1
|
Zaręba M, Chmiel-Szukiewicz E, Uram Ł, Noga J, Rzepna M, Wołowiec S. A Novel PAMAM G3 Dendrimer-Based Foam with Polyether Polyol and Castor Oil Components as Drug Delivery System into Cancer and Normal Cells. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3905. [PMID: 39203083 PMCID: PMC11355831 DOI: 10.3390/ma17163905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
One of the intensively developed tools for cancer therapy is drug-releasing matrices. Polyamidoamine dendrimers (PAMAM) are commonly used as nanoparticles to increase the solubility, stability and retention of drugs in the human body. Most often, drugs are encapsulated in PAMAM cavities or covalently attached to their surface. However, there are no data on the use of PAMAM dendrimers as a component of porous matrices based on polyurethane foams for the controlled release of drugs and biologically active substances. Therefore, in this work, porous materials based on polyurethane foam with incorporated third-generation poly(amidoamine) dendrimers (PAMAM G3) were synthesized and characterized. Density, water uptake and morphology of foams were examined with SEM and XPS. The PAMAM was liquefied with polyether polyol (G441) and reacted with polymeric 4,4'-diphenylmethane diisocyanate (pMDI) in the presence of silicone, water and a catalyst to obtain foam (PF1). In selected compositions, the castor oil was added (PF2). Analogs without PAMAM G3 were also synthesized (F1 and F2, respectively). An SEM analysis of foams showed that they are composed of thin ribs/walls forming an interconnected network containing hollow bubbles/pores and showing some irregularities in the structure. Foam from a G3:G441:CO (PF2) composition is characterized by a more regular structure than the foam from the composition without castor oil. The encapsulation efficiency of drugs determined by the XPS method shows that it varies depending on the matrix and the drug and ranges from several to a dozen mass percent. In vitro biological studies with direct contact and extract assays indicated that the F2 matrix was highly biocompatible. Significant toxicity of dendrimeric matrices PF1 and PF2 containing 50% of PAMAM G3 was higher against human squamous carcinoma cells than human immortalized keratinocytes. The ability of the matrices to immobilize drugs was demonstrated in the example of perspective (Nimesulide, 8-Methoxypsolarene) or approved anticancer drugs (Doxorubicin-DOX, 5-Aminolevulinic acid). Release into the culture medium and penetration of DOX into the tested SCC-15 and HaCaT cells were also proved. The results show that further modification of the obtained matrices may lead to their use as drug delivery systems, e.g., for anticancer therapy.
Collapse
Affiliation(s)
- Magdalena Zaręba
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Elżbieta Chmiel-Szukiewicz
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Łukasz Uram
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Justyna Noga
- The Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (M.Z.); (E.C.-S.); (Ł.U.); (J.N.)
| | - Magdalena Rzepna
- Centre for Radiation Research and Technology, Institute of Nuclear Chemistry and Technology, 03-195 Warsaw, Poland;
| | - Stanisław Wołowiec
- Medical College, University of Rzeszow, 1a Warzywna Street, 35-310 Rzeszow, Poland
| |
Collapse
|
2
|
Gates BD, Vyletel JB, Zou L, Webber MJ. Multivalent Cucurbituril Dendrons for Cell Membrane Engineering with Supramolecular Receptors. Bioconjug Chem 2022; 33:2262-2268. [PMID: 35802933 PMCID: PMC11144120 DOI: 10.1021/acs.bioconjchem.2c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The affinity possible from certain supramolecular motifs rivals that for some of the best-recognized interactions in biology. Cucurbit[7]uril (CB[7]) macrocycles, for example, are capable of achieving affinities in their binding to certain guests that rival that of biotin-avidin. Supramolecular host-guest recognition between CB[7] and certain guests has been demonstrated to spatially localize guest-linked agents to desired sites in vivo, offering opportunities to better exploit this affinity axis for applications in biomedicine. Herein, architectures of CB[7] are prepared from a polyamidoamine (PAMAM) dendrimer scaffold, installing a PEG-linked cholesterol anchor on the opposite end of the dendron to facilitate cell membrane integration. Cells are then modified with this dendritic CB[7] construct in vitro, demonstrating the ability to deliver a model guest-linked agent to the cell membrane. This approach to realize synthetic supramolecular "membrane receptors" may be leveraged in the future for in situ imaging or modulation of cell-based therapies or to facilitate a synthetic supramolecular recognition axis on the cell membrane.
Collapse
Affiliation(s)
- Brant D. Gates
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556 USA
| | - Jackson B. Vyletel
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556 USA
| | - Lei Zou
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556 USA
| | - Matthew J. Webber
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, IN 46556 USA
| |
Collapse
|
3
|
Chaudhary KR, Puri V, Singh A, Singh C. A review on recent advances in nanomedicines for the treatment of pulmonary tuberculosis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Peptide Multimerization as Leads for Therapeutic Development. Biologics 2021. [DOI: 10.3390/biologics2010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Multimerization of peptide structures has been a logical evolution in their development as potential therapeutic molecules. The multivalent properties of these assemblies have attracted much attention from researchers in the past and the development of more complex branching dendrimeric structures, with a wide array of biocompatible building blocks is revealing previously unseen properties and activities. These branching multimer and dendrimer structures can induce greater effect on cellular targets than monomeric forms and act as potent antimicrobials, potential vaccine alternatives and promising candidates in biomedical imaging and drug delivery applications. This review aims to outline the chemical synthetic innovations for the development of these highly complex structures and highlight the extensive capabilities of these molecules to rival those of natural biomolecules.
Collapse
|
5
|
Guo Z, Pedersen CM, Wang P, Ma M, Zhao Y, Qiao Y, Wang Y. d-Glucose Isomerization with PAMAM Dendrimers as Environmentally Friendly Catalysts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5105-5112. [PMID: 33881848 DOI: 10.1021/acs.jafc.1c01088] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The isomerization of d-glucose to d-fructose plays a key role in the biochemical and chemical conversion of biomass, and it is therefore desirable to develop and improve catalysts for this reaction. In this study, the environmentally friendly polymer poly(amidoamine) (PAMAM) dendrimer's properties as catalysts for this isomerization are investigated. The experimental results showed that the PAMAM dendrimers, which have basic terminal groups, can effectively promote the d-glucose isomerization reaction. Under the optimized reaction conditions, d-fructose was generated with a 20% maximum yield and above 90% selectivity. 13C and 2H isotope experiments by NMR were carried out to explore the reaction mechanism. When the reaction was performed in D2O, the C1 signal of d-fructose changed to a triplet, which confirmed that the C1 carbon binds to a deuterium atom, i.e., isotopic exchange. It was also found that the deuterium atom at the C2 position of d-glucose-2-d1 cannot transfer to d-fructose. These data indicate that PAMAM dendrimers catalyze d-glucose isomerization through a mechanism, which includes deprotonation, formation of ene-diol intermediate, and proton exchange with the solvent.
Collapse
Affiliation(s)
- Zhaohui Guo
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Christian M Pedersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Pengfei Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minjun Ma
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingqing Zhao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Qiao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingxiong Wang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Shanxi Engineering Research Center of Biorefinery, Institute of Coal Chemistry, Chinese Academy of Sciences, 27 South Taoyuan Road, Taiyuan 030001, China
| |
Collapse
|
6
|
Chiral Recognition of Homochiral Poly (amidoamine) Dendrimers Substituted with R- and S-Glycidol by Keratinocyte (HaCaT) and Squamous Carcinoma (SCC-15) Cells In Vitro. Polymers (Basel) 2021; 13:polym13071049. [PMID: 33801610 PMCID: PMC8037736 DOI: 10.3390/polym13071049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
The generation 2 and 3 poly(amidoamine) dendrimers (PAMAM G2 and G3) were converted into N-(2,3-dihydroxy)propyl derivatives by the addition of enantiomerically pure S- and R-glycidol. The homochiral dendrimers bind to HaCaT and SCC-15 cell membranes with an R/S glycidol enantioselectivity ratio of 1.5:1, as was quantitatively determined by fluorescence microscopy and visualized by confocal microscopy. Fully substituted G2 and G3 dendrimers were equipped with 32 and 64 N-(2,3-dihydroxy)propyl residues and showed effectively radial symmetry for homochiral derivatives in 13C NMR spectrum in contrary to analogs obtained by reaction with rac-glycidol. The sub-stoichiometric derivatives of G2 and G3 were also obtained in order to characterize them spectroscopically. The homochiral dendrimers were labeled with two different fluorescent labels, fluorescein, and rhodamine B, using their isothiocyanates to react with G2 and G3 followed by the addition of S- and R-glycidol. Obtained fluorescent derivatives were deficiently filled with N-(2,3-dihydroxy)propyl substituents due to steric hindrance imposed by the attached label. Nevertheless, these derivatives were used to determine their ability to bind to the cell membrane of human keratinocytes (HaCaT) and squamous carcinoma cells (SCC-15). Confocal microscopy images obtained from cells treated with variously labeled conjugates and fluorescence analysis with fluorescence reader allowed us to conclude that R-glycidol derivatives were bound and entered the cells preferentially, with higher accumulation in cancer cells. The G3 polyamidoamine (PAMAM)-based dendrimers were taken up more efficiently than G2 derivatives. Moreover, S- and R-glycidol furnished dendrimers were highly biocompatible with no toxicity up to 300 µM concentrations, in contrast to the amine-terminated PAMAM analogs.
Collapse
|
7
|
Silvestre ALP, Oshiro-Júnior JA, Garcia C, Turco BO, da Silva Leite JM, de Lima Damasceno BPG, Soares JCM, Chorilli M. Monoclonal Antibodies Carried in Drug Delivery Nanosystems as a Strategy for Cancer Treatment. Curr Med Chem 2021; 28:401-418. [PMID: 31965938 DOI: 10.2174/0929867327666200121121409] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/09/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
Monoclonal antibodies carried in nanosystems have been extensively studied and reported as a promising tool for the treatment of various types of cancers. Monoclonal antibodies have great advantages for the treatment of cancer because their protein structure can bind to the target tissue; however, it has some challenges such as denaturation following heat exposure and extreme values of pH, temperature and solvents, the ability to undergo hydrolysis, oxidation and deamination and the formation of non-native aggregates, which compromise drug stability to a large extent. In addition to these characteristics, they suffer rapid elimination when in the blood, which results in a short half-life and the production of neutralizing antibodies, rendering the doses ineffective. These challenges are overcome with encapsulation in nanosystems (liposomes, polymer nanoparticles, cyclodextrins, solid lipid nanoparticles, nanostructured lipid carriers, dendrimers and micelles) due to the characteristics of improving solubility, permeability, and selectivity only with tumor tissue; with that, there is a decrease in side effects beyond controlled release, which is critical to improving the therapeutic efficacy of cancer treatment. The article was divided into different types of nanosystems, with a description of their definitions and applications in various types of cancers. Therefore, this review summarizes the use of monoclonal antibodies encapsulated in nanosystems and the description of clinical studies with biosimilars. Biosimilars are defined as products that are similar to monoclonal antibodies which are produced when the patent for the monoclonal antibodies expires.
Collapse
Affiliation(s)
- Amanda Letícia Polli Silvestre
- School of Pharmaceutical Sciences, UNESP-Sao Paulo State University, Rodovia Araraquara-Jau, km. 1, Araraquara, Sao Paulo 14800-903, Brazil
| | - Joáo Augusto Oshiro-Júnior
- Graduation Program in Pharmaceutical Sciences, State University of Paraiba, Campina Grande, Joao Pessoa, Brazil
| | - Camila Garcia
- School of Pharmaceutical Sciences, UNESP-Sao Paulo State University, Rodovia Araraquara-Jau, km. 1, Araraquara, Sao Paulo 14800-903, Brazil
| | - Bruna Ortolani Turco
- School of Pharmaceutical Sciences, UNESP-Sao Paulo State University, Rodovia Araraquara-Jau, km. 1, Araraquara, Sao Paulo 14800-903, Brazil
| | | | | | - Jonas Corsino Maduro Soares
- School of Pharmaceutical Sciences, UNESP-Sao Paulo State University, Rodovia Araraquara-Jau, km. 1, Araraquara, Sao Paulo 14800-903, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, UNESP-Sao Paulo State University, Rodovia Araraquara-Jau, km. 1, Araraquara, Sao Paulo 14800-903, Brazil
| |
Collapse
|
8
|
Chis AA, Dobrea C, Morgovan C, Arseniu AM, Rus LL, Butuca A, Juncan AM, Totan M, Vonica-Tincu AL, Cormos G, Muntean AC, Muresan ML, Gligor FG, Frum A. Applications and Limitations of Dendrimers in Biomedicine. Molecules 2020; 25:E3982. [PMID: 32882920 PMCID: PMC7504821 DOI: 10.3390/molecules25173982] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
Biomedicine represents one of the main study areas for dendrimers, which have proven to be valuable both in diagnostics and therapy, due to their capacity for improving solubility, absorption, bioavailability and targeted distribution. Molecular cytotoxicity constitutes a limiting characteristic, especially for cationic and higher-generation dendrimers. Antineoplastic research of dendrimers has been widely developed, and several types of poly(amidoamine) and poly(propylene imine) dendrimer complexes with doxorubicin, paclitaxel, imatinib, sunitinib, cisplatin, melphalan and methotrexate have shown an improvement in comparison with the drug molecule alone. The anti-inflammatory therapy focused on dendrimer complexes of ibuprofen, indomethacin, piroxicam, ketoprofen and diflunisal. In the context of the development of antibiotic-resistant bacterial strains, dendrimer complexes of fluoroquinolones, macrolides, beta-lactamines and aminoglycosides have shown promising effects. Regarding antiviral therapy, studies have been performed to develop dendrimer conjugates with tenofovir, maraviroc, zidovudine, oseltamivir and acyclovir, among others. Furthermore, cardiovascular therapy has strongly addressed dendrimers. Employed in imaging diagnostics, dendrimers reduce the dosage required to obtain images, thus improving the efficiency of radioisotopes. Dendrimers are macromolecular structures with multiple advantages that can suffer modifications depending on the chemical nature of the drug that has to be transported. The results obtained so far encourage the pursuit of new studies.
Collapse
Affiliation(s)
| | - Carmen Dobrea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga St., 550169 Sibiu, Romania; (A.A.C.); (A.M.A.); (L.L.R.); (A.B.); (A.M.J.); (M.T.); (A.L.V.-T.); (G.C.); (A.C.M.); (M.L.M.); (F.G.G.); (A.F.)
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 2A Lucian Blaga St., 550169 Sibiu, Romania; (A.A.C.); (A.M.A.); (L.L.R.); (A.B.); (A.M.J.); (M.T.); (A.L.V.-T.); (G.C.); (A.C.M.); (M.L.M.); (F.G.G.); (A.F.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Saintmont F, De Winter J, Chirot F, Halin E, Dugourd P, Brocorens P, Gerbaux P. How Spherical Are Gaseous Low Charged Dendrimer Ions: A Molecular Dynamics/Ion Mobility Study? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1673-1683. [PMID: 32558569 DOI: 10.1021/jasms.0c00113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The globular shape of gaseous ions, resulting from the ionization of large molecules such as polymers and proteins, is a recurring subject that has undergone a renewed interest with the advent of ion mobility spectrometry (IMS), especially in conjunction with theoretical chemistry techniques such as Molecular Dynamics (MD). Globular conformations result from a fine balance between entropy and enthalpy considerations. For multiply charged ions isolated in the gas phase of a mass spectrometer, the Coulombic repulsion between the different charges tends to prevent the ions from adopting a compact, and folded 3D structure. In the present paper, we closely associate data from IMS experiments and MD simulations to unambiguously access the conformations of dendrimer ions in the gas phase with special attention paid to the dendrimer structure, the generation, and the charge state. By doing so, we here combine a set of structural tools able to evaluate the (non)globular shape of ions based on both experimental and theoretical results.
Collapse
Affiliation(s)
- Fabrice Saintmont
- Organic Synthesis & Mass Spectrometry Laboratory, Interdisciplinary Center for Mass Spectrometry (CISMa), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons - UMONS, 23 Place du Parc, 7000 Mons, Belgium
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, Research Institute for Science and Engineering of Materials, University of Mons - UMONS, 23 Place du Parc, 7000 Mons, Belgium
| | - Julien De Winter
- Organic Synthesis & Mass Spectrometry Laboratory, Interdisciplinary Center for Mass Spectrometry (CISMa), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons - UMONS, 23 Place du Parc, 7000 Mons, Belgium
| | - Fabien Chirot
- Univ Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS, Institut des Sciences Analytiques, UMR 5280, 5 rue de la Doua, F-69100 Villeurbanne, France
| | - Emilie Halin
- Organic Synthesis & Mass Spectrometry Laboratory, Interdisciplinary Center for Mass Spectrometry (CISMa), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons - UMONS, 23 Place du Parc, 7000 Mons, Belgium
| | - Philippe Dugourd
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Lyon, France
| | - Patrick Brocorens
- Laboratory for Chemistry of Novel Materials, Center of Innovation and Research in Materials and Polymers, Research Institute for Science and Engineering of Materials, University of Mons - UMONS, 23 Place du Parc, 7000 Mons, Belgium
| | - Pascal Gerbaux
- Organic Synthesis & Mass Spectrometry Laboratory, Interdisciplinary Center for Mass Spectrometry (CISMa), Center of Innovation and Research in Materials and Polymers (CIRMAP), University of Mons - UMONS, 23 Place du Parc, 7000 Mons, Belgium
| |
Collapse
|
10
|
Czarnik-Kwaśniak J, Kwaśniak K, Tutaj K, Filiks I, Uram Ł, Stompor M, Wołowiec S. Glucoheptoamidated polyamidoamine PAMAM G3 dendrimer as a vehicle for succinate linked doxorubicin; enhanced toxicity of DOX against grade IV glioblastoma U-118 MG cells. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Zaręba M, Sareło P, Kopaczyńska M, Białońska A, Uram Ł, Walczak M, Aebisher D, Wołowiec S. Mixed-Generation PAMAM G3-G0 Megamer as a Drug Delivery System for Nimesulide: Antitumor Activity of the Conjugate Against Human Squamous Carcinoma and Glioblastoma Cells. Int J Mol Sci 2019; 20:ijms20204998. [PMID: 31601050 PMCID: PMC6834146 DOI: 10.3390/ijms20204998] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Polyhydroxylated dendrimer was synthesized from poly(amidoamine) (PAMAM) dendrimer generation 3 by addition of glycidol (G3gl). G3gl megamer was further modified by binding PAMAM G0 dendrimers by activation of G3gl with p-nitrophenylchloroformate, followed by the addition of excess PAMAM G0 and purification using dialysis. The maximum G0 binding capacity of G3gl was 12 in the case when G0 was equipped with two covalently attached nimesulide equivalents. Nimesulide (N) was converted into N-(p-nitrophenyl) carbonate derivative and fully characterized using X-ray crystallography and spectral methods. Nimesulide was then attached to G0 via a urea bond to yield G02N. The mixed generation G3gl–G02N megamer was characterized using 1H NMR spectroscopy, and its molecular weight was estimated to be 22.4 kDa. The AFM image of G3gl–G02N deposited on mica demonstrated aggregation of nimesulide-covered megamer. The height of the deposited megamer was 8.5 nm. The megameric conjugate with nimesulide was tested in vitro on three human cell lines: squamous cell carcinoma (SCC-15) and glioblastoma (U-118 MG) overexpressing cyclooxygenase-2 (COX-2), and normal skin fibroblasts (BJ). The conjugate efficiently penetrated into all cells and was more cytotoxic against SCC-15 than against BJ. Moreover, the conjugate produced a strong and selective antiproliferative effect on both cancer cell lines (IC50 < 7.5 µM).
Collapse
Affiliation(s)
- Magdalena Zaręba
- Faculty of Chemistry, Rzeszów University of Technology, 35-939 Rzeszów, Poland.
| | - Przemysław Sareło
- Department of Biomedical Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| | - Marta Kopaczyńska
- Department of Biomedical Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland.
| | - Agata Białońska
- Faculty of Chemistry, University of Wrocław, 50-383 Wrocław, Poland.
| | - Łukasz Uram
- Faculty of Chemistry, Rzeszów University of Technology, 35-939 Rzeszów, Poland.
| | - Małgorzata Walczak
- Faculty of Chemistry, Rzeszów University of Technology, 35-939 Rzeszów, Poland.
| | - David Aebisher
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszów, 35-310 Rzeszów, Poland.
| | - Stanisław Wołowiec
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszów, 35-310 Rzeszów, Poland.
| |
Collapse
|
12
|
Uram Ł, Filipowicz-Rachwał A, Misiorek M, Winiarz A, Wałajtys-Rode E, Wołowiec S. Synthesis and Different Effects of Biotinylated PAMAM G3 Dendrimer Substituted with Nimesulide in Human Normal Fibroblasts and Squamous Carcinoma Cells. Biomolecules 2019; 9:biom9090437. [PMID: 31480608 PMCID: PMC6770390 DOI: 10.3390/biom9090437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Squamous cell carcinoma (SCC) remains a main cause of mortality in patients with neck and head cancers, with poor prognosis and increased prevalence despite of available therapies. Recent studies have identified a role of cyclooxygenases, particularly inducible isoform cyclooxygenase-2 (COX-2) and its metabolite prostaglandin E2 (PGE2) in cancer cell proliferation, and its inhibition become a target for control of cancer development, particularly in the view of recognized additive or synergic action of COX-2 inhibitors with other forms of therapy. Nimesulide (N), the selective COX-2 inhibitor, inhibits growth and proliferation of various types of cancer cells by COX-2 dependent and independent mechanisms. In the presented study, the conjugates of biotinylated third generation poly(amidoamine) dendrimer (PAMAM) with covalently linked 18 (G3B18N) and 31 (G3B31N) nimesulide residues were synthesized and characterized by NMR spectroscopy. Biological properties of conjugates were evaluated, including cytotoxicity, proliferation, and caspase 3/7 activities in relation to COX-2/PGE2 axis signaling in human normal fibroblast (BJ) and squamous cell carcinoma (SCC-15). Both conjugates exerted a selective cytotoxicity against SCC-15 as compared with BJ cells at low 1.25-10 µM concentration range and their action in cancer cells was over 250-fold stronger than nimesulide alone. Conjugates overcome apoptosis resistance and sensitized SCC-15 cells to the apoptotic death independently of COX-2/PGE2 axis. In normal human fibroblasts the same concentrations of G3B31N conjugate were less effective in inhibition of proliferation and induction of apoptosis, as measured by caspase 3/7 activity in a manner depending on increase of PGE2 production by either COX-1/COX-2.
Collapse
Affiliation(s)
- Łukasz Uram
- Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy, 35-959 Rzeszow, Poland.
| | | | - Maria Misiorek
- Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy, 35-959 Rzeszow, Poland
| | - Aleksandra Winiarz
- Faculty of Chemistry, Rzeszow University of Technology, 6 Powstancow Warszawy, 35-959 Rzeszow, Poland
| | - Elżbieta Wałajtys-Rode
- Department of Drug Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Stanisław Wołowiec
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszow, 35-310 Rzeszow, Poland
| |
Collapse
|
13
|
Oztuna A, Nazir H. Pentafluoropropionic Anhydride Functionalized PAMAM Dendrimer as miRNA Delivery Reagent. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2018. [DOI: 10.18596/jotcsa.463855] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
14
|
Uram Ł, Filipowicz A, Misiorek M, Pieńkowska N, Markowicz J, Wałajtys-Rode E, Wołowiec S. Biotinylated PAMAM G3 dendrimer conjugated with celecoxib and/or Fmoc-l-Leucine and its cytotoxicity for normal and cancer human cell lines. Eur J Pharm Sci 2018; 124:1-9. [PMID: 30118847 DOI: 10.1016/j.ejps.2018.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/19/2018] [Accepted: 08/13/2018] [Indexed: 11/17/2022]
Abstract
Tumors still remain one of the main causes of mortality due to the lack of effective anti-cancer therapy. Recently it has been shown, that overexpression of inducible cyclooxygenase-2 (COX-2) and decrease of peroxisome proliferator-activated receptor γ (PPARγ) expression accompany many malignances, therefore, it has been proposed, that COX-2 inhibitors and PPARγ agonists are potential candidates for anticancer therapy and their synergistic, antineoplastic action has been described. In the present study a COX-2 inhibitor (celecoxib) and/or PPARγ agonist (Fmoc-l-Leucine) were conjugated with the biotinylated G3 PAMAM dendrimer to form a three different constructs targeted to cells with increased biotin uptake. All conjugates were characterized by the NMR spectroscopy. Investigation of three types of human cells: normal skin fibroblasts (BJ), immortalized keratinocytes (HaCaT) and cancer lines: glioblastoma (U-118 MG) and squamous cell carcinoma (SCC-15) revealed similar biotin labeled ATTO590 accumulation (after 24 h), except for SCC-15 with significantly lower loading. Constitutive expression of COX-2 protein was confirmed in all tested cells with significantly higher levels (2-2.5 times) in both cancer lines. Comparison of cytotoxicity of the new synthetized dendrimers clearly documented the highest cytotoxicity of the G31B16C15L dendrimer conjugated with both drugs (1: 1) as compared with drugs alone and single conjugates. Additive effects of construct with both compounds were shown for fibroblasts and both cancer cell lines in the order BJ > U-118 MG > SCC-15 with IC50 in the range: 0.69, 1.44 and 2.22 μM, respectively and lowest cytotoxicity in HaCaT cells (IC50 = 2.88). Our results showed, that biotinylated G3 PAMAM dendrimers substituted with COX-2 inhibitor, celecoxib, and PPARγ agonist, Fmoc-l-Leucine (1:1) may be a good candidate for local therapy of glioblastoma but not a skin cancer. Since the effect of PPARγ agonists on COX-2 expression vary depending upon the cell type, specificity of used agonist and the presence of other environmental factors, it is necessary to carefully evaluate the response of chosen drugs on the target cells.
Collapse
Affiliation(s)
- Łukasz Uram
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland.
| | - Aleksandra Filipowicz
- Faculty of Medical Sciences, Rzeszów University of Information Technology and Management, 2 Sucharskiego Str, 35-225 Rzeszów, Poland
| | - Maria Misiorek
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland
| | - Natalia Pieńkowska
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland
| | - Joanna Markowicz
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland
| | - Elżbieta Wałajtys-Rode
- Department of Drug Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology,75 Koszykowa Str, 00-664 Warsaw, Poland
| | - Stanisław Wołowiec
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland
| |
Collapse
|
15
|
Zaręba M, Uram Ł, Białońska A, Stompor M, Wołowiec S. PAMAM Dendrimers Attached to Collagen via a Malondialdehyde Linker. ChemistrySelect 2017. [DOI: 10.1002/slct.201700719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Magdalena Zaręba
- Rzeszów University of Technology; Faculty of Chemistry; 6 Powstańców Warszawy Ave 35-959 Rzeszów Poland
| | - Łukasz Uram
- Rzeszów University of Technology; Faculty of Chemistry; 6 Powstańców Warszawy Ave 35-959 Rzeszów Poland
| | - Agata Białońska
- Wrocław University; Faculty of Chemistry; 14 Joliot-Curie Str. 50-383 Wrocław Poland
| | - Monika Stompor
- University of Rzeszów; Faculty of Medicine; Centre for Innovative Research in Medical and Natural Sciences; 1a Warzywna Str. 35-310 Rzeszów Poland
| | - Stanisław Wołowiec
- University of Rzeszów; Faculty of Medicine; Centre for Innovative Research in Medical and Natural Sciences; 1a Warzywna Str. 35-310 Rzeszów Poland
| |
Collapse
|
16
|
Sherman SE, Xiao Q, Percec V. Mimicking Complex Biological Membranes and Their Programmable Glycan Ligands with Dendrimersomes and Glycodendrimersomes. Chem Rev 2017; 117:6538-6631. [PMID: 28417638 DOI: 10.1021/acs.chemrev.7b00097] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Synthetic vesicles have been assembled and coassembled from phospholipids, their modified versions, and other single amphiphiles into liposomes, and from block copolymers into polymersomes. Their time-consuming synthesis and preparation as stable, monodisperse, and biocompatible liposomes and polymersomes called for the elaboration of new synthetic methodologies. Amphiphilic Janus dendrimers (JDs) and glycodendrimers (JGDs) represent the most recent self-assembling amphiphiles capable of forming monodisperse, stable, and multifunctional unilamellar and multilamellar onion-like vesicles denoted dendrimersomes (DSs) and glycodendrimersomes (GDSs), dendrimercubosomes (DCs), glycodendrimercubosomes (GDCs), and other complex architectures. Amphiphilic JDs consist of hydrophobic dendrons connected to hydrophilic dendrons and can be thought of as monodisperse oligomers of a single amphiphile. They can be functionalized with a variety of molecules such as dyes, and, in the case of JGDs, with carbohydrates. Their iterative modular synthesis provides efficient access to sequence control at the molecular level, resulting in topologies with specific epitope sequence and density. DSs, GDSs, and other architectures from JDs and JGDs serve as powerful tools for mimicking biological membranes and for biomedical applications such as targeted drug and gene delivery and theranostics. This Review covers all aspects of the synthesis of JDs and JGDs and their biological activity and applications after assembly in aqueous media.
Collapse
Affiliation(s)
- Samuel E Sherman
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Qi Xiao
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
17
|
|
18
|
Uram Ł, Szuster M, Filipowicz A, Zaręba M, Wałajtys-Rode E, Wołowiec S. Cellular uptake of glucoheptoamidated poly(amidoamine) PAMAM G3 dendrimer with amide-conjugated biotin, a potential carrier of anticancer drugs. Bioorg Med Chem 2016; 25:706-713. [PMID: 27919613 DOI: 10.1016/j.bmc.2016.11.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 11/19/2022]
Abstract
In search for soluble derivatives of PAMAM dendrimers as potential carriers for hydrophobic drugs, the conjugates of PAMAM G3 with biotin, further converted into glycodendrimer with d-glucoheptono-1,4-lactone, were prepared. Polyamidoamine dendrimer (PAMAM) of third generation, G3 was functionalized with four biotin equivalents covalently attached to terminal amine nitrogens via amide bond G34B. The remaining 28 amine groups were blocked by glucoheptoamide substituents (gh) to give G34B28gh or with one fluorescein equivalent (attached by reaction of G34B with fluorescein isothiocyanate, FITC) via thiourea bond as FITC followed by exhaustive glucoheptoamidation to get G34B27gh1F. As a control the G3 substituted totally with 32 glucoheptoamide residues, G3gh and its fluorescein labeled analogue G331gh1F were synthesized. The glucoheptoamidation of PAMAM G0 dendrimer with glucoheptono-1,4-lactone was performed in order to fully characterize the 1H NMR spectra of glucoheptoamidated PAMAM dendrimers and to control the derivatization of G3 with glucoheptono-1,4-lactone. Another two derivatives of G3, namely G34B28gh1F' and G332ghF', with ester bonded fluorescein were also obtained. Biological properties of obtained dendrimer conjugates were estimated in vitro with human cell lines: normal fibroblast (BJ) and two cancer glioblastoma (U-118 MG) and squamous carcinoma (SCC-15), including cytotoxicity by reduction of XTT and neutral red (NR) assays. Cellular uptake of dendrimer conjugates was evaluated with confocal microscopy. Obtained results confirmed, that biotinylated bioconjugates have always lower cytotoxicity and 3-4 times higher cellular uptake than non-biotinylated dendrimer conjugates in all cell lines. Comparison of various cell lines revealed different dose-dependent cell responses and the lower cytotoxicity of examined dendrimer conjugates for normal fibroblasts and squamous carcinoma, as compared with much higher cytotoxic effects seen in glioblastoma cell line. Synthetized multi-functional conjugate (G34B27gh1F) is a promising candidate as biocompatible vehicle for hydrophobic molecules used in anticancer therapy.
Collapse
Affiliation(s)
- Łukasz Uram
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland.
| | - Magdalena Szuster
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland
| | - Aleksandra Filipowicz
- Faculty of Medical Sciences, Rzeszów University of Information Technology and Management, 2 Sucharskiego Str, 35-225 Rzeszów, Poland
| | - Magdalena Zaręba
- Faculty of Chemistry, Rzeszów University of Technology, 6 Powstańców Warszawy Ave, 35-959 Rzeszów, Poland
| | - Elżbieta Wałajtys-Rode
- Department of Drug Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 75 Koszykowa Str, 00-664 Warsaw, Poland
| | - Stanisław Wołowiec
- Centre for Innovative Research in Medical and Natural Sciences, Faculty of Medicine, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland
| |
Collapse
|
19
|
Fensterbank H, Baczko K, Constant C, Idttalbe N, Bourdreux F, Vallée A, Goncalves AM, Méallet-Renault R, Clavier G, Wright K, Allard E. Sequential Copper-Catalyzed Alkyne–Azide Cycloaddition and Thiol-Maleimide Addition for the Synthesis of Photo- and/or Electroactive Fullerodendrimers and Cysteine-Functionalized Fullerene Derivatives. J Org Chem 2016; 81:8222-33. [DOI: 10.1021/acs.joc.6b01277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Hélène Fensterbank
- Université de Versailles-Saint-Quentin-en-Yvelines, ILV, UMR-CNRS 8180, 45 avenue des
Etats-Unis, 78035 Versailles Cedex, France
| | - Krystyna Baczko
- Université de Versailles-Saint-Quentin-en-Yvelines, ILV, UMR-CNRS 8180, 45 avenue des
Etats-Unis, 78035 Versailles Cedex, France
| | - Céline Constant
- Université de Versailles-Saint-Quentin-en-Yvelines, ILV, UMR-CNRS 8180, 45 avenue des
Etats-Unis, 78035 Versailles Cedex, France
| | - Najat Idttalbe
- Université de Versailles-Saint-Quentin-en-Yvelines, ILV, UMR-CNRS 8180, 45 avenue des
Etats-Unis, 78035 Versailles Cedex, France
| | - Flavien Bourdreux
- Université de Versailles-Saint-Quentin-en-Yvelines, ILV, UMR-CNRS 8180, 45 avenue des
Etats-Unis, 78035 Versailles Cedex, France
| | - Anne Vallée
- Université de Versailles-Saint-Quentin-en-Yvelines, ILV, UMR-CNRS 8180, 45 avenue des
Etats-Unis, 78035 Versailles Cedex, France
| | - Anne-Marie Goncalves
- Université de Versailles-Saint-Quentin-en-Yvelines, ILV, UMR-CNRS 8180, 45 avenue des
Etats-Unis, 78035 Versailles Cedex, France
| | - Rachel Méallet-Renault
- Institut des Sciences
Moléculaires d’Orsay (ISMO), CNRS, Université Paris-Sud, Université Paris-Saclay, F-91405 Orsay, France
| | - Gilles Clavier
- P.P.S.M., ENS Cachan, UMR-CNRS 8531, Université Paris-Saclay, 61 Avenue
du Président Wilson, 94235 Cachan Cedex, France
| | - Karen Wright
- Université de Versailles-Saint-Quentin-en-Yvelines, ILV, UMR-CNRS 8180, 45 avenue des
Etats-Unis, 78035 Versailles Cedex, France
| | - Emmanuel Allard
- Université de Versailles-Saint-Quentin-en-Yvelines, ILV, UMR-CNRS 8180, 45 avenue des
Etats-Unis, 78035 Versailles Cedex, France
| |
Collapse
|
20
|
Generation Dependency of Stimuli-Responsive Dendron-Gated Mesoporous Silica Nanocontainers. Macromol Res 2016. [DOI: 10.1007/s13233-016-4056-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
21
|
Giacalone F, Campisciano V, Calabrese C, La Parola V, Syrgiannis Z, Prato M, Gruttadauria M. Single-Walled Carbon Nanotube-Polyamidoamine Dendrimer Hybrids for Heterogeneous Catalysis. ACS NANO 2016; 10:4627-36. [PMID: 26974262 DOI: 10.1021/acsnano.6b00936] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We report the synthesis and catalytic properties of single-walled carbon nanotube-polyamidoamine dendrimers hybrids (SWCNT-PAMAM), prepared via a convergent strategy. The direct reaction of cystamine-based PAMAM dendrimers (generations 2.5 and 3.0) with pristine SWCNTs in refluxing toluene, followed by immobilization and reduction of [PdCl4](2-), led to the formation of highly dispersed small palladium nanoparticles homogeneously confined throughout the nanotube length. One of these functional materials proved to be an efficient catalyst in Suzuki and Heck reactions, able to promote the above processes down to 0.002 mol % showing a turnover number (TON) of 48 000 and a turnover frequency (TOF) of 566 000 h(-1). In addition, the hybrid material could be recovered and recycled for up to 6 times. No leaching of the metal has been detected during the Suzuki coupling. Additional experiments carried out on the spent catalyst permitted to suggest that a "release and catch" mechanism is operative in both reactions, although during Heck reaction small catalytically active soluble Pd species are also present.
Collapse
Affiliation(s)
- Francesco Giacalone
- Dipartimento Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo , Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Vincenzo Campisciano
- Dipartimento Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo , Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Carla Calabrese
- Dipartimento Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo , Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| | - Valeria La Parola
- Istituto per lo Studio dei Materiali Nanostrutturati ISMN-CNR , Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Zois Syrgiannis
- Centre of Excellence for Nanostructured Materials (CENMAT), INSTM, Unit of Trieste, Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste , Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Maurizio Prato
- Centre of Excellence for Nanostructured Materials (CENMAT), INSTM, Unit of Trieste, Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Trieste , Via L. Giorgieri 1, 34127 Trieste, Italy
- CIC BiomaGUNE , Parque Tecnológico de San Sebastián, Paseo Miramón, 182, 20009 San Sebastián, Guipúzcoa, Spain
- Basque Foundation for Science, Ikerbasque , Bilbao 48013, Spain
| | - Michelangelo Gruttadauria
- Dipartimento Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF) Università degli Studi di Palermo , Viale delle Scienze, Ed. 17, 90128 Palermo, Italy
| |
Collapse
|
22
|
Mesa-Antunez P, Collado D, Vida Y, Najera F, Fernandez T, Torres MJ, Perez-Inestrosa E. Fluorescent BAPAD Dendrimeric Antigens Are Efficiently Internalized by Human Dendritic Cells. Polymers (Basel) 2016; 8:E111. [PMID: 30979201 PMCID: PMC6432222 DOI: 10.3390/polym8040111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/16/2016] [Accepted: 03/18/2016] [Indexed: 12/29/2022] Open
Abstract
A new fluorescent dendrimeric antigen (DeAn) based on a dendron with amoxicilloyl terminal groups was synthesized. The synthesis was carried out using a novel class of all-aliphatic polyamide dendrimer (BisAminoalkylPolyAmide Dendrimers, or BAPAD) involving the direct condensation of 3,3'-diazidopivalic acid as a building block. Iterative azide reduction/amide formation increases the dendrimer generation. The BAPAD dendrimer was designed with a cystamine core. Reduction of the disulfide bond allows the incorporation of BAPAD dendrons into a 1,8-naphthalimide functionalized with a maleimide group. The fluorescence properties of DeAn were studied in PBS and compared with the properties of an equivalent dendron possessing amino-terminal groups. Both molecules shown high fluorescence quantum yields in PBS and could readily be visualized by fluorescence microscopy. DeAn was used as a synthetic antigen in a biomedical assay that tests their potential as an amoxicillin carrier in drug internalization by dendritic cells (DC) from tolerant and allergic patients. Cytometry data suggest that the dendrons are non-toxic and easily internalized by DCs, while confocal microscopy images indicate that the compounds are preferentially accumulated in the cytoplasm. These results indicate that BAPAD dendrons are good candidates for synthetic scaffolds for biomedical applications.
Collapse
Affiliation(s)
- Pablo Mesa-Antunez
- Department of Organic Chemistry, University of Malaga, IBIMA, 29071 Malaga, Spain.
- Andalusian Centre for Nanomedicine and Biotechnology- BIONAND, Parque Tecnologico de Andalucia, 29590 Malaga, Spain.
| | - Daniel Collado
- Department of Organic Chemistry, University of Malaga, IBIMA, 29071 Malaga, Spain.
- Andalusian Centre for Nanomedicine and Biotechnology- BIONAND, Parque Tecnologico de Andalucia, 29590 Malaga, Spain.
| | - Yolanda Vida
- Department of Organic Chemistry, University of Malaga, IBIMA, 29071 Malaga, Spain.
- Andalusian Centre for Nanomedicine and Biotechnology- BIONAND, Parque Tecnologico de Andalucia, 29590 Malaga, Spain.
| | - Francisco Najera
- Department of Organic Chemistry, University of Malaga, IBIMA, 29071 Malaga, Spain.
- Andalusian Centre for Nanomedicine and Biotechnology- BIONAND, Parque Tecnologico de Andalucia, 29590 Malaga, Spain.
| | - Tahia Fernandez
- Research Laboratory, Regional University Hospital of Malaga-IBIMA, 29010 Malaga, Spain.
| | - Maria Jose Torres
- Research Laboratory, Regional University Hospital of Malaga-IBIMA, 29010 Malaga, Spain.
- Allergy Service, Regional University Hospital of Malaga-IBIMA, 29010 Malaga, Spain.
| | - Ezequiel Perez-Inestrosa
- Department of Organic Chemistry, University of Malaga, IBIMA, 29071 Malaga, Spain.
- Andalusian Centre for Nanomedicine and Biotechnology- BIONAND, Parque Tecnologico de Andalucia, 29590 Malaga, Spain.
| |
Collapse
|
23
|
Tomalia DA, Khanna SN. A Systematic Framework and Nanoperiodic Concept for Unifying Nanoscience: Hard/Soft Nanoelements, Superatoms, Meta-Atoms, New Emerging Properties, Periodic Property Patterns, and Predictive Mendeleev-like Nanoperiodic Tables. Chem Rev 2016; 116:2705-74. [DOI: 10.1021/acs.chemrev.5b00367] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Donald A. Tomalia
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
- National Dendrimer & Nanotechnology Center, NanoSynthons LLC, 1200 North Fancher Avenue, Mt. Pleasant, Michigan 48858, United States
| | - Shiv N. Khanna
- Department
of Physics, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| |
Collapse
|
24
|
Barraza LF, Jiménez VA, Alderete JB. Methotrexate Complexation with Native and PEGylated PAMAM-G4: Effect of the PEGylation Degree on the Drug Loading Capacity and Release Kinetics. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500342] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Luis F. Barraza
- Departamento de Química Orgánica; Facultad de Ciencias Químicas; Universidad de Concepción; Casilla 160-C Concepción 4070371 Chile
| | - Verónica A. Jiménez
- Departamento de Ciencias Químicas; Facultad de Ciencias Exactas; Universidad Andres Bello; Sede Concepción Talcahuano 4260000 Chile
| | - Joel B. Alderete
- Departamento de Química Orgánica; Facultad de Ciencias Químicas; Universidad de Concepción; Casilla 160-C Concepción 4070371 Chile
| |
Collapse
|
25
|
Nam K, Jung S, Nam JP, Kim SW. Poly(ethylenimine) conjugated bioreducible dendrimer for efficient gene delivery. J Control Release 2015; 220:447-455. [PMID: 26551343 DOI: 10.1016/j.jconrel.2015.11.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 10/26/2015] [Accepted: 11/05/2015] [Indexed: 11/30/2022]
Abstract
Branched poly(ethylenimine) (PEI) 25 kDa is an efficient gene delivery vector with outstanding gene condensation ability and great endosome escape activity. However, it also induces higher cytotoxicity. Transfection efficiency and toxicity of PEI are highly dependent upon their molecular weight and structure. We developed a bioreducible poly(ethylenimine) (PEI (-s-s-)) derived from low molecular weight PEI (1.8 kDa) for efficient gene delivery. Bioreducible core molecule is expected to increase molecular weight and reduce the cytotoxicity of the copolymer. PEI (-s-s-) polyplexes showed higher transfection efficiency and lower cytotoxicity compared to branched PEI 25 kDa, Lipofectamine® 2000 and, FuGENE® 6. In addition, PEI (-s-s-) derivative (16 kDa) formed stable polyplexes with a zeta-potential value of +34 mV and polyplex size of 61 nm. PEI (-s-s-) derivative (16 kDa) showed excellent transfection efficiency: 3.6 times higher than branched PEI 25 kDa in HeLa cells and 7.4 times higher than Lipofectamine® 2000 in H9C2 cell. The derivatives also showed lower cytotoxicity compared with Lipofectamine® 2000 and PEI 25 kDa in various cell types. In addition, newly synthesized PEI (-s-s-) derivatives have high reproducibility.
Collapse
Affiliation(s)
- Kihoon Nam
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Simhyun Jung
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Joung-Pyo Nam
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Sung Wan Kim
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
26
|
Baczko K, Fensterbank H, Berini B, Bordage N, Clavier G, Méallet-Renault R, Larpent C, Allard E. Azide-functionalized nanoparticles as quantized building block for the design of soft-soft fluorescent polystyrene core-PAMAM shell nanostructures. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Krystyna Baczko
- Institut Lavoisier de Versailles UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines; 45 avenue des Etats-Unis 78035 Versailles cedex France
| | - Hélène Fensterbank
- Institut Lavoisier de Versailles UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines; 45 avenue des Etats-Unis 78035 Versailles cedex France
| | - Bruno Berini
- Groupe d'Etude de la Matière Condensée UMR-CNRS 8635, Université de Versailles-Saint-Quentin-en-Yvelines; 45 avenue des Etats-Unis 78035 Versailles cedex France
| | - Nadège Bordage
- P.P.S.M., CNRS UMR 8531, Ecole Normale Supérieure de Cachan; 61 Avenue du Président Wilson 94235 Cachan Cedex France
| | - Gilles Clavier
- P.P.S.M., CNRS UMR 8531, Ecole Normale Supérieure de Cachan; 61 Avenue du Président Wilson 94235 Cachan Cedex France
| | - Rachel Méallet-Renault
- P.P.S.M., CNRS UMR 8531, Ecole Normale Supérieure de Cachan; 61 Avenue du Président Wilson 94235 Cachan Cedex France
| | - Chantal Larpent
- Institut Lavoisier de Versailles UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines; 45 avenue des Etats-Unis 78035 Versailles cedex France
| | - Emmanuel Allard
- Institut Lavoisier de Versailles UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines; 45 avenue des Etats-Unis 78035 Versailles cedex France
| |
Collapse
|
27
|
Barraza LF, Jiménez VA, Alderete JB. Effect of PEGylation on the Structure and Drug Loading Capacity of PAMAM-G4 Dendrimers: A Molecular Modeling Approach on the Complexation of 5-Fluorouracil with Native and PEGylated PAMAM-G4. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500179] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Luis F. Barraza
- Departamento de Química Orgánica; Facultad de Ciencias Químicas; Universidad de Concepción; Casilla 160-C Concepción 4070371 Chile
| | - Verónica A. Jiménez
- Departamento de Ciencias Químicas; Facultad de Ciencias Exactas; Universidad Andres Bello; Sede Concepción; Talcahuano 4260000 Chile
| | - Joel B. Alderete
- Departamento de Química Orgánica; Facultad de Ciencias Químicas; Universidad de Concepción; Casilla 160-C Concepción 4070371 Chile
| |
Collapse
|
28
|
Abstract
We investigate the electrostatics, energetics, and dynamics of dendrimer-DNA interactions that mimic protein-DNA complexes as a means to design facilitated mechanisms by which dendrimers can slide and search DNA for targets. By using all-atom molecular dynamics simulations, we calculated the free energy profiles of dendrimer-binding around the DNA via umbrella sampling. We also calculated electrostatic interaction maps in comparison to proteins, as well as the dynamical changes induced by DNA-dendrimer interactions via NMR-measurable order parameters. Our results show that for dendrimers to go around DNA, there is a free-energy barrier of 8.5 kcal/mol from the DNA major groove to DNA minor groove, with a minimum in the major groove. This barrier height makes it unlikely for an all-amine dendrimer to slide along DNA longitudinally, but following a helical path may be possible along the major groove. Comparison of the nonbonded interaction energy and the interaction free-energy profiles reveal a considerable entropic cost as the dendrimer binds to DNA. This is also supported by the mobility patterns obtained from NMR-measurable order parameter values, which show a decreased mobility of the dendrimer N-H bond vectors in the DNA-binding mode.
Collapse
Affiliation(s)
- Emel Ficici
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Ioan Andricioaei
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
29
|
Menot B, Stopinski J, Martinez A, Oudart JB, Maquart FX, Bouquillon S. Synthesis of surface-modified PAMAMs and PPIs for encapsulation purposes: influence of the decoration on their sizes and toxicity. Tetrahedron 2015. [DOI: 10.1016/j.tet.2015.03.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Lin PC. Nuclear Magnetic Resonance Spectroscopy in Nanomedicine. PROGRESS IN OPTICAL SCIENCE AND PHOTONICS 2015. [DOI: 10.1007/978-981-287-242-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
31
|
Gündüz S, Power A, Maier ME, Logothetis NK, Angelovski G. Synthesis and Characterization of a Biotinylated Multivalent Targeted Contrast Agent. Chempluschem 2014; 80:612-622. [DOI: 10.1002/cplu.201402329] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Indexed: 12/29/2022]
|
32
|
Kannan RM, Nance E, Kannan S, Tomalia DA. Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J Intern Med 2014; 276:579-617. [PMID: 24995512 DOI: 10.1111/joim.12280] [Citation(s) in RCA: 353] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dendrimers are discrete nanostructures/nanoparticles with 'onion skin-like' branched layers. Beginning with a core, these nanostructures grow in concentric layers to produce stepwise increases in size that are similar to the dimensions of many in vivo globular proteins. These branched tree-like concentric layers are referred to as 'generations'. The outer generation of each dendrimer presents a precise number of functional groups that may act as a monodispersed platform for engineering favourable nanoparticle-drug and nanoparticle-tissue interactions. These features have attracted significant attention in medicine as nanocarriers for traditional small drugs, proteins, DNA/RNA and in some instances as intrinsically active nanoscale drugs. Dendrimer-based drugs, as well as diagnostic and imaging agents, are emerging as promising candidates for many nanomedicine applications. First, we will provide a brief survey of recent nanomedicines that are either approved or in the clinical approval process. This will be followed by an introduction to a new 'nanoperiodic' concept which proposes nanoparticle structure control and the engineering of 'critical nanoscale design parameters' (CNDPs) as a strategy for optimizing pharmocokinetics, pharmocodynamics and site-specific targeting of disease. This paradigm has led to the emergence of CNDP-directed nanoperiodic property patterns relating nanoparticle behaviour to critical in vivo clinical translation issues such as cellular uptake, transport, elimination, biodistribution, accumulation and nanotoxicology. With a focus on dendrimers, these CNDP-directed nanoperiodic patterns are used as a strategy for designing and optimizing nanoparticles for a variety of drug delivery and imaging applications, including a recent dendrimer-based theranostic nanodevice for imaging and treating cancer. Several emerging preclinical dendrimer-based nanotherapy concepts related to inflammation, neuro-inflammatory disorders, oncology and infectious and ocular diseases are reviewed. Finally we will consider challenges and opportunities anticipated for future clinical translation, nanotoxicology and the commercialization of nanomedicine.
Collapse
Affiliation(s)
- R M Kannan
- Department of Ophthalmology, Center for Nanomedicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
33
|
Onodera T, Toko K. Towards an electronic dog nose: surface plasmon resonance immunosensor for security and safety. SENSORS 2014; 14:16586-616. [PMID: 25198004 PMCID: PMC4208188 DOI: 10.3390/s140916586] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/31/2014] [Accepted: 08/29/2014] [Indexed: 01/06/2023]
Abstract
This review describes an “electronic dog nose” based on a surface plasmon resonance (SPR) sensor and an antigen–antibody interaction for security and safety. We have concentrated on developing appropriate sensor surfaces for the SPR sensor for practical use. The review covers different surface fabrications, which all include variations of a self-assembled monolayer containing oligo(ethylene glycol), dendrimer, and hydrophilic polymer. We have carried out detection of explosives using the sensor surfaces. For the SPR sensor to detect explosives, the vapor or particles of the target substances have to be dissolved in a liquid. Therefore, we also review the development of sampling processes for explosives, and a protocol for the measurement of explosives on the SPR sensor in the field. Additionally, sensing elements, which have the potential to be applied for the electronic dog nose, are described.
Collapse
Affiliation(s)
- Takeshi Onodera
- Research and Development Center for Taste and Odor Sensing, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Kiyoshi Toko
- Research and Development Center for Taste and Odor Sensing, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
34
|
Gao C, Liu M, Lü S, Zhang X, Duan H. Fluorescent and thermoresponsive supramolecular systems: synthesis, self-assembly and application in percutaneous optical monitoring. J Mater Chem B 2014; 2:6823-6829. [DOI: 10.1039/c4tb01186d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Lin PC, Lin S, Wang PC, Sridhar R. Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 2014; 32:711-26. [PMID: 24252561 PMCID: PMC4024087 DOI: 10.1016/j.biotechadv.2013.11.006] [Citation(s) in RCA: 253] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 11/05/2013] [Accepted: 11/12/2013] [Indexed: 12/12/2022]
Abstract
Advances in nanotechnology have opened up a new era of diagnosis, prevention and treatment of diseases and traumatic injuries. Nanomaterials, including those with potential for clinical applications, possess novel physicochemical properties that have an impact on their physiological interactions, from the molecular level to the systemic level. There is a lack of standardized methodologies or regulatory protocols for detection or characterization of nanomaterials. This review summarizes the techniques that are commonly used to study the size, shape, surface properties, composition, purity and stability of nanomaterials, along with their advantages and disadvantages. At present there are no FDA guidelines that have been developed specifically for nanomaterial based formulations for diagnostic or therapeutic use. There is an urgent need for standardized protocols and procedures for the characterization of nanoparticles, especially those that are intended for use as theranostics.
Collapse
MESH Headings
- Chemistry, Physical/methods
- Circular Dichroism
- Contrast Media/chemistry
- Humans
- Light
- Magnetic Resonance Spectroscopy
- Mass Spectrometry
- Microscopy, Atomic Force
- Microscopy, Electron, Scanning
- Microscopy, Electron, Transmission
- Microscopy, Scanning Tunneling
- Molecular Imaging/methods
- Nanomedicine/methods
- Nanoparticles/chemistry
- Nanostructures/chemistry
- Nanotechnology/methods
- Nanotechnology/trends
- Scattering, Radiation
- Spectrometry, Fluorescence
- Spectrophotometry, Infrared
- Spectrum Analysis, Raman
- Surface Properties
- Technology, Pharmaceutical/methods
Collapse
Affiliation(s)
- Ping-Chang Lin
- Laboratory of Molecular Imaging, Department of Radiology, Howard University, Washington, DC 20060, USA
| | - Stephen Lin
- Laboratory of Molecular Imaging, Department of Radiology, Howard University, Washington, DC 20060, USA
| | - Paul C Wang
- Laboratory of Molecular Imaging, Department of Radiology, Howard University, Washington, DC 20060, USA
| | - Rajagopalan Sridhar
- Department of Radiation Oncology, Howard University, Washington, DC 20060, USA.
| |
Collapse
|
36
|
van Dongen MA, Silpe JE, Dougherty CA, Kanduluru AK, Choi SK, Orr BG, Low PS, Banaszak Holl MM. Avidity mechanism of dendrimer-folic acid conjugates. Mol Pharm 2014; 11:1696-706. [PMID: 24725205 PMCID: PMC4018099 DOI: 10.1021/mp5000967] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Multivalent conjugation of folic
acid has been employed to target
cells overexpressing folate receptors. Such polymer conjugates have
been previously demonstrated to have high avidity to folate binding
protein. However, the lack of a monovalent folic acid–polymer
material has prevented a full binding analysis of these conjugates,
as multivalent binding mechanisms and polymer-mass mechanisms are
convoluted in samples with broad distributions of folic acid-to-dendrimer
ratios. In this work, the synthesis of a monovalent folic acid–dendrimer
conjugate allowed the elucidation of the mechanism for increased binding
between the folic acid–polymer conjugate and a folate binding
protein surface. The increased avidity is due to a folate-keyed interaction
between the dendrimer and protein surfaces that fits into the general
framework of slow-onset, tight-binding mechanisms of ligand/protein
interactions.
Collapse
Affiliation(s)
- Mallory A van Dongen
- Department of Chemistry and ⊥Department of Physics, ‡Program in Macromolecular Sciences and Engineering, and §Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan , Ann Arbor, Michigan 48019, United States
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Perreault F, Melegari SP, Fuzinatto CF, Bogdan N, Morin M, Popovic R, Matias WG. Toxicity of PAMAM-coated gold nanoparticles in different unicellular models. ENVIRONMENTAL TOXICOLOGY 2014; 29:328-336. [PMID: 22331655 DOI: 10.1002/tox.21761] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/19/2011] [Accepted: 12/26/2011] [Indexed: 05/31/2023]
Abstract
Polyamidoamine (PAMAM) dendrimers are used for many pharmaceutical and biomedical applications. However, the toxicological risks of several PAMAM-based compounds are still not fully evaluated, despite evidences of PAMAM deleterious effects on biological membranes, leading to toxicity. In this report, we investigated the toxicity of generation 0 PAMAM-coated gold nanoparticles (AuG0 NPs) in four different models to determine how different cellular systems are affected by PAMAM-coated NPs. Toxicity was evaluated in two mammalian cell lines, Neuro 2A and Vero, in the green alga Chlamydomonas reinhardtii and the bacteria Vibrio fischeri. AuG0 NP treatments reduced cell metabolic activity in algal and bacterial cells, measured by esterase enzymatic activity (C. reinhardtii) and luminescence emission (V. fischeri). EC50 value after 30 min of treatment was similar in both organisms, with 0.114 and 0.167 mg mL(-1) for C. reinhardtii and V. fischeri, respectively. On the other hand, AuG0 NPs induced no change of mitochondrial activity in mammalian cells after 24 h of treatment to up to 0.4 mg mL(-1) AuG0 NPs. Change in the absorption spectra of AuG0 NP in the mammalian cell culture media may indicate an alteration of NP properties that contributed to the low toxicity of AuG0 NPs in mammalian cells. For a safe development of PAMAM-based nanomaterials, the difference of sensitivity between mammalian and microbial cells, as well as the modulation of NPs toxicity by medium properties, should be taken into account when designing PAMAM NPs for applications that may lead to their introduction in the environment.
Collapse
Affiliation(s)
- François Perreault
- Laboratory of Environmental Toxicology, LABTOX, Department of Sanitary and Environment Engineering, Federal University of Santa Catarina, CEP 88040-970, Florianópolis, Santa Catarina, Brazil; Department of Chemistry, University of Quebec in Montreal, C.P. 8888, Succ. Centre-Ville, Montreal, Quebec, Canada, H3C 3P8
| | | | | | | | | | | | | |
Collapse
|
38
|
Isaacman S, Buckley M, Wang X, Wang EY, Liebes L, Canary JW. Targeted amplification of delivery to cell surface receptors by dendrimer self-assembly. Bioorg Med Chem Lett 2014; 24:1290-3. [PMID: 24513050 PMCID: PMC5090713 DOI: 10.1016/j.bmcl.2014.01.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/17/2014] [Accepted: 01/21/2014] [Indexed: 11/29/2022]
Abstract
Nanometer-scale architectures assembled on cell surface receptors from smaller macromolecular constituents generated a large amplification of fluorescence. A targeted dendrimer was synthesized from a cystamine-core G4 PAMAM dendrimer, and contained an anti-BrE3 monoclonal antibody as the targeting group, several fluorophores and an average of 12 aldehyde moieties as complementary bio-orthogonal reactive sites for the covalent assembly. A cargo dendrimer, derived from a PAMAM G4 dendrimer, contained several fluorophores as the cargo for delivery and five hydrazine moieties as complimentary bio-orthogonal reactive sites. The system is designed to be flexible and allow for facile incorporation of a variety of targeting ligands.
Collapse
Affiliation(s)
- Steven Isaacman
- Department of Chemistry, New York University, New York, NY 10003, USA; Nanometics LLC, 111 Great Neck Rd, Suite 212, Great Neck, NY 11021, USA
| | - Michael Buckley
- Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Xiaojian Wang
- Department of Chemistry, New York University, New York, NY 10003, USA
| | - Edwin Y Wang
- Department of Radiology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Leonard Liebes
- Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - James W Canary
- Department of Chemistry, New York University, New York, NY 10003, USA; Cancer Institute, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| |
Collapse
|
39
|
Li X, Takeda K, Yuba E, Harada A, Kono K. Preparation of PEG-modified PAMAM dendrimers having a gold nanorod core and their application to photothermal therapy. J Mater Chem B 2014; 2:4167-4176. [DOI: 10.1039/c4tb00132j] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new type of hybrid dendrimer consisting of a gold nanorod core and polyethylene glycol-modified polyamidoamine dendrons was developed for biomedical applications such as photothermal therapy.
Collapse
Affiliation(s)
- Xiaojie Li
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai, Japan
| | - Keishi Takeda
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai, Japan
| | - Eiji Yuba
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai, Japan
| | - Atsushi Harada
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai, Japan
| | - Kenji Kono
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka Prefecture University
- Sakai, Japan
| |
Collapse
|
40
|
Ottaviani MF, Cangiotti M, Fattori A, Coppola C, Lucchi S, Ficker M, Petersen JF, Christensen JB. Copper(II) complexes with 4-carbomethoxypyrrolidone functionalized PAMAM-dendrimers: an EPR study. J Phys Chem B 2013; 117:14163-72. [PMID: 24152031 DOI: 10.1021/jp410307z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The internal flexibility and interacting ability of PAMAM-dendrimers having 4-carbomethoxypyrrolidone-groups as surface groups (termed Gn-Pyr), which may be useful for biomedical purposes, and ion traps were investigated by analyzing the EPR spectra of their copper(II) complexes. Increasing amounts (with respect to the Pyr groups) of copper(II) gave rise to different signals constituting the EPR spectra at room and low temperature corresponding to different coordinations of Cu(2+) inside and outside the dendrimers. At low Cu(2+) concentrations, CuN4 coordination involving the DAB core is preferential for G3- and G5-Pyr, while G4-Pyr shows a CuN3O coordination. CuN2O2 coordination into the external dendrimer layer was also contributing to G3- and G4-Pyr spectra. The structures of the proposed copper-dendrimer complexes were also shown. G4-Pyr displays unusual binding ability toward Cu(II) ions. Mainly the remarkably low toxicity shown by G4-Pyr and its peculiar binding ability leads to a potential use in biomedical fields.
Collapse
Affiliation(s)
- Maria Francesca Ottaviani
- Department of Earth, Life and Environment Sciences, University of Urbino , Località Crocicchia, 61029 Urbino, Italy
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Syrgiannis Z, La Parola V, Hadad C, Lucío M, Vázquez E, Giacalone F, Prato M. An Atom-Economical Approach to Functionalized Single-Walled Carbon Nanotubes: Reaction with Disulfides. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301617] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Syrgiannis Z, La Parola V, Hadad C, Lucío M, Vázquez E, Giacalone F, Prato M. An Atom-Economical Approach to Functionalized Single-Walled Carbon Nanotubes: Reaction with Disulfides. Angew Chem Int Ed Engl 2013; 52:6480-3. [DOI: 10.1002/anie.201301617] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Indexed: 11/06/2022]
|
43
|
Mills M, Orr BG, Banaszak Holl MM, Andricioaei I. Attractive hydration forces in DNA-dendrimer interactions on the nanometer scale. J Phys Chem B 2013; 117:973-81. [PMID: 23234339 PMCID: PMC3633417 DOI: 10.1021/jp309616t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The energetic contribution of attractive hydration forces arising from water ordering is an interesting but often neglected aspect of macromolecular interactions. Ordering effects of water can bring about cooperativity in many intermolecular transactions, in both the short and long range. Given its high charge density, this is of particular importance for DNA. For instance, in nanotechnology, highly charged dendrimers are used for DNA compaction and transfection. Hypothesizing that water ordering and hydration forces should be maximal for DNA complexes that show charge complementarity (positive-negative), we present here an analysis of water ordering from molecular dynamics simulations and free energy calculations of the interaction between DNA and a nanoparticle with a high positive charge density. Our results indicate not only that complexation of the dendrimer with DNA affects the local water structure but also that ordered water molecules facilitate long-range interactions between the molecules. This contributes significantly to the free energy of binding of dendrimers to DNA and extends the interaction well beyond the electrostatic range of the DNA. Such water effects are of potentially substantial importance in cases when molecules appear to recognize each other across sizable distances, or for which kinetic rates are too fast to be due to pure diffusion. Our results are in good agreement with experiments on the role of solvent in DNA condensation by multivalent cations and exemplify a microscopic realization of mean-field phenomenological theories for hydration forces between mesoscopic surfaces.
Collapse
|
44
|
Tomalia DA. Twenty-First Century Polymer Science After Staudinger: The Emergence of Dendrimers/Dendritic Polymers as a Fourth Major Architecture and Window to a New Nano-periodic System. HIERARCHICAL MACROMOLECULAR STRUCTURES: 60 YEARS AFTER THE STAUDINGER NOBEL PRIZE I 2013. [DOI: 10.1007/12_2013_252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
45
|
Tang S, Tomalia DA, Orr BG, Baker JR, Huang B. Regio-specific size, shape and surface chemistry designed dendrimers based on differentiated dendroid templates. NEW J CHEM 2013. [DOI: 10.1039/c2nj41002h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Gray WD, Wu RJ, Yin X, Zhou J, Davis ME, Luo Y. Dendrimeric bowties featuring hemispheric-selective decoration of ligands for microRNA-based therapy. Biomacromolecules 2012; 14:101-9. [PMID: 23145944 DOI: 10.1021/bm301393z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Dendrimers feature a defined number of terminal groups that may bind RNA or be functionalized with bioactive molecules. These competing uses of terminal groups may create an impasse if the requisite density of ligands depletes the number of terminal groups for binding sufficient RNA, or vice versa. A novel dendrimeric platform is needed that maintains high ligand density while retaining sufficient microRNA-binding terminal groups. Here we present a dendrimeric "bowtie" consisting of one-half devoted to microRNA binding and the other half to ligand presentation. We demonstrate its suitability as a transfection agent by delivering miR-126 to human vascular endothial cells (HUVECs) via polyarginine- and RGD-modified bowties and evaluating the downstream effects on proliferation and tube formation. Our findings indicate that the bowtie elicits desired responses and may possess superior delivery properties compared to nondecorated dendrimeric materials. The bowtie system thereby provides a new design model for developing dendrimeric delivery vehicles for RNAi therapeutics.
Collapse
Affiliation(s)
- Warren D Gray
- Department of Biomedical Engineering, College of Engineering, Peking University, Room 206, Fangzheng Building, 298 Chengfu Road, Haidian District, Beijing 100871, China
| | | | | | | | | | | |
Collapse
|
47
|
Albertazzi L, Gherardini L, Brondi M, Sulis Sato S, Bifone A, Pizzorusso T, Ratto GM, Bardi G. In Vivo Distribution and Toxicity of PAMAM Dendrimers in the Central Nervous System Depend on Their Surface Chemistry. Mol Pharm 2012; 10:249-60. [DOI: 10.1021/mp300391v] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Lorenzo Albertazzi
- Center for Nanotechnology Innovation
@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127
Pisa, Italy
- Laboratorio
NEST, Scuola Normale
Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Lisa Gherardini
- Institute of Neuroscience—CNR,
Via Moruzzi 1, 56124 Pisa, Italy
- Institute of Clinical Physiology—CNR,
Via Fiorentina 1, 53100 Siena, Italy
| | - Marco Brondi
- Center for Nanotechnology Innovation
@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127
Pisa, Italy
- Laboratorio
NEST, Scuola Normale
Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Sebastian Sulis Sato
- Center for Nanotechnology Innovation
@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127
Pisa, Italy
- Laboratorio
NEST, Scuola Normale
Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Angelo Bifone
- Center for Nanotechnology Innovation
@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127
Pisa, Italy
| | - Tommaso Pizzorusso
- Institute of Neuroscience—CNR,
Via Moruzzi 1, 56124 Pisa, Italy
- Department of Psychology, University
of Florence, Via di San Niccolò, 89a-95 50125 Florence, Italy
| | - Gian Michele Ratto
- Laboratorio
NEST, Scuola Normale
Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Institute of Nanoscience—CNR,
Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Giuseppe Bardi
- Center for Nanotechnology Innovation
@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127
Pisa, Italy
| |
Collapse
|
48
|
Abstract
A stable tetraporphyrin metallacycle with Re(I) corners (1) is capable of forming nanopores in a liposomial membrane, provided that the porphyrin units are properly functionalized with peripheral carboxylic acid residues that, by establishing an hydrogen bond network, allow the formation of dimers that span the depth of the membrane.
Collapse
Affiliation(s)
- Mariangela Boccalon
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Giorgieri 1, I-34127, Trieste, Italy
| | | | | |
Collapse
|
49
|
Borowska K, Wołowiec S, Głowniak K, Sieniawska E, Radej S. Transdermal delivery of 8-methoxypsoralene mediated by polyamidoamine dendrimer G2.5 and G3.5--in vitro and in vivo study. Int J Pharm 2012; 436:764-70. [PMID: 22884834 DOI: 10.1016/j.ijpharm.2012.07.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 07/27/2012] [Accepted: 07/29/2012] [Indexed: 11/19/2022]
Abstract
In this work, we have focused on 8-methoxypsoralene (8-MOP) complexed with G2.5 and G3.5 poly(amido amine) (PAMAM) dendrimers. The purpose of this study was to investigate the efficacy of half-generation G2.5 and G3.5 PAMAM dendrimers conjugated with 8-MOP for delivery of 8-MOP in vitro study through polivinyldifluoride membrane (PVDE) and prepared pig ear skin (PES) using Franz diffusion and in vivo study through the skin of experimental animals (hairless rat skin). The tissue concentration of 8-MOP in hairless rat skin was analyzed by high performance liquid chromatography (HPLC) after 1 and 2 h. Detailed distribution of 8-MOP in skin layers and cellular structures were analyzed using laser scanning microscopy (CLSM). In vitro and in vivo studies showed that half-generation G2.5 and G3.5 PAMAM dendrimers are able to facilitate transdermal delivery of 8-MOP. G2.5 PAMAM dendrimer appeared to be more effective 8-MOP penetration enhancer than G3.5 PAMAM dendrimer, but in vivo the differences are not statistically significant. The concept of using G2.5 and G3.5 PAMAM dendrimers as carriers seems to be a promising method for the delivery of 8-MOP for PUVA (psoralen-UV-A) therapy.
Collapse
Affiliation(s)
- Katarzyna Borowska
- Department of Cosmetology, University of Information Technology and Management In Rzeszów, 2 Sucharskiego Str., 35-325 Rzeszów, Poland.
| | | | | | | | | |
Collapse
|
50
|
Characterization of magnetic nanoparticles modified with thiol functionalized PAMAM dendron for DNA recovery. J Colloid Interface Sci 2012; 377:469-75. [DOI: 10.1016/j.jcis.2012.03.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 11/18/2022]
|