1
|
Mahamar A, Gonzales Hurtado PA, Morrison R, Boone R, Attaher O, Diarra BS, Gaoussou S, Issiaka D, Dicko A, Duffy PE, Fried M. Plasma biomarkers of hemoglobin loss in Plasmodium falciparum-infected children identified by quantitative proteomics. Blood 2022; 139:2361-2376. [PMID: 34871370 PMCID: PMC9012130 DOI: 10.1182/blood.2021014045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/23/2021] [Indexed: 11/20/2022] Open
Abstract
Anemia is common among young children infected with Plasmodium falciparum and severe malarial anemia (SMA) is a major cause of their mortality. Two major mechanisms cause malarial anemia: hemolysis of uninfected as well as infected erythrocytes and insufficient erythropoiesis. In a longitudinal birth cohort in Mali, we commonly observed marked hemoglobin reductions during P falciparum infections with a small proportion that progressed to SMA. We sought biomarkers of these processes using quantitative proteomic analysis on plasma samples from 9 P falciparum-infected children, comparing those with reduced hemoglobin (with or without SMA) vs those with stable hemoglobin. We identified higher plasma levels of circulating 20S proteasome and lower insulin-like growth factor-1 (IGF-1) levels in children with reduced hemoglobin. We confirmed these findings in independent enzyme-linked immunosorbent assay-based validation studies of subsets of children from the same cohort (20S proteasome, N = 71; IGF-1, N = 78). We speculate that circulating 20S proteasome plays a role in digesting erythrocyte membrane proteins modified by oxidative stress, resulting in hemolysis, whereas decreased IGF-1, a critical factor for erythroid maturation, might contribute to insufficient erythropoiesis. Quantitative plasma proteomics identified soluble mediators that may contribute to the major mechanisms underlying malarial anemia. This study was registered at www.clinicaltrials.gov as #NCT01168271.
Collapse
Affiliation(s)
- Almahamoudou Mahamar
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali; and
| | | | - Robert Morrison
- Pathogenesis and Immunity Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Rachel Boone
- Molecular Pathogenesis and Biomarkers Section and
| | - Oumar Attaher
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali; and
| | - Bacary S Diarra
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali; and
| | - Santara Gaoussou
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali; and
| | - Djibrilla Issiaka
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali; and
| | - Alassane Dicko
- Malaria Research and Training Center, Faculty of Medicine, Pharmacy and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali; and
| | - Patrick E Duffy
- Pathogenesis and Immunity Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Michal Fried
- Molecular Pathogenesis and Biomarkers Section and
| |
Collapse
|
2
|
Skorokhod O, Barrera V, Mandili G, Costanza F, Valente E, Ulliers D, Schwarzer E. Malaria Pigment Hemozoin Impairs GM-CSF Receptor Expression and Function by 4-Hydroxynonenal. Antioxidants (Basel) 2021; 10:antiox10081259. [PMID: 34439507 PMCID: PMC8389202 DOI: 10.3390/antiox10081259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 11/16/2022] Open
Abstract
Malarial pigment hemozoin (HZ) generates the lipoperoxidation product 4-hydroxynonenal (4-HNE), which is known to cause dysregulation of the immune response in malaria. The inhibition of granulocyte macrophage colony-stimulating factor (GM-CSF)-dependent differentiation of dendritic cells (DC) by HZ and 4-HNE was previously described in vitro, and the GM-CSF receptor (GM-CSF R) was hypothesised to be a primary target of 4-HNE in monocytes. In this study, we show the functional impact of HZ on GM-CSF R in monocytes and monocyte-derived DC by (i) impairing GM-CSF binding by 50 ± 9% and 65 ± 14%, respectively (n = 3 for both cell types); (ii) decreasing the expression of GM-CSF R functional subunit (CD116) on monocyte’s surface by 36 ± 11% (n = 6) and in cell lysate by 58 ± 16% (n = 3); and (iii) binding of 4-HNE to distinct amino acid residues on CD116. The data suggest that defective DC differentiation in malaria is caused by GM-CSF R dysregulation and GM-CSF R modification by lipoperoxidation product 4-HNE via direct interaction with its CD116 subunit.
Collapse
Affiliation(s)
- Oleksii Skorokhod
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Torino, Italy
- Correspondence:
| | - Valentina Barrera
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.B.); (G.M.); (F.C.); (E.V.); (D.U.); (E.S.)
- National Health System Blood and Transplant, 14 Estuary Banks, Liverpool GB-L24 8RB, UK
| | - Giorgia Mandili
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.B.); (G.M.); (F.C.); (E.V.); (D.U.); (E.S.)
| | - Federica Costanza
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.B.); (G.M.); (F.C.); (E.V.); (D.U.); (E.S.)
| | - Elena Valente
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.B.); (G.M.); (F.C.); (E.V.); (D.U.); (E.S.)
| | - Daniela Ulliers
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.B.); (G.M.); (F.C.); (E.V.); (D.U.); (E.S.)
| | - Evelin Schwarzer
- Department of Oncology, University of Torino, 10126 Torino, Italy; (V.B.); (G.M.); (F.C.); (E.V.); (D.U.); (E.S.)
| |
Collapse
|
4
|
Pappa V, Seydel K, Gupta S, Feintuch CM, Potchen MJ, Kampondeni S, Goldman-Yassen A, Veenstra M, Lopez L, Kim RS, Berman JW, Taylor T, Daily JP. Lipid metabolites of the phospholipase A2 pathway and inflammatory cytokines are associated with brain volume in paediatric cerebral malaria. Malar J 2015; 14:513. [PMID: 26691993 PMCID: PMC4687364 DOI: 10.1186/s12936-015-1036-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/04/2015] [Indexed: 11/13/2022] Open
Abstract
Background Cerebral malaria (CM) remains a significant cause of morbidity and mortality in children in sub-Saharan Africa. CM mortality has been associated with increased brain volume, seen on neuroimaging studies. Methods To examine the potential role of blood metabolites and inflammatory mediators in increased brain volume in Malawian children with CM, an association study was performed between plasma metabolites, cytokine levels and phospholipase A2 (PLA2) activity with brain volume. Results The metabolomics analysis demonstrated arachidonic acid and other lysophospholipids to be positively associated with brain swelling. These lipids are products of the PLA2 enzyme and an association of plasma PLA2 enzymatic activity with brain swelling was confirmed. TNFα, which can upregulate PLA2 activity, was associated with brain volume. In addition, CCL2 and IL-8 were also associated with brain volume. Some of these cytokines can alter endothelial cell tight junction proteins and increase blood brain barrier permeability. Conclusions Taken together, paediatric CM brain volume was associated with products of the PLA2 pathway and inflammatory cytokines. Their role in causality is unknown. These molecules will need to undergo testing in vitro and in animal models to understand their role in processes of increased brain volume. These observations provide novel data on host physiology associated with paediatric CM brain swelling, and may both inform pathogenesis models and suggest adjunct therapies that could improve the morbidity and mortality associated with paediatric CM. Electronic supplementary material The online version of this article (doi:10.1186/s12936-015-1036-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vasiliki Pappa
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Karl Seydel
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi. .,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Sanchit Gupta
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Catherine M Feintuch
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Michael J Potchen
- Department of Radiology, University of Rochester, Rochester, NY, 14642, USA. .,Lusaka Apex Medical University, Medical Radiation Sciences, Lusaka, Zambia.
| | - Samuel Kampondeni
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi.
| | - Adam Goldman-Yassen
- Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Mike Veenstra
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Lillie Lopez
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Ryung S Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Joan W Berman
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA. .,Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Terrie Taylor
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre, Malawi. .,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| | - Johanna P Daily
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA. .,Department of Medicine (Infectious Diseases), Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
5
|
Aguilar R, Marrocco T, Skorokhod OA, Barbosa A, Nhabomba A, Manaca MN, Guinovart C, Quintó L, Arese P, Alonso PL, Dobaño C, Schwarzer E. Blood oxidative stress markers and Plasmodium falciparum malaria in non-immune African children. Br J Haematol 2014; 164:438-50. [PMID: 24422726 DOI: 10.1111/bjh.12636] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/23/2013] [Indexed: 01/23/2023]
Abstract
Converging in vitro evidence and clinical data indicate that oxidative stress may play important roles in Plasmodium falciparum malaria, notably in the pathogenesis of severe anaemia. However, oxidative modifications of the red blood cell (RBC)-membrane by 4-hydroxynonenal (4-HNE) and haemoglobin-binding, previously hypothesized to contribute mechanistically to the pathogenesis of clinical malaria, have not yet been tested for clinical significance. In 349 non-immune Mozambican newborns recruited in a double-blind placebo-controlled chemoprophylaxis trial, oxidative markers including 4-HNE-conjugates and membrane-bound haemoglobin were longitudinally assessed from 2·5 to 24 months of age, at first acute malaria episode and in convalescence. During acute malaria, 4-HNE-conjugates were shown to increase significantly in parasitized and non-parasitized RBCs. In parallel, advanced oxidation protein products (AOPP) rose in plasma. 4-HNE-conjugates correlated with AOPP and established plasma but not with RBC oxidative markers. High individual levels of 4-HNE-conjugates were predictive for increased malaria incidence rates in children until 2 years of life and elevated 4-HNE-conjugates in convalescence accompanied sustained anaemia after a malaria episode, indicating 4-HNE-conjugates as a novel patho-mechanistic factor in malaria. A second oxidative marker, haemoglobin binding to RBC-membranes, hypothesized to induce clearing of RBCs from circulation, was predictive for lower malaria incidence rates. Further studies will show whether or not higher membrane-haemoglobin values at the first malaria episode may provide protection against malaria.
Collapse
Affiliation(s)
- Ruth Aguilar
- Barcelona Centre for International Health Research (CRESIB), Hospital Clinic-University of Barcelona, Barcelona, Spain; Manhiça Health Research Centre (CISM), Maputo, Mozambique; CIBER Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Sobolewski P, Gramaglia I, Frangos J, Intaglietta M, van der Heyde HC. Nitric oxide bioavailability in malaria. Trends Parasitol 2005; 21:415-22. [PMID: 16039159 DOI: 10.1016/j.pt.2005.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 05/17/2005] [Accepted: 07/06/2005] [Indexed: 10/25/2022]
Abstract
Rational development of adjunct or anti-disease therapy for severe Plasmodium falciparum malaria requires cellular and molecular definition of malarial pathogenesis. Nitric oxide (NO) is a potential target for such therapy but its role during malaria is controversial. It has been proposed that NO is produced at high levels to kill Plasmodium parasites, although the unfortunate consequence of elevated NO levels might be impaired neuronal signaling, oxidant damage and red blood cell damage that leads to anemia. In this case, inhibitors of NO production or NO scavengers might be an effective adjunct therapy. However, increasing amounts of evidence support the alternate hypothesis that NO production is limited during malaria. Furthermore, the well-documented NO scavenging by cell-free plasma hemoglobin and superoxide, the levels of which are elevated during malaria, has not been considered. Low NO bioavailability in the vasculature during malaria might contribute to pathologic activation of the immune system, the endothelium and the coagulation system: factors required for malarial pathogenesis. Therefore, restoring NO bioavailability might represent an effective anti-disease therapy.
Collapse
Affiliation(s)
- Peter Sobolewski
- La Jolla Bioengineering Institute, 505 Coast Boulevard, Suite 405, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|