1
|
Rivera-Tobar D, Pérez-Won M, Jara-Quijada E, González-Cavieres L, Tabilo-Munizaga G, Lemus-Mondaca R. Principles of ultrasonic agglomeration and its effect on physicochemical and macro- and microstructural properties of foods. Food Chem 2024; 463:141309. [PMID: 39326307 DOI: 10.1016/j.foodchem.2024.141309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Ultrasonic compaction, also known as ultrasonic agglomeration, is an emerging technology that represents a novel alternative for food agglomeration; it is of great interest to the food industry. This review aims to gather information on the physicochemical, organoleptic, microbiological, and structural changes generated by ultrasound and study the fundamentals of agglomeration and ultrasound in different food matrices. In addition, chemical changes are reported in some nutrients related to conformational changes, such as the disintegration of diacylglycerides into monoacylglycerols, disordering of the crystalline region of starch granules to the amorphous phase, disruption of the membrane in plant cells, and transient or permanent modification of the protein structure (3D folding). The increasing development of patents can provide an insight into the potential of ultrasonic agglomeration applications in the food industry.
Collapse
Affiliation(s)
- Daniela Rivera-Tobar
- Department of Food Science and Technology, Faculty of Technological, Universidad de Santiago de Chile, Av. Víctor Jara 3769, Estación Central, Región Metropolitana, Chile..
| | - Mario Pérez-Won
- Department of Food Engineering, Faculty of Health and Food Science, Universidad del Bío-Bío, Av. Andrés Bello 720, Box 447, Chillán, Chile..
| | - Erick Jara-Quijada
- Department of Food Engineering, Faculty of Health and Food Science, Universidad del Bío-Bío, Av. Andrés Bello 720, Box 447, Chillán, Chile.; Nutrition and Dietetics, Faculty of Health Sciences, Universidad Adventista de Chile, Camino a Las Mariposas #11771, Chillán, Chile
| | - Luis González-Cavieres
- Department of Food Engineering, Faculty of Health and Food Science, Universidad del Bío-Bío, Av. Andrés Bello 720, Box 447, Chillán, Chile
| | - Gipsy Tabilo-Munizaga
- Department of Food Engineering, Faculty of Health and Food Science, Universidad del Bío-Bío, Av. Andrés Bello 720, Box 447, Chillán, Chile
| | - Roberto Lemus-Mondaca
- Department of Food Science and Chemical Technology, Faculty of Chemical Sciences and Pharmaceutical, Universidad de Chile, Calle Dr. Carlos Lorca 964, Independencia, Región Metropolitana, Chile
| |
Collapse
|
2
|
Restasari A, Abdillah LH, Ardianingsih R, Prianto B, Pinalia A, Sitompul HRD, Kurdianto, Arisandi ED, al Rasyid H, Budi RS, Wibowo HB, Hartaya K. Particle packing models to determine time-dependent slip flow properties of highly filled polyurethane-based propellant. J RUBBER RES 2022. [DOI: 10.1007/s42464-022-00166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Beaunac E, Leturia M, Robisson AC, Ablitzer C, Saleh K. Comparison of two powder conditioning methods to improve UO2 powder flowability for press die filling. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Wang J, Kang E, Sultan U, Merle B, Inayat A, Graczykowski B, Fytas G, Vogel N. Influence of Surfactant-Mediated Interparticle Contacts on the Mechanical Stability of Supraparticles. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:23445-23456. [PMID: 34737841 PMCID: PMC8558861 DOI: 10.1021/acs.jpcc.1c06839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Indexed: 05/14/2023]
Abstract
Colloidal supraparticles are micron-scale spherical assemblies of uniform primary particles, which exhibit emergent properties of a colloidal crystal, yet exist as a dispersible powder. A prerequisite to utilize these emergent functionalities is that the supraparticles maintain their mechanical integrity upon the mechanical impacts that are likely to occur during processing. Understanding how the internal structure relates to the resultant mechanical properties of a supraparticle is therefore of general interest. Here, we take the example of supraparticles templated from water/fluorinated oil emulsions in droplet-based microfluidics and explore the effect of surfactants on their mechanical properties. Stable emulsions can be generated by nonionic block copolymers consisting of a hydrophilic and fluorophilic block and anionic fluorosurfactants widely available under the brand name Krytox. The supraparticles formed in the presence of both types of surfactants appear structurally similar, but differ greatly in their mechanical properties. While the nonionic surfactant induces superior mechanical stability and ductile fracture behavior, the anionic Krytox surfactant leads to weak supraparticles with brittle fracture. We complement this macroscopic picture with Brillouin light spectroscopy that is very sensitive to the interparticle contacts for subnanometer-thick adsorbed layers atop of the nanoparticle. While the anionic Krytox does not significantly affect the interparticle bonds, the amphiphilic nonionic surfactant drastically strengthens these bonds to the point that individual particle vibrations are not resolved in the experimental spectrum. Our results demonstrate that seemingly subtle changes in the physicochemical properties of supraparticles can drastically impact the resultant mechanical properties.
Collapse
Affiliation(s)
- Junwei Wang
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Eunsoo Kang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Umair Sultan
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
- Institute
of Chemical Reaction Engineering, Friedrich-Alexander
University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Benoit Merle
- Materials
Science and Engineering I and Interdisciplinary Center for Nanostructured
Films (IZNF), Friedrich-Alexander University
Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alexandra Inayat
- Institute
of Chemical Reaction Engineering, Friedrich-Alexander
University Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Bartlomiej Graczykowski
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Faculty
of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznan 61-614, Poland
| | - George Fytas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- E-mail:
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
- E-mail:
| |
Collapse
|
5
|
Wang J, Schwenger J, Ströbel A, Feldner P, Herre P, Romeis S, Peukert W, Merle B, Vogel N. Mechanics of colloidal supraparticles under compression. SCIENCE ADVANCES 2021; 7:eabj0954. [PMID: 34644116 PMCID: PMC11095630 DOI: 10.1126/sciadv.abj0954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/23/2021] [Indexed: 05/16/2023]
Abstract
Colloidal supraparticles are finite, spherical assemblies of many primary particles. To take advantage of their emergent functionalities, such supraparticles must retain their structural integrity. Here, we investigate their size-dependent mechanical properties via nanoindentation. We find that the deformation resistance inversely scales with the primary particle diameter, while the work of deformation is dependent on the supraparticle diameter. We adopt the Griffith theory to such particulate systems to provide a predictive scaling to relate the fracture stress to the geometry of supraparticles. The interplay between primary particle material and cohesive interparticle forces dictates the mechanical properties of supraparticles. We find that enhanced stability, associated with ductile fracture, can be achieved if supraparticles are engineered to dissipate more energy via deformation of primary particles than breaking of interparticle bonds. Our work provides a coherent framework to analyze, predict, and design the mechanical properties of colloidal supraparticles.
Collapse
Affiliation(s)
- Junwei Wang
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Jan Schwenger
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Andreas Ströbel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Patrick Feldner
- Materials Science & Engineering I and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Patrick Herre
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Stefan Romeis
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Benoit Merle
- Materials Science & Engineering I and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
6
|
Thixotropic Behavior in Defining Particle Packing Density of Highly Filled AP/HTPB-Based Propellant. Symmetry (Basel) 2021. [DOI: 10.3390/sym13101767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An alarming, asymmetric flame in rocket combustion originates from a composite solid propellant (CSP) containing defects. The defects are the result of a composition that exceeds the maximum particle packing density. Based on the structure analysis of CSP, the addition of plasticizer causes the correlation between the viscosity of CSP slurry and particle packing density to become uncertain. This work aims to investigate the influence of thixotropic behavior on the maximum particle packing density of CSP. A CSP with different thixotropic behavior was successfully produced using aluminum/plasticizer dioctyl adipate (DOA) of 12–24. During the curing process, viscosity and stress–growth were investigated. The structure of the CSP was defined using X-ray radiography. It is remarkably observed that the peak of thixotropy occurred at the 15th minute of the curing process. The particle packing density of CSP can be decisive for the relative viscosity at the peak time of thixotropic behavior. The CSP with the highest relative viscosity at the peak time was revealed to have voids in the upper part of the CSP. Thus, this parameter was proven to change the preceding parameter, viscosity that was measured at the end of mixing. Based on the stress–growth analysis, it is conceivable that the mechanism involves the time-dependent diffusion of DOA in weakening aluminum agglomerates.
Collapse
|
7
|
Dairy powder breakage: Mechanisms, characterization methods, impacted properties and influencing factors. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Zettl M, Aigner I, Mannschott T, van der Wel P, Schröttner H, Khinast J, Krumme M. Characterization of a Novel Drying Technology for Continuous Processing of Cohesive Materials: An Ibuprofen Case Study. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00413] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Manuel Zettl
- Research Center Pharmaceutical Engineering (RCPE) GmbH, 8010 Graz, Austria
| | - Isabella Aigner
- Research Center Pharmaceutical Engineering (RCPE) GmbH, 8010 Graz, Austria
| | | | | | - Hartmuth Schröttner
- Graz University of Technology, Institute for Electron Microscopy and Nanoanalysis, 8010 Graz, Austria
- Austrian Centre for Electron Microscopy and Nanoanalysis (FELMI-ZFE), 8010 Graz, Austria
| | - Johannes Khinast
- Research Center Pharmaceutical Engineering (RCPE) GmbH, 8010 Graz, Austria
- Graz University of Technology, Institute for Process and Particle Engineering, 8010 Graz, Austria
| | | |
Collapse
|
9
|
Kavanagh ON, Wang C, Walker GM, Sun CC. Modulation of the powder properties of lamotrigine by crystal forms. Int J Pharm 2021; 595:120274. [PMID: 33486026 DOI: 10.1016/j.ijpharm.2021.120274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
The mechanical properties of powders determine the ease of manufacture and ultimately the quality of the oral solid dosage forms. Although poor mechanical properties of an active pharmaceutical ingredient (API) can be mitigated by using suitable excipients in a formulation, the effectiveness of that approach is limited for high dose drugs or multidrug tablets. In this context, improving the mechanical properties of the APIs through solid form optimisation is a good strategy to address such a challenge. This work explores the powder and tableting properties of various lamotrigine (LAM) solid forms with the aim to facilitate direct compression by overcoming the poor tabletability of LAM. The two drug-drug crystals of LAM with nicotinamide and valproic acid demonstrate superior flowability and tabletability over LAM. The improved powder properties are rationalised by structure analysis using energy framework, scanning electron microscopy, and Heckel analysis.
Collapse
Affiliation(s)
- Oisín N Kavanagh
- Synthesis and Solid State Pharmaceutical Centre (SSPC), The SFI Research Centre for Pharmaceuticals, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Chenguang Wang
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA
| | - Gavin M Walker
- Synthesis and Solid State Pharmaceutical Centre (SSPC), The SFI Research Centre for Pharmaceuticals, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 9-127B Weaver-Densford Hall, 308 Harvard Street S.E., Minneapolis, MN 55455, USA.
| |
Collapse
|
10
|
Franks GV, Sesso ML, Lam M, Lu Y, Xu L. Elastic plastic fracture mechanics investigation of toughness of wet colloidal particulate materials: Influence of saturation. J Colloid Interface Sci 2021; 581:627-634. [PMID: 32810728 DOI: 10.1016/j.jcis.2020.07.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/16/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
HYPOTHESIS Previous use of linear elastic fracture mechanics to estimate toughness of wet particulate materials underestimates the toughness because it does not account for plastic deformation as a dissipation mechanism. Plastic deformation is responsible for the majority of energy dissipated during the fracture of wet colloidal particulate materials. Plastic deformation around the crack tip increases with saturation of the particulate body. The toughness of the body increases with increasing saturation. EXPERIMENTS Elastic plastic fracture mechanics using the J-integral approach was used for the first time to measure the fracture toughness (JIC) of wet micron sized alumina powder bodies as a function of saturation. The samples were prepared by slip casting. The saturation was controlled by treatment in a humidity chamber. The elastic modulus (E) and the energy dissipated by plastic flow (Apl) were measured in uniaxial compression. The critical stress intensity factor (KIC) was measured using a diametral compression sample with a flaw of known size. The fracture toughness (JIC) was calculated from these measured quantities and the geometry of the specimen. FINDINGS Elastic plastic fracture mechanics was used for the first time to quantitively account for plastic deformation of wet particulate materials. The linear elastic fracture mechanics approach previously used accounted for less than 1% of the total energy dissipated in fracture. Toughness (JIC) was found to increase with increasing saturation due to plastic deformation that increased with saturation level. The improved understanding of toughness as a function of saturation will aid in providing quantitative analysis of cracking in drying colloidal films and bodies.
Collapse
Affiliation(s)
- George V Franks
- Department of Chemical Engineering, University of Melbourne, Parkville, Vic 3010, Australia.
| | - Mitchell L Sesso
- Department of Engineering, School of Engineering and Mathematical Sciences, College of Science, Health and Engineering, La Trobe University, Vic 3086, Australia
| | - Matthew Lam
- Department of Chemical Engineering, University of Melbourne, Parkville, Vic 3010, Australia
| | - Yi Lu
- Department of Chemical Engineering, University of Melbourne, Parkville, Vic 3010, Australia
| | - Liqing Xu
- Department of Chemical Engineering, University of Melbourne, Parkville, Vic 3010, Australia
| |
Collapse
|
11
|
Lowe A, Singh G, Chan HK, Masri A, Cheng S, Kourmatzis A. Fragmentation dynamics of single agglomerate-to-wall impaction. POWDER TECHNOL 2021; 378 Pt A:561-575. [DOI: 10.1016/j.powtec.2020.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Mulder R, Maboza E, Ahmed R. Streptococcus mutans Growth and Resultant Material Surface Roughness on Modified Glass Ionomers. FRONTIERS IN ORAL HEALTH 2020; 1:613384. [PMID: 35047988 PMCID: PMC8757809 DOI: 10.3389/froh.2020.613384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/19/2020] [Indexed: 12/02/2022] Open
Abstract
The present study investigate the optical density of Streptococcus mutans (S. mutans) at 450 nm (OD450 nm) as well as the change in surface roughness of three commercially available chitosan- and nanodiamond-modified glass ionomers. The results indicated that the optical density of S. mutans OD450 nm decreased significantly (p < 0.0001) from 0 h through 2–4 h for each of the control materials. The lowest S. mutans OD450 nm was noted for Fuji IX followed by Ketac Universal. Riva Self Cure had the largest increase in the S. mutans OD450 nm. The control materials and their chitosan/nanodiamond modifications showed significant growth at 6 h compare to the preceding time periods of 2 and 4 h. The materials Fuji IX, Fuji IX modified with 5% Nanodiamonds, Fuji IX modified with 10% Chitosan and Ketac Universal modified with 10% Chitosan performed the best with regard to the bacterial reduction. Only the chitosan modifications showed an increase in the surface roughness after 24 h of exposure to the S. mutans. The chitosan and the nanodiamond modifications provided the best disruption of the S. mutans biofilm formation.
Collapse
Affiliation(s)
- Riaan Mulder
- Restorative Dentistry, The University of the Western Cape, Cape Town, South Africa
- *Correspondence: Riaan Mulder
| | - Ernest Maboza
- Dental Research Laboratory, The University of the Western Cape, Cape Town, South Africa
| | - Rukshana Ahmed
- Restorative Dentistry, The University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
13
|
Wang C, Cheng Y, He X, Yi M, Wang Z. Size effect on uniaxial compressive strength of single coal particle under different failure conditions. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Lachance EV, Abatzoglou N, Gosselin R, Duchesne C, Cournoyer A. Potassium chloride caking tendency: A parametric study of cake break energy. ADV POWDER TECHNOL 2018. [DOI: 10.1016/j.apt.2018.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
|
16
|
Kreimer M, Aigner I, Lepek D, Khinast J. Continuous Drying of Pharmaceutical Powders Using a Twin-Screw Extruder. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00087] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Manuel Kreimer
- Research Center Pharmaceutical Engineering (RCPE) GmbH, 8010 Graz, Austria
| | - Isabella Aigner
- Research Center Pharmaceutical Engineering (RCPE) GmbH, 8010 Graz, Austria
| | - Daniel Lepek
- Research Center Pharmaceutical Engineering (RCPE) GmbH, 8010 Graz, Austria
- Department of Chemical Engineering, The Cooper Union, New York, New York 10003, United States
- Institute for Process and Particle Engineering, Graz University of Technology, 8010 Graz, Austria
| | - Johannes Khinast
- Research Center Pharmaceutical Engineering (RCPE) GmbH, 8010 Graz, Austria
- Institute for Process and Particle Engineering, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
17
|
Kotzur BA, Berry RJ, Zigan S, García-Triñanes P, Bradley MS. Particle attrition mechanisms, their characterisation, and application to horizontal lean phase pneumatic conveying systems: A review. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.04.047] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Cao H, Karampalis D, Li Y, Caragay J, Alexiadis A, Zhang Z, Fryer PJ, Bakalis S. Abrupt disintegration of highly porous particles in early stage dissolution. POWDER TECHNOL 2018. [DOI: 10.1016/j.powtec.2018.04.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Wollborn T, Schwed MF, Fritsching U. Direct tensile tests on particulate agglomerates for the determination of tensile strength and interparticle bond forces. ADV POWDER TECHNOL 2017. [DOI: 10.1016/j.apt.2017.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Vo TT, Mutabaruka P, Delenne JY, Nezamabadi S, Radjai F. Strength of wet agglomerates of spherical particles: effects of friction and size distribution. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714008021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Kotzur BA, Bradley MSA, Berry RJ, Farnish RJ. Breakage Characteristics of Granulated Food Products for Prediction of Attrition during Lean-Phase Pneumatic Conveying. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2016. [DOI: 10.1515/ijfe-2016-0045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Pneumatic conveying is utilised in a variety of industries to convey food products exhibiting diverse handling characteristics. Attrition of particles caused by this conveying process can result in a number of undesirable outcomes such as loss in product quality or issues in subsequent handling processes. The ability to predict the breakage behaviour of particulate materials is desirable in both new system design and resolving issues in existing plants. This work considers two different particulate materials (Salt and Golden Breadcrumbs) across a range of particle sizes, and quantifies their breakage behaviour under varying impact conditions. Narrow size fractions of each material were degraded; material retained on 250 µm and 355 µm sieves for Salt, and 500 µm, 710 µm and 1,000 µm sieves for Golden Breadcrumbs. Velocity was found to be the most influential factor with respect to particle attrition. The results from the narrow size fraction tests were superimposed to form a simulated full size distribution breakage behaviour, which was then compared to the experimentally determined behaviour. A good agreement was found, however the proportion of material predicted for size fractions smaller than 355 µm for Golden Breadcrumbs and 180 µm for Salt was under-predicted. Recommendations for increasing accuracy of the prediction method are given.
Collapse
|
22
|
Fabre A, Salameh S, Ciacchi LC, Kreutzer MT, van Ommen JR. Contact mechanics of highly porous oxide nanoparticle agglomerates. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2016; 18:200. [PMID: 27478406 PMCID: PMC4949302 DOI: 10.1007/s11051-016-3500-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/04/2016] [Indexed: 05/28/2023]
Abstract
Efficient nanopowder processing requires knowledge of the powder's mechanical properties. Due to the large surface area to volume ratio, nanoparticles experience relatively strong attractive interactions, leading to the formation of micron-size porous structures called agglomerates. Significant effort has been directed towards the development of models and experimental procedures to estimate the elasticity of porous objects such as nanoparticle agglomerates; however, none of the existing models has been validated for solid fractions below 0.1. Here, we measure the elasticity of titania (TiO[Formula: see text], 22 nm), alumina (Al[Formula: see text]O[Formula: see text], 8 nm), and silica (SiO[Formula: see text], 16 nm) nanopowder agglomerates by Atomic Force Microscopy, using a 3.75 [Formula: see text]m glass colloid for the stress-strain experiments. Three sample preparations with varying degree of powder manipulation are assessed. The measured Young's moduli are in the same order of magnitude as those predicted by the model of Kendall et al., thus validating it for the estimation of the Young's modulus of structures with porosity above 90 %.
Collapse
Affiliation(s)
- Andrea Fabre
- />Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| | - Samir Salameh
- />Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| | | | - Michiel T. Kreutzer
- />Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| | - J. Ruud van Ommen
- />Department of Chemical Engineering, Delft University of Technology, Julianalaan 136, 2628 BL Delft, The Netherlands
| |
Collapse
|
23
|
Jonsson H, Frenning G. Investigations of single microcrystalline cellulose-based granules subjected to confined triaxial compression. POWDER TECHNOL 2016. [DOI: 10.1016/j.powtec.2015.11.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Berninger T, Mitter B, Preininger C. The smaller, the better? The size effect of alginate beads carrying plant growth-promoting bacteria for seed coating. J Microencapsul 2016; 33:127-36. [DOI: 10.3109/02652048.2015.1134690] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
25
|
Rousseau D, Coutouly A, Hendricks P, Hodge S, Green NL. Development of an extraction protocol for the removal of the fat phase within chocolate. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.05.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Müller P, Glöckner H, Tomas J. Numerische und analytische Beschreibung der mechanischen Eigenschaften quasi-tetraederförmiger Agglomerate. CHEM-ING-TECH 2015. [DOI: 10.1002/cite.201400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
|
28
|
Müller P, Glöckner H, Tomas J. Numerical and analytical description of the mechanical properties of quasi tetrahedral agglomerates. POWDER TECHNOL 2014. [DOI: 10.1016/j.powtec.2014.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Schrank S, Kann B, Windbergs M, Glasser BJ, Zimmer A, Khinast J, Roblegg E. Microstructure of Calcium Stearate Matrix Pellets: A Function of the Drying Process. J Pharm Sci 2013; 102:3987-97. [DOI: 10.1002/jps.23707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 07/25/2013] [Accepted: 07/31/2013] [Indexed: 11/08/2022]
|
30
|
Rondet E, Ruiz T, Cuq B. Rheological and mechanical characterization of wet agglomerates processed in low shear mixer. J FOOD ENG 2013. [DOI: 10.1016/j.jfoodeng.2013.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
31
|
Parveen F, Briens C, Berruti F, McMillan J. Effect of particle size, liquid content and location on the stability of agglomerates in a fluidized bed. POWDER TECHNOL 2013. [DOI: 10.1016/j.powtec.2012.12.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Hanley KJ, Byrne EP, Cronin K. Probabilistic analysis of particle impact at a pipe bend in pneumatic conveying. POWDER TECHNOL 2013. [DOI: 10.1016/j.powtec.2012.08.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
|
34
|
|
35
|
Schrank S, Hodzic A, Zimmer A, Glasser BJ, Khinast J, Roblegg E. Ibuprofen-loaded calcium stearate pellets: drying-induced variations in dosage form properties. AAPS PharmSciTech 2012; 13:686-98. [PMID: 22552931 PMCID: PMC3364380 DOI: 10.1208/s12249-012-9791-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/10/2012] [Indexed: 11/30/2022] Open
Abstract
Pellets intended for oral dosing are frequently produced via extrusion/spheronization followed by drying. Typically, the last active process step, i.e., drying, is assumed to have little effect on the final dosage form properties (e.g., dissolution characteristics). Thus, there exist only a few studies of this subject. In the present study, calcium stearate/ibuprofen pellets were used as model system to investigate the impact of the drying conditions. Lipophilic calcium stearate matrix pellets containing 20% ibuprofen were prepared via wet extrusion/spheronization. Subsequently, desiccation, fluid-bed drying, and lyophilization were applied for granulation liquid removal. The impact of these drying techniques on the final pellet properties was evaluated. The in vitro dissolution behavior was dramatically altered by the drying techniques that were considered. The investigated pellets showed drug release rates that varied as much as 100%. As no polymorphic transitions occurred during drying, we focused on two possible explanations: (a) a change in the drug distribution within the pellets and (b) a change in pellet micro-structure (porosity, pore size). The ibuprofen distribution proved to be homogeneous regardless of the drying conditions. Pellet porosity and pore sizes, however, were modified by the drying process. Our results clearly demonstrate that a single process step, such as drying, can play a crucial role in achieving desired pellet properties and release profiles.
Collapse
Affiliation(s)
- Simone Schrank
- />Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Graz, Austria
- />Institute for Process and Particle Engineering, Graz University of Technology, Graz, Austria
- />Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - Aden Hodzic
- />Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - Andreas Zimmer
- />Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Graz, Austria
| | - Benjamin J. Glasser
- />Department of Chemical and Biochemical Engineering, Rutgers University, New Brunswick, New Jersey USA
| | - Johannes Khinast
- />Institute for Process and Particle Engineering, Graz University of Technology, Graz, Austria
- />Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| | - Eva Roblegg
- />Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Graz, Austria
- />Research Center Pharmaceutical Engineering GmbH, Graz, Austria
| |
Collapse
|
36
|
Hanley KJ, Cronin K, O’Sullivan C, Fenelon MA, O’Mahony JA, Byrne EP. Effect of composition on the mechanical response of agglomerates of infant formulae. J FOOD ENG 2011. [DOI: 10.1016/j.jfoodeng.2011.05.042] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Michaels JN, Bonsignore H, Hudson-Curtis BL, Laurenz S, Lin HRH, Mathai T, Pande G, Sheth A, Sprockel O. Attribute-Based Design Space: Materials-Science-Based Quality-By-Design for Operational Flexibility and Process Portability. J Pharm Innov 2011. [DOI: 10.1007/s12247-011-9113-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
38
|
Amorós J, Mallol G, Feliu C, Orts M. Study of the rheological behaviour of monomodal quartz particle beds under stress. A model for the shear yield functions of powders. Chem Eng Sci 2011. [DOI: 10.1016/j.ces.2011.05.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Radjai F, Richefeu V. Bond anisotropy and cohesion of wet granular materials. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2009; 367:5123-5138. [PMID: 19933131 DOI: 10.1098/rsta.2009.0185] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We analyse the Coulomb cohesion of wet granular materials and its relationship with the distribution of capillary bonds between particles. We show that, within a harmonic representation of the bond and force states, the shear strength can be expressed as a state equation in terms of internal anisotropy parameters. This formulation involves a dependence of the shear strength on loading direction and leads to the fragile behaviour of granular materials. The contact dynamics simulations of a wet material, in which a capillary force law is prescribed, are in excellent agreement with the predictions of this model. We find that the fragile character decreases as the local adhesion is increased or the mean stress is decreased.
Collapse
Affiliation(s)
- Farhang Radjai
- LMGC, CNRS-Université Montpellier 2, Montpellier, Cedex 5, France.
| | | |
Collapse
|
40
|
|
41
|
|
42
|
Liu L, Smith R, Litster J. Wet granule breakage in a breakage only high-hear mixer: Effect of formulation properties on breakage behaviour. POWDER TECHNOL 2009. [DOI: 10.1016/j.powtec.2008.04.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Asakuma Y, Honda T, Maeda K, Miki H, Fukui K. Fragmentation behavior of aggregated crystal in suspension crystallization processes. POWDER TECHNOL 2008. [DOI: 10.1016/j.powtec.2007.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Chapter 26 Morphology and strength development in solid and solidifying interparticle bridges in granules of pharmaceutical powders. HANDBOOK OF POWDER TECHNOLOGY 2007. [DOI: 10.1016/s0167-3785(07)80061-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Cheong YS, Mangwandi C, Fu J, Adams MJ, Hounslow MJ, Salman AD. Chapter 26 A Mechanistic Description of Granule Deformation and Breakage. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0167-3785(07)12029-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
46
|
Walker G, Bell S, Andrews G, Jones D. Co-melt fluidised bed granulation of pharmaceutical powders: Improvements in drug bioavailability. Chem Eng Sci 2007. [DOI: 10.1016/j.ces.2006.08.074] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
47
|
Chapter 21 Breakage in granulation. ACTA ACUST UNITED AC 2007. [DOI: 10.1016/s0167-3785(07)80056-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
48
|
Hapgood K, lveson S, Litster J, Liu L. Chapter 20 Granulation rate processes. HANDBOOK OF POWDER TECHNOLOGY 2007. [DOI: 10.1016/s0167-3785(07)80055-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
49
|
Soulié F, El Youssoufi MS, Cherblanc F, Saix C. Capillary cohesion and mechanical strength of polydisperse granular materials. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2006; 21:349-57. [PMID: 17294088 DOI: 10.1140/epje/i2006-10076-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 01/08/2007] [Indexed: 05/13/2023]
Abstract
We investigate the macroscopic mechanical behaviour of wet polydisperse granular media. Capillary bonding between two grains of unequal diameters is described by a realistic force law implemented in a molecular-dynamics algorithm together with a protocol for the distribution of water in the bulk. Axial-compression tests are simulated for granular samples at different levels of water content, and compared to experiments performed in similar conditions. We find good agreement between numerical and experimental data in terms of the rupture strength as a function of water content. Our results show the importance of the distribution of water for the mechanical behaviour.
Collapse
Affiliation(s)
- F Soulié
- LMGC, UMR 5508, Université Montpellier 2, Place Eugène Bataillon, cc048, 34095, Montpellier Cedex 5, France.
| | | | | | | |
Collapse
|
50
|
Weber S, Briens C, Berruti F, Chan E, Gray M. Agglomerate stability in fluidized beds of glass beads and silica sand. POWDER TECHNOL 2006. [DOI: 10.1016/j.powtec.2006.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|