1
|
Pritt BS. Molecular Diagnostics in the Diagnosis of Parasitic Infection. METHODS IN MICROBIOLOGY 2015. [DOI: 10.1016/bs.mim.2015.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
2
|
Mugasa CM, Katiti D, Boobo A, Lubega GW, Schallig HD, Matovu E. Comparison of nucleic acid sequence-based amplification and loop-mediated isothermal amplification for diagnosis of human African trypanosomiasis. Diagn Microbiol Infect Dis 2014; 78:144-8. [DOI: 10.1016/j.diagmicrobio.2013.06.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 11/28/2022]
|
3
|
Watier-Grillot S, Herder S, Marié JL, Cuny G, Davoust B. Chemoprophylaxis and treatment of African canine trypanosomosis in French military working dogs: A retrospective study. Vet Parasitol 2013; 194:1-8. [DOI: 10.1016/j.vetpar.2013.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 01/27/2013] [Accepted: 01/28/2013] [Indexed: 11/16/2022]
|
4
|
Translation of human African trypanosomiasis biomarkers towards field application. TRANSLATIONAL PROTEOMICS 2013. [DOI: 10.1016/j.trprot.2013.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
5
|
Human african trypanosomiasis diagnosis in first-line health services of endemic countries, a systematic review. PLoS Negl Trop Dis 2012; 6:e1919. [PMID: 23209860 PMCID: PMC3510092 DOI: 10.1371/journal.pntd.0001919] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 10/09/2012] [Indexed: 11/19/2022] Open
Abstract
While the incidence of Human African Trypanosomiasis (HAT) is decreasing, the control approach is shifting from active population screening by mobile teams to passive case detection in primary care centers. We conducted a systematic review of the literature between 1970 and 2011 to assess which diagnostic tools are most suitable for use in first-line health facilities in endemic countries. Our search retrieved 16 different screening and confirmation tests for HAT. The thermostable format of the Card Agglutination Test for Trypanosomiasis (CATT test) was the most appropriate screening test. Lateral flow antibody detection tests could become alternative screening tests in the near future. Confirmation of HAT diagnosis still depends on visualizing the parasite in direct microscopy. All other currently available confirmation tests are either technically too demanding and/or lack sensitivity and thus rather inappropriate for use at health center level. Novel applications of molecular tests may have potential for use at district hospital level.
Collapse
|
6
|
Diagnostic accuracy of molecular amplification tests for human African trypanosomiasis--systematic review. PLoS Negl Trop Dis 2012; 6:e1438. [PMID: 22253934 PMCID: PMC3254661 DOI: 10.1371/journal.pntd.0001438] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 10/31/2011] [Indexed: 12/01/2022] Open
Abstract
Background A range of molecular amplification techniques have been developed for the diagnosis of Human African Trypanosomiasis (HAT); however, careful evaluation of these tests must precede implementation to ensure their high clinical accuracy. Here, we investigated the diagnostic accuracy of molecular amplification tests for HAT, the quality of articles and reasons for variation in accuracy. Methodology Data from studies assessing diagnostic molecular amplification tests were extracted and pooled to calculate accuracy. Articles were included if they reported sensitivity and specificity or data whereby values could be calculated. Study quality was assessed using QUADAS and selected studies were analysed using the bivariate random effects model. Results 16 articles evaluating molecular amplification tests fulfilled the inclusion criteria: PCR (n = 12), NASBA (n = 2), LAMP (n = 1) and a study comparing PCR and NASBA (n = 1). Fourteen articles, including 19 different studies were included in the meta-analysis. Summary sensitivity for PCR on blood was 99.0% (95% CI 92.8 to 99.9) and the specificity was 97.7% (95% CI 93.0 to 99.3). Differences in study design and readout method did not significantly change estimates although use of satellite DNA as a target significantly lowers specificity. Sensitivity and specificity of PCR on CSF for staging varied from 87.6% to 100%, and 55.6% to 82.9% respectively. Conclusion Here, PCR seems to have sufficient accuracy to replace microscopy where facilities allow, although this conclusion is based on multiple reference standards and a patient population that was not always representative. Future studies should, therefore, include patients for which PCR may become the test of choice and consider well designed diagnostic accuracy studies to provide extra evidence on the value of PCR in practice. Another use of PCR for control of disease could be to screen samples collected from rural areas and test in reference laboratories, to spot epidemics quickly and direct resources appropriately. A range of molecular amplification techniques has been developed for the diagnosis of HAT, with polymerase chain reaction (PCR) at the forefront. As laboratory strengthening in endemic areas increases, it is expected that the applicability of molecular tests will increase. However, careful evaluation of these tests against the current reference standard, microscopy, must precede implementation. Therefore, we have investigated the published diagnostic accuracy of molecular amplification tests for HAT compared to microscopy for both initial diagnosis as well as for disease staging. Here, PCR tests seem to have an acceptably high specificity and sensitivity for diagnosis of stage I HAT. This conclusion is, however, based on multiple-microscopy based techniques as reference standards, which may have low sensitivity, and a patient population that was not always representative. Future studies should, therefore, first and foremost include those patients for which PCR may become the test of choice. More certainty about the practical value of PCR tests for HAT diagnosis should come from non-accuracy design studies, like feasibility or cost-effectiveness studies.
Collapse
|
7
|
Ficová M, Betáková T, Pančík P, Václav R, Prokop P, Halásová Z, Kúdelová M. Molecular detection of murine herpesvirus 68 in ticks feeding on free-living reptiles. MICROBIAL ECOLOGY 2011; 62:862-867. [PMID: 21732020 DOI: 10.1007/s00248-011-9907-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/21/2011] [Indexed: 05/31/2023]
Abstract
The MHV-68 (designed as Murid herpesvirus 4 (MuHV 4) strain 68) isolated from two rodents, Myodes glareolus and Apodemus flavicollis, is considered as a natural pathogen of free-living murid rodents. Recently, the detection of MHV antibodies in the blood of animals living in the same biotope as MHV-infected mice has suggested that ticks may have a role in the transmission of this pathogen. Ixodes ricinus is one the most abundant tick species in Europe known to transmit multiple pathogens causing human and animal diseases. In this study, nymphs and larvae feeding on 116 individuals of a temperate lizard species-the green lizard Lacerta viridis captured in the Slovak Karst National Park, were examined for MHV-68. The specific sequence of virion glycoprotein 150 was amplified in DNA individually isolated from I. ricinus ticks using single-copy sensitive nested polymerase chain reaction. MHV-68 was detected in ten of 649 nymphs and in five of 150 larvae, respectively. We found that 9.6% of green lizards fed at least one MHV-68-infected immature tick. Occurrence of MHV-68 within all ticks tested was 1.8%. This study is first to show that immature I. ricinus ticks feeding on free-living lizards in a Central European region could be infected with gammaherpesvirus (MHV-68), naturally infecting free-living murid rodents. Our results provide evidence supporting the hypothesis that ticks may play a mediating role in circulation of MHV-68 in nature.
Collapse
Affiliation(s)
- Martina Ficová
- Institute of Virology, Slovak Academy of Science, 845 05 Bratislava, Slovak Republic
| | | | | | | | | | | | | |
Collapse
|
8
|
Checchi F, Chappuis F, Karunakara U, Priotto G, Chandramohan D. Accuracy of five algorithms to diagnose gambiense human African trypanosomiasis. PLoS Negl Trop Dis 2011; 5:e1233. [PMID: 21750745 PMCID: PMC3130008 DOI: 10.1371/journal.pntd.0001233] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 05/23/2011] [Indexed: 11/24/2022] Open
Abstract
Background Algorithms to diagnose gambiense human African trypanosomiasis (HAT, sleeping sickness) are often complex due to the unsatisfactory sensitivity and/or specificity of available tests, and typically include a screening (serological), confirmation (parasitological) and staging component. There is insufficient evidence on the relative accuracy of these algorithms. This paper presents estimates of the accuracy of five algorithms used by past Médecins Sans Frontières programmes in the Republic of Congo, Southern Sudan and Uganda. Methodology and Principal Findings The sequence of tests in each algorithm was programmed into a probabilistic model, informed by distributions of the sensitivity, specificity and staging accuracy of each test, constructed based on a literature review. The accuracy of algorithms was estimated in a baseline scenario and in a worst-case scenario introducing various near worst-case assumptions. In the baseline scenario, sensitivity was estimated as 85–90% in all but one algorithm, with specificity above 99.9% except for the Republic of Congo, where CATT serology was used as independent confirmation test: here, positive predictive value (PPV) was estimated at <50% in realistic active screening prevalence scenarios. Furthermore, most algorithms misclassified about one third of true stage 1 cases as stage 2, and about 10% of true stage 2 cases as stage 1. In the worst-case scenario, sensitivity was 75–90% and PPV no more than 75% at 1% prevalence, with about half of stage 1 cases misclassified as stage 2. Conclusions Published evidence on the accuracy of widely used tests is scanty. Algorithms should carefully weigh the use of serology alone for confirmation, and could enhance sensitivity through serological suspect follow-up and repeat parasitology. Better evidence on the frequency of low-parasitaemia infections is needed. Simulation studies should guide the tailoring of algorithms to specific scenarios of HAT prevalence and availability of control tools. Gambiense human African trypanosomiasis (HAT, sleeping sickness) usually features low prevalence. The two stages of the disease require different treatments, and stage 2 is fatal if untreated. HAT diagnosis must therefore be highly sensitive (i.e., detect as many true cases as possible) and specific (i.e., minimize false positives). HAT diagnostic algorithms are complex and involve several tests to screen for, confirm and stage infection. We analyzed five algorithms used by Médecins Sans Frontières HAT programmes. We combined published data on the accuracy of each test in the algorithm with a computer program that simulates all possible algorithm branches. We found that all algorithms had reasonable sensitivity (85–90%); specificity was high (>99.9%) except for the Republic of Congo, where confirmation did not rely on microscopic evidence, resulting in frequent false positives (but also higher sensitivity). Algorithms misclassified about one third of stage 1 cases as stage 2, but stage 2 classification was highly accurate. The use of serology alone for confirmation merits caution. HAT diagnosis could be made more sensitively by following up serological suspects and repeating microscopic examinations. Computer simulations can help to adapt algorithms to local conditions in each HAT programme, such as the prevalence of infection and operational constraints.
Collapse
|
9
|
Nimpaye H, Njiokou F, Njine T, Njitchouang G, Cuny G, Herder S, Asonganyi T, Simo G. Trypanosoma vivax, T. congolense "forest type" and T. simiae: prevalence in domestic animals of sleeping sickness foci of Cameroon. Parasite 2011; 18:171-9. [PMID: 21678793 PMCID: PMC3671417 DOI: 10.1051/parasite/2011182171] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 10/28/2010] [Indexed: 11/26/2022] Open
Abstract
In order to better understand the epidemiology of Human and Animal trypanosomiasis that occur together in sleeping sickness foci, a study of prevalences of animal parasites (Trypanosoma vivax, T. congolense "forest type", and T. simiae) infections was conducted on domestic animals to complete the previous work carried on T. brucei gambiense prevalence using the same animal sample. 875 domestic animals, including 307 pigs, 264 goats, 267 sheep and 37 dogs were sampled in the sleeping sickness foci of Bipindi, Campo, Doumé and Fontem in Cameroon. The polymerase chain reaction (PCR) based method was used to identify these trypanosome species. A total of 237 (27.08%) domestic animals were infected by at least one trypanosome species. The prevalence of T. vivax, T. congolense "forest type" and T. simiae were 20.91%, 11.42% and 0.34% respectively. The prevalences of 7 vivax and T. congolense "forest type" differed significantly between the animal species and between the foci (p < 0.0001); however, these two trypanosomes were found in all animal species as well as in all the foci subjected to the study. The high prevalences of 7 vivax and T congolense "forest type" in Bipindi and Fontem-Center indicate their intense transmission in these foci.
Collapse
Affiliation(s)
- H. Nimpaye
-
Laboratoire de Biologie Générale, Département de Biologie et Physiologie Animales, Faculté des Sciences, Université de Yaoundé I BP 812 Yaoundé Cameroun
| | - F. Njiokou
-
Laboratoire de Biologie Générale, Département de Biologie et Physiologie Animales, Faculté des Sciences, Université de Yaoundé I BP 812 Yaoundé Cameroun
| | - T. Njine
-
Laboratoire de Biologie Générale, Département de Biologie et Physiologie Animales, Faculté des Sciences, Université de Yaoundé I BP 812 Yaoundé Cameroun
| | - G.R. Njitchouang
-
Laboratoire de Biologie Générale, Département de Biologie et Physiologie Animales, Faculté des Sciences, Université de Yaoundé I BP 812 Yaoundé Cameroun
| | - G. Cuny
-
Laboratoire de Recherche et de Coordination sur les Trypanosomoses IRD, UMR 177, CIRAD, TA 207/G, Campus International de Baillarguet 34398 Montpellier Cedex 5 France
| | - S. Herder
-
Laboratoire de Recherche et de Coordination sur les Trypanosomoses IRD, UMR 177, CIRAD, TA 207/G, Campus International de Baillarguet 34398 Montpellier Cedex 5 France
| | - T. Asonganyi
-
Faculty of Medicine and Biomedical Sciences, University of Yaoundé I Yaoundé Cameroun
| | - G. Simo
-
Department of Biochemistry, Faculty of Science, University of Dschang PO Box 67 Dschang Cameroun
| |
Collapse
|
10
|
Latent Trypanosoma brucei gambiense foci in Uganda: a silent epidemic in children and adults? Parasitology 2011; 138:1480-7. [PMID: 21554841 DOI: 10.1017/s0031182011000230] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Trypanosoma brucei gambiense sleeping sickness follows a long asymptomatic phase and persists in ancient foci from which epidemic clinical disease arises. A putative focus of T. b. gambiense infections has been identified, initially in mothers and young children, on the Lake Albert shoreline of Western Uganda leading to mass screening of 6207 individuals in September 2008. T. b. gambiense infections were identified by Card Agglutination Test for Trypanosomiasis (CATT) and sub-species-specific PCR although parasitological methods failed to confirm any patent trypanosome infections. In April 2009, CATT positives were re-visited; diagnosis of individuals by CATT and PCR was unstable over the two time points and parasites remained undetected, even using mini Anion Exchange Centrifugation Technique (mAECT). These observations suggest the possibility of a silent focus of disease, where all infected individuals are in a latent stage, and highlight our limited understanding of the local natural history and disease progression of T. b. gambiense in children and adults.
Collapse
|
11
|
Václav R, Ficová M, Prokop P, Betáková T. Associations between coinfection prevalence of Borrelia lusitaniae, Anaplasma sp., and Rickettsia sp. in hard ticks feeding on reptile hosts. MICROBIAL ECOLOGY 2011; 61:245-253. [PMID: 20711724 DOI: 10.1007/s00248-010-9736-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 08/03/2010] [Indexed: 05/29/2023]
Abstract
An increasing number of studies reveal that ticks and their hosts are infected with multiple pathogens, suggesting that coinfection might be frequent for both vectors and wild reservoir hosts. Whereas the examination of associations between coinfecting pathogen agents in natural host-vector-pathogen systems is a prerequisite for a better understanding of disease maintenance and transmission, the associations between pathogens within vectors or hosts are seldom explicitly examined. We examined the prevalence of pathogen agents and the patterns of associations between them under natural conditions, using a previously unexamined host-vector-pathogen system--green lizards Lacerta viridis, hard ticks Ixodes ricinus, and Borrelia, Anaplasma, and Rickettsia pathogens. We found that immature ticks infesting a temperate lizard species in Central Europe were infected with multiple pathogens. Considering I. ricinus nymphs and larvae, the prevalence of Anaplasma, Borrelia, and Rickettsia was 13.1% and 8.7%, 12.8% and 1.3%, and 4.5% and 2.7%, respectively. The patterns of pathogen prevalence and observed coinfection rates suggest that the risk of tick infection with one pathogen is not independent of other pathogens. Our results indicate that Anaplasma can play a role in suppressing the transmission of Borrelia to tick vectors. Overall, however, positive effects of Borrelia on Anaplasma seem to prevail as judged by higher-than-expected Borrelia-Anaplasma coinfection rates.
Collapse
Affiliation(s)
- Radovan Václav
- Institute of Zoology, Slovak Academy of Sciences, Dubravska cesta 9, 84506 Bratislava, Slovakia.
| | | | | | | |
Collapse
|
12
|
Simo G, Asonganyi T, Nkinin SW, Njiokou F, Herder S. High prevalence of Trypanosoma brucei gambiense group 1 in pigs from the Fontem sleeping sickness focus in Cameroon. Vet Parasitol 2006; 139:57-66. [PMID: 16567049 DOI: 10.1016/j.vetpar.2006.02.026] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 02/13/2006] [Accepted: 02/21/2006] [Indexed: 11/20/2022]
Abstract
To understand the importance of domestic pigs in the epidemiology of human trypanosomiasis, PCR was used to identify trypanosome populations in 133 pigs from the Fontem sleeping sickness focus of Cameroon. The results from this study show that 73.7% (98/133) of pigs from the Fontem area carry at least one trypanosome species. Trypanosoma vivax, T. brucei s.l. and T. congolense forest were found in 34.6% (46/133), 40.0% (53/133) and 46.0% (61/133) of the pigs respectively. T. simiae and T. congolense savannah were not identified in these animals. The use of repeated DNA sequences detected T. b. gambiense group 1 in 14.8% (15/101) of the pigs. Such pigs can be possible reservoir hosts for T. b. gambiense group 1 and contribute to the maintenance of the disease in the area. Mixed infections were revealed in 35.3% (47/133) of the pigs. Furthermore, we observed that under natural conditions, 52.4% (11/21) of the pigs from the Fontem focus carry mixed infections with T. b. gambiense group 1. No significant difference was observed between the percentage of T. b. gambiense group 1 single and mixed infections, and between the prevalence of this trypanosome in pigs from villages with and without sleeping sickness patients.
Collapse
Affiliation(s)
- G Simo
- Institut de Recherches Médicales et d'Etude de Plantes Médicinales (IMPM/MINRESI), Yaoundé, Cameroon
| | | | | | | | | |
Collapse
|
13
|
Koffi M, Solano P, Denizot M, Courtin D, Garcia A, Lejon V, Büscher P, Cuny G, Jamonneau V. Aparasitemic serological suspects in Trypanosoma brucei gambiense human African trypanosomiasis: a potential human reservoir of parasites? Acta Trop 2006; 98:183-8. [PMID: 16723098 DOI: 10.1016/j.actatropica.2006.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 01/18/2006] [Accepted: 04/13/2006] [Indexed: 11/24/2022]
Abstract
The serological and parasitological tests used for Trypanosoma brucei gambiense human African trypanosomiasis (HAT) diagnosis have low specificity and sensitivity, respectively, and in the field, control program teams are faced with subjects with positive serology but negative parasitology who remain untreated. The aim of this work was to explore, using PCR tool, the significance of these aparasitemic serological suspects. Since discordant PCR results have been observed earlier with different extraction methods, two DNA extraction methods were compared (the Chelex 100 resin and the DNeasy Tissue kit). The study was conducted on 604 blood samples: 574 from parasitologically confirmed patients, aparasitemic serological suspects and endemic controls collected in Côte d'Ivoire and 30 from healthy volunteers collected in France. No significant differences were observed between the PCR results obtained with the two extraction methods. Concerning PCR, problems of reproducibility and discordances with both serological and parasitological test results were observed, mainly for the aparasitemic serological suspects. In addition to previous results that pointed to the existence of non-virulent or non-pathogenic trypanosome strains and of individual susceptibility leading to long term seropositivity without detectable parasitaemia but positive PCR, the results of this study support the notion of a long lasting human reservoir that may contribute to the maintenance or periodic resurgences of HAT in endemic foci.
Collapse
Affiliation(s)
- M Koffi
- Institut de Recherche Pour le Développement, Unité de Recherche 177, Programme Santé Animale, TA 207/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Njiokou F, Laveissière C, Simo G, Nkinin S, Grébaut P, Cuny G, Herder S. Wild fauna as a probable animal reservoir for Trypanosoma brucei gambiense in Cameroon. INFECTION GENETICS AND EVOLUTION 2006; 6:147-53. [PMID: 16236560 DOI: 10.1016/j.meegid.2005.04.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 04/06/2005] [Accepted: 04/09/2005] [Indexed: 11/22/2022]
Abstract
In order to study the existence of a wild animal reservoir for Trypanosoma brucei gambiense in South Cameroon, blood was collected from wild animals in three human African trypanosomiasis foci and from a nonendemic control area. The 1142 wild animals sampled belonged to 36 different species pertaining to eight orders (407 primates, 347 artiodactyls, 265 rodents, 54 pangolins, 53 carnivores, 11 saurians and crocodilians, and five hyraxes). QBC and KIVI tests detected trypanosomes on 1.7% (13/762) and 18.4% (43/234) of animals examined, respectively. Using specific primers, T. brucei non-gambiense group 1 DNA was detected on 56 animals (4.9%). This infection rate was 5.3% in the endemic zone and 3.8% in the control zone. Of the 832 animals of the endemic zone, PCR revealed T. b. gambiense group 1 DNA in 18 (2.2%). These hosts included two rodents, two artiodactyls, two carnivores and two primates. T. b. gambiense group 1 was absent from animals from the nonendemic zone. A decrease in the prevalence of T. b. gambiense group 1 was observed in wild animals from the Bipindi sleeping sickness focus after a medical survey and vector control in this area. The epidemiological implications of these findings remain to be determined with further investigations.
Collapse
Affiliation(s)
- F Njiokou
- LRT, OCEAC, BP 288, Yaoundé, Cameroon
| | | | | | | | | | | | | |
Collapse
|
15
|
Penchenier L, Alhadji D, Bahébégué S, Simo G, Laveissière C, Cuny G. Spontaneous cure of domestic pigs experimentally infected by Trypanosoma brucei gambiense. Implications for the control of sleeping sickness. Vet Parasitol 2005; 133:7-11. [PMID: 16076528 DOI: 10.1016/j.vetpar.2005.04.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Revised: 01/31/2005] [Accepted: 04/22/2005] [Indexed: 11/30/2022]
Abstract
The existence of a pig reservoir for human African trypanosomosis (HAT) due to Trypanosoma brucei gambiense complicates the fight against this disease. This study, reports results obtained from pigs, which were inoculated with the blood of a person, suffering from HAT in Cameroon. The pigs were reared and kept in the shelter from all contact with Glossina, and monitored for 188 days. The seroconversion was checked by agglutination assays for trypanosomosis (CATT 1.3 and LATEX/T.b.gambiense). The parasitemia was measured by quantitative buffy coat method (QBC) and by polymerase chain reaction method (PCR). In addition, growth was recorded as well as blood counting and blood formulas. The results showed that the pigs were trypanotolerant and cure themselves in less than 6 months. It is concluded that sterilisation of this reservoir could be achieved by tsetse-control measures in 1 year. It confirms the strategy to complement screening and treatment of HAT with tsetse fly control measures.
Collapse
Affiliation(s)
- L Penchenier
- Laboratoire de Recherches et de Coordination sur les Trypanosomes, UR035 (IRD) CIRAD, TA207/G, Campus International de Baillarguet, 34398 Montpellier Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
16
|
Chretien JP, Smoak BL. African trypanosomiasis: Changing epidemiology and consequences. Curr Infect Dis Rep 2005; 7:54-60. [PMID: 15610672 DOI: 10.1007/s11908-005-0024-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Human African trypanosomiasis has re-emerged as a serious public health threat after near-elimination because of diminished investment in previously successful control programs. The continued, occasional importation of African trypanosomiasis to the United States can be expected as tourists and immigrants travel from high-risk areas. No vaccine or chemoprophylaxis is available for this disease, and travelers to affected areas should be counseled on tsetse fly avoidance. New diagnostic and staging tests are promising but have not replaced the classical method of examining body fluids for trypanosomes. Prompt diagnosis and staging is essential because if untreated, East African and West African sleeping sickness are fatal. Drug regimens are toxic and cumbersome, and short-term prospects for therapeutic advances are limited.
Collapse
Affiliation(s)
- Jean-Paul Chretien
- Department of Defense Global Emerging Infections Surveillance & Response System (DoD-GEIS), Division of Preventive Medicine, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910, USA.
| | | |
Collapse
|
17
|
Becker S, Franco JR, Simarro PP, Stich A, Abel PM, Steverding D. Real-time PCR for detection of Trypanosoma brucei in human blood samples. Diagn Microbiol Infect Dis 2004; 50:193-9. [PMID: 15541605 DOI: 10.1016/j.diagmicrobio.2004.07.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Accepted: 07/07/2004] [Indexed: 11/17/2022]
Abstract
We have developed a real-time PCR assay for detection of Trypanosoma brucei DNA in human blood samples. The PCR was conducted with newly designed primers targeting the 177-bp repeat satellite DNA in T. brucei and with Sybr Green to monitor the amplicon accumulation. DNA purification using Chelex 100 resin was performed on blood samples collected on Whatman FTA cards and was shown to be a simple and quantitative method as revealed by real-time PCR. The detection limit of the assay was 100 trypanosomes per mL blood, corresponding to an analytical sensitivity of 0.1 genome equivalents. Trypanosome DNA was detected in all blood samples from sleeping sickness patients and, furthermore, the identity of the amplicon was confirmed in all assays by dissociation analysis. Although template DNA from blood samples was amplified with significantly lower efficiency than genomic DNA, similar efficiency between all assays ensured quantitative results. No amplicon product was obtained with samples from uninfected individuals. The results indicate that the real-time PCR assay described is a rapid and sensitive method suitable for the detection of T. brucei in human blood samples in routine clinical laboratory practice.
Collapse
Affiliation(s)
- Sven Becker
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | | | | | | | | | | |
Collapse
|
18
|
Njiokou F, Simo G, Nkinin SW, Laveissière C, Herder S. Infection rate of Trypanosoma brucei s.l., T. vivax, T. congolense "forest type", and T. simiae in small wild vertebrates in south Cameroon. Acta Trop 2004; 92:139-46. [PMID: 15350866 DOI: 10.1016/j.actatropica.2004.04.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 03/10/2004] [Accepted: 04/06/2004] [Indexed: 11/18/2022]
Abstract
In order to identify the infection rate of trypanosome species infecting wild animals in four localities (Bipindi, Campo, Fontem and Nditam) of southern Cameroon, 1,141 wild animals were sampled. These animals belonged to 36 species grouped in 8 orders including 407 primates, 347 artiodactyls, 264 rodents, 54 pangolins, 53 small carnivores, 11 saurians and crocodilians and 5 hyraxes. PCR using specific primers for Trypanosoma vivax, T. brucei s.l., T. congolense "forest type", and T. simiae showed that 18.7% of the animals were infected by at least one of these trypanosome species. A positive PCR result may not indicate absolutely an active infection because PCR can detect also transient infections. T. vivax (Duttonella) had the highest infection rate (9.5%) and was found in almost all the host orders studied. T. brucei s.l. mostly infected primates, rodents and some duikers (Cephalophus dorsalis and C. monticola). Trypanosomes of the subgenus Nannomonas had a lower infection rate of 5.5% (2.4% for T. simiae and 3.1% for T. congolense "forest type"). They were harboured mainly by primates, ungulates and rodents. Trypanosome infection rates were highest in Nditam (24.5%) and Bipindi (21%). T. brucei s.l. (Trypanozoon) had its maximum infection rate of 10.4% in Bipindi. The "Quantitative Buffy Coat" (QBC) and Kit for in vitro isolation techniques were used to identify 48 (6.1%) infected animals. 13 were positive using QBC, and 42 were positive by KIVI. However, PCR was negative on 16 of these infected animals, probably due to infections with other trypanosome species. This study showed that trypanosomes of the subgenera Duttonella, Nannomonas and Trypanozoon could infect small wild vertebrates as has been shown for large ungulates and carnivores. The presence of T. brucei s.l. in a large range of wild animals strengthens the hypothesis of the existence of a wild animal reservoir of T. b. gambiense in Cameroon.
Collapse
Affiliation(s)
- F Njiokou
- LRT, OCEAC, BP 288 Yaoundé, Cameroon.
| | | | | | | | | |
Collapse
|
19
|
Lejon V, Boelaert M, Jannin J, Moore A, Büscher P. The challenge of Trypanosoma brucei gambiense sleeping sickness diagnosis outside Africa. THE LANCET. INFECTIOUS DISEASES 2003; 3:804-8. [PMID: 14652206 DOI: 10.1016/s1473-3099(03)00834-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sleeping sickness is a lethal African disease caused by parasites of the Trypanosoma brucei subspecies, which is transmitted by tsetse flies. Occasionally, patients are reported outside Africa. Diagnosis of such imported cases can be problematic when the infection is due to Trypanosoma brucei gambiense, the chronic form of sleeping sickness found in west and central Africa. The low number of trypanosomes in the blood and the non-specific, variable symptoms make the diagnosis difficult, particularly when the index of suspicion is low. When the trypanosomes have penetrated into the central nervous system, neuropathological signs become apparent but even at this stage, misdiagnosis is frequent. Rapid and correct diagnosis of sleeping sickness can avoid inappropriate or delayed treatment and even death of the patient. In this article, an overview on diagnosis of imported cases of T b gambiense sleeping sickness is given, and possible pitfalls in the diagnostic process are highlighted. Bioclinical parameters that should raise the suspicion of sleeping sickness in a patient who has been in west or central Africa are discussed. Techniques for diagnosis are reviewed. A clinician suspecting sleeping sickness should contact a national reference centre for tropical medicine in his or her country, or the WHO, Geneva, Switzerland, or the Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA, for clinical consultation and provision of specific diagnostic tests. Appropriate drugs for sleeping sickness treatment are also provided by WHO and the CDC.
Collapse
Affiliation(s)
- V Lejon
- Interdepartmental Research Group Neglected Diseases, Institute of Tropical Medicine, Antwerp, Belgium.
| | | | | | | | | |
Collapse
|
20
|
Abstract
The trypanosomiases consist of a group of important animal and human diseases caused by parasitic protozoa of the genus Trypanosoma. In sub-Saharan Africa, the final decade of the 20th century witnessed an alarming resurgence in sleeping sickness (human African trypanosomiasis). In South and Central America, Chagas' disease (American trypanosomiasis) remains one of the most prevalent infectious diseases. Arthropod vectors transmit African and American trypanosomiases, and disease containment through insect control programmes is an achievable goal. Chemotherapy is available for both diseases, but existing drugs are far from ideal. The trypanosomes are some of the earliest diverging members of the Eukaryotae and share several biochemical peculiarities that have stimulated research into new drug targets. However, differences in the ways in which trypanosome species interact with their hosts have frustrated efforts to design drugs effective against both species. Growth in recognition of these neglected diseases might result in progress towards control through increased funding for drug development and vector elimination.
Collapse
Affiliation(s)
- Michael P Barrett
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, G12 8QQ, Glasgow, UK.
| | | | | | | | | | | | | |
Collapse
|
21
|
Penchenier L, Grébaut P, Njokou F, Eboo Eyenga V, Büscher P. Evaluation of LATEX/T.b.gambiense for mass screening of Trypanosoma brucei gambiense sleeping sickness in Central Africa. Acta Trop 2003; 85:31-7. [PMID: 12505181 DOI: 10.1016/s0001-706x(02)00232-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We compared the Card Agglutination Test for Trypanosomiasis (CATT), which consists of lyophilized bloodstream form trypomastigotes of Trypanosoma brucei gambiense (T.b.g.) variable antigen type LiTat 1.3, with LATEX/T.b.g., which consists of a lyophilized suspension of latex particles coated with variable surface glycoproteins of T.b.g. variable antigen types LiTat 1.3, 1.5 and 1.6. This study was carried out during two mass screening surveys in 1998 in Campo, a sleeping sickness focus in Cameroon, with a low prevalence (0.3%) and in 1999 in Batangafo which belongs to the Central African focus of Ouham which has a higher prevalence (3%). In Campo, we compared the CATT performed on whole blood with the LATEX/T.b.g. on diluted blood. In Batangafo, both tests were performed on diluted blood. In all circumstances, the specificity of the LATEX/T.b.g. was higher than of CATT. The use of LATEX/T.b.g. on diluted blood instead of CATT results in an important decrease of workload and as a consequence, of costs related to parasitological examinations. In the case of Campo the workload was up to 12 times less than when using CATT 1.3 on whole blood and the cost divided by 3. In Batangafo the workload was decreased by nearly 20% with the LATEX/T.b.g. Finally, it should be noted that in Batangafo, one of the parasitologically confirmed sleeping sickness patients was negative in CATT and positive in LATEX/T.b.g. and that the reading of the test result in LATEX/T.b.g. is easier than in CATT.
Collapse
|
22
|
Radwanska M, Magez S, Perry-O'Keefe H, Stender H, Coull J, Sternberg JM, Büscher P, Hyldig-Nielsen JJ. Direct detection and identification of African trypanosomes by fluorescence in situ hybridization with peptide nucleic acid probes. J Clin Microbiol 2002; 40:4295-7. [PMID: 12409413 PMCID: PMC139669 DOI: 10.1128/jcm.40.11.4295-4297.2002] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have developed a rapid and easy to perform fluorescence in situ hybridization test that allows specific identification of trypanosomes from the subgenus Trypanozoon, using peptide nucleic acid probes. Probes were designed to target subgenus-specific sequences on the multiple-copy 18S rRNA, greatly facilitating the detection of a single trypanosome.
Collapse
Affiliation(s)
- M Radwanska
- Department of Parasitology, Institute of Tropical Medicine, Antwerp, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Sleeping sickness has re-emerged as a serious problem in sub-Saharan Africa, with an estimated 100000 deaths each year. South Sudan, the Democratic Republic of Congo and Angola have experienced serious epidemics of the Gambian form of the disease. The control of Gambian sleeping sickness, which relies primarily on active case finding followed by chemotherapy, is being threatened by problems of drug resistance. Recently, Rhodesian sleeping sickness has also posed a health risk to travellers visiting game parks in East Africa. RECENT FINDINGS Because of war-related constraints, which have prevented case detection, the prevalence of Gambian sleeping sickness commonly exceeds 5% and reached 29% in one focus in south Sudan. The incidence of Gambian infections refractory to melarsoprol treatment has also risen sharply in northern Uganda, northern Angola and southern Sudan, with failure rates as high as 26.9%. Molecular techniques based on the gene for human serum resistance (SRA) have enabled the identification of human infective parasites in the domestic animal reservoir. This molecular tool has shown that the Rhodesian form of the disease is being carried in cattle northwards in Uganda towards areas endemic for the Gambian form. The coalescence of distributions of the chronic and acute forms of the disease will present problems for both control and treatment. SUMMARY This review surveys the molecular tools that are improving our understanding of the epidemiology of sleeping sickness, and highlights the search for new diagnostics and drugs to deal with the disease.
Collapse
Affiliation(s)
- Susan C Welburn
- Centre for Tropical Veterinary Medicine, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Easter Bush, Roslin, Midlothian, Scotland, UK.
| | | |
Collapse
|
24
|
Affiliation(s)
- Demetrios J Sahlas
- Department of Medicine, Sunnybrook and Women's College Hospital, Toronto, Canada
| | | | | | | |
Collapse
|
25
|
Solano P, Jamonneau V, N'Guessan P, N'Dri L, Dje NN, Miezan TW, Lejon V, Büscher P, Garcia A. Comparison of different DNA preparation protocols for PCR diagnosis of Human African Trypanosomosis in Côte d'Ivoire. Acta Trop 2002; 82:349-56. [PMID: 12039674 DOI: 10.1016/s0001-706x(02)00029-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During a medical survey the sleeping sickness focus in Bonon, Ivory Coast, PCR with Trypanosoma brucei specific primers (TBR 1-2 from Parasitology 99 (1989) 57) was tested on DNA derived from blood samples. DNA purification using a chelating resin was performed either on whole blood or on the buffy coat prepared in two different ways. The preparation based on whole blood performed better than those using the buffy-coat. Using this first method, the sensitivity was 100% on parasitologically confirmed patients, and the specificity was 92%. However, problems of reproducibility of the technique were pointed out, particularly on samples from serologically positive but apparently aparasitemic individuals. It is suggested that the PCR could help in the diagnosis of Human African Trypanosomosis, but the use of other primers should be investigated.
Collapse
Affiliation(s)
- P Solano
- Institut Pierre Richet, IRD UR 035, BP 1500, Bouake, Ivory Coast.
| | | | | | | | | | | | | | | | | |
Collapse
|