1
|
Nerantzaki M, Husser C, Sergent I, Charles L, Lutz JF, Ryckelynck M. Chemical Synthesis and Poly(ethylene glycol)-Like Conjugation of the Mango-II Fluorogenic RNA Aptamer. Bioconjug Chem 2025. [PMID: 39977585 DOI: 10.1021/acs.bioconjchem.4c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
A reliable method for the efficient chemical synthesis and poly(ethylene glycol) PEG-like modification of fluorogenic RNA aptamers is reported. The 43-mer version of Mango-II RNA (MangoII-v1), which binds tightly and specifically to the green fluorophore TO1-Biotin (TO1-B), was synthesized by automated phosphoramidite chemistry using 2'-O-[(triisopropylsilyl)oxy]methyl] (2'-O-TOM)-protected ribonucleosides. Solid-phase phosphoramidite chemistry was also used as a single tool to prepare MangoII-v1 modified with a PEG-like oligophosphate synthetic segment (MangoII-v1-P). After cleavage from the resin, deprotection, and purification, the capacity to activate the fluorescence of TO1-B and the degradation behavior of the chemically synthesized RNAs MangoII-v1 and MangoII-v1-P, were deeply investigated in comparison with those of the enzymatically synthesized 48 nucleotides long RNA MangoII. Interestingly, the chemically synthesized MangoII-v1 RNA aptamer demonstrated great activity toward its target, compared to the enzymatically synthesized analogue. Moreover, it was found to be highly stable, retaining its structural integrity and bioactivity, even after seven days of incubation in 20% fetal bovine serum. MangoII-v1-P also showed a high affinity for TO1-B and excellent degradation resistance.
Collapse
Affiliation(s)
- Maria Nerantzaki
- CNRS, ISIS, Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Claire Husser
- CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Université de Strasbourg, 67000 Strasbourg, France
| | - Isaure Sergent
- CNRS, Institute for Radical Chemistry, UMR 7273, Aix Marseille Université, 23 Av Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Laurence Charles
- CNRS, Institute for Radical Chemistry, UMR 7273, Aix Marseille Université, 23 Av Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France
| | - Jean-François Lutz
- CNRS, ISIS, Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Michael Ryckelynck
- CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
2
|
Trzciński S, Brzezinska J, Waligórski K, Strzelec J, Kolet K, Klarek M, Kołacki O, Chmielewski MK. Hybrid Supports for Oligonucleotide Synthesis: Controlled Pore Glass Derivatives with Branched Amine-Ended Polyether or Polyimine. Chemistry 2024; 30:e202403086. [PMID: 39535441 DOI: 10.1002/chem.202403086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Controlled pore glass (CPG), differing in pore size and subsequent specific surface, was chemically modified by: (1) increasing surface susceptibility for amine functionalization via reaction with oxirane-type (active) and alkyl/aryl-type (inactive towards amine compounds) silane pro-adhesive compounds, and (2) immobilization of trimethylolpropane tris[poly(propylene glycol), amine terminated] ether, comb-like 8-arm octa[poly(ethylene glycol) amine] with each branch amine terminated, and a poly(propylene imine) amine-terminated second-generation dendrimer. The increase in surface density of amine functions - monitored by UV-Vis technique adopted for quantitative measurements of Ruhemann's purple intensity - improved final loading capacity, characterized by dimethoxytrityl cation absorption. Obtained materials proved their applicability in automatic oligonucleotide (ON) synthesis, especially when silanized 2000 Å CPG modified with 8-arm octa[poly(ethylene glycol) amine], with deduced empirical formula CPG - silane - (NH)6.4PEG-(NH2)1.6, was used for long-chain (150 nucleotides) ONs synthesis. This can be regarded as a good CPG support for this purpose. Moreover, hybrid supports with different porosity allowed the synthesis of shorter ONs with satisfactory yield and purity, monitored by RP-HPLC and MALDI-TOF. On the molecular level, two competitive mechanisms seem to influence the utility of the final hybrid support: spatial availability of active sites and the propensity of the functionalizer to bond with the CPG surface.
Collapse
Affiliation(s)
- Stanisław Trzciński
- Department of Biopolymer Chemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Jolanta Brzezinska
- Department of Biopolymer Chemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704, Poznań, Poland
| | | | - Joanna Strzelec
- Department of Biopolymer Chemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Katarzyna Kolet
- FutureSynthesis sp.z o.o., ul. Rubież 46B, 61-612, Poznań, Poland
| | - Mateusz Klarek
- Department of Biopolymer Chemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Oskar Kołacki
- Department of Biopolymer Chemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Marcin K Chmielewski
- Department of Biopolymer Chemistry, Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704, Poznań, Poland
| |
Collapse
|
3
|
Zhou X, Fillon Y, Shi X, Antia F, Zhou X, Lin A. Hydrogen Fluoride Imidazole: A Simple, Efficient, Mild, and Cost-Effective Silyl-Ether Deprotection Reagent. J Org Chem 2024; 89:15793-15807. [PMID: 39432813 DOI: 10.1021/acs.joc.4c01885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Despite the availability of numerous -OH silyl protection and deprotection methods, the selective cleavage of silyl ethers in highly complex molecules can still be a challenge. In this article, we present results from a full investigation of a novel, efficient, and mild desilylation protocol using HF/imidazole. Imidazole significantly enhances the desilylation reaction efficiency of HF, allowing clean and complete deprotection of TBDPS ethers in substrates containing both acid and base sensitive groups. For example, four- and five-mer oligonucleotides were efficiently deprotected where all other conditions failed. HF/imidazole is also an effective reagent for the deprotection of TIPS and TBDMS ethers. The reagent prepared using commercially available HF and imidazole maintained the same reactivity even after 4 years of storage at 4 °C. Residual reagents and byproducts can be readily removed with a simple workup; consequently, deprotection of TBDPS was successfully implemented in a 2.5 kg scale synthesis of a five-mer oligonucleotide.
Collapse
Affiliation(s)
- Xuan Zhou
- Oligonucleotide Process Development, Biogen, Cambridge, Massachusetts 02142, United States
| | - Yannick Fillon
- Oligonucleotide Process Development, Biogen, Cambridge, Massachusetts 02142, United States
| | - Xianglin Shi
- Leal Therapeutics, Worcester, Massachusetts 01609, United States
| | - Firoz Antia
- Oligonucleotide Process Development, Biogen, Cambridge, Massachusetts 02142, United States
| | - Xiao Zhou
- Oligonucleotide Process Development, Biogen, Cambridge, Massachusetts 02142, United States
| | - Angela Lin
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Ban J, Seo BK, Yu Y, Kim M, Choe J, Park JH, Park SY, Lee DK, Kim SH. Nonclinical Pharmacokinetics Study of OLX702A-075-16, N-Acetylgalactosamine Conjugated Asymmetric Small Interfering RNA (GalNAc-asiRNA). Drug Metab Dispos 2024; 52:1262-1270. [PMID: 39168524 DOI: 10.1124/dmd.124.001805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024] Open
Abstract
In this study, the nonclinical pharmacokinetics of OLX702A-075-16, an RNA interference therapeutic currently in development, were investigated. OLX702A-075-16 is a novel N-acetylgalactosamine conjugated asymmetric small-interfering RNA (GalNAc-asiRNA) used for the treatment of an undisclosed liver disease. Its unique 16/21-mer asymmetric structure reduces nonspecific off-target effects without compromising efficacy. We investigated the plasma concentration, tissue distribution, metabolism, and renal excretion of OLX702A-075-16 following a subcutaneous administration in mice and rats. For bioanalysis, high-performance liquid chromatography with fluorescence detection was used. The results showed rapid clearance from plasma (0.5 to 1.5 hours of half-life) and predominant distribution to the liver and/or kidney. Less than 1% of the liver concentration of OLX702A-075-16 was detected in the other tissues. Metabolite profiling using liquid chromatography coupled with high-resolution mass spectrometry revealed that the intact duplex OLX702A-075-16 was the major compound in plasma. The GalNAc moiety was predominantly metabolized from the sense strand in the liver, with the unconjugated sense strand of OLX702A-075-16 accounting for more than 95% of the total exposure in the rat liver. Meanwhile, the antisense strand was metabolized by the sequential loss of nucleotides from the 3'-terminus by exonuclease, with the rat liver samples yielding the most diverse truncated forms of metabolites. Urinary excretion over 96 hours was less than 1% of the administered dose in rats. High plasma protein binding of OLX702A-075-16 likely inhibited its clearance through renal filtration. SIGNIFICANCE STATEMENT: This study presents the first comprehensive characterization of the in vivo pharmacokinetics of GalNAc-asiRNA. The pharmacokinetic insights gained from this research will aid in understanding toxicology and efficacy, optimizing delivery platforms, and improving the predictive power of preclinical species data for human applications.
Collapse
Affiliation(s)
- Jihye Ban
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Bong Kyo Seo
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Yunmi Yu
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Minkyeong Kim
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Jeongyong Choe
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - June Hyun Park
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Shin-Young Park
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - Dong-Ki Lee
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| | - So Hee Kim
- OliX Pharmaceuticals, Inc., Suwon, South Korea (J.B., B.K.S., Y.Y., M.K., J.C., J.H.P., S.-Y.P., D.-K.L.) and College of Pharmacy and Research Institute of Pharmaceutical Science and Technology, Ajou University, Suwon, South Korea (J.B., S.H.K.)
| |
Collapse
|
5
|
Kawato K, Sato K, Wada T. α-Selective Solid-Phase Synthesis of Glycosyl Phosphate Repeating Structure Via the Phosphoramidite Method. Chemistry 2024; 30:e202401226. [PMID: 39023079 DOI: 10.1002/chem.202401226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Lipophosphoglycans (LPGs) are found on the surface of Leishmania, a protozoan parasite, and are immunologically important. Herein, disaccharide 1-phosphate repeating units of LPGs were successfully synthesized on a solid support with high anomeric purity using a disaccharide α-1-phosphoramidite building block. To enhance solubility in the reaction solvent, hydroxy-protecting groups in the form of para-t-butylbenzoyl were introduced to the building block. The saccharide chain was elongated via stable glycosyl boranophosphate linkages, followed by the conversion of inter-sugar linkages to phosphodiester counterparts using an oxaziridine derivative. The addition of a silylating reagent post-reaction with the oxaziridine derivative efficiently facilitated the conversion of boranophosohodiesters to phosphodiesters. This method enabled the α-selective synthesis of up to 15 repeating units, marking the longest homogeneous repeating units of LPGs synthesized chemically. Given the chain length equivalence to native LPGs, the method developed herein holds promise for advancing anti-Leishmanial pharmaceuticals and vaccines.
Collapse
Affiliation(s)
- Kazuki Kawato
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda Chiba, 278-8510, Japan
| | - Kazuki Sato
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda Chiba, 278-8510, Japan
| | - Takeshi Wada
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda Chiba, 278-8510, Japan
| |
Collapse
|
6
|
Szczepaniak G, Kapil K, Adida S, Kim K, Lin TC, Yilmaz G, Murata H, Matyjaszewski K. Solid-Phase Synthesis of Well-Defined Multiblock Copolymers by Atom Transfer Radical Polymerization. J Am Chem Soc 2024; 146:22247-22256. [PMID: 39079042 PMCID: PMC11328128 DOI: 10.1021/jacs.4c03675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Solid-phase polymer synthesis, historically rooted in peptide synthesis, has evolved into a powerful method for achieving sequence-controlled macromolecules. This study explores solid-phase polymer synthesis by covalently immobilizing growing polymer chains onto a poly(ethylene glycol) (PEG)-based resin, known as ChemMatrix (CM) resin. In contrast to traditional hydrophobic supports, CM resin's amphiphilic properties enable swelling in both polar and nonpolar solvents, simplifying filtration, washing, and drying processes. Combining atom transfer radical polymerization (ATRP) with solid-phase techniques allowed for the grafting of well-defined block copolymers in high yields. This approach is attractive for sequence-controlled polymer synthesis, successfully synthesizing di-, tri-, tetra-, and penta-block copolymers with excellent control over the molecular weight and dispersity. The study also delves into the limitations of achieving high molecular weights due to confinement within resin pores. Moreover, the versatility of the method is demonstrated through its applicability to various monomers in organic and aqueous media. This straightforward approach offers a rapid route to developing tailored block copolymers with unique structures and functionalities.
Collapse
Affiliation(s)
- Grzegorz Szczepaniak
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Kriti Kapil
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Samuel Adida
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Khidong Kim
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Ting-Chih Lin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Gorkem Yilmaz
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hironobu Murata
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
7
|
Ren Q, Osawa T, Tatsuno M, Obika S. THF peroxide as a factor in generating desulphurised products from the solid-phase synthesis of phosphorothioate-modified oligonucleotides. RSC Adv 2024; 14:21590-21596. [PMID: 38979452 PMCID: PMC11229082 DOI: 10.1039/d4ra03592e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Antisense oligonucleotides (ASOs) are generally obtained via chemical synthesis on a solid support and phosphorothioate (PS) modification with a phosphate backbone to increase their in vivo stability and activity. However, desulphurised products, in which PS is partially replaced by phosphodiesters, are generally formed during the chemical synthesis of ASO and are difficult to separate from the desired PS-modified ASO by chromatography. Therefore, revealing the unknown factors that cause the formation of desulphurised products and proposing methods to inhibit their formation are highly desirable. In this study, it was found that peroxides in THF, which is used as a solvent for the acetyl capping agent, oxidise phosphite triesters to produce desulphurisation products. The use of THF with antioxidants effectively suppresses the oxidation caused by THF peroxides. Moreover, THF peroxide was found to oxidise phosphoramidites, which are the building blocks of oligonucleotide chemical syntheses, indicating that caution should be taken with the organic solvents used during the synthesis and purification of phosphoramidites.
Collapse
Affiliation(s)
- Qin Ren
- Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadaoka Suita Osaka 565-0871 Japan
| | - Takashi Osawa
- Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadaoka Suita Osaka 565-0871 Japan
| | - Michiaki Tatsuno
- Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadaoka Suita Osaka 565-0871 Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadaoka Suita Osaka 565-0871 Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University 1-3 Yamadaoka Suita Osaka 565-0871 Japan
| |
Collapse
|
8
|
Li Y, Zhang C, Fu T, Wang XQ, Tan W. Polyfluoroalkyl Tag Decoration Enables Significantly Enhanced Tumor Penetration Ability of a PTK7 Targeting Aptamer. Bioconjug Chem 2024; 35:674-681. [PMID: 38695582 DOI: 10.1021/acs.bioconjchem.4c00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Aptamers are widely used molecular recognition tools in targeted therapy, but their ability to effectively penetrate deep into solid tumors remains a significant challenge, leading to suboptimal treatment efficacy. Here, we developed a polyfluoroalkyl (PFA) decoration strategy to enhance aptamer recognition, cell internalization, and solid tumor penetration. Our results indicate that PFA with around 11 fluorine atoms significantly improves aptamer internalization both in vitro and in vivo settings. However, we also observed that the use of PFA tags containing 19 and 23 fluorine atoms on aptamers resulted in nonspecific cell anchoring in control cell lines, affecting the specificity of aptamers. Overall, we found that using a chemical modification strategy could enhance the deep tumor penetration ability of aptamers and validate their effectiveness in vivo. This approach has significant practical applications in targeted drug delivery for cancer treatment.
Collapse
Affiliation(s)
- Yingying Li
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Chi Zhang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ting Fu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Xue-Qiang Wang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
9
|
Zhou X, Shi X, Fillon Y, Antia F, Pickel T, Yang J, Zhang W, Delavari A, Zhang J. Simplified Oligonucleotide Phosphorus Deprotection Process with Reduced 3-(2-Cyanoethyl) Thymidine Impurities. Nucleic Acid Ther 2024; 34:83-89. [PMID: 38315742 DOI: 10.1089/nat.2023.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Oligonucleotides have emerged as valuable new therapeutics. Presently, oligonucleotide manufacturing consists in a series of stepwise additions until the full-length product is obtained. Deprotection of the phosphorus backbone before cleavage and deprotection (C&D) by ammonolysis is necessary to control the 3-(2-cyanoethyl) thymidine (CNET) impurity. In this study, we demonstrate that the use of piperazine as a scavenger of acrylonitrile allows phosphorus deprotection and C&D to be combined in a single step. This reduces solvent consumption, processing time, and CNET levels. Additionally, we showed that substitution of piperazine for triethylamine in the phosphorus deprotection step of supported-synthesis leads to reduced reaction times and lower levels of CNET impurities.
Collapse
Affiliation(s)
- Xuan Zhou
- Oligonucleotide Process Development, Biogen, Cambridge, Massachusetts, USA
| | - Xianglin Shi
- Leal Therapeutics, Worcester, Massachusetts, USA
| | - Yannick Fillon
- Oligonucleotide Process Development, Biogen, Cambridge, Massachusetts, USA
| | - Firoz Antia
- Oligonucleotide Process Development, Biogen, Cambridge, Massachusetts, USA
| | - Thomas Pickel
- Oligonucleotide Process Development, Biogen, Cambridge, Massachusetts, USA
| | - Jing Yang
- Intellia Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - William Zhang
- Oligonucleotide Process Development, Biogen, Cambridge, Massachusetts, USA
| | - Armin Delavari
- Oligonucleotide Process Development, Biogen, Cambridge, Massachusetts, USA
| | - Jiabao Zhang
- Oligonucleotide Process Development, Biogen, Cambridge, Massachusetts, USA
| |
Collapse
|
10
|
Nerantzaki M, Husser C, Ryckelynck M, Lutz JF. Exchanging and Releasing Information in Synthetic Digital Polymers Using a Strand-Displacement Strategy. J Am Chem Soc 2024; 146:6456-6460. [PMID: 38286022 DOI: 10.1021/jacs.3c13953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Toehold-mediated strand displacement (TMSD) was tested as a tool to edit information in synthetic digital polymers. Uniform DNA-polymer biohybrid macromolecules were first synthesized by automated phosphoramidite chemistry and characterized by HPLC, mass spectrometry, and polyacrylamide gel electrophoresis (PAGE). These precursors were diblock structures containing a synthetic poly(phosphodiester) (PPDE) segment covalently attached to a single-stranded DNA sequence. Three types of biohybrids were prepared herein: a substrate containing an accessible toehold as well as input and output macromolecules. The substrate and the input macromolecules contained noncoded PPDE homopolymers, whereas the output macromolecule contained a digitally encoded segment. After hybridization of the substrate with the output, incubation in the presence of the input led to efficient TMSD and the release of the digital segment. TMSD can therefore be used to erase or rewrite information in self-assembled biohybrid superstructures. Furthermore, it was found in this work that the conjugation of DNA single strands to synthetic segments of chosen lengths greatly facilitates the characterization and PAGE visualization of the TMSD process.
Collapse
Affiliation(s)
- Maria Nerantzaki
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| | - Claire Husser
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 2 allée Konrad Roentgen, 67084 Strasbourg, France
| | - Michael Ryckelynck
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, 2 allée Konrad Roentgen, 67084 Strasbourg, France
| | - Jean-François Lutz
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
11
|
Sabary O, Yucovich A, Shapira G, Yaakobi E. Reconstruction algorithms for DNA-storage systems. Sci Rep 2024; 14:1951. [PMID: 38263421 PMCID: PMC10806084 DOI: 10.1038/s41598-024-51730-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
Motivated by DNA storage systems, this work presents the DNA reconstruction problem, in which a length-n string, is passing through the DNA-storage channel, which introduces deletion, insertion and substitution errors. This channel generates multiple noisy copies of the transmitted string which are called traces. A DNA reconstruction algorithm is a mapping which receives t traces as an input and produces an estimation of the original string. The goal in the DNA reconstruction problem is to minimize the edit distance between the original string and the algorithm's estimation. In this work, we present several new algorithms for this problem. Our algorithms look globally on the entire sequence of the traces and use dynamic programming algorithms, which are used for the shortest common supersequence and the longest common subsequence problems, in order to decode the original string. Our algorithms do not require any limitations on the input and the number of traces, and more than that, they perform well even for error probabilities as high as 0.27. The algorithms have been tested on simulated data, on data from previous DNA storage experiments, and on a new synthesized dataset, and are shown to outperform previous algorithms in reconstruction accuracy.
Collapse
Affiliation(s)
- Omer Sabary
- The Henry and Marilyn Taub Faculty of Computer Science, Technion, 3200003, Haifa, Israel.
| | - Alexander Yucovich
- The Henry and Marilyn Taub Faculty of Computer Science, Technion, 3200003, Haifa, Israel
| | - Guy Shapira
- The Henry and Marilyn Taub Faculty of Computer Science, Technion, 3200003, Haifa, Israel
| | - Eitan Yaakobi
- The Henry and Marilyn Taub Faculty of Computer Science, Technion, 3200003, Haifa, Israel
| |
Collapse
|
12
|
Schutz T, Sergent I, Obeid G, Oswald L, Al Ouahabi A, Baxter PNW, Clément JL, Gigmes D, Charles L, Lutz JF. Conception and Evaluation of a Library of Cleavable Mass Tags for Digital Polymers Sequencing. Angew Chem Int Ed Engl 2023; 62:e202310801. [PMID: 37738223 DOI: 10.1002/anie.202310801] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 09/24/2023]
Abstract
A library of phosphoramidite monomers containing a main-chain cleavable alkoxyamine and a side-chain substituent of variable molar mass (i.e. mass tag) was prepared in this work. These monomers can be used in automated solid-phase phosphoramidite chemistry and therefore incorporated periodically as spacers inside digitally-encoded poly(phosphodiester) chains. Consequently, the formed polymers contain tagged cleavable sites that guide their fragmentation in mass spectrometry sequencing and enhance their digital readability. The spacers were all prepared via a seven steps synthetic procedure. They were afterwards tested for the synthesis and sequencing of model digital polymers. Uniform digitally-encoded polymers were obtained as major species in all cases, even though some minor defects were sometimes detected. Furthermore, the polymers were decoded in pseudo-MS3 conditions, thus confirming the reliability and versatility of the spacers library.
Collapse
Affiliation(s)
- Thibault Schutz
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000, Strasbourg, France
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034, Strasbourg Cedex 2, France
| | - Isaure Sergent
- Aix Marseille Université, CNRS, UMR 7273, Institute of Radical Chemistry, 13397, Marseille Cedex 20, France
| | - Georgette Obeid
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Laurence Oswald
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034, Strasbourg Cedex 2, France
| | - Abdelaziz Al Ouahabi
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034, Strasbourg Cedex 2, France
| | - Paul N W Baxter
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000, Strasbourg, France
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034, Strasbourg Cedex 2, France
| | - Jean-Louis Clément
- Aix Marseille Université, CNRS, UMR 7273, Institute of Radical Chemistry, 13397, Marseille Cedex 20, France
| | - Didier Gigmes
- Aix Marseille Université, CNRS, UMR 7273, Institute of Radical Chemistry, 13397, Marseille Cedex 20, France
| | - Laurence Charles
- Aix Marseille Université, CNRS, UMR 7273, Institute of Radical Chemistry, 13397, Marseille Cedex 20, France
| | - Jean-François Lutz
- Université de Strasbourg, CNRS, ISIS, 8 allée Gaspard Monge, 67000, Strasbourg, France
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034, Strasbourg Cedex 2, France
| |
Collapse
|
13
|
Takahashi Y, Kakuta K, Namioka Y, Igarashi A, Sakamoto T, Iwata Hara R, Sato K, Wada T. Synthesis of P-Modified DNA from Boranophosphate DNA as a Precursor via Acyl Phosphite Intermediates. J Org Chem 2023; 88:10617-10631. [PMID: 37462534 PMCID: PMC10407935 DOI: 10.1021/acs.joc.3c00659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Indexed: 08/05/2023]
Abstract
In this study, we successfully synthesized several kinds of P-modified nucleic acids from boranophosphate DNAs via an acyl phosphite intermediate in solution and on a solid support. In the solution-phase synthesis, phosphorothioate diester, phosphotriester, and phosphoramidate diester were synthesized in a one-pot reaction from boranophosphodiester via the conversion of an acyl phosphite as a key intermediate. In addition, doubly P-modified nucleic acid derivatives which were difficult to synthesize by the phosphoramidite and H-phosphonate methods were also obtained by the conversion reaction. In the solid-phase synthesis, a boranophosphate derivative was synthesized on a solid support using the H-boranophosphonate method. Then, an acyl phosphite intermediate was formed by treatment with pivaloyl chloride in pyridine, followed by appropriate transformations to obtain the P-modified derivatives such as phosphotriester and phosphorothioate diester. Notably, it was suggested that the conversion reaction of a boranophosphate to a phosphorothioate diester proceeded with retention of the stereochemistry of the phosphorous center. In addition, a phosphorothioate/phosphate chimeric dodecamer was successfully synthesized from a boranophosphate/phosphate chimeric dodecamer using the same strategy. Therefore, boranophosphate derivatives are versatile precursors for the synthesis of P-modified DNA, including chimeric derivatives.
Collapse
Affiliation(s)
- Yuhei Takahashi
- Department
of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kiyoshi Kakuta
- Department
of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Yukichi Namioka
- Department
of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Ayumi Igarashi
- Department
of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Taiichi Sakamoto
- Department
of Life Science, Chiba Institute of Technology, Graduate School of Advanced Engineering, Chiba 275-0016, Japan
| | - Rintaro Iwata Hara
- Department
of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Department
of Neurology and Neurological Science, Graduate School of Medicinal
and Dental Sciences, Tokyo Medical and Dental
University, Tokyo 113-8519, Japan
| | - Kazuki Sato
- Department
of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takeshi Wada
- Department
of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
14
|
O’Hagan M, Duan Z, Huang F, Laps S, Dong J, Xia F, Willner I. Photocleavable Ortho-Nitrobenzyl-Protected DNA Architectures and Their Applications. Chem Rev 2023; 123:6839-6887. [PMID: 37078690 PMCID: PMC10214457 DOI: 10.1021/acs.chemrev.3c00016] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 04/21/2023]
Abstract
This review article introduces mechanistic aspects and applications of photochemically deprotected ortho-nitrobenzyl (ONB)-functionalized nucleic acids and their impact on diverse research fields including DNA nanotechnology and materials chemistry, biological chemistry, and systems chemistry. Specific topics addressed include the synthesis of the ONB-modified nucleic acids, the mechanisms involved in the photochemical deprotection of the ONB units, and the photophysical and chemical means to tune the irradiation wavelength required for the photodeprotection process. Principles to activate ONB-caged nanostructures, ONB-protected DNAzymes and aptamer frameworks are introduced. Specifically, the use of ONB-protected nucleic acids for the phototriggered spatiotemporal amplified sensing and imaging of intracellular mRNAs at the single-cell level are addressed, and control over transcription machineries, protein translation and spatiotemporal silencing of gene expression by ONB-deprotected nucleic acids are demonstrated. In addition, photodeprotection of ONB-modified nucleic acids finds important applications in controlling material properties and functions. These are introduced by the phototriggered fusion of ONB nucleic acid functionalized liposomes as models for cell-cell fusion, the light-stimulated fusion of ONB nucleic acid functionalized drug-loaded liposomes with cells for therapeutic applications, and the photolithographic patterning of ONB nucleic acid-modified interfaces. Particularly, the photolithographic control of the stiffness of membrane-like interfaces for the guided patterned growth of cells is realized. Moreover, ONB-functionalized microcapsules act as light-responsive carriers for the controlled release of drugs, and ONB-modified DNA origami frameworks act as mechanical devices or stimuli-responsive containments for the operation of DNA machineries such as the CRISPR-Cas9 system. The future challenges and potential applications of photoprotected DNA structures are discussed.
Collapse
Affiliation(s)
- Michael
P. O’Hagan
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Zhijuan Duan
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Fujian Huang
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Shay Laps
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jiantong Dong
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Fan Xia
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Itamar Willner
- Institute
of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
15
|
Hirao K, Speciale I, Notaro A, Manabe Y, Teramoto Y, Sato T, Atomi H, Molinaro A, Ueda Y, De Castro C, Fukase K. Structural Determination and Chemical Synthesis of the N-Glycan from the Hyperthermophilic Archaeon Thermococcus kodakarensis. Angew Chem Int Ed Engl 2023; 62:e202218655. [PMID: 36719065 DOI: 10.1002/anie.202218655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Asparagine-linked protein glycosylations (N-glycosylations) are one of the most abundant post-translational modifications and are essential for various biological phenomena. Herein, we describe the isolation, structural determination, and chemical synthesis of the N-glycan from the hyperthermophilic archaeon Thermococcus kodakarensis. The N-glycan from the organism possesses a unique structure including myo-inositol, which has not been found in previously characterized N-glycans. In this structure, myo-inositol is highly glycosylated and linked with a disaccharide unit through a phosphodiester. The straightforward synthesis of this glycan was accomplished through diastereoselective phosphorylation and phosphodiester construction by SN 2 coupling. Considering the early divergence of hyperthermophilic organisms in evolution, this study can be expected to open the door to approaching the primitive function of glycan modification at the molecular level.
Collapse
Affiliation(s)
- Kohtaro Hirao
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Immacolata Speciale
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 96, 80055, Portici, Naples, Italy
| | - Anna Notaro
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 96, 80055, Portici, Naples, Italy
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yoshiaki Teramoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Takaaki Sato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Haruyuki Atomi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Antonio Molinaro
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Department of Chemical Sciences, University of Napoli Federico II, Via Cintia 4, 80126, Napoli, Italy
| | - Yoshihiro Ueda
- Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Napoli Federico II, Via Università 96, 80055, Portici, Naples, Italy
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Forefront Research Center, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
16
|
Yu L, Chen B, Li Z, Huang Q, He K, Su Y, Han Z, Zhou Y, Zhu X, Yan D, Dong R. Digital synthetic polymers for information storage. Chem Soc Rev 2023; 52:1529-1548. [PMID: 36786068 DOI: 10.1039/d2cs01022d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Digital synthetic polymers with uniform chain lengths and defined monomer sequences have recently become intriguing alternatives to traditional silicon-based information devices or natural biomacromolecules for data storage. The structural diversity of information-containing macromolecules endows the digital synthetic polymers with higher stability and storage density but less occupied space. Through subtly designing each unit of coded structure, the information can be readily encoded into digital synthetic polymers in a more economical scheme and more decodable, opening up new avenues for molecular digital data storage with high-level security. This tutorial review summarizes recent advances in salient features of digital synthetic polymers for data storage, including encoding, decoding, editing, erasing, encrypting, and repairing. The current challenges and outlook are finally discussed to offer potential solution guidance and new perspectives for the creation of next-generation digital synthetic polymers and broaden the scope of their applicability.
Collapse
Affiliation(s)
- Li Yu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Baiyang Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Ziying Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Qijing Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Kaiyuan He
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Yue Su
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Zeguang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Ruijiao Dong
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
17
|
Borths CJ, Burr T, Figuccia A, Ford JG, Guan B, Jones MT, Klingeleers D, Lochner S, Rodriguez AA, Wetter C. Nitrosamine Risk Assessments in Oligonucleotides. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Tracey Burr
- Ionis Pharmaceuticals Inc., Carlsbad, California 92010, United States
| | - Aude Figuccia
- Novartis AG, Lichtstrasse 35, CH-4056 Basel, Switzerland
| | - J. Gair Ford
- AstraZeneca, Macclesfield SK10 2NA, United Kingdom
| | - Bing Guan
- Biogen, Cambridge, Massachusetts 02142, United States
| | - Michael T. Jones
- Pfizer, 875 Chesterfield Parkway West, Chesterfield, Missouri 63017, United States
| | | | | | | | - Christian Wetter
- F. Hoffmann-La Roche AG, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| |
Collapse
|
18
|
Heilmann T, Ackermann D, Lopez J. Refractive Index to Monitor Solid-Phase Oligonucleotide Synthesis. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tobias Heilmann
- Novartis Pharma AG, Lichtstrasse 35, 4056 Basel, Switzerland
| | | | - John Lopez
- Novartis Pharma AG, Lichtstrasse 35, 4056 Basel, Switzerland
| |
Collapse
|
19
|
Hagino R, Mozaki K, Komura N, Imamura A, Ishida H, Ando H, Tanaka HN. Straightforward Synthesis of the Poly(ADP-ribose) Branched Core Structure. ACS OMEGA 2022; 7:32795-32804. [PMID: 36119971 PMCID: PMC9476175 DOI: 10.1021/acsomega.2c04732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Poly(ADP-ribosyl)ation is a post-translational modification that produces poly(ADP-ribose) with a branched structure every 20-50 units; such branching structure has been previously suggested to be involved in regulating chromatin remodeling. To elucidate its detailed functions, we developed a straightforward method for the synthesis of the poly(ADP-ribose) branched core structure, α-d-ribofuranosyl-(1‴ → 2″)-α-d-ribofuranosyl-(1″ → 2')-adenosine 5',5'',5‴-trisphosphate 1, from 6-chloropurine ribofuranoside 4 in 10 steps and 6.1% overall yield. The structure poses synthetic challenges for constructing iterative α-1,2-cis-glycosidic bonds in the presence of a purine base and the installation of three phosphate groups at primary hydroxyl groups. Iterative glycosidic bonds were formed by α-1,2-cis-selective ribofuranosylation using 2-O-(2-naphthylmethyl)-protected thioglycoside donor 6 and a thiophilic bismuth promoter. After the construction of diribofuranosyl adenosine 5 had been constructed, it was chemo- and regioselectively phosphorylated at a later stage. Subsequent deprotection provided the synthetic target 1.
Collapse
Affiliation(s)
- Rui Hagino
- The
United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Department
of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Keita Mozaki
- Department
of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Naoko Komura
- Institute
for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Akihiro Imamura
- Institute
for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- The
United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Department
of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hideharu Ishida
- Institute
for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- The
United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Department
of Applied Bioorganic Chemistry, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiromune Ando
- Institute
for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- The
United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hide-Nori Tanaka
- Institute
for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- The
United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
20
|
Azam ATMZ, Okamoto I, Ono A. Synthesis of a novel nucleotide unit containing cytosine analog bearing phosphodiester function and formation of silver(I)-mediated DNA duplex. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2022; 41:1141-1161. [PMID: 35866881 DOI: 10.1080/15257770.2022.2100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/28/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Novel modified cytosine analogs bearing phosphodiester/thiophosphodiester functionality were synthesized. The interactions between different metal ions and modified cytosine-cytosine base-pairs in DNA duplexes were investigated by UV-melting experiments. The thiophosphodiester modification binds to the Ag(I) ions strongly compared to the phosphodiester counterpart as examined in ESI-MS spectra as well.
Collapse
Affiliation(s)
- A T M Zafrul Azam
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan
| | - Itaru Okamoto
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan
| | - Akira Ono
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan
| |
Collapse
|
21
|
Sato K, Chiba A, Shiraishi T, Ogawa Y, Hara RI, Wada T. Solid-phase synthesis of N-trichloroacetyl mannosamine 1-phosphate repeating units Mimicking capsular polysaccharide derived from Neisseria meningitidis serotype A. Carbohydr Res 2022; 518:108585. [DOI: 10.1016/j.carres.2022.108585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 11/02/2022]
|
22
|
Della-Felice F, de Andrade Bartolomeu A, Pilli RA. The phosphate ester group in secondary metabolites. Nat Prod Rep 2022; 39:1066-1107. [PMID: 35420073 DOI: 10.1039/d1np00078k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: 2000 to mid-2021The phosphate ester is a versatile, widespread functional group involved in a plethora of biological activities. Its presence in secondary metabolites, however, is relatively rare compared to other functionalities and thus is part of a rather unexplored chemical space. Herein, the chemistry of secondary metabolites containing the phosphate ester group is discussed. The text emphasizes their structural diversity, biological and pharmacological profiles, and synthetic approaches employed in the phosphorylation step during total synthesis campaigns, covering the literature from 2000 to mid-2021.
Collapse
Affiliation(s)
- Franco Della-Felice
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, Sao Paulo, Brazil.,Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain.
| | | | - Ronaldo Aloise Pilli
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, CEP 13083-970 Campinas, Sao Paulo, Brazil
| |
Collapse
|
23
|
Fillon YA, Akhtar N, Andrews BI, Benstead D, Breitler S, Gronke RS, Olbrich M, Stolee JA, Vandermeersch T. Determination of Purge Factors for Use in Oligonucleotide Control Strategies. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yannick A. Fillon
- Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | | | - Benjamin I. Andrews
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | | | - Simon Breitler
- F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Robert S. Gronke
- Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Martin Olbrich
- F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jessica A. Stolee
- Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | | |
Collapse
|
24
|
Cao KY, Yan TM, Zhang JZ, Chan TF, Li J, Li C, Lai-Han Leung E, Gao J, Zhang BX, Jiang ZH. A tRNA-derived fragment from Chinese yew suppresses ovarian cancer growth via targeting TRPA1. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:718-732. [PMID: 35317282 PMCID: PMC8905250 DOI: 10.1016/j.omtn.2021.12.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022]
Abstract
Drug discovery from plants usually focuses on small molecules rather than such biological macromolecules as RNAs. Although plant transfer RNA (tRNA)-derived fragment (tRF) has been associated with the developmental and defense mechanisms in plants, its regulatory role in mammals remains unclear. By employing a novel reverse small interfering RNA (siRNA) screening strategy, we show that a tRF mimic (antisense derived from the 5' end of tRNAHis(GUG) of Chinese yew) exhibits comparable anti-cancer activity with that of taxol on ovarian cancer A2780 cells, with a 16-fold lower dosage than that of taxol. A dual-luciferase reporter assay revealed that tRF-T11 directly targets the 3' UTR of oncogene TRPA1 mRNA. Furthermore, an Argonaute-RNA immunoprecipitation (AGO-RIP) assay demonstrated that tRF-T11 can interact with AGO2 to suppress TRPA1 via an RNAi pathway. This study uncovers a new role of plant-derived tRFs in regulating endogenous genes. This holds great promise for exploiting novel RNA drugs derived from nature and sheds light on the discovery of unknown molecular targets of therapeutics.
Collapse
Affiliation(s)
- Kai-Yue Cao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Tong-Meng Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Ji-Zhou Zhang
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ting-Fung Chan
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jie Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| | - Jin Gao
- Increasepharm (Hengqin) Institute Co., Ltd, Zhuhai 519031, China
| | | | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China
| |
Collapse
|
25
|
Wu Z, Xiao M, Lai W, Sun Y, Li L, Hu Z, Pei H. Nucleic Acid-Based Cell Surface Engineering Strategies and Their Applications. ACS APPLIED BIO MATERIALS 2022; 5:1901-1915. [DOI: 10.1021/acsabm.1c01126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhongdong Wu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Mingshu Xiao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Wei Lai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yueyang Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Li Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zongqian Hu
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
26
|
Choi WS, Garcia-Diaz M. A minimal motif for sequence recognition by mitochondrial transcription factor A (TFAM). Nucleic Acids Res 2021; 50:322-332. [PMID: 34928349 PMCID: PMC8754647 DOI: 10.1093/nar/gkab1230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 11/13/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial transcription factor A (TFAM) plays a critical role in mitochondrial transcription initiation and mitochondrial DNA (mtDNA) packaging. Both functions require DNA binding, but in one case TFAM must recognize a specific promoter sequence, while packaging requires coating of mtDNA by association with non sequence-specific regions. The mechanisms by which TFAM achieves both sequence-specific and non sequence-specific recognition have not yet been determined. Existing crystal structures of TFAM bound to DNA allowed us to identify two guanine-specific interactions that are established between TFAM and the bound DNA. These interactions are observed when TFAM is bound to both specific promoter sequences and non-sequence specific DNA. These interactions are established with two guanine bases separated by 10 random nucleotides (GN10G). Our biochemical results demonstrate that the GN10G consensus is essential for transcriptional initiation and contributes to facilitating TFAM binding to DNA substrates. Furthermore, we report a crystal structure of TFAM in complex with a non sequence-specific sequence containing a GN10G consensus. The structure reveals a unique arrangement in which TFAM bridges two DNA substrates while maintaining the GN10G interactions. We propose that the GN10G consensus is key to facilitate the interaction of TFAM with DNA.
Collapse
Affiliation(s)
- Woo Suk Choi
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
27
|
Abstract
Solid-phase biomimetic polyketide synthesis has been developed. This method is composed of (i) carbon chain elongation of resin-bound carboxylic acid via decarboxylative Claisen condensation with malonic acid half thioester, (ii) stepwise transformation of the resulting β-ketothioester, and (iii) hydrolysis of thioester to regenerate the carboxylic acid for the next iteration cycle. Colorimetric tests were available for convenient monitoring of the solid-phase reactions; malachite green (basic dye) and iron(III) chloride successfully detected the carboxylic acid and the β-ketothioester, respectively. In addition, gel-phase 13C NMR could be utilized to confirm the progress of substrate immobilization. The established method was applied to the synthesis of the natural products, xylapyrone C and kavain. The present method could be further extended to the synthesis of (R)-kavain with catalytic diastereoselective asymmetric transfer hydrogenation as a key step.
Collapse
Affiliation(s)
- Yuta Takeuchi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kengo Akagawa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Kazuaki Kudo
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
28
|
Matsuda H, Yoshida E, Shinoda T, Sato K, Hara RI, Wada T. Solution-phase synthesis of oligodeoxyribonucleotides using the H-phosphonate method with N-unprotected 5'-phosphite monomers. RSC Adv 2021; 11:38094-38107. [PMID: 35498072 PMCID: PMC9044012 DOI: 10.1039/d1ra06619f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
Recent advances in nucleic acid therapeutics increase the requirements for developing efficient methods for the chemical synthesis of oligodeoxyribonucleotides (ODNs). In this study, we report a new approach for the solution-phase synthesis of ODNs using the H-phosphonate method with N-unprotected 5'-phosphite monomers. The 5'-phosphite monomers are synthesized in a single step from unprotected 2'-deoxyribonucleosides using 5'-O-selective phosphitylation and can be applied to the synthetic cycle of the H-phosphonate method. We synthesized four kinds of 5'-phosphite monomers and then optimized the conditions for the condensation between the 3'-hydroxy groups of the 5'-phosphite monomers and the H-phosphonate monoesters. As a result of various investigations, solution-phase synthesis of trithymidine diphosphate (TTT) and tetramers containing four kinds of nucleobases was achieved according to the procedure consisting of repeated condensation, deprotection, and purification using simple extraction or precipitation.
Collapse
Affiliation(s)
- Hiromasa Matsuda
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
- CMC Production Technology Laboratories, MTPC Production Technology & Supply Chain Management Division, Mitsubishi Tanabe Pharma Corporation 3-16-89 Kashima, Yodogawa-ku Osaka 532-8505 Japan
| | - Erina Yoshida
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Takaaki Shinoda
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Kazuki Sato
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| | - Rintaro Iwata Hara
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University 1-5-45 Yushima, Bunkyo-ku Tokyo 113-8519 Japan
| | - Takeshi Wada
- Department of Medicinal and Life Sciences, Faculty of Pharmaceutical Sciences, Tokyo University of Science 2641 Yamazaki Noda Chiba 278-8510 Japan
| |
Collapse
|
29
|
Sinyakov AN, Ryabinin VA, Kostina EV. Application of Array-Based Oligonucleotides for Synthesis of Genetic Designs. Mol Biol 2021. [DOI: 10.1134/s0026893321030109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Salamończyk GM. A Fast and Convenient Synthesis of New Water-Soluble, Polyanionic Dendrimers. Molecules 2021; 26:4754. [PMID: 34443342 PMCID: PMC8399870 DOI: 10.3390/molecules26164754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Reasonably simple, efficient, and possessing aspects of generality, the methodology for the synthesis of new, water-soluble, dendrimeric polyesters with great potential applications as antiviral drugs in their own right is described. The essential aspect of the presented approach is a quite unique, immediate access to the polyanionic material at each generation during divergent synthesis. Six target polyanionic dendrimers (generations 1, 2, and 3) have been synthesized. The key monomers applied in this project were 1,3,5-benzenetricarboxylic acid derivatives, which also worked as direct precursors of the charged dendrimer surface.
Collapse
Affiliation(s)
- Grzegorz M Salamończyk
- Centre of Molecular and Macromolecular Studies, The Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| |
Collapse
|
31
|
Hara RI, Sato K, Wada T. Synthesis of Glycosyl Phosphate Repeats and Their Analogues. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Takeshi Wada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
32
|
Mao S, Chang Z, Ying Zheng Y, Shekhtman A, Sheng J. DNA Functionality with Photoswitchable Hydrazone Cytidine*. Chemistry 2021; 27:8372-8379. [PMID: 33872432 DOI: 10.1002/chem.202100742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/18/2022]
Abstract
A new family of hydrazone modified cytidine phosphoramidite building block was synthesized and incorporated into oligodeoxynucleotides to construct photoswitchable DNA strands. The E-Z isomerization triggered by the irradiation of blue light with a wavelength of 450 nm was investigated and confirmed by 1 H NMR spectroscopy and HPLC in the contexts of both nucleoside and oligodeoxynucleotide. The light activated Z form isomer of this hydrazone-cytidine with a six-member intramolecular hydrogen bond was found to inhibit DNA synthesis in the primer extension model by using Bst DNA polymerase. In addition, the hydrazone modification caused the misincorporation of dATP together with dGTP into the growing DNA strand with similar selectivity, highlighting a potential G to A mutation. This work provides a novel functional DNA building block and an additional molecular tool that has potential chemical biology and biomedicinal applications to control DNA synthesis and DNA-enzyme interactions using the cell friendly blue light irradiation.
Collapse
Affiliation(s)
- Song Mao
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Zhihua Chang
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Ya Ying Zheng
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Alexander Shekhtman
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| | - Jia Sheng
- Department of Chemistry, University at Albany, State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA.,The RNA Institute, University at Albany State University of New York, 1400 Washington Ave., Albany, NY, 1222, USA
| |
Collapse
|
33
|
Vicino MF, Hett T, Schiemann O. Spin Labeling of RNA Using "Click" Chemistry for Coarse-grained Structure Determination via Pulsed Electron-electron Double Resonance Spectroscopy. Bio Protoc 2021; 11:e4004. [PMID: 34150941 PMCID: PMC8187847 DOI: 10.21769/bioprotoc.4004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 11/02/2022] Open
Abstract
Understanding the function of oligonucleotides on a molecular level requires methods for studying their structure, conformational changes, and internal dynamics. Various biophysical methods exist to achieve this, including the whole toolbox of Electron Paramagnetic Resonance (EPR or ESR) spectroscopy. An EPR method widely used in this regard is Pulsed Electron-Electron Double Resonance (PELDOR or DEER), which provides distances in the nanometer range between electron spins in biomolecules with Angstrom precision, without restriction to the size of the biomolecule, and in solution. Since oligonucleotides inherently do not contain unpaired electrons, these have to be introduced in the form of so-called spin labels. Firstly, this protocol describes how nitroxide spin labels can be site-specifically attached to oligonucleotides using "Click" chemistry. The reaction provides little byproducts, high yields, and is conveniently performed in aqueous solution. Secondly, the protocol details how to run the PELDOR experiment, analyze the data, and derive a coarse-grained structure. Here, emphasis is placed on the pitfalls, requirements for a good dataset, and limits of interpretation; thus, the protocol gives the user a guideline for the whole experiment i.e., from spin labeling, via the PELDOR measurement and data analysis, to the final coarse-grained structure. Graphical abstract: Schematic overview of the workflow described in this protocol: First, the spin-labeling of RNA is described, which is performed as a "Click"-reaction between the alkyne-functionalized RNA strand and the azide group of the spin label. Next, step-by-step instructions are given for setting up PELDOR/DEER distance measurements on the labeled RNA, and for data analysis. Finally, guidelines are provided for building a structural model from the previously analyzed data.
Collapse
Affiliation(s)
- Maria F. Vicino
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Tobias Hett
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Olav Schiemann
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| |
Collapse
|
34
|
Loth C, Charles L, Lutz JF, Nerantzaki M. Precisely Defined Aptamer- b-Poly(phosphodiester) Conjugates Prepared by Phosphoramidite Polymer Chemistry. ACS Macro Lett 2021; 10:481-485. [PMID: 35549221 DOI: 10.1021/acsmacrolett.1c00164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Uniform conjugates combining a DNA aptamer (either anti-MUC1 or ATP aptamer) and a synthetic polymer segment were synthesized by automated phosphoramidite chemistry. This multistep growth polymer chemistry enables the use of both natural (i.e., nucleoside phosphoramidites) and non-natural monomers (e.g., alkyl- and oligo(ethylene glycol)-phosphoramidites). Thus, in the present work, six different aptamer-polymer conjugates were synthesized and characterized by ion-exchange HPLC, circular dichroism spectroscopy, and electrospray mass spectrometry. All these methods evidenced the formation of uniform molecules with precisely controlled chain-length and monomer sequences. Furthermore, aptamer folding was not affected by polymer bioconjugation. The method described herein is straightforward and allows covalent attachment of homopolymers and copolymers to biofunctional DNA aptamers.
Collapse
Affiliation(s)
- Capucine Loth
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - Laurence Charles
- Aix Marseille Université, CNRS, UMR 7273, Institute of Radical Chemistry, 13397, Marseille Cedex 20, France
| | - Jean-François Lutz
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| | - Maria Nerantzaki
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| |
Collapse
|
35
|
Abstract
In biological systems, the storage and transfer of genetic information rely on sequence-controlled nucleic acids such as DNA and RNA. It has been realized for quite some time that this property is not only crucial for life but could also be very useful in human applications. For instance, DNA has been actively investigated as a digital storage medium over the past decade. Indeed, the "hard-disk of life" is an obvious choice and a highly optimized material for storing data. Through decades of nucleic acids research, technological tools for parallel synthesis and sequencing of DNA have been readily available. Consequently, it has already been demonstrated that different types of documents (e.g., texts, images, videos, and industrial data) can be stored in chemically synthesized DNA libraries. However, DNA is subject to biological constraints, and its molecular structure cannot be easily varied to match technological needs. In fact, DNA is not the only macromolecule that enables data storage. In recent years, it has been demonstrated that a wide variety of synthetic polymers can also be used for such a purpose. Indeed, modern polymer synthesis allows the preparation of synthetic macromolecules with precisely controlled monomer sequences. Altogether, about a dozens of synthetic digital polymers have already been described, and many more can be foreseen. Among them, sequence-defined poly(phosphodiester)s are one of the most promising options. These polymers are prepared by stepwise phosphoramidite chemistry like chemically synthesized oligonucleotides. However, they are constructed with non-natural building blocks and therefore share almost no structural characteristics with nucleic acids, except phosphate repeat units. Still, they contain readable digital messages that can be deciphered by nanopore sequencing or mass spectrometry sequencing. In this Account, we describe our recent research efforts in synthesizing and sequencing optimal abiological digital poly(phosphodiester)s. A major advantage of these polymers over DNA is that their molecular structure can easily be varied to tune their properties. During the last 5 years, we have engineered the molecular structure of these polymers to adjust crucial parameters such as the storage density, storage capacity, erasability, and readability. Consequently, high-capacity PPDE chains, containing hundreds of bits per chains, can now be synthesized and efficiently sequenced using a routine mass spectrometer. Furthermore, sequencing data can be automatically decrypted with the help of decoding software. This new type of coded matter can also be edited using practical physical triggers such as light and organized in space by programmed self-assembly. All of these recent improvements are summarized and discussed herein.
Collapse
Affiliation(s)
- Laurence Charles
- Aix Marseille Université, CNRS, Institute for Radical Chemistry, UMR 7273, 23 Av Escadrille Nomandie-Niemen, 13397 Marseille Cedex 20, France
| | - Jean-François Lutz
- Université de Strasbourg, CNRS, Institut Charles Sadron UPR22, 23 rue du Loess, 67034 Strasbourg Cedex 2, France
| |
Collapse
|
36
|
Laurent E, Amalian JA, Schutz T, Launay K, Clément JL, Gigmes D, Burel A, Carapito C, Charles L, Delsuc MA, Lutz JF. Storing the portrait of Antoine de Lavoisier in a single macromolecule. CR CHIM 2021. [DOI: 10.5802/crchim.72] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
37
|
Affiliation(s)
- Peng Shi
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| | - Yong Wang
- Department of Biomedical Engineering The Pennsylvania State University University Park PA 16802 USA
| |
Collapse
|
38
|
Shi P, Wang Y. Synthetic DNA for Cell-Surface Engineering. Angew Chem Int Ed Engl 2021; 60:11580-11591. [PMID: 33006229 DOI: 10.1002/anie.202010278] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/29/2020] [Indexed: 12/14/2022]
Abstract
The cell membrane is not only a physical barrier, but also a functional organelle that regulates the communication between a cell and its environment. The ability to functionalize the cell membrane with synthetic molecules or nanostructures would advance cellular functions beyond what evolution has provided. The aim of this Minireview is to introduce recent progress in using synthetic DNA and DNA-based nanostructures for cell-surface engineering. We first introduce chemical conjugation and physical binding methods for monovalent and polyvalent surface engineering. We then introduce the application of these methods for either the promotion or inhibition of cell-environment communication in numerous applications, including the promotion of cell-cell recognition, regulation of intracellular pathways, protection of therapeutic cells, and sensing of the intracellular and extracellular microenvironments. Lastly, we summarize current challenges existing in this area and potential solutions to solve these challenges.
Collapse
Affiliation(s)
- Peng Shi
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
39
|
Nerantzaki M, Loth C, Lutz JF. Chemical conjugation of nucleic acid aptamers and synthetic polymers. Polym Chem 2021. [DOI: 10.1039/d1py00516b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This minireview describes the synthesis, characterization and properties of aptamer–polymer conjugates. This new class of polymer bioconjugates combines the advantages of synthetic polymers and folded nucleic acids.
Collapse
Affiliation(s)
- Maria Nerantzaki
- Université de Strasbourg
- CNRS
- Institut Charles Sadron UPR22
- 67034 Strasbourg Cedex 2
- France
| | - Capucine Loth
- Université de Strasbourg
- CNRS
- Institut Charles Sadron UPR22
- 67034 Strasbourg Cedex 2
- France
| | - Jean-François Lutz
- Université de Strasbourg
- CNRS
- Institut Charles Sadron UPR22
- 67034 Strasbourg Cedex 2
- France
| |
Collapse
|
40
|
Heckmann CM, Paradisi F. Looking Back: A Short History of the Discovery of Enzymes and How They Became Powerful Chemical Tools. ChemCatChem 2020; 12:6082-6102. [PMID: 33381242 PMCID: PMC7756376 DOI: 10.1002/cctc.202001107] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/02/2020] [Indexed: 12/20/2022]
Abstract
Enzymatic approaches to challenges in chemical synthesis are increasingly popular and very attractive to industry given their green nature and high efficiency compared to traditional methods. In this historical review we highlight the developments across several fields that were necessary to create the modern field of biocatalysis, with enzyme engineering and directed evolution at its core. We exemplify the modular, incremental, and highly unpredictable nature of scientific discovery, driven by curiosity, and showcase the resulting examples of cutting-edge enzymatic applications in industry.
Collapse
Affiliation(s)
- Christian M Heckmann
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
| | - Francesca Paradisi
- School of Chemistry University of Nottingham University Park Nottingham NG7 2RD UK
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 3012 Bern Switzerland
| |
Collapse
|
41
|
Chakrapani A, Vaňková Hausnerová V, Ruiz-Larrabeiti O, Pohl R, Krásný L, Hocek M. Photocaged 5-(Hydroxymethyl)pyrimidine Nucleoside Phosphoramidites for Specific Photoactivatable Epigenetic Labeling of DNA. Org Lett 2020; 22:9081-9085. [PMID: 33156631 DOI: 10.1021/acs.orglett.0c03462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
5-Hydroxymethylcytosine and uracil are epigenetic nucleobases, but their biological roles are still unclear. We present the synthesis of 2-nitrobenzyl photocaged 5-hydroxymethyl-2'-deoxycytidine and uridine 3'-O-phosphoramidites and their use in automated solid-phase synthesis of oligonucleotides (ONs) modified at specific positions. The ONs were used as primers for PCR to construct DNA templates modified in the promoter region that allowed switching of transcription through photochemical uncaging.
Collapse
Affiliation(s)
- Aswathi Chakrapani
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Viola Vaňková Hausnerová
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Olatz Ruiz-Larrabeiti
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000 Prague 6, Czech Republic
| | - Libor Krásný
- Laboratory of Microbial Genetics and Gene Expression, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, 16000 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
42
|
Saneyoshi H, Ono A. Design and Synthesis of Protecting Groups for Pro-oligo Type Nucleic Acid-based Drugs. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hisao Saneyoshi
- Department of Chemistry, Shiga University of Medical Science
| | - Akira Ono
- Department of Material and Life Chemistry, Kanagawa University
| |
Collapse
|
43
|
Capaldi D, Akhtar N, Atherton T, Benstead D, Charaf A, De Vijlder T, Heatherington C, Hoernschemeyer J, Jiang H, Rieder U, Ring F, Peter R, Stolee JA, Wechselberger R. Strategies for Identity Testing of Therapeutic Oligonucleotide Drug Substances and Drug Products. Nucleic Acid Ther 2020; 30:249-264. [PMID: 32857010 DOI: 10.1089/nat.2020.0878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A risk-based approach for routine identity testing of therapeutic oligonucleotide drug substances and drug products is described. Risk analysis of solid-phase oligonucleotide synthesis indicates that intact mass measurement is a powerful technique for confirming synthesis of the intended oligonucleotide. Further risk assessment suggests that the addition of a second, sequence-sensitive identity test, which relies on a comparison of some property of the sample to a reference standard of proven identity, results in a sufficient test of identity for most oligonucleotide drug substances and products. Alternative strategies for drug product identity testing are presented. The analysis creates a common way to communicate risk and should result in a harmonized approach to identity testing that avoids the unnecessary analytical burden associated with routine de novo sequencing, without compromising quality or patient safety.
Collapse
Affiliation(s)
- Daniel Capaldi
- Development Chemistry, Ionis Pharmaceuticals Inc., Carlsbad, California, USA
| | - Nadim Akhtar
- New Modalities and Parenteral Development and Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Tom Atherton
- Structure and Function Characterization, CMC Analytical, GlaxoSmithKline, Stevenage, United Kingdom
| | - David Benstead
- Chemical Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, United Kingdom
| | - Ayman Charaf
- Research and Development Tides, Pharmaceutical Development Platform, Sanofi-Aventis GmbH, Frankfurt am Main, Germany
| | - Thomas De Vijlder
- Analytical Development, Small Molecule Development, Janssen Pharmaceutical Companies of Johnson and Johnson, Beerse, Belgium
| | - Carl Heatherington
- Drug Substance and Product Analysis UK, CMC Analytical, GlaxoSmithKline, Stevenage, United Kingdom
| | | | - Hong Jiang
- Analytical Development, Biogen, Cambridge, Massachusetts, USA
| | - Ulrike Rieder
- Technical Research and Development, Global Drug Development, Novartis Pharma, Basel, Switzerland
| | - Francis Ring
- Development Chemistry, Ionis Pharmaceuticals Inc., Carlsbad, California, USA
| | - Robert Peter
- Analytical Research and Development, Synthetic Molecules Technical Development, F. Hoffmann-La Roche, Basel, Switzerland
| | | | - Rainer Wechselberger
- Analytical Development, Small Molecule Development, Janssen Pharmaceutical Companies of Johnson and Johnson, Beerse, Belgium
| |
Collapse
|
44
|
A review on nanostructure-based mercury (II) detection and monitoring focusing on aptamer and oligonucleotide biosensors. Talanta 2020; 220:121437. [PMID: 32928439 DOI: 10.1016/j.talanta.2020.121437] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/11/2020] [Accepted: 07/19/2020] [Indexed: 02/08/2023]
Abstract
Heavy metal ion pollution is a severe problem in environmental protection and especially in human health due to their bioaccumulation in organisms. Mercury (II) (Hg2+), even at low concentrations, can lead to DNA damage and give permanent harm to the central nervous system by easily passing through biological membranes. Therefore, sensitive detection and monitoring of Hg2+ is of particular interest with significant specificity. In this review, aptamer-based strategies in combination with nanostructures as well as several other strategies to solve addressed problems in sensor development for Hg2+ are discussed in detail. In particular, the analytical performance of different aptamer and oligonucleotide-based strategies using different signal improvement approaches based on nanoparticles were compared within each strategy and in between. Although quite a number of the suggested methodologies analyzed in this review fulfills the standard requirements, further development is still needed on real sample analysis and analytical performance parameters.
Collapse
|
45
|
Baghery S, Zarei M, Zolfigol MA, Mallakpour S, Behranvand V. Application of trityl moieties in chemical processes: part I. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01980-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
46
|
Dual miRNases for Triple Incision of miRNA Target: Design Concept and Catalytic Performance. Molecules 2020; 25:molecules25102459. [PMID: 32466298 PMCID: PMC7287882 DOI: 10.3390/molecules25102459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Irreversible destruction of disease-associated regulatory RNA sequences offers exciting opportunities for safe and powerful therapeutic interventions against human pathophysiology. In 2017, for the first time we introduced miRNAses–miRNA-targeted conjugates of a catalytic peptide and oligonucleotide capable of cleaving an miRNA target. Herein, we report the development of Dual miRNases against oncogenic miR-21, miR-155, miR-17 and miR-18a, each containing the catalytic peptide placed in-between two short miRNA-targeted oligodeoxyribonucleotide recognition motifs. Substitution of adenines with 2-aminoadenines in the sequence of oligonucleotide “shoulders” of the Dual miRNase significantly enhanced the efficiency of hybridization with the miRNA target. It was shown that sequence-specific cleavage of the target by miRNase proceeded metal-independently at pH optimum 5.5–7.5 with an efficiency varying from 15% to 85%, depending on the miRNA sequence. A distinct advantage of the engineered nucleases is their ability to additionally recruit RNase H and cut miRNA at three different locations. Such cleavage proceeds at the central part by Dual miRNase, and at the 5′- and 3′-regions by RNase H, which significantly increases the efficiency of miRNA degradation. Due to increased activity at lowered pH Dual miRNases could provide an additional advantage in acidic tumor conditions and may be considered as efficient tumor-selective RNA-targeted therapeutic.
Collapse
|
47
|
Laurent E, Amalian JA, Parmentier M, Oswald L, Al Ouahabi A, Dufour F, Launay K, Clément JL, Gigmes D, Delsuc MA, Charles L, Lutz JF. High-Capacity Digital Polymers: Storing Images in Single Molecules. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00666] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Eline Laurent
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, 67034 Cedex 2 Strasbourg, France
| | - Jean-Arthur Amalian
- CNRS, UMR 7273, Institute of Radical Chemistry, Aix Marseille Université, 13397 Cedex 20 Marseille, France
| | - Marie Parmentier
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, 67034 Cedex 2 Strasbourg, France
| | - Laurence Oswald
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, 67034 Cedex 2 Strasbourg, France
| | - Abdelaziz Al Ouahabi
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, 67034 Cedex 2 Strasbourg, France
| | - Florent Dufour
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, 67034 Cedex 2 Strasbourg, France
| | - Kevin Launay
- CNRS, UMR 7273, Institute of Radical Chemistry, Aix Marseille Université, 13397 Cedex 20 Marseille, France
| | - Jean-Louis Clément
- CNRS, UMR 7273, Institute of Radical Chemistry, Aix Marseille Université, 13397 Cedex 20 Marseille, France
| | - Didier Gigmes
- CNRS, UMR 7273, Institute of Radical Chemistry, Aix Marseille Université, 13397 Cedex 20 Marseille, France
| | - Marc-André Delsuc
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U596, CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch-Graffenstaden, France
| | - Laurence Charles
- CNRS, UMR 7273, Institute of Radical Chemistry, Aix Marseille Université, 13397 Cedex 20 Marseille, France
| | - Jean-François Lutz
- CNRS, Institut Charles Sadron UPR22, Université de Strasbourg, 23 rue du Loess, 67034 Cedex 2 Strasbourg, France
| |
Collapse
|
48
|
Sato K, Wada T. Development of Efficient Synthetic Methods of Boranophosphate Oligonucleotides. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Takeshi Wada
- Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
49
|
Shen R, Tan J, Yuan Q. Chemically Modified Aptamers in Biological Analysis. ACS APPLIED BIO MATERIALS 2020; 3:2816-2826. [DOI: 10.1021/acsabm.0c00062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ruichen Shen
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jie Tan
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
50
|
Ślęczkowski ML, Segers I, Liu Y, Palmans ARA. Sequence-defined l-glutamamide oligomers with pendant supramolecular motifs via iterative synthesis and orthogonal post-functionalization. Polym Chem 2020. [DOI: 10.1039/d0py01157f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One of the great challenges in polymer chemistry is to achieve discrete and sequence-defined synthetic polymers that fold in defined conformations and form well-defined three-dimensional structured particles.
Collapse
Affiliation(s)
- Marcin L. Ślęczkowski
- Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
- Laboratory of Macromolecular and Organic Chemistry
| | - Ian Segers
- Laboratory of Macromolecular and Organic Chemistry
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Yiliu Liu
- Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
- Laboratory of Macromolecular and Organic Chemistry
| | - Anja R. A. Palmans
- Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
- Laboratory of Macromolecular and Organic Chemistry
| |
Collapse
|