literature has focused on, including how conditions stress microalgae and how microalgae respond to oxidative stress by managing reactive oxygen species. The third area is how beneficial microalgae antioxidants are when administered to cancerous mammalian cells or to rodents experiencing oxidative stress.
Collapse
Affiliation(s)
- Judith T Cirulis
- Medical Sciences, Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | | | | |
Collapse
|
12
|
Bertrand EM, Allen AE. Influence of vitamin B auxotrophy on nitrogen metabolism in eukaryotic phytoplankton. Front Microbiol 2012; 3:375. [PMID: 23091473 PMCID: PMC3476827 DOI: 10.3389/fmicb.2012.00375] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/02/2012] [Indexed: 01/22/2023] Open
Abstract
While nitrogen availability is known to limit primary production in large parts of the ocean, vitamin starvation amongst eukaryotic phytoplankton is becoming increasingly recognized as an oceanographically relevant phenomenon. Cobalamin (B(12)) and thiamine (B(1)) auxotrophy are widespread throughout eukaryotic phytoplankton, with over 50% of cultured isolates requiring B(12) and 20% requiring B(1). The frequency of vitamin auxotrophy in harmful algal bloom species is even higher. Instances of colimitation between nitrogen and B vitamins have been observed in marine environments, and interactions between these nutrients have been shown to impact phytoplankton species composition. This review surveys available data, including relevant gene expression patterns, to evaluate the potential for interactive effects of nitrogen and vitamin B(12) and B(1) starvation in eukaryotic phytoplankton. B(12) plays essential roles in amino acid and one-carbon metabolism, while B(1) is important for primary carbohydrate and amino acid metabolism and likely useful as an anti-oxidant. Here we will focus on three potential metabolic interconnections between vitamin, nitrogen, and sulfur metabolism that may have ramifications for the role of vitamin and nitrogen scarcities in driving ocean productivity and species composition. These include: (1) B(12), B(1), and N starvation impacts on osmolyte and antioxidant production, (2) B(12) and B(1) starvation impacts on polyamine biosynthesis, and (3) influence of B(12) and B(1) starvation on the diatom urea cycle and amino acid recycling through impacts on the citric acid cycle. We evaluate evidence for these interconnections and identify oceanographic contexts in which each may impact rates of primary production and phytoplankton community composition. Major implications include that B(12) and B(1) deprivation may impair the ability of phytoplankton to recover from nitrogen starvation and that changes in vitamin and nitrogen availability may synergistically impact harmful algal bloom formation.
Collapse
Affiliation(s)
- Erin M Bertrand
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute San Diego, CA, USA
| | | |
Collapse
|
13
|
Liu Y, Guan Y, Gao Q, Tam NFY, Zhu W. Cellular responses, biodegradation and bioaccumulation of endocrine disrupting chemicals in marine diatom Navicula incerta. CHEMOSPHERE 2010; 80:592-599. [PMID: 20444488 DOI: 10.1016/j.chemosphere.2010.03.042] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Revised: 03/18/2010] [Accepted: 03/29/2010] [Indexed: 05/29/2023]
Abstract
The cellular responses, biodegradation and bioaccumulation of four endocrine disrupting chemicals, including nonylphenols (NPs), bisphenol A (BPA), 17alpha-ethynylestradiol (EE2), and estradiol (E2), in the marine diatom Navicula incerta, were investigated through the 96-h exposure test. The 50% effective concentration (EC(50)) values in the algal growth inhibition test for NPs, BPA, EE2 and E2 were 0.20mgL(-1), 3.73mgL(-1), 3.21mgL(-1) and >10mgL(-1), respectively. With the increase of test concentrations, the cellular contents of polysaccharides and protein were reduced but the lipid content was increased, while the levels of chlorophyll a and total chlorophyll c were not affected by target EDCs. The activities of superoxidase dismutase and glutathione-S-transferase were stimulated by EDCs. The activities of peroxide dismutase were inhibited by NPs, BPA, and EE2, but were enhanced by E2. The bioaccumulation and biodegradation of target EDCs were inhibited with the increasing exposure concentrations. Nevertheless, the toxic and inhibitory effects of these EDCs on the diatom at their environmental relevant concentrations were relatively low. At the environmental relevant concentration (0.001mgL(-1)), 20.69% of NPs, 37.78% of BPA, 31.26% of EE2 and 52.26% of E2 were removed from the seawater in 96h via biodegradation, and the respective 96-h bioconcentration factor (BCF) values were 2077, 261, 470, and 39. These results showed that among the four target EDCs, NPs would be most problematic as reflecting by their low biodegradation and high BCF in the diatom, suggesting that the NPs would accumulate within the algal cell and pose threats to organisms at higher tropic levels, especially the larvae feeding on the diatom.
Collapse
Affiliation(s)
- Ying Liu
- Department of Environmental Science and Engineering, Tsinghua University, Beijing, PR China
| | | | | | | | | |
Collapse
|
14
|
Maharana D, Jena K, Pise NM, Jagtap TG. Assessment of oxidative stress indices in a marine macro brown alga Padina tetrastromatica (Hauck) from comparable polluted coastal regions of the Arabian Sea, west coast of India. J Environ Sci (China) 2010; 22:1413-7. [PMID: 21174973 DOI: 10.1016/s1001-0742(09)60268-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Oxidative stress and antioxidant defence systems were assessed in a marine brown alga Padina tetrastromatica, commonly occurring from the tropics. Lipid peroxidation (LPX) and H2O2 were measured as oxidative stress markers, and antioxidant defences were measured as catalase (CAT), glutathione S-transferase (GST) and ascorbic acid (AsA), in order to understand their dissimilarity with respect to pollution levels from selective locations along the central west coast of India. A significant increased levels of LPX, H2O2, CAT and GST were observed in samples from relatively polluted localities (Colaba and Karwar) when compared to less polluted locality (Anjuna), while AsA concentration was higher in algal samples from worst polluted region of Colaba. Heavy metals such as Cd and Pb were also higher in the vicinity of polluted areas compared to reference area. Variation of oxidative stress indices in response to accumulation of heavy metals within P. tetrastromatica could be used as molecular biomarkers in assessment and monitoring environmental quality of ecologically sensitive marine habitats.
Collapse
Affiliation(s)
- Dusmant Maharana
- Marine Environmental Laboratory, Biological Oceanography Division, National Institute of Oceanography, Dona Paula, Goa-403004, India.
| | | | | | | |
Collapse
|
15
|
Vuori KA, Kanerva M, Ikonen E, Nikinmaa M. Oxidative stress during Baltic salmon feeding migration may be associated with yolk-sac fry mortality. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:2668-2673. [PMID: 18505014 DOI: 10.1021/es702632c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The wild populations of salmon in the Baltic Sea suffer from yolk-sac fry mortality (M74). M74 mainly occurs in populations spawning in rivers flowing to the Gulfs of Bothnia and Finland. On the basis of studies with fry, M74 may be caused by oxidative stresses. Because the eggs of M74-offspring-producing females have lower thiamine and astaxanthin levels and more oxidized fatty acids than eggs of females producing healthy offspring, oxidative stresses that adult salmon experience during their feeding migration may be decisive for the development of M74. In this study we have measured several oxidative stress parameters and have evaluated bothtemporal and regional differences in these parameters in salmon individuals during their feeding migration. At present, salmon feeding in the Gulf of Finland and in the Bothnian Sea are affected by oxidative stress as compared to populations feeding in the Baltic Proper. Moreover, the feeding population of salmon in the central Baltic Proper suffered much more from oxidative stress in 1999 than in 2006-2007. In 1999 the incidence of M74 was higher than that expected in 2007/2008. Oxidative stresses experienced by feeding salmon may thus be behind the development of M74.
Collapse
Affiliation(s)
- Kristiina A Vuori
- Centre of Excellence in Evolutionary Genetics and Physiology, Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | | | | | | |
Collapse
|
16
|
Vuori KAM, Nikinmaa M. M74 syndrome in Baltic salmon and the possible role of oxidative stresses in its development: present knowledge and perspectives for future studies. AMBIO 2007; 36:168-72. [PMID: 17520930 DOI: 10.1579/0044-7447(2007)36[168:msibsa]2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Baltic salmon suffer from maternally transmitted yolk-sac fry mortality syndrome--M74. The incidence of M74 varies considerably on a year to year basis. In the 1990s the mortalities were 50-80% but in 2003-2005, below 10%. Before death, M74-affected fry have several typical symptoms. M74-eggs are characterized by low thiamine and carotenoid content, and affected fry show signs of oxidative stress. Although M74 is associated with thiamine deficiency and the symptoms of the fry can be alleviated with thiamine, the underlying causes of the syndrome have remained a mystery. We have studied the symptoms of M74 at the molecular level by investigating the global gene expression patterns using cDNA microarray and have quantified the changes in transcriptional regulation in M74-affected and healthy yolk-sac fry. Our and previous results suggest that M74 in Baltic salmon yolk-sac fry results from oxidative stresses disturbing several different developmental molecular pathways. Because the M74 syndrome is of maternal origin, factors in the Baltic Sea during salmon feeding and migration, i.e., the chemical composition of food, may be decisive in the development of M74. The possible mechanisms by which oxidative stresses may develop in adult salmon are discussed in the review.
Collapse
Affiliation(s)
- Kristiina A M Vuori
- Center of Excellence in Evoluationary Genetics and Physiology, Department of Biology, University of Turku, Finland.
| | | |
Collapse
|
17
|
Barros MP, Necchi O, Colepicolo P, Pedersén M. Kinetic study of the plastoquinone pool availability correlated with H2O2 release in seawater and antioxidant responses in the red alga Kappaphycus alvarezii exposed to single or combined high light, chilling and chemical stresses. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1520-8. [PMID: 16904624 DOI: 10.1016/j.bbabio.2006.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 06/08/2006] [Accepted: 06/13/2006] [Indexed: 12/22/2022]
Abstract
Under biotic/abiotic stresses, the red alga Kappaphycus alvarezii reportedly releases massive amounts of H(2)O(2) into the surrounding seawater. As an essential redox signal, the role of chloroplast-originated H(2)O(2) in the orchestration of overall antioxidant responses in algal species has thus been questioned. This work purported to study the kinetic decay profiles of the redox-sensitive plastoquinone pool correlated to H(2)O(2) release in seawater, parameters of oxidative lesions and antioxidant enzyme activities in the red alga Kappaphycus alvarezii under the single or combined effects of high light, low temperature, and sub-lethal doses of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), which are inhibitors of the thylakoid electron transport system. Within 24 h, high light and chilling stresses distinctly affected the availability of the PQ pool for photosynthesis, following Gaussian and exponential kinetic profiles, respectively, whereas combined stimuli were mostly reflected in exponential decays. No significant correlation was found in a comparison of the PQ pool levels after 24 h with either catalase (CAT) or ascorbate peroxidase (APX) activities, although the H(2)O(2) concentration in seawater (R=0.673), total superoxide dismutase activity (R=0.689), and particularly indexes of protein (R=0.869) and lipid oxidation (R=0.864), were moderately correlated. These data suggest that the release of H(2)O(2) from plastids into seawater possibly impaired efficient and immediate responses of pivotal H(2)O(2)-scavenging activities of CAT and APX in the red alga K. alvarezii, culminating in short-term exacerbated levels of protein and lipid oxidation. These facts provided a molecular basis for the recognized limited resistance of the red alga K. alvarezii under unfavorable conditions, especially under chilling stress.
Collapse
Affiliation(s)
- Marcelo P Barros
- Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Cruzeiro do Sul (UNICSUL), Av. Ussiel Cirilo, 225, 08060-070, São Paulo, Brazil.
| | | | | | | |
Collapse
|
18
|
Barros MP, Pinto E, Sigaud-Kutner TCS, Cardozo KHM, Colepicolo P. Rhythmicity and oxidative/nitrosative stress in algae. BIOL RHYTHM RES 2005. [DOI: 10.1080/09291010400028666] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Abstract
Glutathione (GSH; gamma-L-glutamyl-L-cysteinyl-glycine), a non-protein thiol with a very low redox potential (E'0 = 240 mV for thiol-disulfide exchange), is present in high concentration up to 10 mM in yeasts and filamentous fungi. GSH is concerned with basic cellular functions as well as the maintenance of mitochondrial structure, membrane integrity, and in cell differentiation and development. GSH plays key roles in the response to several stress situations in fungi. For example, GSH is an important antioxidant molecule, which reacts non-enzymatically with a series of reactive oxygen species. In addition, the response to oxidative stress also involves GSH biosynthesis enzymes, NADPH-dependent GSH-regenerating reductase, glutathione S-transferase along with peroxide-eliminating glutathione peroxidase and glutaredoxins. Some components of the GSH-dependent antioxidative defence system confer resistance against heat shock and osmotic stress. Formation of protein-SSG mixed disulfides results in protection against desiccation-induced oxidative injuries in lichens. Intracellular GSH and GSH-derived phytochelatins hinder the progression of heavy metal-initiated cell injuries by chelating and sequestering the metal ions themselves and/or by eliminating reactive oxygen species. In fungi, GSH is mobilized to ensure cellular maintenance under sulfur or nitrogen starvation. Moreover, adaptation to carbon deprivation stress results in an increased tolerance to oxidative stress, which involves the induction of GSH-dependent elements of the antioxidant defence system. GSH-dependent detoxification processes concern the elimination of toxic endogenous metabolites, such as excess formaldehyde produced during the growth of the methylotrophic yeasts, by formaldehyde dehydrogenase and methylglyoxal, a by-product of glycolysis, by the glyoxalase pathway. Detoxification of xenobiotics, such as halogenated aromatic and alkylating agents, relies on glutathione S-transferases. In yeast, these enzymes may participate in the elimination of toxic intermediates that accumulate in stationary phase and/or act in a similar fashion as heat shock proteins. GSH S-conjugates may also form in a glutathione S-transferases-independent way, e.g. through chemical reaction between GSH and the antifugal agent Thiram. GSH-dependent detoxification of penicillin side-chain precursors was shown in Penicillium sp. GSH controls aging and autolysis in several fungal species, and possesses an anti-apoptotic feature.
Collapse
Affiliation(s)
- István Pócsi
- Department of Microbiology and Biotechnology, Faculty of Sciences, University of Debrecen, P.O. Box 63, H-4010 Debrecen, Hungary
| | | | | |
Collapse
|
20
|
Barros MP, Granbom M, Colepicolo P, Pedersén M. Temporal mismatch between induction of superoxide dismutase and ascorbate peroxidase correlates with high H2O2 concentration in seawater from clofibrate-treated red algae Kappaphycus alvarezii. Arch Biochem Biophys 2003; 420:161-8. [PMID: 14622986 DOI: 10.1016/j.abb.2003.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Algal cells have developed different strategies to cope with the common environmentally promoted generation of H(2)O(2), which include induction of catalase (CAT) and ascorbate peroxidase (APX), massive H(2)O(2) release in seawater, and synthesis of volatile halocarbons by specific peroxidases. The antioxidant adaptability of the economically important carrageenophyte Kappaphycus alvarezii (Doty) Doty (Gigartinales: Rhodophyta) was tested here against exposure to clofibrate (CFB), a known promoter of peroxisomal beta-oxidation in mammals and plants. Possibly as a consequence of CFB-induced H2O2 peroxisomal production, the maximum concentration of H(2)O(2) in the seawater of red algae cultures was found to occur (120+/-17 min) after the addition of CFB, which was followed by a significant decrease in the photosynthetic activity of PSII after 24 h. Interestingly, 4 h after the addition of CFB, the total SOD activity was about 2.5-fold higher than in the control, whereas no significant changes were observed in lipoperoxidation levels (TBARS) or in CAT and APX activities. The two H(2)O(2)-scavenging enzymes were only induced later (after 72 h), whereupon CAT showed a dose-dependent response with increasing concentrations of CFB. A more pronounced increase of TBARS concentration than in the controls was evidenced when a 50 microM Fe(2+/3+) solution (3:2 ratio) was added to CFB-treated cultures, suggesting that the combination of exacerbated H(2)O(2) levels in the seawater-in this work, caused by CFB exposure-and Fenton-reaction catalyst (ferric/ferrous ions), imposes harsh oxidative conditions on algal cultures. The bulk of data suggests that K. alvarezii possesses little ability to promptly induce CAT and APX compared to the immediately responsive antioxidant enzyme SOD and, to avoid harmful accumulation of H(2)O(2), the red alga presumably releases H(2)O(2) into the surrounding medium as an alternative mechanism.
Collapse
Affiliation(s)
- Marcelo P Barros
- Centro de Ciências Biológicas e da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP 08060-070, Brazil.
| | | | | | | |
Collapse
|