1
|
Moya-Utrera F, Cheng-Sánchez I, Fuentes-Pino I, Sánchez-Ruiz A, Sarabia F. Efficient Synthesis of Fused Polycyclic Ether Systems via Sulfonium Ylides: A Synthetic Approach to Yessotoxin and Adriatoxin. Mar Drugs 2025; 23:51. [PMID: 39997175 PMCID: PMC11857374 DOI: 10.3390/md23020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/26/2025] Open
Abstract
A novel class of chiral sulfonium salts, derived from L- and D-methionine, was designed and successfully employed for the diastereoselective synthesis of epoxy amides. This new methodology of asymmetric epoxidation was exploited for the stereoselective construction of fused polycyclic ethers, which are structural motifs present in a great variety of natural products of marine origin. This methodology proved to be useful for the synthesis of the tricyclic A-C system contained in yessotoxin and adriatoxin, and also in many other related natural products of marine origin belonging to the fused polycyclic ether toxins.
Collapse
Affiliation(s)
- Federico Moya-Utrera
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain
| | - Iván Cheng-Sánchez
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain
| | - Irama Fuentes-Pino
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain
| | - Antonio Sánchez-Ruiz
- Faculty of Pharmacy, University of Castilla-La Mancha, Campus de Albacete, Avda. Dr. José María Sánchez Ibáñez S/N, 02008 Albacete, Spain;
| | - Francisco Sarabia
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain
| |
Collapse
|
2
|
Huang S, Mertens KN, Derrien A, David O, Shin HH, Li Z, Cao X, Cabrini M, Klisarova D, Gu H. Gonyaulax montresoriae sp. nov. (Dinophyceae) from the Adriatic Sea produces predominantly yessotoxin. HARMFUL ALGAE 2025; 141:102761. [PMID: 39645391 DOI: 10.1016/j.hal.2024.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/17/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
Yessotoxin is one of the shellfish toxins leading to mussel farm closures in the Adriatic Sea of Italy. Two putative Gonyaulax spinifera strains GSA0501 and GSA0602 are known as yessotoxins producers, but their identities have remained elusive since 2005. To address this gap, we established five Gonyaulax strains by incubating sediments from the Adriatic Sea and subsequently isolating single cells. Both cyst and theca morphology were examined using light and scanning electron microscopy. In addition, LSU and/or SSU rRNA gene sequences were obtained for all strains. Two strains produce cysts resembling Spiniferites mirabilis and one strain was related to S. scabratus. The other two strains are described as Gonyaulax montresoriae sp. nov., characterized by a high cingular displacement and overhang, along with two unequal antapical spines. Cysts of G. montresoriae are pear-shaped, showing a smooth surface and exclusively gonal processes with perforations at the base, the latter similar to S. lazus. LSU rRNA gene sequence comparison suggests that the G. spinifera strain GSA0501 isolated from the Adriatic Sea in 2005 should also be identified as G. montresoriae. Maximum likelihood and Bayesian inference analyses based on LSU and SSU rRNA gene sequences reveal that G. montresoriae is monophyletic, and close to several toxic strains of presumable Gonyaulax spinifera from the Adriatic Sea and New Zealand, whose taxonomic positions are uncertain. One strain of G. montresoriae was examined for yessotoxin production using LC-MS/MS, and found to produce predominantly yessotoxin at a concentration of 3.0 pg cell-1. Our results highlight the rich diversity and risks associated with Gonyaulax species in the Mediterranean Sea.
Collapse
Affiliation(s)
- Shuning Huang
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, 210044, China; Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | | | | | - Ophélie David
- Ifremer, COAST, F-29900 Concarneau, France; Geo-Ocean, UMR 6538,Univ Brest, CNRS, Ifremer, F-29280 Plouzané, France
| | - Hyeon Ho Shin
- Division of Fisheries Life Science, Pukyong National University, Busan 48574, Republic of Korea
| | - Zhun Li
- Biological Resource Center/Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, South Korea
| | - Xiuyun Cao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Marina Cabrini
- National Institute of Oceanography and Experimental Geophysics, Italy
| | - Daniela Klisarova
- Medical University, Faculty of Medicine Department of Anatomy, Histology, Cytology and Biology, Pleven, Bulgaria; Institute of Fish Resources, Agriculture Academy, 9000 Varna, Bulgaria
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
3
|
Blanco J, Moroño Á, Arévalo F, Correa J, Lamas JP. Yessotoxins in Mollusks of the Galician Coast from 2014 to 2022: Variability, Biotransformation, and Resistance to Alkaline Hydrolysis. Toxins (Basel) 2023; 15:661. [PMID: 37999524 PMCID: PMC10674579 DOI: 10.3390/toxins15110661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
The presence of yessotoxins (YTXs) was analyzed in 10,757 samples of Galician bivalves from 2014 to 2022. Only YTX and 45-OH YTX were found. YTX was detected in 31% of the samples, while 45-OH YTX was found in 11.6% of them. Among the samples containing YTX, 45-OH YTX was detected in 37.3% of cases. The maximum recorded levels were 1.4 and 0.16 mg of YTX-equivalentsg-1, for YTX and 45-OH YTX, respectively, which are well below the regulatory limit of the European Union. The YTX and 45-OH YTX toxicities in the raw extracts and extracts subjected to alkaline hydrolysis were strongly and linearly related. Due to the lack of homo-YTX in Galician samples, the effect of alkaline hydrolysis on homo-YTX and 45OH-Homo-YTX was only checked in 23 additional samples, observing no negative effect but a high correlation between raw and hydrolyzed extracts. Hydrolyzed samples can be used instead of raw ones to carry out YTXs determinations in monitoring systems, which may increase the efficiency of those systems where okadaic acid episodes are very frequent and therefore a higher number of hydrolyzed samples are routinely analyzed. The presence of YTX in the studied bivalves varied with the species, with mussels and cockles having the highest percentages of YTX-detected samples. The presence of 45-OH YTX was clearly related to YTX and was detected only in mussels and cockles. Wild populations of mussels contained proportionally more 45-OH YTX than those that were raft-cultured. Spatially, toxin toxicities varied across the sampling area, with higher levels in raft-cultured mussels except those of Ría de Arousa. Ría de Ares (ARE) was the most affected geographical area, although in other northern locations, lower toxin levels were detected. Seasonally, YTX and 45-OH YTX toxicities showed similar patterns, with higher levels in late summer and autumn but lower toxicities of the 45-OH toxin in August. The relationship between the two toxins also varied seasonally, in general with a minimum proportion of 45-OH YTX in July-August but with different maximum levels for raft-cultured and wild mussel populations. Interannually, the average toxicities of YTX decreased from 2014 to 2017 and newly increased from 2018 to 2021, but decreased slightly in 2022. The relationship between 45-OH YTX and YTX also varied over the years, but neither a clear trend nor a similar trend for wild and raft mussels was observed.
Collapse
Affiliation(s)
- Juan Blanco
- Centro de Investigacións Mariñas (CIMA), Xunta de Galicia, 36611 Pontevedra, Spain
| | - Ángeles Moroño
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia (Intecmar), 36611 Pontevedra, Spain
| | - Fabiola Arévalo
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia (Intecmar), 36611 Pontevedra, Spain
| | - Jorge Correa
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia (Intecmar), 36611 Pontevedra, Spain
| | - Juan Pablo Lamas
- Instituto Tecnolóxico para o Control do Medio Mariño de Galicia (Intecmar), 36611 Pontevedra, Spain
| |
Collapse
|
4
|
Wang N, Mertens KN, Krock B, Luo Z, Derrien A, Pospelova V, Liang Y, Bilien G, Smith KF, De Schepper S, Wietkamp S, Tillmann U, Gu H. Cryptic speciation in Protoceratium reticulatum (Dinophyceae): Evidence from morphological, molecular and ecophysiological data. HARMFUL ALGAE 2019; 88:101610. [PMID: 31582156 DOI: 10.1016/j.hal.2019.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/24/2019] [Accepted: 05/02/2019] [Indexed: 06/10/2023]
Abstract
The cosmopolitan, potentially toxic dinoflagellate Protoceratium reticulatum possesses a fossilizable cyst stage which is an important paleoenvironmental indicator. Slight differences in the internal transcribed spacer ribosomal DNA (ITS rDNA) sequences of P. reticulatum have been reported, and both the motile stage and cyst morphology of P. reticulatum display phenotypic plasticity, but how these morpho-molecular variations are related with ecophysiological preferences is unknown. Here, 55 single cysts or cells were isolated from localities in the Northern (Arctic to subtropics) and Southern Hemispheres (Chile and New Zealand), and in total 34 strains were established. Cysts and/or cells were examined with light microscopy and/or scanning electron microscopy. Large subunit ribosomal DNA (LSU rDNA) and/or ITS rDNA sequences were obtained for all strains/isolates. All strains/isolates of P. reticulatum shared identical LSU sequences except for one strain from the Mediterranean Sea that differs in one position, however ITS rDNA sequences displayed differences at eight positions. Molecular phylogeny was inferred using maximum likelihood and Bayesian inference based on ITS rDNA sequences. The results showed that P. reticulatum comprises at least three ribotypes (designated as A, B, and C). Ribotype A included strains from the Arctic and temperate areas, ribotype B included strains from temperate regions only, and ribotype C included strains from the subtropical and temperate areas. The average ratios of process length to cyst diameter of P. reticulatum ranged from 15% in ribotype A, 22% in ribotype B and 17% in ribotype C but cyst size could overlap. Theca morphology was indistinguishable among ribotypes. The ITS-2 secondary structures of ribotype A displayed one CBC (compensatory change on two sides of a helix pairing) compared to ribotypes B and C. Growth response of one strain from each ribotype to various temperatures was examined. The strains of ribotypes A, B and C exhibited optimum growth at 15 °C, 20 °C and 20-25 °C, respectively, thus corresponding to cold, moderate and warm ecotypes. The profiles of yessotoxins (YTXs) were examined for 25 strains using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The parent compound yessotoxin (YTX) was produced by strains of ribotypes A and B, but not by ribotype C strains, which only produced the structural variant homoyessotoxin (homoYTX). Our results support the notion that there is significant intra-specific variability in Protoceratium reticulatum and the biogeography of the different ribotypes is consistent with specific ecological preferences.
Collapse
Affiliation(s)
- Na Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Kenneth Neil Mertens
- Ifremer, LER BO, Station de Biologie Marine, Place de la Croix, BP40537, F-29185 Concarneau CEDEX, France
| | - Bernd Krock
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Zhaohe Luo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Amélie Derrien
- Ifremer, LER BO, Station de Biologie Marine, Place de la Croix, BP40537, F-29185 Concarneau CEDEX, France
| | - Vera Pospelova
- School of Earth and Ocean Sciences, University of Victoria, OEASB A405, P. O. Box 1700 16 STN CSC, Victoria, British Columbia, V8W 2Y2, Canada
| | - Yubo Liang
- National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian, 116023, China
| | - Gwenael Bilien
- Ifremer, LER BO, Station de Biologie Marine, Place de la Croix, BP40537, F-29185 Concarneau CEDEX, France
| | - Kirsty F Smith
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Stijn De Schepper
- NORCE Climate, NORCE Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Jahnebakken 5, 5007 Bergen, Norway
| | - Stephan Wietkamp
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany
| | - Urban Tillmann
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany.
| | - Haifeng Gu
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| |
Collapse
|
5
|
Elustondo F, Chintalapudi V, Clark JS. A Short Sequence for the Iterative Synthesis of Fused Polyethers. Helv Chim Acta 2019. [DOI: 10.1002/hlca.201900161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Frédéric Elustondo
- School of ChemistryUniversity of Nottingham, University Park Nottingham NG7 2RD United Kingdom
| | - Venkaiah Chintalapudi
- School of Chemistry, Joseph Black BuildingUniversity of Glasgow, University Avenue Glasgow G12 8QQ United Kingdom
| | - J. Stephen Clark
- School of Chemistry, Joseph Black BuildingUniversity of Glasgow, University Avenue Glasgow G12 8QQ United Kingdom
| |
Collapse
|
6
|
Mori Y. Development of New Synthetic Methods Using Oxiranyl Anions and Application in the Syntheses of Polycyclic Ether Marine Natural Products. Chem Pharm Bull (Tokyo) 2019; 67:1-17. [DOI: 10.1248/cpb.c18-00699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuji Mori
- Faculty of Pharmacy, Meijo University
| |
Collapse
|
7
|
Synthesis of the ABCDEF and FGHI ring system of yessotoxin and adriatoxin. J Antibiot (Tokyo) 2016; 69:259-72. [PMID: 26956788 PMCID: PMC4898783 DOI: 10.1038/ja.2016.18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 12/03/2022]
Abstract
Yessotoxin and adriatoxin are members of the polycyclic ether family of marine natural products. Outlined in this article is our synthetic approach to two subunits of these targets. Central to our strategy is a coupling sequence that employs an olefinic-ester cyclization reaction. As outlined, this sequence was used in two coupling sequences. First it was used to merge the A,B- and E,F-bicyclic precursors and in the process generate the C, D-rings. Second it was used to couple the F- and I-rings while building the eight-membered G-ring and subsequently the H-ring pyran.
Collapse
|
8
|
Bacchiocchi S, Siracusa M, Ruzzi A, Gorbi S, Ercolessi M, Cosentino MA, Ammazzalorso P, Orletti R. Two-year study of lipophilic marine toxin profile in mussels of the North-central Adriatic Sea: First report of azaspiracids in Mediterranean seafood. Toxicon 2015; 108:115-25. [PMID: 26455996 DOI: 10.1016/j.toxicon.2015.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 11/28/2022]
Abstract
Since the late 1980s, the North-central Adriatic Sea has frequently experienced blooms of harmful algal species, producing marine lipophilic toxins (MLTs) which accumulate in mussels and pose a serious threat to consumer health. Here, we present a 2-year LC-MS/MS study (2012-2014) of the MLT profile in mussels from the North-central Adriatic Sea in the context of the presence of toxic phytoplankton concentrations in seawater. Okadaic acid increased in mussels from all areas during the summer and autumn-winter periods with a rising trend between 2012 and 2014. In the same periods, Dinophysis sp. increased in abundance in seawater, but the highest densities of algae did not always coincide with the highest levels of toxins in mussels. Yessotoxins (YTXs) content in mussel increased sharply in the autumn-winter periods even exceeding the legal limit; although this accumulation did not always correlated with the YTX-producers in water (such as Lingulodinium polyedrum and Protoceratium reticulatum) a massive bloom of Gonyaulax spinifera was reported in November 2013, suggesting the role of this species in YTXs shellfish contamination. Traces of Azaspiracid 2 (AZA-2) were observed often in mussels during the study period, confirming for the first time the presence of this biotoxin in Mediterranean seafood.
Collapse
Affiliation(s)
- Simone Bacchiocchi
- Istituto Zooprofilattico Umbria e Marche, Via Cupa di Posatora, 3, 60100 Ancona, Italy
| | - Melania Siracusa
- Istituto Zooprofilattico Umbria e Marche, Via Cupa di Posatora, 3, 60100 Ancona, Italy
| | - Angela Ruzzi
- Istituto Zooprofilattico Umbria e Marche, Via Cupa di Posatora, 3, 60100 Ancona, Italy
| | - Stefania Gorbi
- Università Politecnica delle Marche, Dipartimento di Scienze della Vita e dell'Ambiente, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Manuela Ercolessi
- Agenzia Regionale Protezione Ambiente Marche, Via Caduti del Lavoro, 40, 60131 Ancona, Italy
| | - Maria Anna Cosentino
- Agenzia Regionale Protezione Ambiente Marche, Via Caduti del Lavoro, 40, 60131 Ancona, Italy
| | - Patrizia Ammazzalorso
- Agenzia Regionale Protezione Ambiente Marche, Via Caduti del Lavoro, 40, 60131 Ancona, Italy
| | - Roberta Orletti
- Istituto Zooprofilattico Umbria e Marche, Via Cupa di Posatora, 3, 60100 Ancona, Italy
| |
Collapse
|
9
|
Ciminiello P, Dell'Aversano C, Forino M, Tartaglione L. Marine Toxins in Italy: The More You Look, the More You Find. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300991] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Malagoli D, Ottaviani E. Yessotoxin affects fMLP-induced cell shape changes inMytilus galloprovincialisimmunocytes. Cell Biol Int 2013; 28:57-61. [PMID: 14759769 DOI: 10.1016/j.cellbi.2003.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Revised: 09/15/2003] [Accepted: 10/31/2003] [Indexed: 10/26/2022]
Abstract
Using computer-assisted microscopic image analysis, we have found that algal yessotoxin (YTX) affects the immune response of Mytilus galloprovincialis. Indeed, YTX increases immunocyte cell motility through the involvement of both extracellular Ca2+ and cAMP, but not through protein kinase A, protein kinase C or phosphoinositide 3-kinase. Alone, however, the toxin does not induce any effect, as its action on cell motility is observed only after addition of the chemotactic substance N-formyl-Meth-Leu-Phe (fMLP). fMLP is known to induce cellular changes via both the phosphatidylinositol and cAMP pathways and, from this scenario, we can surmise that Ca2+ and cAMP concentrations rise sufficiently in fMLP-activated immunocytes to reveal YTX action. One possible explanation is that the toxin increases fMLP-mediated cell activation by intervening in L-type Ca2+-channel opening through a cAMP-dependent/PKA-independent pathway.
Collapse
Affiliation(s)
- Davide Malagoli
- Department of Animal Biology, University of Modena and Reggio Emilia, via Campi 213/D, 41100 Modena, Italy
| | | |
Collapse
|
11
|
Pistocchi R, Guerrini F, Pezzolesi L, Riccardi M, Vanucci S, Ciminiello P, Dell’Aversano C, Forino M, Fattorusso E, Tartaglione L, Milandri A, Pompei M, Cangini M, Pigozzi S, Riccardi E. Toxin levels and profiles in microalgae from the north-Western Adriatic Sea--15 years of studies on cultured species. Mar Drugs 2012; 10:140-162. [PMID: 22363227 PMCID: PMC3280532 DOI: 10.3390/md10010140] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/29/2011] [Accepted: 01/05/2012] [Indexed: 12/03/2022] Open
Abstract
The Northern Adriatic Sea is the area of the Mediterranean Sea where eutrophication and episodes related to harmful algae have occurred most frequently since the 1970s. In this area, which is highly exploited for mollusk farming, the first occurrence of human intoxication due to shellfish consumption occurred in 1989, nearly 10 years later than other countries in Europe and worldwide that had faced similar problems. Until 1997, Adriatic mollusks had been found to be contaminated mostly by diarrhetic shellfish poisoning toxins (i.e., okadaic acid and dinophysistoxins) that, along with paralytic shellfish poisoning toxins (i.e., saxitoxins), constitute the most common marine biotoxins. Only once, in 1994, a toxic outbreak was related to the occurrence of paralytic shellfish poisoning toxins in the Adriatic coastal waters. Moreover, in the past 15 years, the Adriatic Sea has been characterized by the presence of toxic or potentially toxic algae, not highly widespread outside Europe, such as species producing yessotoxins (i.e., Protoceratium reticulatum, Gonyaulax spinifera and Lingulodinium polyedrum), recurrent blooms of the potentially ichthyotoxic species Fibrocapsa japonica and, recently, by blooms of palytoxin-like producing species of the Ostreopsis genus. This review is aimed at integrating monitoring data on toxin spectra and levels in mussels farmed along the coast of the Emilia-Romagna region with laboratory studies performed on the species involved in the production of those toxins; toxicity studies on toxic or potentially toxic species that have recently appeared in this area are also reviewed. Overall, reviewed data are related to: (i) the yessotoxins producing species P. reticulatum, G. spinifera and L. polyedrum, highlighting genetic and toxic characteristics; (ii) Adriatic strains of Alexandrium minutum, Alexandrium ostenfeldii and Prorocentrum lima whose toxic profiles are compared with those of strains of different geographic origins; (iii) F. japonica and Ostreopsis cf. ovata toxicity. Moreover, new data concerning domoic acid production by a Pseudo-nitzschia multistriata strain, toxicity investigations on a Prorocentrum cf. levis, and on presumably ichthyotoxic species, Heterosigma akashiwo and Chattonella cf. subsalsa, are also reported.
Collapse
Affiliation(s)
- Rossella Pistocchi
- Interdepartmental Center for Research in Environmental Sciences, University of Bologna, Via Sant’Alberto 163, Ravenna 48123, Italy; (F.G.); (L.P.); (M.R.)
- Author to whom correspondence should be addressed; ; Tel.: +39-0544-937376; Fax: +39-0544-937411
| | - Franca Guerrini
- Interdepartmental Center for Research in Environmental Sciences, University of Bologna, Via Sant’Alberto 163, Ravenna 48123, Italy; (F.G.); (L.P.); (M.R.)
| | - Laura Pezzolesi
- Interdepartmental Center for Research in Environmental Sciences, University of Bologna, Via Sant’Alberto 163, Ravenna 48123, Italy; (F.G.); (L.P.); (M.R.)
| | - Manuela Riccardi
- Interdepartmental Center for Research in Environmental Sciences, University of Bologna, Via Sant’Alberto 163, Ravenna 48123, Italy; (F.G.); (L.P.); (M.R.)
| | - Silvana Vanucci
- Department of Animal Biology and Marine Ecology, University of Messina, Salita Sperone 31, Agata, Messina 98166, Italy;
| | - Patrizia Ciminiello
- Department of Chemistry of Natural Substances, University of Napoli “Federico II”, Via D. Montesano 49, Napoli 80131, Italy; (P.C.); (C.D.); (M.F.); (E.F.); (L.T.)
| | - Carmela Dell’Aversano
- Department of Chemistry of Natural Substances, University of Napoli “Federico II”, Via D. Montesano 49, Napoli 80131, Italy; (P.C.); (C.D.); (M.F.); (E.F.); (L.T.)
| | - Martino Forino
- Department of Chemistry of Natural Substances, University of Napoli “Federico II”, Via D. Montesano 49, Napoli 80131, Italy; (P.C.); (C.D.); (M.F.); (E.F.); (L.T.)
| | - Ernesto Fattorusso
- Department of Chemistry of Natural Substances, University of Napoli “Federico II”, Via D. Montesano 49, Napoli 80131, Italy; (P.C.); (C.D.); (M.F.); (E.F.); (L.T.)
| | - Luciana Tartaglione
- Department of Chemistry of Natural Substances, University of Napoli “Federico II”, Via D. Montesano 49, Napoli 80131, Italy; (P.C.); (C.D.); (M.F.); (E.F.); (L.T.)
| | - Anna Milandri
- National Reference Laboratory for Marine Biotoxins, Fondazione Centro Ricerche Marine, Viale A. Vespucci 2, Cesenatico (FC) 47042, Italy; (A.M.); (M.P.); (M.C.); (S.P.); (E.R.)
| | - Marinella Pompei
- National Reference Laboratory for Marine Biotoxins, Fondazione Centro Ricerche Marine, Viale A. Vespucci 2, Cesenatico (FC) 47042, Italy; (A.M.); (M.P.); (M.C.); (S.P.); (E.R.)
| | - Monica Cangini
- National Reference Laboratory for Marine Biotoxins, Fondazione Centro Ricerche Marine, Viale A. Vespucci 2, Cesenatico (FC) 47042, Italy; (A.M.); (M.P.); (M.C.); (S.P.); (E.R.)
| | - Silvia Pigozzi
- National Reference Laboratory for Marine Biotoxins, Fondazione Centro Ricerche Marine, Viale A. Vespucci 2, Cesenatico (FC) 47042, Italy; (A.M.); (M.P.); (M.C.); (S.P.); (E.R.)
| | - Elena Riccardi
- National Reference Laboratory for Marine Biotoxins, Fondazione Centro Ricerche Marine, Viale A. Vespucci 2, Cesenatico (FC) 47042, Italy; (A.M.); (M.P.); (M.C.); (S.P.); (E.R.)
| |
Collapse
|
12
|
Oishi T. Convergent Method via ^|^alpha;-Cyano Ethers: A Powerful Strategy for Synthesizing Ladder-Shaped Polyethers. J SYN ORG CHEM JPN 2012. [DOI: 10.5059/yukigoseikyokaishi.70.1170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Abstract
Covering: 2010. Previous review: Nat. Prod. Rep., 2011, 28, 196. This review covers the literature published in 2010 for marine natural products, with 895 citations (590 for the period January to December 2010) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1003 for 2010), together with the relevant biological activities, source organisms and country of origin. Biosynthetic studies, first syntheses, and syntheses that lead to the revision of structures or stereochemistries, have been included.
Collapse
Affiliation(s)
- John W Blunt
- Department of Chemistry, University of Canterbury, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
14
|
Suzuki T, Quilliam MA. LC-MS/MS analysis of diarrhetic shellfish poisoning (DSP) toxins, okadaic acid and dinophysistoxin analogues, and other lipophilic toxins. ANAL SCI 2011; 27:571-84. [PMID: 21666353 DOI: 10.2116/analsci.27.571] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Diarrhetic shellfish poisoning (DSP) is a severe gastrointestinal illness caused by consumption of shellfish contaminated with DSP toxins that are originally produced by toxic dinoflagellates. Based on their structures, DSP toxins were initially classified into three groups, okadaic acid (OA)/dinophysistoxin (DTX) analogues, pectenotoxins (PTXs), and yessotoxins (YTXs). Because PTXs and YTXs have been subsequently shown to have no diarrhetic activities, PTXs and YTXs have recently been eliminated from the definition of DSP toxins. Mouse bioassay (MBA), which is the official testing method of DSP in Japan and many countries, also detects PTXs and YTXs, and thus alternative testing methods detecting only OA/DTX analogues are required in DSP monitoring. Electrospray ionization (ESI) liquid chromatography-mass spectrometry (LC-MS) is a very powerful tool for the detection, identification and quantification of DSP and other lipophilic toxins. In the present review, application of ESI LC-MS techniques to the analysis of each toxin group is described.
Collapse
Affiliation(s)
- Toshiyuki Suzuki
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa, Yokohama 236–8648, Japan.
| | | |
Collapse
|
15
|
Tubaro A, Dell'Ovo V, Sosa S, Florio C. Yessotoxins: A toxicological overview. Toxicon 2010; 56:163-72. [DOI: 10.1016/j.toxicon.2009.07.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 06/17/2009] [Accepted: 07/30/2009] [Indexed: 01/10/2023]
|
16
|
Dominguez HJ, Paz B, Daranas AH, Norte M, Franco JM, Fernández JJ. Dinoflagellate polyether within the yessotoxin, pectenotoxin and okadaic acid toxin groups: Characterization, analysis and human health implications. Toxicon 2010; 56:191-217. [DOI: 10.1016/j.toxicon.2009.11.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/11/2009] [Accepted: 11/09/2009] [Indexed: 11/26/2022]
|
17
|
Domínguez HJ, Souto ML, Norte M, Daranas AH, Fernández JJ. Adriatoxin-B, the first C13 terminal truncated YTX analogue obtained from dinoflagellates. Toxicon 2010; 55:1484-90. [DOI: 10.1016/j.toxicon.2010.02.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 02/27/2010] [Indexed: 11/24/2022]
|
18
|
Gerssen A, Pol-Hofstad IE, Poelman M, Mulder PP, van den Top HJ, de Boer J. Marine toxins: chemistry, toxicity, occurrence and detection, with special reference to the Dutch situation. Toxins (Basel) 2010; 2:878-904. [PMID: 22069615 PMCID: PMC3153220 DOI: 10.3390/toxins2040878] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 04/14/2010] [Accepted: 04/22/2010] [Indexed: 11/29/2022] Open
Abstract
Various species of algae can produce marine toxins under certain circumstances. These toxins can then accumulate in shellfish such as mussels, oysters and scallops. When these contaminated shellfish species are consumed severe intoxication can occur. The different types of syndromes that can occur after consumption of contaminated shellfish, the corresponding toxins and relevant legislation are discussed in this review. Amnesic Shellfish Poisoning (ASP), Paralytic Shellfish Poisoning (PSP), Diarrheic Shellfish Poisoning (DSP) and Azaspiracid Shellfish Poisoning (AZP) occur worldwide, Neurologic Shellfish Poisoning (NSP) is mainly limited to the USA and New Zealand while the toxins causing DSP and AZP occur most frequently in Europe. The latter two toxin groups are fat-soluble and can therefore also be classified as lipophilic marine toxins. A detailed overview of the official analytical methods used in the EU (mouse or rat bioassay) and the recently developed alternative methods for the lipophilic marine toxins is given. These alternative methods are based on functional assays, biochemical assays and chemical methods. From the literature it is clear that chemical methods offer the best potential to replace the animal tests that are still legislated worldwide. Finally, an overview is given of the situation of marine toxins in The Netherlands. The rat bioassay has been used for monitoring DSP and AZP toxins in The Netherlands since the 1970s. Nowadays, a combination of a chemical method and the rat bioassay is often used. In The Netherlands toxic events are mainly caused by DSP toxins, which have been found in Dutch shellfish for the first time in 1961, and have reoccurred at irregular intervals and in varying concentrations. From this review it is clear that considerable effort is being undertaken by various research groups to phase out the animal tests that are still used for the official routine monitoring programs.
Collapse
Affiliation(s)
- Arjen Gerssen
- RIKILT, Institute of Food Safety, Wageningen UR, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands; (P.P.J.M.); (H.J.T.)
- Author to whom correspondence should be addressed; ; Tel.: +0031-317-480433; Fax: 0031-317-417717
| | - Irene E. Pol-Hofstad
- Microbiological Laboratory for Health Protection, National Institute for Public Health and the Environment, A. van Leeuwenhoeklaan 9, 3720 BA Bilthoven, The Netherlands;
| | - Marnix Poelman
- IMARES, Wageningen UR, Korringaweg 5, 4401 NT Yerseke, The Netherlands;
| | - Patrick P.J. Mulder
- RIKILT, Institute of Food Safety, Wageningen UR, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands; (P.P.J.M.); (H.J.T.)
| | - Hester J. van den Top
- RIKILT, Institute of Food Safety, Wageningen UR, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands; (P.P.J.M.); (H.J.T.)
| | - Jacob de Boer
- Institute for Environmental Studies, VU University, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands;
| |
Collapse
|
19
|
Ciminiello P, Dell' Aversano C, Fattorusso E, Forino M. Chapter 1 Recent Developments in Mediterranean Harmful Algal Events. ADVANCES IN MOLECULAR TOXICOLOGY 2009. [DOI: 10.1016/s1872-0854(09)00001-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
20
|
Bowden BF. YESSOTOXINS—POLYCYCLIC ETHERS FROM DINOFLAGELLATES: RELATIONSHIPS TO DIARRHETIC SHELLFISH TOXINS. TOXIN REV 2008. [DOI: 10.1080/15569540600599209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Osei Akoto C, Rainier J. Harnessing Glycal-Epoxide Rearrangements: The Generation of the AB, EF, and IJ Rings of Adriatoxin. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200803791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
First report on azaspiracid and yessotoxin groups detection in French shellfish. Toxicon 2008; 52:39-48. [DOI: 10.1016/j.toxicon.2008.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 05/02/2008] [Accepted: 05/02/2008] [Indexed: 11/20/2022]
|
23
|
|
24
|
Akoto CO, Rainier JD. Harnessing glycal-epoxide rearrangements: the generation of the AB, EF, and IJ rings of adriatoxin. Angew Chem Int Ed Engl 2008; 47:8055-8. [PMID: 18785198 PMCID: PMC2597071 DOI: 10.1002/anie.200803791] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Clement Osei Akoto
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, UT 84112, USA
| | | |
Collapse
|
25
|
Loader JI, Hawkes AD, Beuzenberg V, Jensen DJ, Cooney JM, Wilkins AL, Fitzgerald JM, Briggs LR, Miles CO. Convenient large-scale purification of yessotoxin from Protoceratium reticulatum culture and isolation of a novel furanoyessotoxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:11093-11100. [PMID: 18052242 DOI: 10.1021/jf072704z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Yessotoxins from a large-scale culture (226 L) of Protoceratium reticulatum strain CAWD129 were harvested by filtration followed by solid-phase extraction. The extract was purified by column chromatography over basic alumina and reverse-phase flash chromatography to afford pure yessotoxin (193 mg). Isolation of yessotoxin was greatly facilitated by selection of a strain which did not produce analogues that interfered with yessotoxin isolation. In addition to yessotoxin, numerous minor yessotoxins were detected by LC-MS in other fractions. From one of these, an early eluting minor analogue with the same molecular weight as yessotoxin and a similar mass spectrometric fragmentation pattern was isolated. This analogue was identified by NMR and mass spectrometry as a novel yessotoxin analogue containing a furan ring in the side chain. This finding reveals biosynthetic flexibility of the yessotoxin pathway in P. reticulatum and confirms earlier findings of production of many minor yessotoxin analogues by this alga. Production of these analogues appeared to be a constitutive trait of P. reticulatum CAWD129.
Collapse
Affiliation(s)
- Jared I Loader
- AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gallimore AR, Spencer JB. Stereochemical uniformity in marine polyether ladders--implications for the biosynthesis and structure of maitotoxin. Angew Chem Int Ed Engl 2007; 45:4406-13. [PMID: 16767782 DOI: 10.1002/anie.200504284] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrew R Gallimore
- University Chemical Laboratory, University of Cambridge, Cambridge CB2 1EW, UK
| | | |
Collapse
|
27
|
Alfonso C, Alfonso A, Pazos MJ, Vieytes MR, Yasumoto T, Milandri A, Poletti R, Botana LM. Extraction and cleaning methods to detect yessotoxins in contaminated mussels. Anal Biochem 2007; 363:228-38. [PMID: 17320028 DOI: 10.1016/j.ab.2007.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 01/12/2007] [Accepted: 01/12/2007] [Indexed: 11/25/2022]
Abstract
Yessotoxin (YTX) and its analogues are a newly recognized group of toxins with increased presence in shellfish in recent years. They can be quantified by various functional assays due to their interaction with phosphodiesterases (PDEs). One of these assays detects the binding between the YTX and the fluorescently labeled PDE I using fluorescence polarization, a spectroscopic technique based on exciting a fluorescent molecule with plane-polarized light and measuring the polarization degree of the emitted light. The aim of this study was to develop a YTX extraction procedure from mussels that does not interfere with this detection method. YTX concentrations were measured in spiked mussel extracts obtained through use of different extraction methods and cleaning procedures. The percentages of toxin recovery in various steps of the processes were calculated using these concentrations. Six extraction methods and two cleaning steps were used and no matrix effects and high toxin recoveries were obtained in two cases. One case used acetone as extraction solvent followed by three dichloromethane partitions and the other case used methanol. The cleaning procedure includes a silica cartridge and a 10,000 NMWL filter. Finally these two extraction-cleaning-detection methods were applied to a naturally contaminated mussel sample and results showed that not only YTX but also homoYTX and hydroxyYTX can be quantified with a 85-90% recovery.
Collapse
Affiliation(s)
- C Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago, 27002 Lugo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Economou V, Papadopoulou C, Brett M, Kansouzidou A, Charalabopoulos K, Filioussis G, Seferiadis K. Diarrheic shellfish poisoning due to toxic mussel consumption: The first recorded outbreak in Greece. ACTA ACUST UNITED AC 2007; 24:297-305. [PMID: 17364933 DOI: 10.1080/02652030601053139] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
During the week of 14-20 January 2000, 120 people visited the Emergency Departments of hospitals in Thessaloniki, northern Greece, complaining of acute gastrointestinal illness after eating mussels (Mytilus galloprovincialis). The symptoms indicated diarrhoeic shellfish poisoning, and the toxicity of mussels harvested from Thermaikos Gulf in Thessaloniki during the outbreak was investigated using mouse bioassays. The bioassays revealed toxicity to mice by the mussel samples; while high numbers of toxic algae Dinophysis acuminata were identified in water samples from Thermaikos Gulf. The harvesting of mussels was immediately suspended and a monitoring programme for algal blooms was established from then onwards. During a follow-up of the mussels' toxicity from January 2000 to January 2005, two more mussel samples were found positive for diarrheic shellfish poisoning: one harvested in March 2001 from the area of the outbreak (Thermaikos Gulf) and the other harvested in January 2001 from Amvrakikos Gulf in north-western Greece. However, no sporadic cases or outbreaks were reported during this period.
Collapse
Affiliation(s)
- V Economou
- Microbiology Department, Food Microbiology Unit, Medical School, University of Ioannina, Ioannina, GR-45110, Greece
| | | | | | | | | | | | | |
Collapse
|
29
|
Suzuki T, Horie Y, Koike K, Satake M, Oshima Y, Iwataki M, Yoshimatsu S. Yessotoxin analogues in several strains of Protoceratium reticulatum in Japan determined by liquid chromatography–hybrid triple quadrupole/linear ion trap mass spectrometry. J Chromatogr A 2007; 1142:172-7. [PMID: 17223118 DOI: 10.1016/j.chroma.2006.12.048] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 12/12/2006] [Accepted: 12/14/2006] [Indexed: 10/23/2022]
Abstract
Several strains of Protoceratium reticulatum, one of the dinoflagellates producing yessotoxins (YTXs), were collected from various shellfish producing areas in Japan. YTXs in the cultured strains were analyzed by liquid chromatography-mass spectrometry (LC-MS). Neutral loss scan monitoring, multiple reaction monitoring (MRM) for more than 20 YTX analogues, and full-scan MS/MS spectra obtained with a hybrid triple quadrupole/linear ion trap mass spectrometer showed that yessotoxin (YTX), 45,46,47-trinoryessotoxin (trinorYTX), 1-homoyessotoxin (homoYTX), and 45,46,47-trinor-1-homoyessotoxin (trinor-1-homoYTX) were the dominant toxins in these strains of P. reticulatum. Enone isomer of 42,43,44,45,46,47,55-heptanor-41-oxoyessotoxin (noroxoYTX enone) was also detected in some strains. Toxin profiles and contents were different among the strains. Some strains produced YTX, trinorYTX, 1-homoYTX, trinor-1-homoYTX, and noroxoYTX enone, whereas other strains produced only YTX or 1-homoYTX. This is the first identification of 1-homoYTX and noroxoYTX enone in P. reticulutum in Japan. Some strains did not produce any detectable YTX analogues.
Collapse
Affiliation(s)
- Toshiyuki Suzuki
- Tohoku National Fisheries Research Institute, 3-27-5 Shinhama, Shiogama, Miyagi 985-0001, Japan.
| | | | | | | | | | | | | |
Collapse
|
30
|
Paz B, Riobó P, Souto ML, Gil LV, Norte M, Fernández JJ, Franco JM. Detection and identification of glycoyessotoxin A in a culture of the dinoflagellate Protoceratium reticulatum. Toxicon 2006; 48:611-9. [PMID: 16920172 DOI: 10.1016/j.toxicon.2006.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 07/10/2006] [Indexed: 11/20/2022]
Abstract
The toxin composition of a culture of the dinoflagellate Protoceratium reticulatum was investigated using LC-FLD, after derivatization with DMEQ-TAD (4-(2-(6,7-dimethoxy-4-methyl-3-oxo-3,4-dihydroquinoxalimylethyl)-1,2,4-triazoline-3,5-dione)). Besides yessotoxin (YTX), the new YTX analogue, glycoyessotoxin A (G-YTXA) was detected in culture medium as well as in cells. The conditions for extraction were optimized and the production profile established. Retention time of the resulting fluorescent G-YTXA adduct was identified by comparison of the appropriate standard. Additionally, both G-YTXA and the DMEQ-TAD-G-YTXA adduct were confirmed by LC-MS showing ion peaks at m/z 1273 [M-2Na+H](-) and m/z 1618 [M-2Na+H](-), respectively. The LC-MS(n) displayed a fragmentation pattern similar to that of the YTX series.
Collapse
Affiliation(s)
- Beatriz Paz
- Unidad Asociada (CSIC-IEO) Fitoplancton Tóxico Instituto Español de Oceanografía, Centro Oceanográfico de Vigo (IEO), Apdo. 1552, 36200 Vigo, Spain
| | | | | | | | | | | | | |
Collapse
|
31
|
Gallimore AR, Spencer JB. Stereochemische Uniformität bei marinen Polyetherleitern: Folgerungen für Biosynthese und Struktur des Maitotoxins. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200504284] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
|
33
|
Clark JS. Construction of fused polycyclic ethers by strategies involving ring-closing metathesis. Chem Commun (Camb) 2006:3571-81. [PMID: 17047770 DOI: 10.1039/b601839d] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Large fused polycyclic ether natural products of marine origin are some of the most complex and formidable synthetic targets found in Nature, and they continue to fascinate and inspire those engaged in target-directed synthesis and the development of new synthetic methods. Novel strategies for the rapid and stereoselective assembly of fused polyethers have been devised in which ring-closing metathesis reactions are used to accomplish cyclic ether construction. Two-directional and iterative ring construction approaches involving ring-closing metathesis are being employed to assemble polyether sequences found in marine natural products such as the ciguatoxins and gambieric acids.
Collapse
Affiliation(s)
- J Stephen Clark
- School of Chemistry, University of Nottingham, University Park, Nottingham, UK NG7 2RD.
| |
Collapse
|
34
|
Ciminiello P, Fattorusso E. Bivalve Molluscs as Vectors of Marine Biotoxins Involved in Seafood Poisoning. MOLLUSCS 2006; 43:53-82. [PMID: 17153338 DOI: 10.1007/978-3-540-30880-5_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Molluscs of many sorts, which are high in protein and trace minerals, have always been a substantial portion of the human diet. A great variety of mollusc species are therefore of commercial importance throughout the world. Episodes of poisoning occasionally happen to the consumers of molluscs, the main hazard being represented by bivalve molluscs. These organisms are filter-feeders, feeding mainly on a wide range of phytoplankton species. Among the thousands of species of microscopic algae at the base of the marine food chain, there are a few dozen which produce potent toxins. One major category of impact occurs when toxic phytoplankton are filtered from the water as food by shellfish, which then accumulate the algal toxins to levels which can be lethal to humans. Incidences of poisoning related to marine algal toxins come under the main categories of paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP), diarrhetic shellfish poisoning (DSP), and amnesic shellfish poisoning (ASP), depending upon the toxins and the symptoms that they cause. Since the beginning of the 1990s, a research program has been initiated to examine the toxin profiles in mussels from the Adriatic Sea. Since then, a number of polyether toxins have been isolated and characterized, some of which represent new additions to the DSP class of biotoxins. During this investigation, new types of toxins have also been isolated. The recent application of LC-MS methods for the detection of Adriatic marine biotoxins made it possible to speed up the analysis of toxic samples.
Collapse
Affiliation(s)
- P Ciminiello
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | | |
Collapse
|
35
|
Affiliation(s)
- Masayuki Inoue
- Department of Chemistry and Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai, Japan.
| |
Collapse
|
36
|
Mori M, Oishi T, Matsuoka S, Ujihara S, Matsumori N, Murata M, Satake M, Oshima Y, Matsushita N, Aimoto S. Ladder-shaped polyether compound, desulfated yessotoxin, interacts with membrane-integral α-helix peptides. Bioorg Med Chem 2005; 13:5099-103. [PMID: 15990315 DOI: 10.1016/j.bmc.2005.05.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 05/17/2005] [Accepted: 05/18/2005] [Indexed: 11/23/2022]
Abstract
Ladder-shaped polyether compounds, represented by brevetoxins, ciguatoxins, maitotoxin, and prymnesins, are thought to possess the high affinity to transmembrane proteins. As a model compound of ladder-shaped polyethers, we adopted desulfated yessotoxin (2) and examined its interaction with glycopholin A, a membrane protein known to form a dimer or oligomer. Desulfated yessotoxin turned out to interact with the alpha-helix so as to induce the dissociation of glycopholin oligomers when examined by SDS and PFO gel electrophoresis. The results provided the first evidence that ladder-shaped polyethers interact with transmembrane helix domains.
Collapse
Affiliation(s)
- Megumi Mori
- Department of Chemistry Graduate School of Science, Osaka University Toyonaka, Osaka 560-0043, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hiramatsu N, Takahashi N, Noyori R, Mori Y. A stereoselective route to multi-substituted tetrahydropyrans by vinyl radical cyclization. Tetrahedron 2005. [DOI: 10.1016/j.tet.2005.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Watanabe K, Suzuki M, Murata M, Oishi T. Convergent synthesis of the FGHI ring system of yessotoxin: stereoselective construction of the G ring. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.04.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Miles CO, Wilkins AL, Hawkes AD, Selwood AI, Jensen DJ, Munday R, Cooney JM, Beuzenberg V. Polyhydroxylated amide analogs of yessotoxin from Protoceratium reticulatum. Toxicon 2005; 45:61-71. [PMID: 15581684 DOI: 10.1016/j.toxicon.2004.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 09/20/2004] [Accepted: 09/21/2004] [Indexed: 11/24/2022]
Abstract
Two analogs of yessotoxin were isolated from extracts of a culture of Protoceratium reticulatum. The structures of the analogs were identified as trihydroxylated amides of 41a-homoyessotoxin (1) and 9-methyl-41a-homoyessotoxin (2) by one- and two-dimensional 1H and 13C NMR spectroscopy and LC-MS3 analyses. Structures were further confirmed by micro-scale chemical conversions combined with LC-MS3 analyses. No toxic effects were recorded in mice injected intraperitoneally with 2 at a dose of 5000 microg/kg.
Collapse
Affiliation(s)
- Christopher O Miles
- AgResearch Ltd, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Briggs LR, Miles CO, Fitzgerald JM, Ross KM, Garthwaite I, Towers NR. Enzyme-linked immunosorbent assay for the detection of yessotoxin and its analogues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:5836-5842. [PMID: 15366829 DOI: 10.1021/jf049395m] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Polyclonal antibodies were produced for the development of competitive enzyme-linked immunoassays for use in quantifying yessotoxins in shellfish, algal cells, and culture supernatants. Immunizing and plate coating antigens were prepared by derivatization of yessotoxin either by ozonolysis or bromination and conjugation to proteins. Two assays that were the most sensitive for yessotoxin were optimized and characterized. Cross-reactivity studies indicated that the antibodies raised have broad specificity and that binding to analogues was strongly affected by changes to the A-ring and, to a lesser extent, the K-ring regions of the toxin molecule. ELISA provides a sensitive and rapid analytical method that is suitable for screening large numbers of samples and detects all the yessotoxin analogues that the European Commission currently requires shellfish to be tested for. The assay limit of quantitation for yessotoxin in whole shellfish flesh is 75 microg/kg; therefore, assay sensitivity is sufficient to measure toxin levels well below the maximum permitted level set by the European Commission. The antibodies produced can be used in additional applications such as the immunolocalization of yessotoxins in shellfish and preparation of immunoaffinity columns.
Collapse
Affiliation(s)
- Lyn R Briggs
- AgResearch Ltd., Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand.
| | | | | | | | | | | |
Collapse
|
41
|
Miles CO, Wilkins AL, Hawkes AD, Selwood A, Jensen DJ, Aasen J, Munday R, Samdal IA, Briggs LR, Beuzenberg V, MacKenzie AL. Isolation of a 1,3-enone isomer of heptanor-41-oxoyessotoxin from Protoceratium reticulatum cultures. Toxicon 2004; 44:325-36. [PMID: 15321705 DOI: 10.1016/j.toxicon.2004.06.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2004] [Revised: 06/11/2004] [Accepted: 06/12/2004] [Indexed: 11/24/2022]
Abstract
The 1,3-enone isomer (1) of heptanor-41-oxoyessotoxin (2) was isolated from extracts of Protoceratium reticulatum during large-scale production of yessotoxin (4). We found that 2 readily isomerizes to 1 in the presence of dilute ammonia and present evidence for the existence of 40-epi-2 (3) that also isomerizes to 1. 1-3 were detected by LC-MS methods both in extracts of P. reticulatum cultures and in mussels contaminated with yessotoxins. The isomerization of 2 and 3 into 1 occurs so readily that purification on basic alumina needs to be conducted carefully. No toxic effects were recorded in mice injected intraperitoneally with 1 at a dose of 5,000 microg/kg.
Collapse
Affiliation(s)
- Christopher O Miles
- AgResearch Ltd, Ruakura Research Centre, Department of Toxinology, Private Bag 3123, Hamilton, New Zealand.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Ferrari S, Ciminiello P, Dell'Aversano C, Forino M, Malaguti C, Tubaro A, Poletti R, Yasumoto T, Fattorusso E, Rossini GP. Structure−Activity Relationships of Yessotoxins in Cultured Cells. Chem Res Toxicol 2004; 17:1251-7. [PMID: 15377159 DOI: 10.1021/tx030054x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The structure-activity relationship of yessotoxins (YTX) has been probed by measuring the potency of several YTX analogues to cause the accumulation of a 100 kDa MW fragment of E-cadherin in MCF-7 breast cancer cells. Under our experimental conditions, the EC(50) of YTX, the reference compound, was 0.55 nM. The introduction of a methylene unit adjacent to one of the sulfate groups, as is the case with the homoyessotoxin molecule, did not appear to greatly affect the potency of the analogue, as the measured EC(50) for this compound was 0.62 nM. The EC(50) values we measured for 45-hydroxyhomoyessotoxin and carboxyyessotoxin were about 9.4 and 26 nM, respectively, whereas the EC(50) of noroxoyessotoxin, lacking most of the C(9) chain, was about 50 nM. Thus, significant differences in the potencies of YTX analogues were found when structural changes involved the C(9) terminal chain of these compounds, leading to the conclusion that this portion of the molecule is essential for the activity of YTX in MCF-7 cells. A comparison of our findings with available information regarding the potency of YTX and its analogues in other experimental systems shows that the EC(50)'s we measured for the different compounds are up to 200-fold lower and vary in a wider concentration range. We speculate that YTX effects could involve two separate receptorial systems.
Collapse
Affiliation(s)
- Sara Ferrari
- Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Via G. Campi 287, I-41100 Modena, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ciminiello P, Fattorusso E. Shellfish Toxins − Chemical Studies on Northern Adriatic Mussels. European J Org Chem 2004. [DOI: 10.1002/ejoc.200300769] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Patrizia Ciminiello
- Dipartimento di Chimica delle Sostanze Naturali, Università degli studi di Napoli ”Federico II”, via D. Montesano 49, 80131, Napoli, Italy, Fax: (internat.) +39‐081‐748‐6552
| | - Ernesto Fattorusso
- Dipartimento di Chimica delle Sostanze Naturali, Università degli studi di Napoli ”Federico II”, via D. Montesano 49, 80131, Napoli, Italy, Fax: (internat.) +39‐081‐748‐6552
| |
Collapse
|
44
|
Mori Y, Nogami K, Hayashi H, Noyori R. Sulfonyl-stabilized oxiranyllithium-based approach to polycyclic ethers. Convergent synthesis of the ABCDEF-ring system of yessotoxin and adriatoxin. J Org Chem 2004; 68:9050-60. [PMID: 14604380 DOI: 10.1021/jo035145d] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Convergent synthesis of the ABCDEF-ring system of yessotoxin and adriatoxin, marine polycyclic ether toxins causative of diarrheic shellfish poisoning, has been accomplished. The A-ring fragment was constructed by coupling of an appropriately functionalized sulfonyl-stabilized oxiranyl anion and a triflate prepared from an erythritol derivative. An iterative protocol of the oxiranyl anion strategy was also applied for the construction of the DEF-ring fragment. The triflate derivatives of the A-ring and the DEF-ring fragments were connected with lithium acetylide. The resulting acetylene derivative was further transformed into the hexacyclic ABCDEF fragment via oxidation of the acetylene unit to 1,2-diketone, double methyl acetal formation, and reductive etherification.
Collapse
Affiliation(s)
- Yuji Mori
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan.
| | | | | | | |
Collapse
|
45
|
Kadota I, Ueno H, Yamamoto Y. Convergent synthesis of the A–F ring segment of yessotoxin and adriatoxin. Tetrahedron Lett 2003. [DOI: 10.1016/j.tetlet.2003.10.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Oishi T, Watanabe K, Murata M. Convergent synthesis of trans-fused 6/n/6/6 (n=7, 8) tetracyclic ether system via α-cyano ethers. Tetrahedron Lett 2003. [DOI: 10.1016/s0040-4039(03)01862-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Ciminiello P, Dell'Aversano C, Fattorusso E, Forino M, Magno S, Guerrini F, Pistocchi R, Boni L. Complex yessotoxins profile in Protoceratium reticulatum from north-western Adriatic sea revealed by LC-MS analysis. Toxicon 2003; 42:7-14. [PMID: 12893055 DOI: 10.1016/s0041-0101(03)00094-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
While the occurrence of yessotoxin (YTX) has been reported worldwide from Protoceratium reticulatum, the biogenetic origin of some YTX analogues is still unknown, thus raising an issue whether they are metabolites of YTX formed in mussels or true products of different dinoflagellate species. Findings reported herein suggest that P. reticulatum from the north-western Adriatic sea is responsible for production, together with YTX (1), of homoYTX (2), 45-OHYTX (3), carboxyYTX (5), and noroxoYTX (7). YTX and its analogues have been determined by high performance liquid chromatography coupled with electrospray ion trap mass spectrometry (HPLC-MS and HPLC-MSn experiments). The result is the first to confirm production of these YTX analogues from this species and indicate it as a producing organism of homoYTX, 45-OHYTX, carboxyYTX, and noroxoYTX found in shellfish.
Collapse
Affiliation(s)
- Patrizia Ciminiello
- Dipartimento di Chimica delle Sostanze Naturali, Università degli Studi di Napoli, via D. Montesano 49, 80131 Napoli, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Tubaro A, Sosa S, Carbonatto M, Altinier G, Vita F, Melato M, Satake M, Yasumoto T. Oral and intraperitoneal acute toxicity studies of yessotoxin and homoyessotoxins in mice. Toxicon 2003; 41:783-92. [PMID: 12782078 DOI: 10.1016/s0041-0101(03)00032-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The acute toxicity of yessotoxin (YTX), homoyessotoxin (homoYTX) and 45-hydroxy-homoyessotoxin (45-OH-homoYTX) has been studied in comparison to that of okadaic acid (OA), the main diarrhogenic toxin, both after intraperitoneal (i.p.) and oral administration. After i.p. administration, homoYTX and YTX showed similar lethality (LD(50)=444 microg/kg and 512 microg/kg), higher than that of OA (LD(50)=225 microg/kg), while 750 microg/kg of 45-OH-homoYTX did not cause death. OA induced the already known toxic signs: before death, mice were motionless and cyanotic; small intestine and liver damage were shown at post-mortem. Mice treated with YTX and homoYTX were restless and jumped before death; necroscopy did not show major changes. After oral treatment, 2 mg/kg of OA induced diarrhoea and body weight loss, causing 4/5 deaths; necroscopy and/or histology revealed degenerative lesions to small intestine, forestomach and liver (confirmed by increased plasma transaminase), but no myocardium alterations. On the contrary, the oral treatment with YTX (1 and 2 mg/kg) and its derivatives (1 mg/kg) did not cause any death or signs of toxicity, except some ultrastructural myocardiocyte alterations, adjacent to capillaries, such as cytoplasmic protrusions (YTX, 1 and 2 mg/kg), fibrillar alteration (YTX, 1 mg/kg) or mitochondria assemblage (45-OH-homoYTX). Altogether, our data show that YTX and its derivatives are less toxic than OA after acute oral and i.p. treatments, at doses which may represent up to 100 times of the possible human daily intake.
Collapse
Affiliation(s)
- A Tubaro
- DEMREP, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Mori Y, Takase T, Noyori R. Iterative synthesis of the ABCDEF-ring system of yessotoxin and adriatoxin. Tetrahedron Lett 2003. [DOI: 10.1016/s0040-4039(03)00252-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
50
|
Pierotti S, Malaguti C, Milandri A, Poletti R, Paolo Rossini G. Functional assay to measure yessotoxins in contaminated mussel samples. Anal Biochem 2003; 312:208-16. [PMID: 12531207 DOI: 10.1016/s0003-2697(02)00433-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Yessotoxin (YTX) treatment of MCF-7 cells results in the accumulation of a 100-kDa fragment of E-cadherin (ECRA(100)) without a parallel loss of the intact protein in cytosoluble extracts. As a consequence, concentration-dependent increases in the total immunoreactivity detectable by anti-E-cadherin antibodies relative to controls (RTI) and in the relative immunoreactivity of ECRA(100) (RI) are observed. These responses have been exploited to develop a functional assay to measure YTX in samples from contaminated mussels by a three-step procedure, consisting of (i) treatment of MCF-7 cells with YTX standard in the concentration range 0-1nM and of unknown samples; (ii) preparation of cellular extracts, fractionation of proteins by polyacrylamide gel electrophoresis under denaturing conditions, and immunoblotting with anti-E-cadherin antibodies, followed by densitometric analyses of autoradiographies and calculation of RI of ECRA(100) and of RTI of the samples; and (iii) interpolation of the YTX concentrations in unknown samples on standard curves, by the RI of ECRA(100) and the RTI of the samples. The procedure has been used to measure yessotoxins in contaminated mussel samples, and the results obtained show that this functional assay is very sensitive (limit of detection of about 100ng equivalent YTX/g of digestive gland), and robust, as (i) it is insensitive to matrix effects in the range of toxin concentrations relevant for risk assessment to protect humans from exposure to YTX, (ii) calculations are based on a molecular parameter (the RI of ECRA(100)) which is not affected by errors in sample preparation, (iii) it can be performed by the use of antibodies commercially available from different companies, and (iv) it does not show an absolute need of calibration by a pure standard within each assay.
Collapse
Affiliation(s)
- Silvia Pierotti
- Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Via Campi 287, Italy
| | | | | | | | | |
Collapse
|