1
|
Xue-Zhang, Li CY, Zhu GH, Song LL, Zhao YW, Ma YH, Ping-Tian, Chen WS, Ge GB. Discovery of Tetrahydro Tanshinone I as a Naturally Occurring Covalent Pan-Inhibitor Against Gut Microbial Bile Salt Hydrolases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23233-23245. [PMID: 39378230 DOI: 10.1021/acs.jafc.4c03617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Gut microbial bile salt hydrolases (gmBSHs), an important class of bacteria-produced cysteine hydrolases, play a crucial role in bile acid metabolism. Modulating the total gmBSH activity is a feasible way for ameliorating some metabolic diseases including colorectal cancer, type 2 diabetes, and obesity. This study reported the discovery and characterization of a botanical compound as a covalent pan-inhibitor of gmBSHs. Following the screening of more than 100 botanical compounds, tanshinones were found with strong time-dependent anti-EfBSH effects. After that, a total of 17 naturally occurring tanshinones were collected, and their anti-EfBSH potentials were tested. Among all tested tanshinones, tetrahydro tanshinone I (THTI) exhibited the most potent inhibitory effects against five gmBSHs (EfBSH, LsBSH, BtBSH, CpBSH, and BlBSH), showing the IC50 values ranging from 0.28 ± 0.05 μM to 1.62 ± 0.07 μM. Further investigations showed that THTI could covalently modify the conserved catalytic cysteine (Cys2) of all tested gmBSHs, while this agent could strongly inhibit the total gmBSHs activity in live microorganisms and murine gut luminal content. Collectively, THTI is identified as a naturally occurring covalent pan-inhibitor of gmBSHs, which offers a promising lead compound to develop more efficacious gmBSHs inhibitors for the management of bile acid metabolism and related metabolic disorders.
Collapse
Affiliation(s)
- Xue-Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chun-Yu Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang-Hao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li-Lin Song
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Wen Zhao
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Hui Ma
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ping-Tian
- The Research Center of Chiral Drugs, Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wan-Sheng Chen
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guang-Bo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
2
|
Kongphet M, Hang HTX, Ngo TT, Le TKD, Chavasiri W. Structural modification of tanshinone IIA and their α-glucosidase inhibitory activity. Bioorg Med Chem Lett 2024; 105:129736. [PMID: 38599295 DOI: 10.1016/j.bmcl.2024.129736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
α-Glucosidase is one of the therapeutic approaches for treating type 2 diabetes mellitus. Almost 95 % of diabetes patients worldwide have been diagnosed with type 2 diabetes, resulting in 1.5 million fatalities each year. Newly synthesized oxazole-based tanshinone IIA derivatives (1a-n) were designed and evaluated for their inhibitory activity against α-glucosidase enzyme. Eight compounds (1a-d, 1f-g, 1j, and 1m) demonstrated excellent inhibition with IC50 values ranging from 0.73 ± 0.11 to 9.46 ± 0.57 μM as compared to tanshinone IIA (IC50 = 11.39 ± 0.77 μM) and standard acarbose (IC50 = 100.00 ± 0.95 μM). Among this series, 1j bearing two hydroxyls group over the phenyl ring was identified as the most potent α-glucosidase inhibitor with IC50 value of 0.73 ± 0.11 μM. Molecular docking simulations were done for the most active compound to identify important binding modes responsible for inhibition activity of α-glucosidase. In addition, the kinetic study was also performed to understand the mode of inhibition.
Collapse
Affiliation(s)
- Mutita Kongphet
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Hoa Tai Xuan Hang
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Thanh The Ngo
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - Thi-Kim-Dung Le
- Laboratory of Biophysics, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| | - Warinthorn Chavasiri
- Center of Excellence in Natural Products Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
3
|
Deng X, Huang SL, Ren J, Pan ZH, Shen Y, Zhou HF, Zuo ZL, Leng Y, Zhao QS. Development and structure-activity relationships of tanshinones as selective 11β-hydroxysteroid dehydrogenase 1 inhibitors. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:36. [PMID: 36131216 PMCID: PMC9492458 DOI: 10.1007/s13659-022-00358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
11β-Hydroxysteroid dehydrogenase 1 (11β-HSD1) represents a promising drug target for metabolic syndrome, including obesity and type 2 diabetes. Our initial screen of a collection of natural products from Danshen led to the identification of tanshinones as the potent and selective 11β-HSD1 inhibitors. To improve the druggability and explore the structure-activity relationships (SARs), more than 40 derivatives have been designed and synthesized using tanshinone IIA and cryptotanshinone as the starting materials. More than 10 derivatives exhibited potent in vitro 11β-HSD1 inhibitory activity and good selectivity over 11β-HSD2 across human and mouse species. Based on the biological results, SARs were further discussed, which was also partially rationalized by a molecular docking model of 1 bound to the 11β-HSD1. Remarkably, compounds 1, 17 and 30 significantly inhibited 11β-HSD1 in 3T3-L1 adipocyte and in livers of ob/ob mice, which merits further investigations as anti-diabetic agents. This study not only provides a series of novel selective 11β-HSD1 inhibitors with promising therapeutic potentials in metabolic syndromes, but also expands the boundaries of the chemical and biological spaces of tanshinones.
Collapse
Affiliation(s)
- Xu Deng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Su-Ling Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jian Ren
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Zheng-Hong Pan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin, 541006, China
| | - Yu Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hao-Feng Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Zhi-Li Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China.
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Qin-Shi Zhao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China.
| |
Collapse
|
4
|
Huang X, Deng H, Shen QK, Quan ZS. Tanshinone IIA: Pharmacology, total synthesis, and progress in structure-modifications. Curr Med Chem 2021; 29:1959-1989. [PMID: 34749607 DOI: 10.2174/0929867328666211108110025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Tanshinone IIA, a major bioactive constituent of Danshen, a Chinese herbal medicine, has gained extensive exploration owing to its unique structural features and multiple promising biological activities. This review focuses on the pharmacology, total synthesis, and structural modifications of tanshinone IIA. We hope this review will contribute to a better understanding of the progress in the field and provide constructive suggestions for further study of tanshinone IIA.
Collapse
Affiliation(s)
- Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002. China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002. China
| | - Qing-Kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002. China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, 133002. China
| |
Collapse
|
5
|
Huang H, Song C, Chang J. Synthesis and Biological Activity Study of Tanshinone Derivatives: A Literature and Patent Review. Curr Top Med Chem 2020; 20:2520-2534. [DOI: 10.2174/1568026620666200922115109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 12/28/2022]
Abstract
Tanshinones are a class of bioactive compounds present in the Chinese herbal medicine Danshen
(Salvia miltiorrhiza Bunge), containing among others, abietane diterpene quinone scaffolds. Chemical synthesis
and biological activity studies of natural and unnatural tanshinone derivatives have been reviewed in
this article.
Collapse
Affiliation(s)
- He Huang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Chuanjun Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Lee JE, Sim H, Yoo HM, Lee M, Baek A, Jeon YJ, Seo KS, Son MY, Yoon JS, Kim J. Neuroprotective Effects of Cryptotanshinone in a Direct Reprogramming Model of Parkinson's Disease. Molecules 2020; 25:molecules25163602. [PMID: 32784741 PMCID: PMC7463464 DOI: 10.3390/molecules25163602] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD) is a well-known age-related neurodegenerative disease. Considering the vital importance of disease modeling based on reprogramming technology, we adopted direct reprogramming to human-induced neuronal progenitor cells (hiNPCs) for in vitro assessment of potential therapeutics. In this study, we investigated the neuroprotective effects of cryptotanshinone (CTN), which has been reported to have antioxidant properties, through PD patient-derived hiNPCs (PD-iNPCs) model with induced oxidative stress and cell death by the proteasome inhibitor MG132. A cytotoxicity assay showed that CTN possesses anti-apoptotic properties in PD-hiNPCs. CTN treatment significantly reduced cellular apoptosis through mitochondrial restoration, such as the reduction in mitochondrial reactive oxygen species and increments of mitochondrial membrane potential. These effects of CTN are mediated via the nuclear factor erythroid 2-related factor 2 (NRF2) pathway in PD-hiNPCs. Consequently, CTN could be a potential antioxidant reagent for preventing disease-related pathological phenotypes of PD.
Collapse
Affiliation(s)
- Joo-Eun Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-E.L.); (H.S.); (M.L.); (A.B.); (Y.-J.J.); (M.-Y.S.)
| | - Hyuna Sim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-E.L.); (H.S.); (M.L.); (A.B.); (Y.-J.J.); (M.-Y.S.)
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| | - Hee Min Yoo
- Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Korea;
| | - Minhyung Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-E.L.); (H.S.); (M.L.); (A.B.); (Y.-J.J.); (M.-Y.S.)
| | - Aruem Baek
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-E.L.); (H.S.); (M.L.); (A.B.); (Y.-J.J.); (M.-Y.S.)
| | - Young-Joo Jeon
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-E.L.); (H.S.); (M.L.); (A.B.); (Y.-J.J.); (M.-Y.S.)
| | - Kang-Sik Seo
- Huen Co., Ltd., Gwanggyo Business Center 5F (#508), 156, Gwanggyo-ro, Yeongtong-gu, Suwon 16506, Korea;
| | - Mi-Young Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-E.L.); (H.S.); (M.L.); (A.B.); (Y.-J.J.); (M.-Y.S.)
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
| | - Joo Seog Yoon
- Huen Co., Ltd., Gwanggyo Business Center 5F (#508), 156, Gwanggyo-ro, Yeongtong-gu, Suwon 16506, Korea;
- Correspondence: (J.S.Y.); (J.K.); Tel.: +82-31-8064-1622 (J.S.Y.); +82-42-860-4478 (J.K.)
| | - Janghwan Kim
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea; (J.-E.L.); (H.S.); (M.L.); (A.B.); (Y.-J.J.); (M.-Y.S.)
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: (J.S.Y.); (J.K.); Tel.: +82-31-8064-1622 (J.S.Y.); +82-42-860-4478 (J.K.)
| |
Collapse
|
7
|
Li MM, Xia F, Li CJ, Xu G, Qin HB. Design, synthesis and cytotoxicity of nitrogen-containing tanshinone derivatives. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.11.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Wang F, Yang H, Yu S, Xue Y, Fan Z, Liang G, Geng M, Zhang A, Ding C. Total synthesis of (±)-tanshinol B, tanshinone I, and (±)-tanshindiol B and C. Org Biomol Chem 2018; 16:3376-3381. [DOI: 10.1039/c8ob00567b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A concise and efficient approach was established for the divergent total synthesis of (±)-tanshinol B, (±)-tanshindiol B, (±)-tanshindiol C, and tanshinone I in 17–50% overall yield over 3–6 steps.
Collapse
Affiliation(s)
- Fan Wang
- Nano Science and Technology Institute
- University of Science and Technology of China
- Suzhou 215123
- China
- CAS Key Laboratory of Receptor Research
| | - Hong Yang
- State key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Shujuan Yu
- Nano Science and Technology Institute
- University of Science and Technology of China
- Suzhou 215123
- China
- CAS Key Laboratory of Receptor Research
| | - Yu Xue
- CAS Key Laboratory of Receptor Research
- Synthetic Organic & Medicinal Chemistry
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
| | - Zhoulong Fan
- CAS Key Laboratory of Receptor Research
- Synthetic Organic & Medicinal Chemistry
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
| | - Gaolin Liang
- Nano Science and Technology Institute
- University of Science and Technology of China
- Suzhou 215123
- China
| | - Meiyu Geng
- State key Laboratory of Drug Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
- China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research
- Synthetic Organic & Medicinal Chemistry
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
| | - Chunyong Ding
- CAS Key Laboratory of Receptor Research
- Synthetic Organic & Medicinal Chemistry
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai 201203
| |
Collapse
|
9
|
|
10
|
Ding C, Li J, Jiao M, Zhang A. Catalyst-Free sp 3 C-H Acyloxylation: Regioselective Synthesis of 1-Acyloxy Derivatives of the Natural Product Tanshinone IIA. JOURNAL OF NATURAL PRODUCTS 2016; 79:2514-2520. [PMID: 27672695 DOI: 10.1021/acs.jnatprod.6b00370] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tanshinone IIA is a valuable bioactive natural product isolated from the well-known Chinese herb Danshen. Structural manipulation of the A-ring of tanshinone IIA is rather limited. In this study, a substrate tautomerization-induced catalyst-free benzylic sp3 C-H acyloxylation approach is reported that allows the direct introduction of various acyloxy groups at the A-ring benzylic methylene of various tanshinone IIA substrates, thus avoiding the use of expensive transition metal catalysts and the production of harmful byproducts. This approach features a unique acid-induced reversible enolization/oxa-conjugate addition process followed by oxidation to exclusively give a series of diverse 1-acyloxylated derivatives under simple conditions in a regioselective manner. Compared with the literature procedures, this protocol demonstrates a higher efficiency, a more robust functional-group tolerance, atom economy, and lower cost.
Collapse
Affiliation(s)
- Chunyong Ding
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Jie Li
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, People's Republic of China
- ShanghaiTech University , Shanghai 20120, People's Republic of China
| | - Mingkun Jiao
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, People's Republic of China
- ShanghaiTech University , Shanghai 20120, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| |
Collapse
|
11
|
Su CY, Ming QL, Rahman K, Han T, Qin LP. Salvia miltiorrhiza: Traditional medicinal uses, chemistry, and pharmacology. Chin J Nat Med 2016; 13:163-82. [PMID: 25835361 DOI: 10.1016/s1875-5364(15)30002-9] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Indexed: 02/07/2023]
Abstract
Salvia miltiorrhiza Bunge (SM) is a very popular medicinal plant that has been extensively applied for many years to treat various diseases, especially coronary heart diseases and cerebrovascular diseases, either alone or in combination with other Chinese plant-based medicines. Although a large number of studies on SM have been performed, they are scattered across a variety of publications. The present review is an up-to-date summary of the published scientific information about the traditional uses, chemical constituents, pharmacological effects, side effects, and drug interactions with SM, in order to lay the foundation for further investigations and better utilization of SM. SM contains diverse chemical components including diterpenoid quinones, hydrophilic phenolic acids, and essential oils. Many pharmacological studies have been done on SM during the last 30 years, focusing on the cardiovascular and cerebrovascular effects, and the antioxidative, neuroprotective, antifibrotic, anti-inflammatory, and antineoplastic activities. The research results strongly support the notion that SM has beneficial therapeutic properties and has a potential of being an effective adaptogenic remedy.
Collapse
Affiliation(s)
- Chun-Yan Su
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, China
| | - Qian-Liang Ming
- Department of Pharmacognosy, School of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Khalid Rahman
- Faculty of Science, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, UK
| | - Ting Han
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| | - Lu-Ping Qin
- Department of Pharmacognosy, School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
12
|
Cheng X, Zhang DL, Li XB, Ye JT, Shi L, Huang ZS, Gu LQ, An LK. Syntheses of diacyltanshinol derivatives and their suppressive effects on macrophage foam cell formation by reducing oxidized LDL uptake. Bioorg Chem 2014; 52:24-30. [DOI: 10.1016/j.bioorg.2013.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 11/08/2013] [Accepted: 11/08/2013] [Indexed: 01/04/2023]
|
13
|
Troian-Gautier L, De Winter J, Gerbaux P, Moucheron C. A Direct Method for Oxidizing Quinoxaline, Tetraazaphenanthrene, and Hexaazatriphenylene Moieties Using Hypervalent λ3-Iodinane Compounds. J Org Chem 2013; 78:11096-101. [DOI: 10.1021/jo401872e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ludovic Troian-Gautier
- Laboratoire
de Chimie Organique et Photochimie, Université Libre de Bruxelles, 50
av. F. D. Roosevelt, CP160/08, B-1050 Bruxelles, Belgium
| | - Julien De Winter
- Mass
Spectrometry Research Group, Interdisciplinary Center for Mass Spectrometry, University of Mons (UMons), 23 Place du Parc, B-7000 Mons, Belgium
| | - Pascal Gerbaux
- Mass
Spectrometry Research Group, Interdisciplinary Center for Mass Spectrometry, University of Mons (UMons), 23 Place du Parc, B-7000 Mons, Belgium
| | - Cécile Moucheron
- Laboratoire
de Chimie Organique et Photochimie, Université Libre de Bruxelles, 50
av. F. D. Roosevelt, CP160/08, B-1050 Bruxelles, Belgium
| |
Collapse
|
14
|
Chen Y, Duan G, Xie M, Chen B, Li Y. Infrared-assisted extraction coupled with high-performance liquid chromatography for simultaneous determination of eight active compounds in Radix Salviae miltiorrhizae. J Sep Sci 2010; 33:2888-97. [DOI: 10.1002/jssc.201000234] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Yang DF, Liang ZS, Liu JL. LC Fingerprinting for Assessment of the Quality of the Lipophilic Components of Salvia miltiorrhiza. Chromatographia 2008. [DOI: 10.1365/s10337-008-0918-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Bi HC, Zuo Z, Chen X, Xu CS, Wen YY, Sun HY, Zhao LZ, Pan Y, Deng Y, Liu PQ, Gu LQ, Huang ZY, Zhou SF, Huang M. Preclinical factors affecting the pharmacokinetic behaviour of tanshinone IIA, an investigational new drug isolated from Salvia miltiorrhiza for the treatment of ischaemic heart diseases. Xenobiotica 2008; 38:185-222. [PMID: 18197559 DOI: 10.1080/00498250701767675] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Tanshinone IIA (TSIIA) is a major active triterpenoid isolated from Salvia miltiorrhiza. The purposes of this study were to investigate various preclinical factors that determined the pharmacokinetics of TSIIA. After oral dosing at 6.7, 20, and 60 mg kg(-1), TSIIA was detected mainly as glucuronidated conjugate (TSIIAG) with only small amounts of the unchanged in the plasma. TSIIA was predominantly excreted into the bile and faeces as TSIIAG, and urine to a minor extent. The C(max) and AUC(0-)(t) of TSIIAG after i.p. administration were significantly lower than those after intragastric administration. The plasma concentration-time profiles of TSIIA following oral dosing of TSIIA showed multiple peaks. The C(max) and AUC(0-)(t) of TSIIA and its glucuronides in rats with intact bile duct were significantly lower than those of rats with bile duct cannulation. Studies from the linked-rat model and intraduodenal injection of bile containing TSIIA and its metabolites indicate that TSIIA glucuronides underwent hydrolysis and the aglycone was reabsorbed from the gut and excreted into the bile as conjugates. TSIIA had a wide tissue distribution, with a very high accumulation in the lung, but very limited penetration into the brain and testes. TSIIA was metabolized by rat CYP2C, 3A and 2D, as ticlopidine, ketoconazole and quinidine all inhibited TSIIA metabolism in rat liver microsomes. Taken collectively, these findings indicate that multiple factors play important roles in determining the pharmacokinetics of TSIIA.
Collapse
Affiliation(s)
- H-C Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Bi HC, Law FCP, Zhong GP, Xu CS, Pan Y, Ding L, Chen X, Zhao LZ, Xu Q, Huang M. Study of tanshinone IIA tissue distribution in rat by liquid chromatography-tandem mass spectrometry method. Biomed Chromatogr 2007; 21:473-9. [PMID: 17357178 DOI: 10.1002/bmc.778] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed and validated for determining tanshinone IIA in rat tissues. After a single step liquid-liquid extraction with diethyl ether, tanshinone IIA and loratadine (internal standard) was subjected to LC/MS/MS analysis using positive electro-spray ionization under selected reaction monitoring mode. Chromatographic separation of tanshinone IIA and loratadine was achieved on a Hypersil BDS C(18) column (i.d. 2.1 x 50 mm, 5 microm) with a mobile phase consisting of methanol-1% formic acid (90:10, v/v) at a flow rate of 300 microL/min. The intra-day and inter-day precision of the method were less than 10.2 and 12.4%, respectively. The intra-day and inter-day accuracies ranged from 99.7 to 109.7%. The lowest limit of quantification for tanshinone IIA was 1 ng/mL. The method was applied to a tanshinone IIA tissue distribution study after an oral dose of 60 mg/kg to rats. Tanshinone IIA tissue concentrations decreased in the order of stomach > small intestine > lung > liver > fat > muscle > kidneys > spleen > heart > plasma > brain > testes. Tanshinone IIA still could be detected in most of the tissues at 20 h post-dosing. These results indicate that the LC/MS/MS method was rapid and sensitive to quantify tanshinone IIA in different rat tissues.
Collapse
Affiliation(s)
- Hui-chang Bi
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou 510080, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Qu HB, Zhai XJ, Shao Q, Cheng YY. Simultaneous Determination of Seven Active Compounds in Radix Salviae Miltiorrhizae by Temperature-Controlled Ultrasound-Assisted Extraction and HPLC. Chromatographia 2007. [DOI: 10.1365/s10337-007-0244-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Liu J, Wu J, Wang X, Cai Z. Study of the phase I and phase II metabolism of a mixture containing multiple tanshinones using liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2007; 21:2992-8. [PMID: 17694593 DOI: 10.1002/rcm.3182] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Metabolism of a mixture containing four dominant components in lipid solubles of Danshen was studied both in vitro and in vivo. The parent compounds and their metabolites were simultaneously detected by using liquid chromatography coupled with ion trap mass spectrometry. The results indicated that oxidation was the major pathway in phase I metabolism. O-Glucuronidation of the hydroxylated tanshinones was identified in the rat urine samples collected after the oral administration of the tanshinone components. The metabolic rates obtained from the in vitro metabolism study of each individual component were significantly different from those obtained from the incubation study of the four components in a cassette. Metabolite identification showed that tanshinone IIA and tanshinone I were the major metabolites of cryptotanshinone and dihydrotanshinone I, respectively. The obtained results demonstrated the metabolic change between the active components in Danshen and suggested the need to study the multiple components or even the extract from the herbal medicines.
Collapse
Affiliation(s)
- Jie Liu
- Department of Chemistry and The Key Laboratory of Analytical Science of MOE, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | | | | | | |
Collapse
|
20
|
Pei LX, Li YM, Bu XZ, Gu LQ, Chan AS. One-pot synthesis of 5,6-dihydroxylated benzo[b]furan derivatives. Tetrahedron Lett 2006. [DOI: 10.1016/j.tetlet.2006.02.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Shen YD, Wu HQ, Zhang SL, Bu XZ, An LK, Huang ZS, Liu PQ, Gu LQ, Li YM, Chan AS. Novel synthesis of o-naphthothiophenequinone derivatives via regioselective Diels–Alder reaction. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.07.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Haight AR, Stoner EJ, Peterson MJ, Grover VK. General method for the palladium-catalyzed allylation of aliphatic alcohols. J Org Chem 2004; 68:8092-6. [PMID: 14535788 DOI: 10.1021/jo0301907] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A palladium catalysis-mediated approach to coupling aliphatic alcohols with allyl carbonates has been developed. The method allows for the allylation of primary, secondary, and tertiary alcohols efficiently under mild conditions. Limitations were explored as well as the asymmetric application of the chemistry. Regiochemical and olefin geometry was controlled in the coupling of unsymmetrical allylating agents. Transient allyl carbonates were observed in the coupling, which comprised the trans-carboxylation of the allyl-carbonate with the requisite alcohol.
Collapse
Affiliation(s)
- Anthony R Haight
- GPRD Process Research and Development, Abbott Laboratories, Bldg. R8/1, 1401 Sheridan Rd., North Chicago, Illinois 60064-6285, USA.
| | | | | | | |
Collapse
|