Van Poecke S, Barrett MO, Santhosh Kumar T, Sinnaeve D, Martins JC, Jacobson KA, Kendall Harden T, Van Calenbergh S. Synthesis and P2Y₂ receptor agonist activities of uridine 5'-phosphonate analogues.
Bioorg Med Chem 2012;
20:2304-15. [PMID:
22386981 PMCID:
PMC3303979 DOI:
10.1016/j.bmc.2012.02.012]
[Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 01/27/2012] [Accepted: 02/04/2012] [Indexed: 02/06/2023]
Abstract
We explored the influence of modifications of uridine 5'-methylenephosphonate on biological activity at the human P2Y(2) receptor. Key steps in the synthesis of a series of 5-substituted uridine 5'-methylenephosphonates were the reaction of a suitably protected uridine 5'-aldehyde with [(diethoxyphosphinyl)methylidene]triphenylphosphorane, C-5 bromination and a Suzuki-Miyaura coupling. These analogues behaved as selective agonists at the P2Y(2) receptor, with three analogues exhibiting potencies in the submicromolar range. Although maximal activities observed with the phosphonate analogues were much less than observed with UTP, high concentrations of the phosphonates had no effect on the stimulatory effect of UTP. These results suggest that these phosphonates bind to an allosteric site of the P2Y(2) receptor.
Collapse