1
|
Characterization, molecular modeling and phylogenetic analysis of a long mammalian neurotoxin from the venom of the Iranian scorpion Androctonus crassicauda. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00400-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
2
|
Eichmann C, Frey L, Maslennikov I, Riek R. Probing Ion Binding in the Selectivity Filter of the KcsA Potassium Channel. J Am Chem Soc 2019; 141:7391-7398. [DOI: 10.1021/jacs.9b01092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cédric Eichmann
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Lukas Frey
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | - Roland Riek
- Laboratory of Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
3
|
Navarro MA, Milescu LS, Milescu M. Unlocking the gating mechanism of Kv2.1 using guangxitoxin. J Gen Physiol 2019; 151:275-278. [PMID: 30563879 PMCID: PMC6400516 DOI: 10.1085/jgp.201812254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Navarro et al discuss new work using the gating-modifier toxin GxTx to investigate the molecular mechanism of Kv2.1 channel gating.
Collapse
Affiliation(s)
- Marco A Navarro
- Division of Biological Sciences, University of Missouri, Columbia, MO
| | - Lorin S Milescu
- Division of Biological Sciences, University of Missouri, Columbia, MO
| | - Mirela Milescu
- Division of Biological Sciences, University of Missouri, Columbia, MO
| |
Collapse
|
4
|
Molecular basis of Tityus stigmurus alpha toxin and potassium channel kV1.2 interactions. J Mol Graph Model 2019; 87:197-203. [DOI: 10.1016/j.jmgm.2018.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/25/2018] [Accepted: 11/27/2018] [Indexed: 01/08/2023]
|
5
|
Koehbach J. Structure-Activity Relationships of Insect Defensins. Front Chem 2017; 5:45. [PMID: 28748179 PMCID: PMC5506212 DOI: 10.3389/fchem.2017.00045] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/12/2017] [Indexed: 11/13/2022] Open
Abstract
Insects make up the largest and most diverse group of organisms on earth with several million species to exist in total. Considering the sheer number of insect species and the vast variety of ways they interact with their environment through chemistry, it is clear that they have significant potential as a source of new lead molecules. They have adapted to a range of ecological habitats and exhibit a symbiotic lifestyle with various microbes such as bacteria and fungi. Accordingly, numerous antimicrobial compounds have been identified including for example defensin peptides. Insect defensins were found to have broad-spectrum activity against various gram-positive/negative bacteria as well as fungi. They exhibit a unique structural topology involving the complex arrangement of three disulfide bonds as well as an alpha helix and beta sheets, which is known as cysteine-stabilized αβ motif. Their stability and amenability to peptide engineering make them promising candidates for the development of novel antibiotics lead molecules. This review highlights the current knowledge regarding the structure-activity relationships of insect defensin peptides and provides basis for future studies focusing on the rational design of novel cysteine-rich antimicrobial peptides.
Collapse
Affiliation(s)
- Johannes Koehbach
- School of Biomedical Sciences, University of QueenslandSt. Lucia, QLD, Australia
| |
Collapse
|
6
|
The Slo(w) path to identifying the mitochondrial channels responsible for ischemic protection. Biochem J 2017; 474:2067-2094. [PMID: 28600454 DOI: 10.1042/bcj20160623] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 12/19/2022]
Abstract
Mitochondria play an important role in tissue ischemia and reperfusion (IR) injury, with energetic failure and the opening of the mitochondrial permeability transition pore being the major causes of IR-induced cell death. Thus, mitochondria are an appropriate focus for strategies to protect against IR injury. Two widely studied paradigms of IR protection, particularly in the field of cardiac IR, are ischemic preconditioning (IPC) and volatile anesthetic preconditioning (APC). While the molecular mechanisms recruited by these protective paradigms are not fully elucidated, a commonality is the involvement of mitochondrial K+ channel opening. In the case of IPC, research has focused on a mitochondrial ATP-sensitive K+ channel (mitoKATP), but, despite recent progress, the molecular identity of this channel remains a subject of contention. In the case of APC, early research suggested the existence of a mitochondrial large-conductance K+ (BK, big conductance of potassium) channel encoded by the Kcnma1 gene, although more recent work has shown that the channel that underlies APC is in fact encoded by Kcnt2 In this review, we discuss both the pharmacologic and genetic evidence for the existence and identity of mitochondrial K+ channels, and the role of these channels both in IR protection and in regulating normal mitochondrial function.
Collapse
|
7
|
Misra SK, Schwartz-Duval AS, Pan D. Genomic DNA Interactions Mechanize Peptidotoxin-Mediated Anticancer Nanotherapy. Mol Pharm 2017; 14:2254-2261. [DOI: 10.1021/acs.molpharmaceut.7b00083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Santosh K. Misra
- Department of Bioengineering,
Department of Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana−Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Aaron S. Schwartz-Duval
- Department of Bioengineering,
Department of Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana−Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Dipanjan Pan
- Department of Bioengineering,
Department of Materials Science and Engineering, and Beckman Institute, University of Illinois at Urbana−Champaign, Mills Breast Cancer Institute, and Carle Foundation Hospital, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Fluorescent protein-scorpion toxin chimera is a convenient molecular tool for studies of potassium channels. Sci Rep 2016; 6:33314. [PMID: 27650866 PMCID: PMC5030662 DOI: 10.1038/srep33314] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 08/24/2016] [Indexed: 12/20/2022] Open
Abstract
Ion channels play a central role in a host of physiological and pathological processes and are the second largest target for existing drugs. There is an increasing need for reliable tools to detect and visualize particular ion channels, but existing solutions suffer from a number of limitations such as high price, poor specificity, and complicated protocols. As an alternative, we produced recombinant chimeric constructs (FP-Tx) consisting of fluorescent proteins (FP) fused with potassium channel toxins from scorpion venom (Tx). In particular, we used two FP, eGFP and TagRFP, and two Tx, OSK1 and AgTx2, to create eGFP-OSK1 and RFP-AgTx2. We show that these chimeras largely retain the high affinity of natural toxins and display selectivity to particular ion channel subtypes. FP-Tx are displaced by other potassium channel blockers and can be used as an imaging tool in ion channel ligand screening setups. We believe FP-Tx chimeras represent a new efficient molecular tool for neurobiology.
Collapse
|
9
|
Nikouee A, Khabiri M, Cwiklik L. Scorpion toxins prefer salt solutions. J Mol Model 2015; 21:287. [PMID: 26475740 DOI: 10.1007/s00894-015-2822-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/15/2015] [Indexed: 11/26/2022]
Abstract
There is a wide variety of ion channel types with various types of blockers, making research in this field very complicated. To reduce this complexity, it is essential to study ion channels and their blockers independently. Scorpion toxins, a major class of blockers, are charged short peptides with high affinities for potassium channels. Their high selectivity and inhibitory properties make them an important pharmacological tool for treating autoimmune or nervous system disorders. Scorpion toxins typically have highly charged surfaces and-like other proteins-an intrinsic ability to bind ions (Friedman J Phys Chem B 115(29):9213-9223, 1996; Baldwin Biophys J 71(4):2056-2063, 1996; Vrbka et al. Proc Natl Acad Sci USA 103(42):15440-15444, 2006a; Vrbka et al. J Phys Chem B 110(13):7036-43, 2006b). Thus, their effects on potassium channels are usually investigated in various ionic solutions. In this work, computer simulations of protein structures were performed to analyze the structural properties of the key residues (i.e., those that are presumably involved in contact with the surfaces of the ion channels) of 12 scorpion toxins. The presence of the two most physiologically abundant cations, Na(+) and K(+), was considered. The results indicated that the ion-binding properties of the toxin residues vary. Overall, all of the investigated toxins had more stable structures in ionic solutions than in water. We found that both the number and length of elements in the secondary structure varied depending on the ionic solution used (i.e., in the presence of NaCl or KCl). This study revealed that the ionic solution should be chosen carefully before performing experiments on these toxins. Similarly, the influence of these ions should be taken into consideration in the design of toxin-based pharmaceuticals.
Collapse
Affiliation(s)
- Azadeh Nikouee
- Institute of Applied Physiology, Ulm University, Ulm, Germany
| | - Morteza Khabiri
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610, Prague 6, Czech Republic.
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Lukasz Cwiklik
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610, Prague 6, Czech Republic
- J. Heyrovský Institute of Physical Chemistry Academy of Sciences of the Czech Republic v.v.i., Dolejskova 3, 18223, Prague 8, Czech Republic
| |
Collapse
|
10
|
Misra SK, Ye M, Kim S, Pan D. Defined nanoscale chemistry influences delivery of peptido-toxins for cancer therapy. PLoS One 2015; 10:e0125908. [PMID: 26030072 PMCID: PMC4452514 DOI: 10.1371/journal.pone.0125908] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 03/23/2015] [Indexed: 11/18/2022] Open
Abstract
We present an in-silico-to-in-vitro approach to develop well-defined, self-assembled, rigid-cored polymeric (Polybee) nano-architecture for controlled delivery of a key component of bee venom, melittin. A competitive formulation with lipid-encapsulated (Lipobee) rigid cored micelle is also synthesized. In a series of sequential experiments, we show how nanoscale chemistry influences the delivery of venom toxins for cancer regression and help evade systemic disintegrity and cellular noxiousness. A relatively weaker association of melittin in the case of lipid-based nanoparticles is compared to the polymeric particles revealed by energy minimization and docking studies, which are supported by biophysical studies. For the first time, the authors' experiment results indicate that melittin can play a significant role in DNA association-dissociation processes, which may be a plausible route for their anticancer activity.
Collapse
Affiliation(s)
- Santosh K. Misra
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
- Department of Materials Science and Engineering University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
- Carle Foundation Hospital, Urbana, IL, 61801, United States of America
| | - Mao Ye
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
- Department of Materials Science and Engineering University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
- Carle Foundation Hospital, Urbana, IL, 61801, United States of America
| | - Sumin Kim
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
- Department of Materials Science and Engineering University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
- Carle Foundation Hospital, Urbana, IL, 61801, United States of America
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
- Department of Materials Science and Engineering University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
- Carle Foundation Hospital, Urbana, IL, 61801, United States of America
| |
Collapse
|
11
|
Salari S, Ghasemi M, Fahanik-Babaei J, Saghiri R, Sauve R, Eliassi A. Evidence for a KATP Channel in Rough Endoplasmic Reticulum (rerKATP Channel) of Rat Hepatocytes. PLoS One 2015; 10:e0125798. [PMID: 25950903 PMCID: PMC4423865 DOI: 10.1371/journal.pone.0125798] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 03/25/2015] [Indexed: 12/24/2022] Open
Abstract
We report in a previous study the presence of a large conductance K+ channel in the membrane of rough endoplasmic reticulum (RER) from rat hepatocytes incorporated into lipid bilayers. Channel activity in this case was found to decrease in presence of ATP 100 µM on the cytoplasmic side and was totally inhibited at ATP concentrations greater than 0.25 mM. Although such features would be compatible with the presence of a KATP channel in the RER, recent data obtained from a brain mitochondrial inner membrane preparation have provided evidence for a Maxi-K channel which could also be blocked by ATP within the mM concentration range. A series of channel incorporation experiments was thus undertaken to determine if the ATP-sensitive channel originally observed in the RER corresponds to KATP channel. Our results indicate that the gating and permeation properties of this channel are unaffected by the addition of 800 nM charybdotoxin and 1 µM iberiotoxin, but appeared sensitive to 10 mM TEA and 2.5 mM ATP. Furthermore, adding 100 µM glibenclamide at positive potentials and 400 µM tolbutamide at negative or positive voltages caused a strong inhibition of channel activity. Finally Western blot analyses provided evidence for Kir6.2, SUR1 and/or SUR2B, and SUR2A expression in our RER fractions. It was concluded on the basis of these observations that the channel previously characterized in RER membranes corresponds to KATP, suggesting that opening of this channel may enhance Ca2+ releases, alter the dynamics of the Ca2+ transient and prevent accumulation of Ca2+ in the ER during Ca2+ overload.
Collapse
Affiliation(s)
- Sajjad Salari
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maedeh Ghasemi
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Fahanik-Babaei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Saghiri
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Remy Sauve
- Department of Molecular and Integrative Physiology and Membrane Protein Research Group, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Afsaneh Eliassi
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- * E-mail:
| |
Collapse
|
12
|
Misra SK, Ye M, Kim S, Pan D. Highly efficient anti-cancer therapy using scorpion 'NanoVenin'. Chem Commun (Camb) 2014; 50:13220-3. [PMID: 25061638 DOI: 10.1039/c4cc04748f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Host defence peptidotoxins from animal venoms have been identified to possess substantial anticancer properties. Towards a safer, translatable approach, we have developed a viable chemical methodology based on a well-defined, self-assembled polymeric nano-architecture for controlled delivery of toxins derived from scorpion venom.
Collapse
Affiliation(s)
- Santosh K Misra
- Department of Bioengineering and Beckman Institute, University of Illinois at Urbana-Champaign, 502 N. Busey, Urbana, IL 61801, USA.
| | | | | | | |
Collapse
|
13
|
Zhu S, Peigneur S, Gao B, Umetsu Y, Ohki S, Tytgat J. Experimental conversion of a defensin into a neurotoxin: implications for origin of toxic function. Mol Biol Evol 2014; 31:546-59. [PMID: 24425781 DOI: 10.1093/molbev/msu038] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Scorpion K(+) channel toxins and insect defensins share a conserved three-dimensional structure and related biological activities (defense against competitors or invasive microbes by disrupting their membrane functions), which provides an ideal system to study how functional evolution occurs in a conserved structural scaffold. Using an experimental approach, we show that the deletion of a small loop of a parasitoid venom defensin possessing the "scorpion toxin signature" (STS) can remove steric hindrance of peptide-channel interactions and result in a neurotoxin selectively inhibiting K(+) channels with high affinities. This insect defensin-derived toxin adopts a hallmark scorpion toxin fold with a common cysteine-stabilized α-helical and β-sheet motif, as determined by nuclear magnetic resonance analysis. Mutations of two key residues located in STS completely diminish or significantly decrease the affinity of the toxin on the channels, demonstrating that this toxin binds to K(+) channels in the same manner as scorpion toxins. Taken together, these results provide new structural and functional evidence supporting the predictability of toxin evolution. The experimental strategy is the first employed to establish an evolutionary relationship of two distantly related protein families.
Collapse
Affiliation(s)
- Shunyi Zhu
- Group of Animal Innate Immunity, State Key Laboratory of Integrated Management of Pest Insects & Rodents, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | | | | | | | | | | |
Collapse
|
14
|
Ali SA, Alam M, Abbasi A, Kalbacher H, Schaechinger TJ, Hu Y, Zhijian C, Li W, Voelter W. Structure–Activity Relationship of a Highly Selective Peptidyl Inhibitor of Kv1.3 Voltage-Gated K+-Channel from Scorpion (B. sindicus) Venom. Int J Pept Res Ther 2013. [DOI: 10.1007/s10989-013-9362-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Schwartz EF, Bartok A, Schwartz CA, Papp F, Gómez-Lagunas F, Panyi G, Possani LD. OcyKTx2, a new K⁺-channel toxin characterized from the venom of the scorpion Opisthacanthus cayaporum. Peptides 2013; 46:40-6. [PMID: 23684923 DOI: 10.1016/j.peptides.2013.04.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 11/26/2022]
Abstract
Opisthacanthus cayaporum belongs to the Liochelidae family, and the scorpions from this genus occur in southern Africa, Central America and South America and, therefore, can be considered a true Gondwana heritage. In this communication, the isolation, primary structure characterization, and K⁺-channel blocking activity of new peptide from this scorpion venom are reported. OcyKTx2 is a 34 amino acid long peptide with four disulfide bridges and molecular mass of 3807 Da. Electrophysiological assays conducted with pure OcyKTx2 showed that this toxin reversibly blocks Shaker B K⁺-channels with a Kd of 82 nM, and presents an even better affinity toward hKv1.3, blocking it with a Kd of ∼18 nM. OcyKTx2 shares high sequence identity with peptides belonging to subfamily 6 of α-KTxs that clustered very closely in the phylogenetic tree included here. Sequence comparison, chain length and number of disulfide bridges analysis classify OcyKTx2 into subfamily 6 of the α-KTx scorpion toxins (systematic name, α-KTx6.17).
Collapse
Affiliation(s)
- Elisabeth F Schwartz
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, 70910-900 DF, Brazil.
| | | | | | | | | | | | | |
Collapse
|
16
|
Two peptides, TsAP-1 and TsAP-2, from the venom of the Brazilian yellow scorpion, Tityus serrulatus: evaluation of their antimicrobial and anticancer activities. Biochimie 2013; 95:1784-94. [PMID: 23770440 DOI: 10.1016/j.biochi.2013.06.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/05/2013] [Indexed: 11/21/2022]
Abstract
Here we report two novel 17-mer amidated linear peptides (TsAP-1 and TsAP-2) whose structures were deduced from cDNAs cloned from a venom-derived cDNA library of the Brazilian yellow scorpion, Tityus serrulatus. Both mature peptides were structurally-characterised following their location in chromatographic fractions of venom and synthetic replicates of each were subjected to a range of biological assays. The peptides were each active against model test micro-organisms but with different potencies. TsAP-1 was of low potency against all three test organisms (MICs 120-160 μM), whereas TsAP-2 was of high potency against the Gram-positive bacterium, Staphylococcus aureus (MIC 5 μM) and the yeast, Candida albicans (10 μM). Haemolytic activity of TsAP-1 was low (4% at 160 μM) and in contrast, that of TsAP-2 was considerably higher (18% at 20 μM). Substitution of four neutral amino acid residues with Lys residues in each peptide had dramatic effects on their antimicrobial potencies and haemolytic activities, particularly those of TsAP-1. The MICs of the enhanced cationic analogue (TsAP-S1) were 2.5 μM for S. aureus/C. albicans and 5 μM for E. coli but with an associated large increase in haemolytic activity (30% at 5 μM). The same Lys residue substitutions in TsAP-2 produced a dramatic effect on its MIC for E. coli lowering this from >320 μM to 5 μM. TsAP-1 was ineffective against three of the five human cancer cell lines tested while TsAP-2 inhibited the growth of all five. Lys residue substitution of both peptides enhanced their potency against all five cell lines with TsAp-S2 being the most potent with IC50 values ranging between 0.83 and 2.0 μM. TsAP-1 and TsAP-2 are novel scorpion venom peptides with broad spectrum antimicrobial and anticancer cell activities the potencies of which can be significantly enhanced by increasing their cationicity.
Collapse
|
17
|
Almeida DD, Torres TM, Barbosa EG, Lima JPMS, de Freitas Fernandes-Pedrosa M. Molecular approaches for structural characterization of a new potassium channel blocker from Tityus stigmurus venom: cDNA cloning, homology modeling, dynamic simulations and docking. Biochem Biophys Res Commun 2012. [PMID: 23200836 DOI: 10.1016/j.bbrc.2012.11.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Potassium channels are involved in the maintenance of resting membrane potential, control of cardiac and neuronal excitability, neurotransmitters release, muscle contractility and hormone secretion. The Tityus stigmurus scorpion is widely distributed in Northeastern Brazil and known to cause severe human envenomations, inducing pain, hypoesthesia, edema, erythema, paresthesia, headaches and vomiting. Most potassium channel blocking peptides that have been purified from scorpion venoms contain 30-40 amino acids with three or four disulfide bridges. These peptides belong to α-KTx subfamily. On the other hand, the β-KTx subfamily is poorly characterized, though it is very representative in some scorpion venoms. A transcriptomic approach of T.stigmurus scorpions developed by our group revealed the repertoire of possible molecules present in the venom, including many toxins of the β-KTx subfamily. One of the ESTs found, named TSTI0003C has a cDNA sequence of 538 bp codifying a mature protein with 47 amino acid residues, corresponding to 5299 Da. This β-KTx peptide is a new member of the BmTXKβ-related toxins, and was here named TstKMK. The three-dimensional structure of this potassium channel toxin of the T. stigmurus scorpion was obtained by computational modeling and refined by molecular dynamic simulations. Furthermore, we have made docking simulations using a Shaker kV-1.2 potassium channel from rats as receptor model and proposed which amino acid residues and interactions could be involved in its blockade.
Collapse
Affiliation(s)
- Diego Dantas Almeida
- Laboratório de Tecnologia e Biotecnologia Farmacêutica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | | | | | | | | |
Collapse
|
18
|
Jiménez-Vargas JM, Restano-Cassulini R, Possani LD. Toxin modulators and blockers of hERG K(+) channels. Toxicon 2012; 60:492-501. [PMID: 22497787 DOI: 10.1016/j.toxicon.2012.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 03/27/2012] [Indexed: 12/24/2022]
Abstract
The K(+) channel encoded by the Ether-á-go-go-Related Gene (ERG) is expressed in different tissues of different animal species. There are at least three subtypes of this channel, being the sub-type 1 (ERG1) crucial in the repolarization phase of the cardiac action potential. Mutations in this gene can affect the properties of the channel producing the type II long QT syndrome (LQTS2) and many drugs are also known to affect this channel with a similar side effect. Various scorpion, spider and sea anemone toxins affect the ERG currents by blocking the ion-conducting pore from the external side or by modulating channel gating through binding to the voltage-sensor domain. By doing so, these toxins become very useful tools for better understanding the structural and functional characteristics of these ion channels. This review discusses the interaction between the ERG channels and the peptides isolated from venoms of these animals. Special emphasis is placed on scorpion toxins, although the effects of several spider venom toxins and anemone toxins will be also revised.
Collapse
Affiliation(s)
- J M Jiménez-Vargas
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Av. Universidad 2001, P.O. Box 501-3, Cuernavaca 62210, Mexico.
| | | | | |
Collapse
|
19
|
Chen R, Chung SH. Binding modes of μ-conotoxin to the bacterial sodium channel (NaVAb). Biophys J 2012; 102:483-8. [PMID: 22325270 DOI: 10.1016/j.bpj.2011.12.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/14/2011] [Accepted: 12/27/2011] [Indexed: 12/19/2022] Open
Abstract
Polypeptide toxins isolated from the venom of cone snails, known as μ-conotoxins, block voltage-gated sodium channels by physically occluding the ion-conducting pathway. Using molecular dynamics, we show that one subtype of μ-conotoxins, PIIIA, effectively blocks the bacterial voltage-gated sodium channel Na(V)Ab, whose crystal structure has recently been elucidated. The spherically shaped toxin, carrying a net charge of +6 e with six basic residues protruding from its surface, is attracted by the negatively charged residues on the vestibular wall and the selectivity filter of the channel. The side chain of each of these six arginine and lysine residues can wedge into the selectivity filter, whereas the side chains of other basic residues form electrostatic complexes with two acidic residues on the channel. We construct the profile of potential of mean force for the unbinding of PIIIA from the channel, and predict that PIIIA blocks the bacterial sodium channel with subnanomolar affinity.
Collapse
Affiliation(s)
- Rong Chen
- Computational Biophysics Group, Research School of Biology, Australian National University, Canberra, Australia.
| | | |
Collapse
|
20
|
Ida T, Takahashi T, Tominaga H, Sato T, Kume K, Yoshizawa-Kumagaye K, Nishio H, Kato J, Murakami N, Miyazato M, Kangawa K, Kojima M. Identification of the endogenous cysteine-rich peptide trissin, a ligand for an orphan G protein-coupled receptor in Drosophila. Biochem Biophys Res Commun 2011; 414:44-8. [DOI: 10.1016/j.bbrc.2011.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 09/03/2011] [Indexed: 12/19/2022]
|
21
|
Structural characterization of plant defensin protein superfamily. Mol Biol Rep 2011; 39:4461-9. [DOI: 10.1007/s11033-011-1235-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Accepted: 09/13/2011] [Indexed: 10/17/2022]
|
22
|
Gilly WF, Richmond TA, Duda TF, Elliger C, Lebaric Z, Schulz J, Bingham JP, Sweedler JV. A diverse family of novel peptide toxins from an unusual cone snail, Conus californicus. ACTA ACUST UNITED AC 2011; 214:147-61. [PMID: 21147978 DOI: 10.1242/jeb.046086] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diversity among Conus toxins mirrors the high species diversity in the Indo-Pacific region, and evolution of both is thought to stem from feeding-niche specialization derived from intra-generic competition. This study focuses on Conus californicus, a phylogenetic outlier endemic to the temperate northeast Pacific. Essentially free of congeneric competitors, it preys on a wider variety of organisms than any other cone snail. Using molecular cloning of cDNAs and mass spectrometry, we examined peptides isolated from venom ducts to elucidate the sequences and post-translational modifications of two eight-cysteine toxins (cal12a and cal12b of type 12 framework) that block voltage-gated Na(+) channels. Based on homology of leader sequence and mode of action, these toxins are related to the O-superfamily, but differ significantly from other members of that group. Six of the eight cysteine residues constitute the canonical framework of O-members, but two additional cysteine residues in the N-terminal region define an O+2 classification within the O-superfamily. Fifteen putative variants of Cal12.1 toxins have been identified by mRNAs that differ primarily in two short hypervariable regions and have been grouped into three subtypes (Cal12.1.1-3). This unique modular variation has not been described for other Conus toxins and suggests recombination as a diversity-generating mechanism. We propose that these toxin isoforms show specificity for similar molecular targets (Na(+) channels) in the many species preyed on by C. californicus and that individualistic utilization of specific toxin isoforms may involve control of gene expression.
Collapse
Affiliation(s)
- W F Gilly
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhu S, Peigneur S, Gao B, Luo L, Jin D, Zhao Y, Tytgat J. Molecular diversity and functional evolution of scorpion potassium channel toxins. Mol Cell Proteomics 2010; 10:M110.002832. [PMID: 20889474 DOI: 10.1074/mcp.m110.002832] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Scorpion toxins affecting K(+) channels (KTxs) represent important pharmacological tools and potential drug candidates. Here, we report molecular characterization of seven new KTxs in the scorpion Mesobuthus eupeus by cDNA cloning combined with biochemical approaches. Comparative modeling supports that all these KTxs share a conserved cysteine-stabilized α-helix/β-sheet structural motif despite the differences in protein sequence and size. We investigated functional diversification of two orthologous α-KTxs (MeuTXKα1 from M. eupeus and BmP01 from Mesobuthus martensii) by comparing their K(+) channel-blocking activities. Pharmacologically, MeuTXKα1 selectively blocked Kv1.3 channel with nanomolar affinity (IC(50), 2.36 ± 0.9 nM), whereas only 35% of Kv1.1 currents were inhibited at 3 μM concentration, showing more than 1271-fold selectivity for Kv1.3 over Kv1.1. This peptide displayed a weak effect on Drosophila Shaker channel and no activity on Kv1.2, Kv1.4, Kv1.5, Kv1.6, and human ether-a-go-go-related gene (hERG) K(+) channels. Although BmB01 and MeuTXKα1 have a similar channel spectrum, their affinity and selectivity for these channels largely varies. In comparison with MeuTXKα1, BmP01 only exhibits a submicromolar affinity (IC(50), 133.72 ± 10.98 nM) for Kv1.3, showing 57-fold less activity than MeuTXKα1. Moreover, it lacks the ability to distinguish between Kv1.1 and Kv1.3. We also found that MeuTXKα1 inhibited the proliferation of activated T cells induced by phorbol myristate acetate and ionomycin at micromolar concentrations. Our results demonstrate that accelerated evolution drives affinity variations of orthologous α-KTxs on Kv channels and indicate that MeuTXKα1 is a promising candidate to develop an immune modulation agent for human autoimmune diseases.
Collapse
Affiliation(s)
- Shunyi Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
24
|
Weatherall KL, Goodchild SJ, Jane DE, Marrion NV. Small conductance calcium-activated potassium channels: From structure to function. Prog Neurobiol 2010; 91:242-55. [DOI: 10.1016/j.pneurobio.2010.03.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 03/05/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022]
|
25
|
Tóth A, Szilágyi O, Krasznai Z, Panyi G, Hajdú P. Functional consequences of Kv1.3 ion channel rearrangement into the immunological synapse. Immunol Lett 2009; 125:15-21. [PMID: 19477198 DOI: 10.1016/j.imlet.2009.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 05/12/2009] [Accepted: 05/16/2009] [Indexed: 01/29/2023]
Abstract
Formation of immunological synapse (IS), the interface between T cells and antigen presenting cells, is a crucial step in T cell activation. This conjugation formation results in the rearrangement and segregation of a set of membrane bound and cytosolic proteins, including that of the T cell receptor, into membrane domains. It was showed earlier that Kv1.3, the dominant voltage-gated potassium channel of T cells redistributes into the IS on interaction with its specific APC. In the present experiments we investigated the functional consequences of the translocation of Kv1.3 channels into the IS formed between mouse helper T (T(h)2) and B cells. Biophysical characteristics of whole-cell Kv1.3 current in standalone cells (c) or ones in IS (IS) were determined using voltage-clamp configuration of standard whole-cell patch-clamp technique. Patch-clamp recordings showed that the activation of Kv1.3 current slowed (tau(a,IS)=2.36+/-0.13 ms (n=7); tau(a,c)=1.36+/-0.06 ms (n=18)) whereas the inactivation rate increased (tau(i,IS)=263+/-29 ms (n=7); tau(i,c)=365+/-27 ms (n=17)) in cells being in IS compared to the standalone cells. The equilibrium distribution between the open and the closed states of Kv1.3 (voltage-dependence of steady-state activation) was shifted toward the depolarizing potentials in T cells engaged into IS (V(1/2,IS)=-20.9+/-2 mV (n=7), V(1/2,c)=-26.4+/-1.5 mV (n=12)). Thus, segregation of Kv1.3 channels into the IS modifies the gating properties of the channels. Application of protein kinase (PK) inhibitors (PKC: GF109203X, PKA: H89, p56Lck: damnacanthal) demonstrated that increase in the inactivation rate can be explained by the dephosphorylation of the channel protein. However, the slower activation kinetics of Kv1.3 in IS is likely to be the consequence of the redistribution of the channels into distinct membrane domains.
Collapse
Affiliation(s)
- Agnes Tóth
- Department of Biophysics and Cell Biology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | |
Collapse
|
26
|
Diochot S. Precious Natural Peptides from Spider Venoms: New Tools for Studying Potassium Channels. TOXIN REV 2008. [DOI: 10.1080/07313830500237059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Zarrabi M, Naderi-Manesh H. The investigation of interactions of kappa-Hefutoxin1 with the voltage-gated potassium channels: a computational simulation. Proteins 2008; 71:1441-9. [PMID: 18076029 DOI: 10.1002/prot.21833] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Kappa-Hefutoxin1 is a K(+) channel-blocking toxin from the scorpion Heterometrus fluvipes. It is a 22-residue protein that adapts a novel fold of two parallel helices linked by two disulfide bridges without beta-sheets. Recognition of interactions of kappa-Hefutoxin1 with the voltage-gated potassium channels, Kv1.1, Kv1.2, and Kv1.3, was studied by 3D-Dock software package. All structures of kappa-Hefutoxin1 were considered during the simulations, which indicated that even small changes in the structure of kappa-Hefutoxin1 considerably affected both the recognition and the binding between kappa-Hefutoxin1 and the Kv1 channels. kappa-Hefutoxin1 is located around the extracellular part of the Kv1 channels, making contacts with its helices. Lys 19, Tyr 5, Arg 6, Trp 9, or Arg 10 in the toxin and residues Asp 402, His 404, Thr 407,Gly 401, and Asp 386 in each subunit of the Kv potassium channel are the key residues for the toxin-channel recognition. Moreover, the simulation result demonstrates that the hydrophobic interactions are important in interaction of negatively charged toxins with potassium channels. The results of our docking/molecular dynamics simulations indicate that our 3D model structure of the kappa-Hefutoxin1-complex is both reasonable and acceptable and could be helpful for smarter drug design and the blocking agents of Kv1 channels.
Collapse
Affiliation(s)
- M Zarrabi
- Department of Biophysics, Faculty of Science, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
28
|
Zachariae U, Schneider R, Velisetty P, Lange A, Seeliger D, Wacker SJ, Karimi-Nejad Y, Vriend G, Becker S, Pongs O, Baldus M, de Groot BL. The molecular mechanism of toxin-induced conformational changes in a potassium channel: relation to C-type inactivation. Structure 2008; 16:747-54. [PMID: 18462679 DOI: 10.1016/j.str.2008.01.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 11/15/2022]
Abstract
Recently, a solid-state NMR study revealed that scorpion toxin binding leads to conformational changes in the selectivity filter of potassium channels. The exact nature of the conformational changes, however, remained elusive. We carried out all-atom molecular dynamics simulations that enabled us to cover the complete pathway of toxin approach and binding, and we validated our simulation results by using solid-state NMR data and electrophysiological measurements. Our structural model revealed a mechanism of cooperative toxin-induced conformational changes that accounts both for the signal changes observed in solid-state NMR and for the tight interaction between KcsA-Kv1.3 and Kaliotoxin. We show that this mechanism is structurally and functionally closely related to recovery from C-type inactivation. Furthermore, our simulations indicate heterogeneity in the binding modes of Kaliotoxin, which might serve to enhance its affinity for KcsA-Kv1.3 further by entropic stabilization.
Collapse
Affiliation(s)
- Ulrich Zachariae
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tao X, MacKinnon R. Functional analysis of Kv1.2 and paddle chimera Kv channels in planar lipid bilayers. J Mol Biol 2008; 382:24-33. [PMID: 18638484 DOI: 10.1016/j.jmb.2008.06.085] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 06/26/2008] [Accepted: 06/30/2008] [Indexed: 10/21/2022]
Abstract
Voltage-dependent K(+) (Kv) channels play key roles in shaping electrical signaling in both excitable and nonexcitable cells. These channels open and close in response to the voltage changes across the cell membrane. Many studies have been carried out in order to understand the voltage-sensing mechanism. Our laboratory recently determined the atomic structures of a mammalian Kv channel Kv1.2 and a mutant of Kv1.2 named the 'paddle chimera' channel, in which the voltage sensor paddle was transferred from Kv2.1 to Kv1.2. These two structures provide atomic descriptions of voltage-dependent channels with unprecedented clarity. Until now, the functional integrity of these two channels biosynthesized in yeast cells has not been assessed. Here, we report the electrophysiological and pharmacological properties of Kv1.2 and the paddle chimera channels in planar lipid bilayers. We demonstrate that Pichia yeast produce 'normally functioning' mammalian Kv channels with qualitatively similar features to the Shaker K(+) channel in the absence of the N-terminal inactivation gate and that the paddle chimera mutant channel functions as well as Kv1.2. We find, however, that in several respects, the Kv1.2 channel exhibits functional properties that are distinct from Kv1.2 channels reported in the literature.
Collapse
Affiliation(s)
- Xiao Tao
- Howard Hughes Medical Institute, Department of Molecular Neurobiology and Biophysics, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
30
|
Chtcheglova LA, Atalar F, Ozbek U, Wildling L, Ebner A, Hinterdorfer P. Localization of the ergtoxin-1 receptors on the voltage sensing domain of hERG K+ channel by AFM recognition imaging. Pflugers Arch 2008; 456:247-54. [DOI: 10.1007/s00424-007-0418-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 12/05/2007] [Indexed: 11/29/2022]
|
31
|
Ukhanov K, Leinders-Zufall T, Zufall F. Patch-clamp analysis of gene-targeted vomeronasal neurons expressing a defined V1r or V2r receptor: ionic mechanisms underlying persistent firing. J Neurophysiol 2007; 98:2357-69. [PMID: 17715188 DOI: 10.1152/jn.00642.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sensory neurons in the mouse vomeronasal organ consist of two major groups, apical and basal, that project to different brain regions, express unique sets of receptors, and serve distinct functions. Electrical properties of these two subpopulations, however, have not been systematically characterized. V1rb2-tau-GFP and V2r1b-tau-GFP tagged vomeronasal sensory neurons (VSNs) were selected as prototypical apical or basal VSNs, respectively, and their biophysical properties were analyzed in acute slices that minimized cell damage. Basal V2r1b-expressing VSNs had voltage-gated conductances, and especially Na(+) (Nav) and Ca(2+) (Cav) currents, that were substantially larger than those observed in apical V1rb2 VSNs, although the resting membrane potential, input resistance, and membrane capacitance were similar in both cell types. Of several types of Cav currents, T-type and L-type Cav currents contributed to action potential firing, and both currents alone were capable of generating oscillatory Ca(2+) spikes. The L-type Cav current was uniquely coupled to a BK large-conductance K(+) current, and interplay between these channels played a critical role in repolarizing spikes and maintaining persistent firing in VSNs. Larger Nav and Cav conductances, along with a more positive inactivation voltage of the Nav current in the V2r1b VSNs, contributed to the larger spike amplitude and higher spike frequency induced by depolarizing current in these cells compared with V1rb2 VSNs. Basal GFP-negative VSNs and V2r1b VSNs responded to prolonged depolarization with persistent, but adapting discharge that could be relevant in sensory adaptation. Collectively, these results suggest a novel mechanism for regulating and encoding neuronal activity in the accessory olfactory system.
Collapse
Affiliation(s)
- Kirill Ukhanov
- Whitney Laboratory for Marine Bioscience, Center for Smell and Taste, and the McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| | | | | |
Collapse
|
32
|
Hill AP, Sunde M, Campbell TJ, Vandenberg JI. Mechanism of block of the hERG K+ channel by the scorpion toxin CnErg1. Biophys J 2007; 92:3915-29. [PMID: 17369411 PMCID: PMC1868980 DOI: 10.1529/biophysj.106.101956] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The scorpion toxin CnErg1 binds to human ether-a-go-go related gene (hERG) K(+) channels with a 1:1 stoichiometry and high affinity. However, in contrast to other scorpion toxin-ion channel interactions, the inhibition of macroscopic hERG currents by high concentrations of CnErg1 is incomplete. In this study, we have probed the molecular basis for this incomplete inhibition. High concentrations of CnErg1 had only modest effects on hERG gating that could not account for the incomplete block. Furthermore, the residual current in the presence of 1 microM CnErg1 had normal single channel conductance. Analysis of the kinetics of CnErg1 interaction with hERG indicated that CnErg1 binding is not diffusion-limited. A bimolecular binding scheme that incorporates an initial encounter complex and permits normal ion conduction was able to completely reproduce both the kinetics and steady-state level of CnErg1-hERG binding. This scheme provides a simple kinetic explanation for incomplete block; that is, relatively fast backward compared to forward rate constants for the interconversion of the toxin-channel encounter complex and the blocked toxin-channel complex. We have also examined the temperature-dependence of CnErg1 binding to hERG. The dissociation constant, K(d), for CnErg1 increases from 7.3 nM at 22 degrees C to 64 nM at 37 degrees C (i.e., the affinity decreases as temperature increases) and the proportion of binding events that lead to channel blockade decreases from 70% to 40% over the same temperature range. These temperature-dependent effects on CnErg1 binding correlate with a temperature-dependent decrease in the stability of the putative CnErg1 binding site, the amphipathic alpha-helix in the outer pore domain of hERG, assayed using circular dichroism spectropolarimetry. Collectively, our data provides a plausible kinetic explanation for incomplete blockade of hERG by CnErg1 that is consistent with the proposed highly dynamic conformation of the outer pore domain of hERG.
Collapse
Affiliation(s)
- Adam P Hill
- Mark Cowley Lidwill Research Program in Electrophysiology and Biophysics, Victor Chang Cardiac Research Institute, New South Wales, Australia
| | | | | | | |
Collapse
|
33
|
Yi H, Cao Z, Yin S, Dai C, Wu Y, Li W. Interaction Simulation of hERG K+ Channel with Its Specific BeKm-1 Peptide: Insights into the Selectivity of Molecular Recognition. J Proteome Res 2006; 6:611-20. [PMID: 17269718 DOI: 10.1021/pr060368g] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Potassium channels show a huge variability in the affinity when recognizing enormous bioactive peptides, and the elucidation of their recognition mechanism remains a great challenge due to an undetermined peptide-channel complex structure. Here, we employed combined computation methods to study the specific binding of BeKm-1 peptide to the hERG potassium channel, which is an essential determinant of the long-QT syndrome. By the use of a segment-assembly homology modeling method, the closed-state hERG structure containing unusual longer S5P linker was successfully constructed. It has a "petunia" shape, while four "petals" of symmetrically distributed S5P segments always decentralize. Starting from the hERG and BeKm-1 structures, a considerably reasonable BeKm-1-hERG complex structure was then screened out and identified by protein-protein docking, molecular dynamics (MD) simulations, and calculation of relative binding free energies. The validity of this predicted complex was further assessed by computational alanine-scanning, with the results correlating reasonably well with experimental data. In the novel complex structure, four considerably flexible S5P linkers are far from the BeKm-1 peptide. The BeKm-1 mainly uses its helical region to associate the channel outer vestibule, except for the S5P linker region; however, structural analysis further implies this neutral pore region with wiggling S5P linker is highly beneficial to the binding of BeKm-1 with lower positive charges. The most critical Lys18 of BeKm-1 plugs its side chain into the channel selectivity filter, while the secondarily important Arg20 forms three hydrogen bonds with spatially neighboring residues in the hERG channel. Different from the classical peptide-K+ channel interaction mainly induced by electrostatic interaction, a synergetic effect of the electrostatic and van der Waals interactions was found to mediate the molecular recognition between BeKm-1 and the hERG channel. And this specific binding process is revealed to be a dynamic change of reduction of binding free energy and conformational rearrangement mainly in the interface of both BeKm-1 and the hERG channel. All these structural and energy features yield deep insights on the high selective binding mechanism of hERG-specific peptides, present a diversity of peptide-K+ channel interactions, and also provide important clues to further study structure-function relationships of the hERG channel.
Collapse
Affiliation(s)
- Hong Yi
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | | | | | | | | | | |
Collapse
|
34
|
Nolting A, Ferraro T, D'hoedt D, Stocker M. An amino acid outside the pore region influences apamin sensitivity in small conductance Ca2+-activated K+ channels. J Biol Chem 2006; 282:3478-86. [PMID: 17142458 PMCID: PMC1849974 DOI: 10.1074/jbc.m607213200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small conductance calcium-activated potassium channels (SK, K(Ca)) are a family of voltage-independent K+ channels with a distinct physiology and pharmacology. The bee venom toxin apamin inhibits exclusively the three cloned SK channel subtypes (SK1, SK2, and SK3) with different affinity, highest for SK2, lowest for SK1, and intermediate for SK3 channels. The high selectivity of apamin made it a valuable tool to study the molecular makeup and function of native SK channels. Three amino acids located in the outer vestibule of the pore are of particular importance for the different apamin sensitivities of SK channels. Chimeric SK1 channels, enabling the homomeric expression of the rat SK1 (rSK1) subunit and containing the core domain (S1-S6) of rSK1, are apamin-insensitive. By contrast, channels formed by the human orthologue human SK1 (hSK1) are sensitive to apamin. This finding hinted at the involvement of regions beyond the pore as determinants of apamin sensitivity, because hSK1 and rSK1 have an identical amino acid sequence in the pore region. Here we investigated which parts of the channels outside the pore region are important for apamin sensitivity by constructing chimeras between apamin-insensitive and -sensitive SK channel subunits and by introducing point mutations. We demonstrate that a single amino acid situated in the extracellular loop between the transmembrane segments S3 and S4 has a major impact on apamin sensitivity. Our findings enabled us to convert the hSK1 channel into a channel that was as sensitive for apamin as SK2, the SK channel with the highest sensitivity.
Collapse
Affiliation(s)
- Andreas Nolting
- Laboratory of Molecular Pharmacology, Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
35
|
Schwartz EF, Schwartz CA, Gómez-Lagunas F, Zamudio FZ, Possani LD. HgeTx1, the first K+-channel specific toxin characterized from the venom of the scorpion Hadrurus gertschi Soleglad. Toxicon 2006; 48:1046-53. [PMID: 17030052 DOI: 10.1016/j.toxicon.2006.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 08/28/2006] [Accepted: 08/29/2006] [Indexed: 10/24/2022]
Abstract
A novel toxin was identified, purified and characterized from the venom of the Mexican scorpion Hadrurus gertschi (abbreviated HgeTx1). It has a molecular mass of 3950 atomic mass units (a.m.u.) and contains 36 amino acids with four disulfide bridges established between Cys1-Cys5, Cys2-Cys6, Cys3-Cys7 and Cys4-Cys8. It blocks reversibly the Shaker B K(+)-channels with a Kd of 52nM. HgeTx1 shares 60%, 45% and 40% sequence identity, respectively, with Heterometrus spinnifer toxin1 (HsTX1), Scorpio maurus K(+)-toxin (maurotoxin) and Pandinus imperator toxin1 (Pi1), all four-disulfide bridged toxins. It is 57-58% identical with the other scorpion K(+)-channel toxins that contain only three disulfide bridges. Sequence comparison, chain length and number of disulfide bridges analysis classify HgeTx1 into subfamily 6 of the alpha-KTx scorpion toxins (systematic name: alpha-KTx 6.14).
Collapse
Affiliation(s)
- Elisabeth F Schwartz
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | | | | | | | | |
Collapse
|
36
|
Judge SIV, Bever CT. Potassium channel blockers in multiple sclerosis: Neuronal Kv channels and effects of symptomatic treatment. Pharmacol Ther 2006; 111:224-59. [PMID: 16472864 DOI: 10.1016/j.pharmthera.2005.10.006] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 10/12/2005] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) characterized by demyelination, with a relative sparing of axons. In MS patients, many neurologic signs and symptoms have been attributed to the underlying conduction deficits. The idea that neurologic function might be improved if conduction could be restored in CNS demyelinated axons led to the testing of potassium (K(+)) channel blockers as a symptomatic treatment. To date, only 2 broad-spectrum K(+) channel blockers, 4-aminopyridine (4-AP) and 3,4-diaminopyridine (3,4-DAP), have been tested in MS patients. Although both 4-AP and 3,4-DAP produce clear neurologic benefits, their use has been limited by toxicity. Here we review the current status of basic science and clinical research related to the therapeutic targeting of voltage-gated K(+) channels (K(v)) in MS. By bringing together 3 distinct but interrelated disciplines, we aim to provide perspective on a vast body of work highlighting the lengthy and ongoing process entailed in translating fundamental K(v) channel knowledge into new clinical treatments for patients with MS and other demyelinating diseases. Covered are (1) K(v) channel nomenclature, structure, function, and pharmacology; (2) classic and current experimental morphology and neurophysiology studies of demyelination and conduction deficits; and (3) a comprehensive overview of clinical trials utilizing 4-AP and 3,4-DAP in MS patients.
Collapse
Affiliation(s)
- Susan I V Judge
- MS Center of Excellence-East, Research and Neurology Services, VA Maryland Health Care System, USA.
| | | |
Collapse
|
37
|
Cohen L, Gilles N, Karbat I, Ilan N, Gordon D, Gurevitz M. Direct evidence that receptor site-4 of sodium channel gating modifiers is not dipped in the phospholipid bilayer of neuronal membranes. J Biol Chem 2006; 281:20673-20679. [PMID: 16720570 DOI: 10.1074/jbc.m603212200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a recent note to Nature, R. MacKinnon has raised the possibility that potassium channel gating modifiers are able to partition in the phospholipid bilayer of neuronal membranes and that by increasing their partial concentration adjacent to their receptor, they affect channel function with apparent high affinity (Lee and MacKinnon (2004) Nature 430, 232-235). This suggestion was adopted by Smith et al. (Smith, J. J., Alphy, S., Seibert, A. L., and Blumenthal, K. M. (2005) J. Biol. Chem. 280, 11127-11133), who analyzed the partitioning of sodium channel modifiers in liposomes. They found that certain modifiers were able to partition in these artificial membranes, and on this basis, they have extrapolated that scorpion beta-toxins interact with their channel receptor in a similar mechanism as that proposed by MacKinnon. Since this hypothesis has actually raised a new conception, we examined it in binding assays using a number of pharmacologically distinct scorpion beta-toxins and insect and mammalian neuronal membrane preparations, as well as by analyzing the rate by which the toxin effect on gating of Drosophila DmNa(v)1 and rat brain rNa(v)1.2a develops. We show that in general, scorpion beta-toxins do not partition in neuronal membranes and that in the case in which a depressant beta-toxin partitions in insect neuronal membranes, this partitioning is unrelated to its interaction with the receptor site and the effect on the gating properties of the sodium channel. These results negate the hypothesis that the high affinity of beta-toxins for sodium channels is gained by their ability to partition in the phospholipid bilayer and clearly indicate that the receptor site for scorpion beta-toxins is accessible to the extracellular solvent.
Collapse
Affiliation(s)
- Lior Cohen
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel
| | - Nicolas Gilles
- Commissariat à l'Energie Atomique, Department d'Ingenierie et d'Etudes des Proteines, C.E. Saclay, F-91191 Gif Sur Yvette Cedex, France
| | - Izhar Karbat
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel
| | - Nitza Ilan
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel
| | - Dalia Gordon
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel.
| | - Michael Gurevitz
- Department of Plant Sciences, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat-Aviv 69978, Tel-Aviv, Israel.
| |
Collapse
|
38
|
Lange A, Giller K, Hornig S, Martin-Eauclaire MF, Pongs O, Becker S, Baldus M. Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR. Nature 2006; 440:959-62. [PMID: 16612389 DOI: 10.1038/nature04649] [Citation(s) in RCA: 359] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 02/15/2006] [Indexed: 11/08/2022]
Abstract
The active site of potassium (K+) channels catalyses the transport of K+ ions across the plasma membrane--similar to the catalytic function of the active site of an enzyme--and is inhibited by toxins from scorpion venom. On the basis of the conserved structures of K+ pore regions and scorpion toxins, detailed structures for the K+ channel-scorpion toxin binding interface have been proposed. In these models and in previous solution-state nuclear magnetic resonance (NMR) studies using detergent-solubilized membrane proteins, scorpion toxins were docked to the extracellular entrance of the K+ channel pore assuming rigid, preformed binding sites. Using high-resolution solid-state NMR spectroscopy, here we show that high-affinity binding of the scorpion toxin kaliotoxin to a chimaeric K+ channel (KcsA-Kv1.3) is associated with significant structural rearrangements in both molecules. Our approach involves a combined analysis of chemical shifts and proton-proton distances and demonstrates that solid-state NMR is a sensitive method for analysing the structure of a membrane protein-inhibitor complex. We propose that structural flexibility of the K+ channel and the toxin represents an important determinant for the high specificity of toxin-K+ channel interactions.
Collapse
Affiliation(s)
- Adam Lange
- Max Planck Institute for Biophysical Chemistry, Department of NMR-Based Structural Biology, 37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Langen G, Imani J, Altincicek B, Kieseritzky G, Kogel KH, Vilcinskas A. Transgenic expression of gallerimycin, a novel antifungal insect defensin from the greater wax moth Galleria mellonella, confers resistance to pathogenic fungi in tobacco. Biol Chem 2006; 387:549-57. [PMID: 16740126 DOI: 10.1515/bc.2006.071] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A cDNA encoding gallerimycin, a novel antifungal peptide from the greater wax moth Galleria mellonella, was isolated from a cDNA library of genes expressed during innate immune response in the caterpillars. Upon ectopic expression of gallerimycin in tobacco, using Agrobacterium tumefaciens as a vector, gallerimycin conferred resistance to the fungal pathogens Erysiphe cichoracearum and Sclerotinia minor. Quantification of gallerimycin mRNA in transgenic tobacco by real-time PCR confirmed transgenic expression under control of the inducible mannopine synthase promoter. Leaf sap and intercellular washing fluid from transgenic tobacco inhibited in vitro germination and growth of the fungal pathogens, demonstrating that gallerimycin is secreted into intercellular spaces. The feasibility of the use of gallerimycin to counteract fungal diseases in crop plants is discussed.
Collapse
Affiliation(s)
- Gregor Langen
- Institute of Phytopathology and Applied Zoology, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 26-32, D-35392 Giessen, Germany
| | | | | | | | | | | |
Collapse
|
40
|
Tan PTJ, Veeramani A, Srinivasan KN, Ranganathan S, Brusic V. SCORPION2: A database for structure–function analysis of scorpion toxins. Toxicon 2006; 47:356-63. [PMID: 16445955 DOI: 10.1016/j.toxicon.2005.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 12/01/2005] [Accepted: 12/06/2005] [Indexed: 10/25/2022]
Abstract
Scorpion toxins are important experimental tools for characterization of vast array of ion channels and serve as scaffolds for drug design. General public database entries contain limited annotation whereby rich structure-function information from mutation studies is typically not available. SCORPION2 contains more than 800 records of native and mutant toxin sequences enriched with binding affinity and toxicity information, 624 three-dimensional structures and some 500 references. SCORPION2 has a set of search and prediction tools that allow users to extract and perform specific queries: text searches of scorpion toxin records, sequence similarity search, extraction of sequences, visualization of scorpion toxin structures, analysis of toxic activity, and functional annotation of previously uncharacterized scorpion toxins. The SCORPION2 database is available at http://sdmc.i2r.a-star.edu.sg/scorpion/.
Collapse
Affiliation(s)
- Paul T J Tan
- Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore, Singapore 119613.
| | | | | | | | | |
Collapse
|
41
|
Li CL, Zhang JH, Yang BF, Jiao JD, Wang L, Wu CF. ANEPIII, a new recombinant neurotoxic polypeptide derived from scorpion peptide, inhibits delayed rectifier, but not A-type potassium currents in rat primary cultured hippocampal and cortical neurons. ACTA ACUST UNITED AC 2006; 133:74-81. [PMID: 16229905 DOI: 10.1016/j.regpep.2005.09.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Accepted: 09/13/2005] [Indexed: 11/26/2022]
Abstract
A new recombinant neurotoxic polypeptide ANEPIII (BmK ANEPIII) derived from Scorpion peptide, which was demonstrated with antineuroexcitation properties in animal models, was examined for its action on K+ currents in primary cultured rat hippocampal and cortical neurons using the patch clamp technique in the whole-cell configuration. The delayed rectifier K+ current (I(k)) was inhibited by externally applied recombinant BmK ANEPIII, while the transient A-current (I(A)) remained virtually unaffected. BmK ANEPIII 3 microM, reduced the delayed rectifier current by 28.2% and 23.6% in cultured rat hippocampal and cortical neurons, respectively. The concentration of half-maximal block was 155.1 nM for hippocampal neurons and 227.2 nM for cortical neurons, respectively. These results suggest that BmK ANEPIII affect K+ currents, which may lead to a reduction in neuronal excitability.
Collapse
Affiliation(s)
- Chun-Li Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | | | | | | | | | | |
Collapse
|
42
|
Rodríguez de la Vega RC, Possani LD. Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure-function relationships and evolution. Toxicon 2005; 46:831-44. [PMID: 16274721 DOI: 10.1016/j.toxicon.2005.09.006] [Citation(s) in RCA: 260] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Scorpion venoms contain a large number of bioactive components. Several of the long-chain peptides were shown to be responsible for neurotoxic effects, due to their ability to recognize Na(+) channels and to cause impairment of channel functions. Here, we revisited the basic paradigms in the study of these peptides in the light of recent data concerning their structure-function relationships, their functional divergence and extant biodiversity. The reviewed topics include: the criteria for classification of long-chain peptides according to their function, and a revision of the state-of-the-art knowledge concerning the surface areas of contact of these peptides with known Na(+) channels. Additionally, we compiled a comprehensive list encompassing 191 different amino acid sequences from long-chain peptides purified from scorpion venoms. With this dataset, a phylogenetic tree was constructed and discussed taking into consideration their documented functional divergence. A critical view on problems associated with the study of these scorpion peptides is presented, drawing special attention to the points that need revision and to the subjects under intensive research at this moment, regarding scorpion toxins specific for Na(+) channels and the other related long-chain peptides recently described.
Collapse
Affiliation(s)
- Ricardo C Rodríguez de la Vega
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Av. Universidad 2001, Apartado Postal 510-3, Cuernavaca Morelos 62210, Mexico
| | | |
Collapse
|
43
|
Brenner R, Chen QH, Vilaythong A, Toney GM, Noebels JL, Aldrich RW. BK channel beta4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures. Nat Neurosci 2005; 8:1752-9. [PMID: 16261134 DOI: 10.1038/nn1573] [Citation(s) in RCA: 277] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 09/23/2005] [Indexed: 11/08/2022]
Abstract
Synaptic inhibition within the hippocampus dentate gyrus serves a 'low-pass filtering' function that protects against hyperexcitability that leads to temporal lobe seizures. Here we demonstrate that calcium-activated potassium (BK) channel accessory beta4 subunits serve as key regulators of intrinsic firing properties that contribute to the low-pass filtering function of dentate granule cells. Notably, a critical beta4 subunit function is to preclude BK channels from contributing to membrane repolarization and thereby broaden action potentials. Longer-duration action potentials secondarily recruit SK channels, leading to greater spike frequency adaptation and reduced firing rates. In contrast, granule cells from beta4 knockout mice show a gain-of-function for BK channels that sharpens action potentials and supports higher firing rates. Consistent with breakdown of the dentate filter, beta4 knockouts show distinctive seizures emanating from the temporal cortex, demonstrating a unique nonsynaptic mechanism for gate control of hippocampal synchronization leading to temporal lobe epilepsy.
Collapse
Affiliation(s)
- Robert Brenner
- Department of Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | | | | | | | | | | |
Collapse
|
44
|
Olamendi-Portugal T, Somodi S, Fernández JA, Zamudio FZ, Becerril B, Varga Z, Panyi G, Gáspár R, Possani LD. Novel α-KTx peptides from the venom of the scorpion Centruroides elegans selectively blockade Kv1.3 over IKCa1 K+ channels of T cells. Toxicon 2005; 46:418-29. [PMID: 16026809 DOI: 10.1016/j.toxicon.2005.06.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 05/31/2005] [Accepted: 06/01/2005] [Indexed: 10/25/2022]
Abstract
From the venom of the Mexican scorpion Centruroides elegans Thorell five peptides were isolated to homogeneity by chromatographic procedures and their full amino acid sequence was determined by automatic Edman degradation. They all belong to the Noxiustoxin subfamily of scorpion toxins and were given the systematic names alpha-KTx 2.8 to 2.12, with trivial names Ce1 to Ce5, respectively. They have 39 amino acid residues, except for Ce3 which has only 38, but all of them have three disulfide bridges, and have molecular weights of 4255, 4267, 4249, 4295 and 4255 atomic mass units, respectively for Ce1 to Ce5. The C-terminal residues of Ce2, Ce4 and Ce5 were found to be amidated. The electrophysiological assay (whole-cell patch-clamp) showed that out of the five peptides, Ce1 (alpha-KTx 2.8), Ce2 (alpha-KTX2.9) and Ce4 (alpha-KTx 2.11) were effective blockers of Kv1.3 channels of human T lymphocytes, whereas these peptides did not inhibit the Ca2+-activated K+ channels (IKCa1) of the same cells. The equilibrium dissociation constants of these peptides for Kv1.3 were 0.70, 0.25 and 0.98nM for Ce1, Ce2 and Ce4, respectively. Furthermore, toxins Ce1, Ce2 and Ce4 practically did not inhibit the related voltage gated Shaker K+ channels, and rKv2.1 channels of the Shab family. The high affinity blockage of Kv1.3 channels by these peptides and their selectivity for Kv1.3 over IKCa1 may have significance in the development of novel tools for suppressing the function of those T cell subsets whose proliferation critically depends on the activity of Kv1.3 channels.
Collapse
Affiliation(s)
- Timoteo Olamendi-Portugal
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Avenida Universidad, 2001, Apartado Postal 510-3, Cuernavaca 62210, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Oyama S, Pristovsek P, Franzoni L, Pertinhez TA, Schininá E, Lücke C, Rüterjans H, Arantes EC, Spisni A. Probing the pH-dependent structural features of alpha-KTx12.1, a potassium channel blocker from the scorpion Tityus serrulatus. Protein Sci 2005; 14:1025-38. [PMID: 15772309 PMCID: PMC2253457 DOI: 10.1110/ps.041131205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Potassium channels are widespread in living cells and are involved in many diseases. The scorpion toxin alpha-KTx(12.1) interacts with various K(+) channels, suggesting its capacity to match diverse channel pores. It is recognized that tissue injuries may affect the pH at toxins site of action, thereby modulating both protein conformation and activity. To better understand its molecular mechanism of action, we studied alpha-KTx(12.1) using pH as a tool to explore its plasticity and NMR in combination with MD calculations to detect it. The toxin solution structure consists of an alpha-helix and a triple-stranded beta-sheet stabilized by four disulfide bridges. The NMR results show, in addition, that His28 possesses an unusually low pK(a) of 5.2. The best set of protein conformers is obtained at pH 4.5, while at pH 7.0, the reduced number of NOEs resulting from a faster hydrogen exchange does not allow to reach a good structural convergence. Nonetheless, MD calculations show that the toxin structure does not vary significantly in that pH range, while conformational changes and modifications of the surface charge distribution occur when His28 is fully protonated. Moreover, essential dynamics analysis reveals variations in the toxin's coherent motions. In conclusion, His28, with its low pK(a) value, provides alpha-KTx(12.1) with the ability to preserve its active conformation over a wide pH interval, thus expanding the range of cellular conditions where the toxin can fully exhibit its activity. Overall, the results further underline the role of histidine as a natural controller of proteins' functionality.
Collapse
Affiliation(s)
- Sérgio Oyama
- Department of Experimental Medicine, Section of Chemistry and Structural Biochemistry, University of Parma, Via Volturno 39, 43100 Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Braud S, Belin P, Dassa J, Pardo L, Mourier G, Caruana A, Priest BT, Dulski P, Garcia ML, Ménez A, Boulain JC, Gasparini S. BgK, a disulfide-containing sea anemone toxin blocking K+ channels, can be produced in Escherichia coli cytoplasm as a functional tagged protein. Protein Expr Purif 2005; 38:69-78. [PMID: 15477084 DOI: 10.1016/j.pep.2004.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 07/20/2004] [Indexed: 11/20/2022]
Abstract
BgK, a sea anemone peptide consisting of 37 amino acid residues and 3 disulfide bonds, blocks voltage-gated potassium (Kv1) channels. Here, we report a method for producing tagged BgK in Escherichia coli, as a soluble cytoplasmic protein. First, using peptidic synthesis, we show that addition of a 15 residue peptide (S.Tag) at the BgK C-terminus does not affect its biological activity. Then, a synthetic DNA sequence encoding BgK was constructed and cloned to produce a BgK-S.Tag hybrid in the cytoplasm of E. coli. The presence of S.Tag did not only facilitate detection, quantification, and purification of the recombinant protein, but also increased the production yield by more than two orders of magnitude. Moreover, use of an E. coli OrigamiB(DE3)pLacI strain also increased production; up to 5.8-7.5mg of BgK-S.Tag or mutated BgK(F6A)-S.Tag was produced per liter of culture and could be functionally characterized in crude extracts. Using a two-step purification procedure (affinity chromatography and RP-HPLC), we obtained 1.8-2.8mg of purified recombinant protein per liter of culture. The recombinant peptides displayed functional properties similar to those of native BgK or BgK(F6A).
Collapse
Affiliation(s)
- Sandrine Braud
- Département d'Ingénierie et d'Etudes des Protéines, CEA Saclay, 91191 Gif sur Yvette cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nirthanan S, Pil J, Abdel-Mottaleb Y, Sugahara Y, Gopalakrishnakone P, Joseph JS, Sato K, Tytgat J. Assignment of voltage-gated potassium channel blocking activity to kappa-KTx1.3, a non-toxic homologue of kappa-hefutoxin-1, from Heterometrus spinifer venom. Biochem Pharmacol 2004; 69:669-78. [PMID: 15670585 DOI: 10.1016/j.bcp.2004.10.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Accepted: 10/20/2004] [Indexed: 11/19/2022]
Abstract
A new family of weak K(+) channel toxins (designated kappa-KTx) with a novel "bi-helical" scaffold has recently been characterized from Heterometrus fulvipes (Scorpionidae) venom. Based on the presence of the minimum functional dyad (Y5 and K19), kappa-hefutoxin-1 (kappa-KTx1.1) was investigated and found to block Kv 1.2 (IC(50) approximately 40 microM) and Kv 1.3 (IC(50) approximately 150 microM) channels. In the present study, kappa-KTx1.3, that shares approximately 60% identity with kappa-hefutoxin 1, has been isolated from Heterometrus spinifer venom. Interestingly, despite the presence of the functional dyad (Y5 and K19), kappa-KTx1.3 failed to reproduce the K(+) channel blocking activity of kappa-hefutoxin-1. Since the dyad lysine in kappa-KTx1.3 was flanked by another lysine (K20), it was hypothesized that this additional positive charge could hinder the critical electrostatic interactions known to occur between the dyad lysine and the Kv 1 channel selectivity filter. Hence, mutants of kappa-KTx1.3, substituting K20 with a neutral (K20A) or a negatively (K20E) or another positively (K20R) charged amino acid were synthesized. kappa-KTx1.3 K20E, in congruence with kappa-hefutoxin 1 with respect to subtype selectivity and affinity, produced blockade of Kv 1.2 (IC(50) = 36.8+/-4.9 microM) and Kv 1.3 (IC(50)=53.7+/-6.7 microM) but not Kv 1.1 channels. kappa-KTx1.3 K20A produced blockade of both Kv 1.2 (IC(50) = 36.9+/-4.9 microM) and Kv 1.3 (IC(50)=115.7+/-7.3 microM) and in addition, acquired affinity for Kv 1.1 channels (IC(50) =1 10.7+/-7.7 microM). kappa-KTx1.3 K20R failed to produce any blockade on the channel subtypes tested. These data suggest that the presence of an additional charged residue in a position adjacent to the dyad lysine impedes the functional block of Kv 1 channels produced by kappa-KTx1.3.
Collapse
|
48
|
Bagdány M, Batista CVF, Valdez-Cruz NA, Somodi S, Rodriguez de la Vega RC, Licea AF, Varga Z, Gáspár R, Possani LD, Panyi G. Anuroctoxin, a New Scorpion Toxin of the α-KTx 6 Subfamily, Is Highly Selective for Kv1.3 over IKCa1 Ion Channels of Human T Lymphocytes. Mol Pharmacol 2004; 67:1034-44. [PMID: 15615696 DOI: 10.1124/mol.104.007187] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The physiological function of T lymphocytes can be modulated selectively by peptide toxins acting on Kv1.3 K(+) channels. Because Kv1.3-specific peptide toxins are considered to have a significant therapeutic potential in the treatment of autoimmune diseases, the discovery of new toxins is highly motivated. Through chromatographic procedures and electrophysiological assays, using patch-clamp methodology, the isolation of a novel peptide named anuroctoxin was accomplished using the venom of the Mexican scorpion Anuroctonus phaiodactylus. It has 35 amino acid residues with a molecular weight of 4082.8, tightly bound by four disulfide bridges whose complete covalent structure was determined. It has a pyroglutamic acid at the N-terminal region and an amidated C-terminal residue. Sequence comparison and phylogenetic clustering analysis classifies anuroctoxin into subfamily 6 of the alpha-KTx scorpion toxins (systematic name, alpha-KTx 6.12). Patch-clamp experiments show that anuroctoxin is a high-affinity blocker of Kv1.3 channels of human T lymphocytes with a K(d) of 0.73 nM, and it does not block the Ca(2+)-activated IKCa1 K(+) channels. These two channels play different but important roles in T-lymphocyte activation. Furthermore, the toxin practically does not inhibit Shaker IR, mKv1.1, and rKv2.1 channels, whereas the affinity of anuroctoxin for hKv1.2 is almost an order of magnitude smaller than for Kv1.3. The pharmacological profile and the selectivity of this new toxin for Kv1.3 over IKCa1 may provide an important tool for the modulation of the immune system, especially in cases in which selective inhibition of Kv1.3 is required.
Collapse
Affiliation(s)
- Miklós Bagdány
- Department of Biophysics and Cell Biology, University of Debrecen, Medical and Health Science Center, 98 Nagyerdei krt., Debrecen, Hungary 4012
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Christ GJ, Day N, Santizo C, Sato Y, Zhao W, Sclafani T, Bakal R, Salman M, Davies K, Melman A. Intracorporal injection of hSlo cDNA restores erectile capacity in STZ-diabetic F-344 rats in vivo. Am J Physiol Heart Circ Physiol 2004; 287:H1544-53. [PMID: 15371262 DOI: 10.1152/ajpheart.00792.2003] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability of gene transfer with the pore-forming subunit of the human maxi-K channel ( hSlo) to ameliorate the decline in erectile capacity commensurate with 12–24 wk of streptozotocin (STZ)-diabetes was examined in 181 Fischer-344 rats. A 2-mo period of STZ-diabetes was induced before gene transfer, and erectile capacity was evaluated by measuring the intracavernous pressure response (ICP) to cavernous nerve (CN) stimulation (ranging from 0.5 to 10 mA). In the first series of experiments, ANOVA revealed increased CN-stimulated ICP responses at 1 and 2 mo postinjection of 100 μg pcDNA- hSlo compared with control values. A second series of experiments further examined the dose dependence and duration of gene transfer. The ICP response to submaximal (0.5 mA) and maximal (10 mA) nerve stimulation was evaluated 3 or 4 mo postinjection of a single dose of pcDNA- hSlo ranging from 10 to 1,000 μg. ANOVA again revealed that hSlo overexpression was associated with increased CN-stimulated ICP responses compared with responses in corresponding control animals. Histological studies revealed no immune response to the presence of hSlo. PCR analysis documented that expression of both plasmid and transcript were largely confined to the corporal tissue. In the third series of pharmacological experiments, hSlo gene transfer in vivo was associated with iberiotoxin-sensitive relaxation responses to sodium nitroprusside in corporal tissue strips in vitro. The latter data indicate that gene transfer produces functional maxi-K channels that participate in the modulation of corporal smooth muscle cell tone. Taken together, these observations suggest a fundamental diabetes-related change in corporal myocyte maxi-K channel regulation, expression, or function that may be corrected by expression of recombinant hSlo.
Collapse
Affiliation(s)
- George J Christ
- Department of Urology, Institute for Smooth Muscle Biology, Rm. 744, Forchheimer Bldg., Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
|