1
|
Rivero-Hernández AL, Hervis YP, Valdés-Tresanco ME, Escalona-Rodríguez FA, Cancelliere R, Relova-Hernández E, Romero-Hernández G, Pérez-Rivera E, Torres-Palacios Y, Cartaya-Quintero P, Ros U, Porchetta A, Micheli L, Fernández LE, Laborde R, Álvarez C, Sagan S, Lanio ME, Pazos Santos IF. Decoupling immunomodulatory properties from lipid binding in the α-pore-forming toxin Sticholysin II. Int J Biol Macromol 2024; 280:136244. [PMID: 39368578 DOI: 10.1016/j.ijbiomac.2024.136244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Sticholysin II (StII), a pore-forming toxin from the marine anemone Stichodactyla helianthus, enhances an antigen-specific cytotoxic T lymphocyte (CTL) response when co-encapsulated in liposomes with a model antigen. This capacity does not depend exclusively on its pore-forming activity and is partially supported by its ability to activate Toll-like receptor 4 (TLR4) in dendritic cells, presumably by interacting with this receptor or by triggering signaling cascades upon binding to lipid membrane. In order to investigate whether the lipid binding capacity of StII is required for immunomodulation, we designed a mutant in which the aromatic amino acids from the interfacial binding site Trp110, Tyr111 and Trp114 were substituted by Ala. In the present work, we demonstrated that StII3A keeps the secondary structure composition and global folding of StII, while it loses its lipid binding and permeabilization abilities. Despite this, StII3A upregulates dendritic cells maturation markers, enhances an antigen-specific effector CD8+ T cells response and confers antitumor protection in a preventive scenario in C57BL/6 mice. Our results indicate that a mechanism independent of its lipid binding ability is involved in the immunomodulatory capacity of StII, pointing to StII3A as a promising candidate to improve the reliability of the Sts-based vaccine platform.
Collapse
Affiliation(s)
- Ada L Rivero-Hernández
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Yadira P Hervis
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Mario E Valdés-Tresanco
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; Center for Molecular Simulations and Department of Biological Sciences, University of Calgary, Alberta T2N 1N4, Canada.
| | - Felipe A Escalona-Rodríguez
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Rocco Cancelliere
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy.
| | | | - Glenda Romero-Hernández
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Eric Pérez-Rivera
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba
| | - Yusniel Torres-Palacios
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Patricia Cartaya-Quintero
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba
| | - Uris Ros
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany.
| | - Alessandro Porchetta
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy.
| | - Laura Micheli
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy.
| | | | - Rady Laborde
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Carlos Álvarez
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Sandrine Sagan
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France.
| | - Maria Eliana Lanio
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Isabel F Pazos Santos
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| |
Collapse
|
2
|
Escalona-Rodriguez FA, Cruz-Leal Y, La O-Bonet J, Pérez-Erviti JA, Valdés-Tresanco ME, Rivero-Hernández AL, Sifontes-Niebla M, Manso-Vargas A, Sánchez B, Alvarez C, Barbosa LRS, Itri R, Lanio ME. Unveiling Sticholysin II and plasmid DNA interaction: Implications for developing non-viral vectors. Toxicon 2024; 238:107571. [PMID: 38141971 DOI: 10.1016/j.toxicon.2023.107571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Non-viral gene delivery systems offer significant potential for gene therapy due to their versatility, safety, and cost advantages over viral vectors. However, their effectiveness can be hindered by the challenge of efficiently releasing the genetic cargo from endosomes to prevent degradation in lysosomes. To overcome this obstacle, functional components can be incorporated into these systems. Sticholysin II (StII) is one of the pore-forming proteins derived from the sea anemone Stichodactyla helianthus, known for its high ability to permeabilize cellular and model membranes. In this study, we aimed to investigate the interaction between StII, and a model plasmid (pDNA) as an initial step towards designing an improved vector with enhanced endosomal escape capability. The electrophoretic mobility shift assay (EMSA) confirmed the formation of complexes between StII and pDNA. Computational predictions identified specific residues involved in the StII-DNA interaction interface, highlighting the importance of electrostatic interactions and hydrogen bonds in mediating the binding. Atomic force microscopy (AFM) of StII-pDNA complexes revealed the presence of nodular fiber and toroid shapes. These complexes were found to have a predominantly micrometer size, as confirmed by dynamic light scattering (DLS) measurements. Despite increase in the overall charge, the complexes formed at the evaluated nitrogen-to-phosphorus (N/P) ratios still maintained a negative charge. Moreover, StII retained its pore-forming capacity regardless of its binding to the complexes. These findings suggest that the potential ability of StII to permeabilize endosomal membranes could be largely maintained when combined with nucleic acid delivery systems. Additionally, the still remaining negative charge of the complexes would enable the association of another positively charged component to compact pDNA. However, to minimize non-specific cytotoxic effects, it is advisable to explore methods to regulate the protein's activity in response to the microenvironment.
Collapse
Affiliation(s)
- Felipe A Escalona-Rodriguez
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Yoelys Cruz-Leal
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba.
| | - Javier La O-Bonet
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Julio A Pérez-Erviti
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba.
| | - Mario Ernesto Valdés-Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba.
| | - Ada L Rivero-Hernández
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Maricary Sifontes-Niebla
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Alexis Manso-Vargas
- Immunology and Immunotherapy Direction, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Belinda Sánchez
- Immunology and Immunotherapy Direction, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Carlos Alvarez
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| | - Leandro R S Barbosa
- Institute of Physics, University of São Paulo, São Paulo, 05508-090, Brazil; Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, 13083-100, SP, Brazil.
| | - Rosangela Itri
- Institute of Physics, University of São Paulo, São Paulo, 05508-090, Brazil.
| | - María E Lanio
- Center for Protein Studies, Faculty of Biology, University of Havana (UH), 25th Street, Corner to J Street, Square of Revolution, Havana, 10400, Cuba; NanoCancer, Molecular Immunology Center (CIM), 216 Street, Corner to 15 Street, Playa, Havana, 11600, Cuba.
| |
Collapse
|
3
|
Hervis YP, Valle A, Canet L, Rodríguez A, Lanio ME, Alvarez C, Steinhoff HJ, Pazos IF. Cys mutants as tools to study the oligomerization of the pore-forming toxin sticholysin I. Toxicon 2023; 222:106994. [PMID: 36529153 DOI: 10.1016/j.toxicon.2022.106994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Sticholysin I (StI) is a water-soluble protein with the ability to bind membranes where it oligomerizes and forms pores leading to cell death. Understanding the assembly property of this protein may be valuable for designing potential biotechnological tools, such as stable or structurally defined nanopores. In order to get insights into the stabilization of StI oligomers by disulfide bonds, we designed and characterized single and double cysteine mutants at the oligomerization interface. The oligomer formation was induced in the presence of lipid membranes and visualized by SDS-PAGE. The contribution of the oligomeric structures to the membrane binding and pore-forming capacities of StI was assessed. Single and double cysteine introduction at the protein-protein oligomerization interface does not considerably affect the conformation and function of the monomeric protein. In the presence of membranes, a cysteine double mutation at positions 15 and 59 favored formation of different size oligomers stabilized by disulfide bonds. The results of this work highlight the relevance of these positions (15 and 59) to be considered for developing biosensors based on nanopores from StI.
Collapse
Affiliation(s)
- Yadira P Hervis
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| | - Aisel Valle
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| | - Liem Canet
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| | | | - Maria E Lanio
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| | - Carlos Alvarez
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| | - Heinz J Steinhoff
- Department of Physics, University of Osnabrueck, Osnabrueck, 49069, Germany.
| | - Isabel F Pazos
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana, ZIP 10400, Cuba.
| |
Collapse
|
4
|
Estrella-Parra EA, Arreola R, Álvarez-Sánchez ME, Torres-Romero JC, Rojas-Espinosa O, De la Cruz-Santiago JA, Martinez-Benitez MB, López-Camarillo C, Lara-Riegos JC, Arana-Argáez VE, Ramírez-Camacho MA. Natural marine products as antiprotozoal agents against amitochondrial parasites. Int J Parasitol Drugs Drug Resist 2022; 19:40-46. [PMID: 35636129 PMCID: PMC9157375 DOI: 10.1016/j.ijpddr.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 12/15/2022]
Abstract
The goal of this work is to compile and discuss molecules of marine origin reported in the scientific literature with anti-parasitic activity against Trichomonas, Giardia, and Entamoeba, parasites responsible for diseases that are major global health problems, and Microsporidial parasites as an emerging problem. The presented data correspond to metabolites with anti-parasitic activity in human beings that have been isolated by chromatographic techniques from marine sources and structurally elucidated by spectroscopic and spectrometric procedures. We also highlight some semi-synthetic derivatives that have been successful in enhancing the activity of original compounds. The biological oceanic reservoir offers the possibility to discover new biologically active molecules as lead compounds to develop new drug candidates. The molecular variety is extensive and must be correctly explored and managed. Also, it will be necessary to take some actions to preserve the source species from extinction or overharvest (e.g., by cryopreservation of coral spermatozoa, oocytes, embryos, and larvae) and coordinate appropriate exploitation to increase the chemical knowledge of the natural products generated in the oceans. Additional initiatives such as the total synthesis of complex natural products and their derivatives can help to prevent overharvest of the marine ecosystems and at the same time contribute to the discovery of new molecules. Natural active components of marine organisms have specific biological properties. The marine compounds have multiple anti-parasitic activity. The semi-synthetic derivatives of natural active components of marine organism are candidates for new drugs.
Collapse
Affiliation(s)
- Edgar Antonio Estrella-Parra
- Laboratorio de Fitoquímica, UBIPRO, FES-Iztacala, Unidad Nacional Autónoma de México, Av. De los Barrios No.1, Los Reyes Iztacala, Tlalnepantla, 54090, Estado de México, Mexico
| | - Rodrigo Arreola
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, México City, DF, Mexico
| | - Maria Elizbeth Álvarez-Sánchez
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), San Lorenzo 290, Col. Del Valle, 03100, Mexico City, Mexico.
| | | | - Oscar Rojas-Espinosa
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), 11340, Ciudad de México, Mexico
| | - José Alberto De la Cruz-Santiago
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, México City, DF, Mexico
| | - Máximo Berto Martinez-Benitez
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, México City, DF, Mexico
| | - Cesar López-Camarillo
- Psychiatric Genetics Department, Clinical Research Branch, National Institute of Psychiatry, Ramón de la Fuente, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, 14370, México City, DF, Mexico
| | | | | | | |
Collapse
|
5
|
Donato M, Soto C, Lanio ME, Itri R, Álvarez C. The pore-forming activity of sticholysin I is enhanced by the presence of a phospholipid hydroperoxide in membrane. Toxicon 2021; 204:44-55. [PMID: 34736955 DOI: 10.1016/j.toxicon.2021.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/23/2021] [Accepted: 10/29/2021] [Indexed: 11/19/2022]
Abstract
Sticholysin I (StI) is a pore-forming toxin (PFT) belonging to the actinoporin protein family characterized by high permeabilizing activity in membranes. StI readily associates with sphingomyelin (SM)-containing membranes originating pores that can lead to cell death. Binding and pore-formation are critically dependent on the physicochemical properties of membrane. 1-palmitoyl-2-oleoylphosphatidylcholine hydroperoxide (POPC-OOH) is an oxidized phospholipid (OxPL) containing an -OOH moiety in the unsaturated hydrocarbon chain which orientates towards the bilayer interface. This orientation causes an increase in the lipid molecular area, lateral expansion and decrease in bilayer thickness, elastic and bending modulus, as well as modification of lipid packing. Taking advantage of membrane structural changes promoted by POPC-OOH, we investigated its influence on the permeabilizing ability of StI. Here we report the action of StI on Giant Unilamellar Vesicles (GUVs) made of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) and SM containing increasing amount of POPC-OOH to assess vesicle permeability changes when compared to OxPL-lacking membranes. Inclusion of POPC-OOH in membranes did not promote spontaneous vesicle leaking but resulted in increased membrane permeability due to StI action. StI activity did not modify the fluid-gel phase coexistence boundaries neither in POPC:SM or POPC-OOH:SM membranes. However, the StI insertion mechanism in membrane seems to differ between POPC:SM and POPC-OOH:SM mixtures as suggested by changes in the time course of monolayer surface tension measurements, even though a preferable binding of the toxin to OxPL-containing systems could not be here demonstrated. In summary, modifications in the membrane imposed by lipid hydroperoxidation favor StI permeabilizing activity.
Collapse
Affiliation(s)
- Maressa Donato
- Instituto de Física, Universidade de São Paulo (USP), São Paulo, SP, Brazil; Center for Laser and Applications, Nuclear and Energy Research Institute, São Paulo, Brazil
| | - Carmen Soto
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, CP, 10400, La Habana, Cuba
| | - María Eliana Lanio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, CP, 10400, La Habana, Cuba
| | - Rosangela Itri
- Instituto de Física, Universidade de São Paulo (USP), São Paulo, SP, Brazil.
| | - Carlos Álvarez
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, CP, 10400, La Habana, Cuba.
| |
Collapse
|
6
|
Alvarez C, Soto C, Cabezas S, Alvarado-Mesén J, Laborde R, Pazos F, Ros U, Hernández AM, Lanio ME. Panorama of the Intracellular Molecular Concert Orchestrated by Actinoporins, Pore-Forming Toxins from Sea Anemones. Toxins (Basel) 2021; 13:toxins13080567. [PMID: 34437438 PMCID: PMC8402351 DOI: 10.3390/toxins13080567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/25/2022] Open
Abstract
Actinoporins (APs) are soluble pore-forming proteins secreted by sea anemones that experience conformational changes originating in pores in the membranes that can lead to cell death. The processes involved in the binding and pore-formation of members of this protein family have been deeply examined in recent years; however, the intracellular responses to APs are only beginning to be understood. Unlike pore formers of bacterial origin, whose intracellular impact has been studied in more detail, currently, we only have knowledge of a few poorly integrated elements of the APs’ intracellular action. In this review, we present and discuss an updated landscape of the studies aimed at understanding the intracellular pathways triggered in response to APs attack with particular reference to sticholysin II, the most active isoform produced by the Caribbean Sea anemone Stichodactyla helianthus. To achieve this, we first describe the major alterations these cytolysins elicit on simpler cells, such as non-nucleated mammalian erythrocytes, and then onto more complex eukaryotic cells, including tumor cells. This understanding has provided the basis for the development of novel applications of sticholysins such as the construction of immunotoxins directed against undesirable cells, such as tumor cells, and the design of a cancer vaccine platform. These are among the most interesting potential uses for the members of this toxin family that have been carried out in our laboratory.
Collapse
Affiliation(s)
- Carlos Alvarez
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
- Correspondence:
| | - Carmen Soto
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Sheila Cabezas
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Javier Alvarado-Mesén
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
- Escuela de Ciencias Biológicas, Universidad Nacional, Heredia 40101, Costa Rica
| | - Rady Laborde
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Fabiola Pazos
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| | - Uris Ros
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-strasse 26, 50931 Cologne, Germany
| | - Ana María Hernández
- Immunobiology Division, Molecular Immunology Institute, Center of Molecular Immunology (CIM), Playa, Havana CP 11600, Cuba;
| | - María Eliana Lanio
- Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana (UH) and Laboratorio UH-Centro de Inmunología Molecular, Havana CP 11600, Cuba; (C.S.); (S.C.); (J.A.-M.); (R.L.); (F.P.); (U.R.); (M.E.L.)
| |
Collapse
|
7
|
Palacios-Ortega J, García-Linares S, Rivera-de-Torre E, Heras-Márquez D, Gavilanes JG, Slotte JP, Martínez-Del-Pozo Á. Structural foundations of sticholysin functionality. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140696. [PMID: 34246789 DOI: 10.1016/j.bbapap.2021.140696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/22/2023]
Abstract
Actinoporins constitute a family of α pore-forming toxins produced by sea anemones. The soluble fold of these proteins consists of a β-sandwich flanked by two α-helices. Actinoporins exert their activity by specifically recognizing sphingomyelin at their target membranes. Once there, they penetrate the membrane with their N-terminal α-helices, a process that leads to the formation of cation-selective pores. These pores kill the target cells by provoking an osmotic shock on them. In this review, we examine the role and relevance of the structural features of actinoporins, down to the residue level. We look at the specific amino acids that play significant roles in the function of actinoporins and their fold. Particular emphasis is given to those residues that display a high degree of conservation across the actinoporin sequences known to date. In light of the latest findings in the field, the membrane requirements for pore formation, the effect of lipid composition, and the process of pore formation are also discussed.
Collapse
Affiliation(s)
- Juan Palacios-Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain; Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| | - Sara García-Linares
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - Esperanza Rivera-de-Torre
- Department of Biochemistry and Biotechnology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Diego Heras-Márquez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Álvaro Martínez-Del-Pozo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense, Madrid, Spain
| |
Collapse
|
8
|
Laborde RJ, Ishimura ME, Abreu-Butin L, Nogueira CV, Grubaugh D, Cruz-Leal Y, Luzardo MC, Fernández A, Mesa C, Pazos F, Álvarez C, Alonso ME, Starnbach MN, Higgins DE, Fernández LE, Longo-Maugéri IM, Lanio ME. Sticholysins, pore-forming proteins from a marine anemone can induce maturation of dendritic cells through a TLR4 dependent-pathway. Mol Immunol 2021; 131:144-154. [PMID: 33422341 DOI: 10.1016/j.molimm.2020.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/30/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023]
Abstract
Sticholysins (Sts) I and II (StI and StII) are pore-forming proteins (PFPs), purified from the Caribbean Sea anemone Stichodactyla helianthus. StII encapsulated into liposomes induces a robust antigen-specific cytotoxic CD8+ T lymphocytes (CTL) response and in its free form the maturation of bone marrow-derived dendritic cells (BM-DCs). It is probable that the latter is partially supporting in part the immunomodulatory effect on the CTL response induced by StII-containing liposomes. In the present work, we demonstrate that the StII's ability of inducing maturation of BM-DCs is also shared by StI, an isoform of StII. Using heat-denatured Sts we observed a significant reduction in the up-regulation of maturation markers indicating that both PFP's ability to promote maturation of BM-DCs is dependent on their conformational characteristics. StII-mediated DC maturation was abrogated in BM-DCs from toll-like receptor (TLR) 4 and myeloid differentiation primary response gene 88 (MyD88)-knockout mice but not in cells from TLR2-knockout mice. Furthermore, the antigen-specific CTL response induced by StII-containing liposomes was reduced in TLR4-knockout mice. These results indicate that StII, and probably by extension StI, has the ability to induce maturation of DCs through a TLR4/MyD88-dependent pathway, and that this activation contributes to the CTL response generated by StII-containing liposomes.
Collapse
Affiliation(s)
- Rady J Laborde
- Laboratory of Toxins and Liposomes, Center for Protein Studies, Faculty of Biology, University of Havana (UH), Lab UH-CIM, Havana, 10400, Cuba.
| | - Mayari E Ishimura
- Discipline of Immunology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), 04023-062, São Paulo, Brazil.
| | - Lianne Abreu-Butin
- Discipline of Immunology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), 04023-062, São Paulo, Brazil
| | - Catarina V Nogueira
- Department of Microbiology and Immunobiology of Harvard Medical School, Harvard University, MA, USA.
| | - Daniel Grubaugh
- Department of Microbiology and Immunobiology of Harvard Medical School, Harvard University, MA, USA.
| | - Yoelys Cruz-Leal
- Laboratory of Toxins and Liposomes, Center for Protein Studies, Faculty of Biology, University of Havana (UH), Lab UH-CIM, Havana, 10400, Cuba.
| | - María C Luzardo
- Laboratory of Toxins and Liposomes, Center for Protein Studies, Faculty of Biology, University of Havana (UH), Lab UH-CIM, Havana, 10400, Cuba.
| | - Audry Fernández
- Immunobiology Division, Center of Molecular Immunology (CIM), Havana, 11600, Cuba.
| | - Circe Mesa
- Immunobiology Division, Center of Molecular Immunology (CIM), Havana, 11600, Cuba.
| | - Fabiola Pazos
- Laboratory of Toxins and Liposomes, Center for Protein Studies, Faculty of Biology, University of Havana (UH), Lab UH-CIM, Havana, 10400, Cuba.
| | - Carlos Álvarez
- Laboratory of Toxins and Liposomes, Center for Protein Studies, Faculty of Biology, University of Havana (UH), Lab UH-CIM, Havana, 10400, Cuba.
| | - María E Alonso
- Laboratory of Toxins and Liposomes, Center for Protein Studies, Faculty of Biology, University of Havana (UH), Lab UH-CIM, Havana, 10400, Cuba
| | - Michael N Starnbach
- Department of Microbiology and Immunobiology of Harvard Medical School, Harvard University, MA, USA.
| | - Darren E Higgins
- Department of Microbiology and Immunobiology of Harvard Medical School, Harvard University, MA, USA.
| | - Luis E Fernández
- Immunobiology Division, Center of Molecular Immunology (CIM), Havana, 11600, Cuba.
| | - Ieda M Longo-Maugéri
- Discipline of Immunology, Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo (UNIFESP), 04023-062, São Paulo, Brazil.
| | - María E Lanio
- Laboratory of Toxins and Liposomes, Center for Protein Studies, Faculty of Biology, University of Havana (UH), Lab UH-CIM, Havana, 10400, Cuba.
| |
Collapse
|
9
|
Pore-forming proteins: From defense factors to endogenous executors of cell death. Chem Phys Lipids 2020; 234:105026. [PMID: 33309552 DOI: 10.1016/j.chemphyslip.2020.105026] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Pore-forming proteins (PFPs) and small antimicrobial peptides (AMPs) represent a large family of molecules with the common ability to punch holes in cell membranes to alter their permeability. They play a fundamental role as infectious bacteria's defensive tools against host's immune system and as executors of endogenous machineries of regulated cell death in eukaryotic cells. Despite being highly divergent in primary sequence and 3D structure, specific folds of pore-forming domains have been conserved. In fact, pore formation is considered an ancient mechanism that takes place through a general multistep process involving: membrane partitioning and insertion, oligomerization and pore formation. However, different PFPs and AMPs assemble and form pores following different mechanisms that could end up either in the formation of protein-lined or protein-lipid pores. In this review, we analyze the current findings in the mechanism of action of different PFPs and AMPs that support a wide role of membrane pore formation in nature. We also provide the newest insights into the development of state-of-art techniques that have facilitated the characterization of membrane pores. To understand the physiological role of these peptides/proteins or develop clinical applications, it is essential to uncover the molecular mechanism of how they perforate membranes.
Collapse
|
10
|
Pore-forming toxins from sea anemones: from protein-membrane interaction to its implications for developing biomedical applications. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2020. [DOI: 10.1016/bs.abl.2020.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Méndez Y, De Armas G, Pérez I, Rojas T, Valdés-Tresanco ME, Izquierdo M, Alonso Del Rivero M, Álvarez-Ginarte YM, Valiente PA, Soto C, de León L, Vasco AV, Scott WL, Westermann B, González-Bacerio J, Rivera DG. Discovery of potent and selective inhibitors of the Escherichia coli M1-aminopeptidase via multicomponent solid-phase synthesis of tetrazole-peptidomimetics. Eur J Med Chem 2018; 163:481-499. [PMID: 30544037 DOI: 10.1016/j.ejmech.2018.11.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/12/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022]
Abstract
The Escherichia coli neutral M1-aminopeptidase (ePepN) is a novel target identified for the development of antimicrobials. Here we describe a solid-phase multicomponent approach which enabled the discovery of potent ePepN inhibitors. The on-resin protocol, developed in the frame of the Distributed Drug Discovery (D3) program, comprises the implementation of parallel Ugi-azide four-component reactions with resin-bound amino acids, thus leading to the rapid preparation of a focused library of tetrazole-peptidomimetics (TPMs) suitable for biological screening. By dose-response studies, three compounds were identified as potent and selective ePepN inhibitors, as little inhibitory effect was exhibited for the porcine ortholog aminopeptidase. The study allowed for the identification of the key structural features required for a high ePepN inhibitory activity. The most potent and selective inhibitor (TPM 11) showed a non-competitive inhibition profile of ePepN. We predicted that both diastereomers of compound TPM 11 bind to a site distinct from that occupied by the substrate. Theoretical models suggested that TPM 11 has an alternative inhibition mechanism that doesn't involve Zn coordination. On the other hand, the activity landscape analysis provided a rationale for our findings. Of note, compound TMP 2 showed in vitro antibacterial activity against Escherichia coli. Furthermore, none of the three identified inhibitors is a potent haemolytic agent, and only two compounds showed moderate cytotoxic activity toward the murine myeloma P3X63Ag cells. These results point to promising compounds for the future development of rationally designed TPMs as antibacterial agents.
Collapse
Affiliation(s)
- Yanira Méndez
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba; Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle/Saale, Germany
| | - German De Armas
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 y J, 10400, La Habana, Cuba
| | - Idalia Pérez
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 y J, 10400, La Habana, Cuba
| | - Tamara Rojas
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Mario E Valdés-Tresanco
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 y J, 10400, La Habana, Cuba
| | - Maikel Izquierdo
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 y J, 10400, La Habana, Cuba
| | - Maday Alonso Del Rivero
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 y J, 10400, La Habana, Cuba
| | - Yoanna María Álvarez-Ginarte
- Laboratory of Theoretical and Computational Chemistry, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba
| | - Pedro A Valiente
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 y J, 10400, La Habana, Cuba.
| | - Carmen Soto
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 y J, 10400, La Habana, Cuba
| | - Lena de León
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 y J, 10400, La Habana, Cuba
| | - Aldrin V Vasco
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle/Saale, Germany
| | - William L Scott
- Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, United States
| | - Bernhard Westermann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle/Saale, Germany
| | - Jorge González-Bacerio
- Center for Protein Studies, Faculty of Biology, University of Havana, 25 y J, 10400, La Habana, Cuba.
| | - Daniel G Rivera
- Center for Natural Products Research, Faculty of Chemistry, University of Havana, Zapata y G, 10400, La Habana, Cuba; Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle/Saale, Germany.
| |
Collapse
|
12
|
Thangaraj S, Bragadeeswaran S, Gokula V. Bioactive Compounds of Sea Anemones: A Review. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9786-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Oliveira CS, Caldeira CAS, Diniz-Sousa R, Romero DL, Marcussi S, Moura LA, Fuly AL, de Carvalho C, Cavalcante WLG, Gallacci M, Pai MD, Zuliani JP, Calderon LA, Soares AM. Pharmacological characterization of cnidarian extracts from the Caribbean Sea: evaluation of anti-snake venom and antitumor properties. J Venom Anim Toxins Incl Trop Dis 2018; 24:22. [PMID: 30181737 PMCID: PMC6114500 DOI: 10.1186/s40409-018-0161-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/07/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cnidarians produce toxins, which are composed of different polypeptides that induce pharmacological effects of biotechnological interest, such as antitumor, antiophidic and anti-clotting activities. This study aimed to evaluate toxicological activities and potential as antitumor and antiophidic agents contained in total extracts from five cnidarians: Millepora alcicornis, Stichodactyla helianthus, Plexaura homomalla, Bartholomea annulata and Condylactis gigantea (total and body wall). METHODS The cnidarian extracts were evaluated by electrophoresis and for their phospholipase, proteolytic, hemorrhagic, coagulant, fibrinogenolytic, neuromuscular blocking, muscle-damaging, edema-inducing and cytotoxic activities. RESULTS All cnidarian extracts showed indirect hemolytic activity, but only S. helianthus induced direct hemolysis and neurotoxic effect. However, the hydrolysis of NBD-PC, a PLA2 substrate, was presented only by the C. gigantea (body wall) and S. helianthus. The extracts from P. homomalla and S. helianthus induced edema, while only C. gigantea and S. helianthus showed intensified myotoxic activity. The proteolytic activity upon casein and fibrinogen was presented mainly by B. annulata extract and all were unable to induce hemorrhage or fibrinogen coagulation. Cnidarian extracts were able to neutralize clotting induced by Bothrops jararacussu snake venom, except M. alcicornis. All cnidarian extracts were able to inhibit hemorrhagic activity induced by Bothrops moojeni venom. Only the C. gigantea (body wall) inhibited thrombin-induced coagulation. All cnidarian extracts showed antitumor effect against Jurkat cells, of which C. gigantea (body wall) and S. helianthus were the most active; however, only C. gigantea (body wall) and M. alcicornis were active against B16F10 cells. CONCLUSION The cnidarian extracts analyzed showed relevant in vitro inhibitory potential over the activities induced by Bothrops venoms; these results may contribute to elucidate the possible mechanisms of interaction between cnidarian extracts and snake venoms.
Collapse
Affiliation(s)
- Cláudia S. Oliveira
- Centro de Estudos de Biomoléculas Aplicadas a Saúde (CEBio), Fundação Oswaldo Cruz de Rondônia (Fiocruz Rondônia), Porto Velho, RO Brazil
- Brazilian Marine Biotechnology Network (BioTecMar Network), Porto Velho, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO Brazil
| | - Cleópatra A. S. Caldeira
- Centro de Estudos de Biomoléculas Aplicadas a Saúde (CEBio), Fundação Oswaldo Cruz de Rondônia (Fiocruz Rondônia), Porto Velho, RO Brazil
- Brazilian Marine Biotechnology Network (BioTecMar Network), Porto Velho, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO Brazil
| | - Rafaela Diniz-Sousa
- Centro de Estudos de Biomoléculas Aplicadas a Saúde (CEBio), Fundação Oswaldo Cruz de Rondônia (Fiocruz Rondônia), Porto Velho, RO Brazil
- Brazilian Marine Biotechnology Network (BioTecMar Network), Porto Velho, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO Brazil
| | - Dolores L. Romero
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Havana, Cuba
| | - Silvana Marcussi
- Departamento de Química, Universidade Federal de Lavras (UFLA), Lavras, MG Brazil
| | - Laura A. Moura
- Departamento de Biologia Celular e Molecular (GCM), Instituto de Biologia, Universidade Federal Fluminense (UFF), Niterói, RJ Brazil
| | - André L. Fuly
- Departamento de Biologia Celular e Molecular (GCM), Instituto de Biologia, Universidade Federal Fluminense (UFF), Niterói, RJ Brazil
| | - Cicília de Carvalho
- Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP Brazil
| | - Walter L. G. Cavalcante
- Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP Brazil
- Instituto de Ciências Biológicas, Departamento de Farmacologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Márcia Gallacci
- Departamento de Farmacologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP Brazil
| | - Maeli Dal Pai
- Departamento de Morfologia, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Botucatu, SP Brazil
| | - Juliana P. Zuliani
- Centro de Estudos de Biomoléculas Aplicadas a Saúde (CEBio), Fundação Oswaldo Cruz de Rondônia (Fiocruz Rondônia), Porto Velho, RO Brazil
- Brazilian Marine Biotechnology Network (BioTecMar Network), Porto Velho, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO Brazil
| | - Leonardo A. Calderon
- Centro de Estudos de Biomoléculas Aplicadas a Saúde (CEBio), Fundação Oswaldo Cruz de Rondônia (Fiocruz Rondônia), Porto Velho, RO Brazil
- Brazilian Marine Biotechnology Network (BioTecMar Network), Porto Velho, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO Brazil
| | - Andreimar M. Soares
- Centro de Estudos de Biomoléculas Aplicadas a Saúde (CEBio), Fundação Oswaldo Cruz de Rondônia (Fiocruz Rondônia), Porto Velho, RO Brazil
- Brazilian Marine Biotechnology Network (BioTecMar Network), Porto Velho, Brazil
- Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO Brazil
- Centro Universitário São Lucas (UniSL), Porto Velho, RO Brazil
| |
Collapse
|
14
|
Cloning, purification and characterization of nigrelysin, a novel actinoporin from the sea anemone Anthopleura nigrescens. Biochimie 2018; 156:206-223. [PMID: 30036605 DOI: 10.1016/j.biochi.2018.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022]
Abstract
Actinoporins constitute a unique class of pore-forming toxins found in sea anemones that being secreted as soluble monomers are able to bind and permeabilize membranes leading to cell death. The interest in these proteins has risen due to their high cytotoxicity that can be properly used to design immunotoxins against tumor cells and antigen-releasing systems to cell cytosol. In this work we describe a novel actinoporin produced by Anthopleura nigrescens, an anemone found in the Central American Pacific Ocean. Here we report the amino acid sequence of an actinoporin as deduced from cDNA obtained from total body RNA. The synthetic DNA sequence encoding for one cytolysin variant was expressed in BL21 Star (DE3) Escherichia coli and the protein purified by chromatography on CM Sephadex C-25 with more than 97% homogeneity as verified by MS-MS and HPLC analyses. This actinoporin comprises 179 amino acid residues, consistent with its observed isotope-averaged molecular mass of 19 661 Da. The toxin lacks Cys and readily permeabilizes erythrocytes, as well as L1210 cells. CD spectroscopy revealed that its secondary structure is dominated by beta structure (58.5%) with 5.5% of α-helix, and 35% of random structure. Moreover, binding experiments to lipidic monolayers and to liposomes, as well as permeabilization studies in vesicles, revealed that the affinity of this toxin for sphingomyelin-containing membranes is quite similar to sticholysin II (StII). Comparison by spectroscopic techniques and modeling the three-dimensional structure of nigrelysin (Ng) showed a high homology with StII but several differences were also detectable. Taken together, these results reinforce the notion that Ng is a novel member of the actinoporin pore-forming toxin (PFT) family with a HA as high as that of StII, the most potent actinoporin so far described, but with peculiar structural characteristics contributing to expand the understanding of the structure-function relationship in this protein family.
Collapse
|
15
|
Self-homodimerization of an actinoporin by disulfide bridging reveals implications for their structure and pore formation. Sci Rep 2018; 8:6614. [PMID: 29700324 PMCID: PMC5920107 DOI: 10.1038/s41598-018-24688-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/04/2018] [Indexed: 11/17/2022] Open
Abstract
The Trp111 to Cys mutant of sticholysin I, an actinoporin from Stichodactyla helianthus sea anemone, forms a homodimer via a disulfide bridge. The purified dimer is 193 times less hemolytic than the monomer. Ultracentrifugation, dynamic light scattering and size-exclusion chromatography demonstrate that monomers and dimers are the only independent oligomeric states encountered. Indeed, circular dichroism and fluorescence spectroscopies showed that Trp/Tyr residues participate in homodimerization and that the dimer is less thermostable than the monomer. A homodimer three-dimensional model was constructed and indicates that Trp147/Tyr137 are at the homodimer interface. Spectroscopy results validated the 3D-model and assigned 85° to the disulfide bridge dihedral angle responsible for dimerization. The homodimer model suggests that alterations in the membrane/carbohydrate-binding sites in one of the monomers, as result of dimerization, could explain the decrease in the homodimer ability to form pores.
Collapse
|
16
|
Lima de Oliveira A, Maffud Cilli E, Ros U, Crusca E, Lanio ME, Alvarez C, Schreier S, Aguiar Pertinhez T, Spisni A. Insights on the structure-activity relationship of peptides derived from Sticholysin II. Biopolymers 2018; 110. [PMID: 29359791 DOI: 10.1002/bip.23097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 11/26/2017] [Accepted: 12/03/2017] [Indexed: 02/06/2023]
Abstract
Sticholysin II (StII) is a pore-forming actinoporin from the sea anemone Stichodactyla helianthus. A mechanistic model of its action has been proposed: proteins bind to cell membrane, insert their N-termini into the lipid core and assemble into homo-tetramer pores responsible for host-cell death. Because very likely the first 10 residues of StII N-terminus are critical for membrane penetration, to dissect the molecular details of that functionality, we studied two synthetic peptides: StII1-30 and StII16-35 . They show diverse haemolytic and candidacidal activity that correlate with distinct orientations in SDS micelles. NMR shows that StII1-30 partly inserts into the micelle, while StII16-35 lays on the micelle surface. These results justify the diverse concentration dependence of their candidacidal activity supposing a different mechanism of action and providing new hints on StII lytic activity at molecular level. Biotechnological application of these peptides, focused on the development of therapeutic immunocomplexes, may be envisaged.
Collapse
Affiliation(s)
- Aline Lima de Oliveira
- Institute of Chemistry, University of Brasilia, Brasilia, DF, Brazil
- Department of Biochemistry and Chemical Technology, Institute of Chemistry, São Paulo State University, Araraquara, Brazil
| | | | - Uris Ros
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Edson Crusca
- Center for Protein Studies, Biology Faculty, University of Havana, Havana, Cuba
| | - María Eliana Lanio
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Carlos Alvarez
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
- Department of Medicine and Surgery, Unit of Biochemistry, University of Parma, Parma, Italy
| | - Shirley Schreier
- Department of Medicine and Surgery, Unit of Biochemistry, University of Parma, Parma, Italy
| | - Thelma Aguiar Pertinhez
- Department of Biochemistry and Chemical Technology, Institute of Chemistry, São Paulo State University, Araraquara, Brazil
- Transfusion Medicine Unit, AUSL - IRCCS Reggio Emilia, Italy
| | - Alberto Spisni
- Department of Biochemistry and Chemical Technology, Institute of Chemistry, São Paulo State University, Araraquara, Brazil
| |
Collapse
|
17
|
Biophysical and biochemical strategies to understand membrane binding and pore formation by sticholysins, pore-forming proteins from a sea anemone. Biophys Rev 2017; 9:529-544. [PMID: 28853034 DOI: 10.1007/s12551-017-0316-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/08/2017] [Indexed: 10/19/2022] Open
Abstract
Actinoporins constitute a unique class of pore-forming toxins found in sea anemones that are able to bind and oligomerize in membranes, leading to cell swelling, impairment of ionic gradients and, eventually, to cell death. In this review we summarize the knowledge generated from the combination of biochemical and biophysical approaches to the study of sticholysins I and II (Sts, StI/II), two actinoporins largely characterized by the Center of Protein Studies at the University of Havana during the last 20 years. These approaches include strategies for understanding the toxin structure-function relationship, the protein-membrane association process leading to pore formation and the interaction of toxin with cells. The rational combination of experimental and theoretical tools have allowed unraveling, at least partially, of the complex mechanisms involved in toxin-membrane interaction and of the molecular pathways triggered upon this interaction. The study of actinoporins is important not only to gain an understanding of their biological roles in anemone venom but also to investigate basic molecular mechanisms of protein insertion into membranes, protein-lipid interactions and the modulation of protein conformation by lipid binding. A deeper knowledge of the basic molecular mechanisms involved in Sts-cell interaction, as described in this review, will support the current investigations conducted by our group which focus on the design of immunotoxins against tumor cells and antigen-releasing systems to cell cytosol as Sts-based vaccine platforms.
Collapse
|
18
|
Laborde RJ, Sanchez-Ferras O, Luzardo MC, Cruz-Leal Y, Fernández A, Mesa C, Oliver L, Canet L, Abreu-Butin L, Nogueira CV, Tejuca M, Pazos F, Álvarez C, Alonso ME, Longo-Maugéri IM, Starnbach MN, Higgins DE, Fernández LE, Lanio ME. Novel Adjuvant Based on the Pore-Forming Protein Sticholysin II Encapsulated into Liposomes Effectively Enhances the Antigen-Specific CTL-Mediated Immune Response. THE JOURNAL OF IMMUNOLOGY 2017; 198:2772-2784. [PMID: 28258198 DOI: 10.4049/jimmunol.1600310] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 01/18/2017] [Indexed: 12/21/2022]
Abstract
Vaccine strategies to enhance CD8+ CTL responses remain a current challenge because they should overcome the plasmatic and endosomal membranes for favoring exogenous Ag access to the cytosol of APCs. As a way to avoid this hurdle, sticholysin (St) II, a pore-forming protein from the Caribbean Sea anemone Stichodactyla helianthus, was encapsulated with OVA into liposomes (Lp/OVA/StII) to assess their efficacy to induce a CTL response. OVA-specific CD8+ T cells transferred to mice immunized with Lp/OVA/StII experienced a greater expansion than when the recipients were injected with the vesicles without St, mostly exhibiting a memory phenotype. Consequently, Lp/OVA/StII induced a more potent effector function, as shown by CTLs, in vivo assays. Furthermore, treatment of E.G7-OVA tumor-bearing mice with Lp/OVA/StII significantly reduced tumor growth being more noticeable in the preventive assay. The contribution of CD4+ and CD8+ T cells to CTL and antitumor activity, respectively, was elucidated. Interestingly, the irreversibly inactive variant of the StI mutant StI W111C, encapsulated with OVA into Lp, elicited a similar OVA-specific CTL response to that observed with Lp/OVA/StII or vesicles encapsulating recombinant StI or the reversibly inactive StI W111C dimer. These findings suggest the relative independence between StII pore-forming activity and its immunomodulatory properties. In addition, StII-induced in vitro maturation of dendritic cells might be supporting these properties. These results are the first evidence, to our knowledge, that StII, a pore-forming protein from a marine eukaryotic organism, encapsulated into Lp functions as an adjuvant to induce a robust specific CTL response.
Collapse
Affiliation(s)
- Rady J Laborde
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Oraly Sanchez-Ferras
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - María C Luzardo
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Yoelys Cruz-Leal
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Audry Fernández
- Immunobiology Division, Center of Molecular Immunology, Havana 11600, Cuba
| | - Circe Mesa
- Immunobiology Division, Center of Molecular Immunology, Havana 11600, Cuba
| | - Liliana Oliver
- Immunobiology Division, Center of Molecular Immunology, Havana 11600, Cuba
| | - Liem Canet
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Liane Abreu-Butin
- Discipline of Immunology, Department of Microbiology, Immunology, and Parasitology, Paulista Medical School, Federal University of São Paulo, São Paulo 04023-900, Brazil; and
| | - Catarina V Nogueira
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Mayra Tejuca
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Fabiola Pazos
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Carlos Álvarez
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - María E Alonso
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Ieda M Longo-Maugéri
- Discipline of Immunology, Department of Microbiology, Immunology, and Parasitology, Paulista Medical School, Federal University of São Paulo, São Paulo 04023-900, Brazil; and
| | - Michael N Starnbach
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Darren E Higgins
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Luis E Fernández
- Immunobiology Division, Center of Molecular Immunology, Havana 11600, Cuba;
| | - María E Lanio
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba;
| |
Collapse
|
19
|
Ahumada M, Calderon C, Lissi E, Alvarez C, Lanio M, Pazos F. The pore forming capacity of Sticholysin I in dipalmitoyl phosphatidyl vesicles is tuned by osmotic stress. Chem Phys Lipids 2017; 203:87-93. [DOI: 10.1016/j.chemphyslip.2016.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/28/2016] [Accepted: 12/28/2016] [Indexed: 11/25/2022]
|
20
|
Mesa-Galloso H, Delgado-Magnero KH, Cabezas S, López-Castilla A, Hernández-González JE, Pedrera L, Alvarez C, Peter Tieleman D, García-Sáez AJ, Lanio ME, Ros U, Valiente PA. Disrupting a key hydrophobic pair in the oligomerization interface of the actinoporins impairs their pore-forming activity. Protein Sci 2017; 26:550-565. [PMID: 28000294 DOI: 10.1002/pro.3104] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 11/10/2022]
Abstract
Crystallographic data of the dimeric and octameric forms of fragaceatoxin C (FraC) suggested the key role of a small hydrophobic protein-protein interaction surface for actinoporins oligomerization and pore formation in membranes. However, site-directed mutagenesis studies supporting this hypothesis for others actinoporins are still lacking. Here, we demonstrate that disrupting the key hydrophobic interaction between V60 and F163 (FraC numbering scheme) in the oligomerization interface of FraC, equinatoxin II (EqtII), and sticholysin II (StII) impairs the pore formation activity of these proteins. Our results allow for the extension of the importance of FraC protein-protein interactions in the stabilization of the oligomeric intermediates of StII and EqtII pointing out that all of these proteins follow a similar pathway of membrane disruption. These findings support the hybrid pore proposal as the universal model of actinoporins pore formation. Moreover, we reinforce the relevance of dimer formation, which appears to be a functional intermediate in the assembly pathway of some different pore-forming proteins.
Collapse
Affiliation(s)
- Haydeé Mesa-Galloso
- Center for Protein Studies, Faculty of Biology, Havana University, Havana, Cuba, Calle 25 # 455, Plaza de la Revolución, La Habana, Cuba
| | - Karelia H Delgado-Magnero
- Center for Protein Studies, Faculty of Biology, Havana University, Havana, Cuba, Calle 25 # 455, Plaza de la Revolución, La Habana, Cuba.,Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N1N4, Canada
| | - Sheila Cabezas
- Center for Protein Studies, Faculty of Biology, Havana University, Havana, Cuba, Calle 25 # 455, Plaza de la Revolución, La Habana, Cuba
| | - Aracelys López-Castilla
- Medical Biochemistry Institute, Federal University of Rio de Janeiro, Cidade Universitária, Ilha do Fundão Rio de Janeiro, CEP: 21.941-902, RJ, Brazil
| | - Jorge E Hernández-González
- Center for Protein Studies, Faculty of Biology, Havana University, Havana, Cuba, Calle 25 # 455, Plaza de la Revolución, La Habana, Cuba
| | - Lohans Pedrera
- Center for Protein Studies, Faculty of Biology, Havana University, Havana, Cuba, Calle 25 # 455, Plaza de la Revolución, La Habana, Cuba
| | - Carlos Alvarez
- Center for Protein Studies, Faculty of Biology, Havana University, Havana, Cuba, Calle 25 # 455, Plaza de la Revolución, La Habana, Cuba
| | - D Peter Tieleman
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N1N4, Canada
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str.4, Tübingen, 72076, Germany
| | - Maria E Lanio
- Center for Protein Studies, Faculty of Biology, Havana University, Havana, Cuba, Calle 25 # 455, Plaza de la Revolución, La Habana, Cuba
| | - Uris Ros
- Center for Protein Studies, Faculty of Biology, Havana University, Havana, Cuba, Calle 25 # 455, Plaza de la Revolución, La Habana, Cuba.,Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str.4, Tübingen, 72076, Germany
| | - Pedro A Valiente
- Center for Protein Studies, Faculty of Biology, Havana University, Havana, Cuba, Calle 25 # 455, Plaza de la Revolución, La Habana, Cuba
| |
Collapse
|
21
|
Cabezas S, Ho S, Ros U, Lanio ME, Alvarez C, van der Goot FG. Damage of eukaryotic cells by the pore-forming toxin sticholysin II: Consequences of the potassium efflux. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:982-992. [PMID: 28173991 DOI: 10.1016/j.bbamem.2017.02.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/06/2017] [Accepted: 02/03/2017] [Indexed: 01/17/2023]
Abstract
Pore-forming toxins (PFTs) form holes in membranes causing one of the most catastrophic damages to a target cell. Target organisms have evolved a regulated response against PFTs damage including cell membrane repair. This ability of cells strongly depends on the toxin concentration and the properties of the pores. It has been hypothesized that there is an inverse correlation between the size of the pores and the time required to repair the membrane, which has been for long a non-intuitive concept and far to be completely understood. Moreover, there is a lack of information about how cells react to the injury triggered by eukaryotic PFTs. Here, we investigated some molecular events related with eukaryotic cells response against the membrane damage caused by sticholysin II (StII), a eukaryotic PFT produced by a sea anemone. We evaluated the change in the cytoplasmic potassium, identified the main MAPK pathways activated after pore-formation by StII, and compared its effect with those from two well-studied bacterial PFTs: aerolysin and listeriolysin O (LLO). Strikingly, we found that membrane recovery upon StII damage takes place in a time scale similar to LLO in spite of the fact that they form pores by far different in size. Furthermore, our data support a common role of the potassium ion, as well as MAPKs in the mechanism that cells use to cope with these toxins injury.
Collapse
Affiliation(s)
- Sheila Cabezas
- Center for Protein Studies, Faculty of Biology, Havana University, Street 25 # 455, CP 10400, Havana, Cuba.
| | - Sylvia Ho
- École Polytechnique Fédérale de Lausanne, Global Health Institution, Faculty of Life Sciences, Station 15, CH 1015 Lausanne, Switzerland.
| | - Uris Ros
- Center for Protein Studies, Faculty of Biology, Havana University, Street 25 # 455, CP 10400, Havana, Cuba; Interfakultäres Institut für Biochemie, Universität Tübingen, Hoppe Seyler Strasse, 4, 72076, Tübingen, Germany.
| | - María E Lanio
- Center for Protein Studies, Faculty of Biology, Havana University, Street 25 # 455, CP 10400, Havana, Cuba.
| | - Carlos Alvarez
- Center for Protein Studies, Faculty of Biology, Havana University, Street 25 # 455, CP 10400, Havana, Cuba.
| | - F Gisou van der Goot
- École Polytechnique Fédérale de Lausanne, Global Health Institution, Faculty of Life Sciences, Station 15, CH 1015 Lausanne, Switzerland.
| |
Collapse
|
22
|
Evolution of the Cytolytic Pore-Forming Proteins (Actinoporins) in Sea Anemones. Toxins (Basel) 2016; 8:toxins8120368. [PMID: 27941639 PMCID: PMC5198562 DOI: 10.3390/toxins8120368] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/28/2016] [Accepted: 11/23/2016] [Indexed: 12/27/2022] Open
Abstract
Sea anemones (Cnidaria, Anthozoa, and Actiniaria) use toxic peptides to incapacitate and immobilize prey and to deter potential predators. Their toxin arsenal is complex, targeting a variety of functionally important protein complexes and macromolecules involved in cellular homeostasis. Among these, actinoporins are one of the better characterized toxins; these venom proteins form a pore in cellular membranes containing sphingomyelin. We used a combined bioinformatic and phylogenetic approach to investigate how actinoporins have evolved across three superfamilies of sea anemones (Actinioidea, Metridioidea, and Actinostoloidea). Our analysis identified 90 candidate actinoporins across 20 species. We also found clusters of six actinoporin-like genes in five species of sea anemone (Nematostella vectensis, Stomphia coccinea, Epiactis japonica, Heteractis crispa, and Diadumene leucolena); these actinoporin-like sequences resembled actinoporins but have a higher sequence similarity with toxins from fungi, cone snails, and Hydra. Comparative analysis of the candidate actinoporins highlighted variable and conserved regions within actinoporins that may pertain to functional variation. Although multiple residues are involved in initiating sphingomyelin recognition and membrane binding, there is a high rate of replacement for a specific tryptophan with leucine (W112L) and other hydrophobic residues. Residues thought to be involved with oligomerization were variable, while those forming the phosphocholine (POC) binding site and the N-terminal region involved with cell membrane penetration were highly conserved.
Collapse
|
23
|
Rivera-de-Torre E, García-Linares S, Alegre-Cebollada J, Lacadena J, Gavilanes JG, Martínez-Del-Pozo Á. Synergistic Action of Actinoporin Isoforms from the Same Sea Anemone Species Assembled into Functionally Active Heteropores. J Biol Chem 2016; 291:14109-14119. [PMID: 27129251 DOI: 10.1074/jbc.m115.710491] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 11/06/2022] Open
Abstract
Among the toxic polypeptides secreted in the venom of sea anemones, actinoporins are the pore-forming toxins whose toxic activity relies on the formation of oligomeric pores within biological membranes. Intriguingly, actinoporins appear as multigene families that give rise to many protein isoforms in the same individual displaying high sequence identities but large functional differences. However, the evolutionary advantage of producing such similar isotoxins is not fully understood. Here, using sticholysins I and II (StnI and StnII) from the sea anemone Stichodactyla helianthus, it is shown that actinoporin isoforms can potentiate each other's activity. Through hemolysis and calcein releasing assays, it is revealed that mixtures of StnI and StnII are more lytic than equivalent preparations of the corresponding isolated isoforms. It is then proposed that this synergy is due to the assembly of heteropores because (i) StnI and StnII can be chemically cross-linked at the membrane and (ii) the affinity of sticholysin mixtures for the membrane is increased with respect to any of them acting in isolation, as revealed by isothermal titration calorimetry experiments. These results help us understand the multigene nature of actinoporins and may be extended to other families of toxins that require oligomerization to exert toxicity.
Collapse
Affiliation(s)
- Esperanza Rivera-de-Torre
- Departamento de Bioquímica y Biología Molecular I, Facultades de Química y Biología, Universidad Complutense, 28040 Madrid
| | - Sara García-Linares
- Departamento de Bioquímica y Biología Molecular I, Facultades de Química y Biología, Universidad Complutense, 28040 Madrid
| | | | - Javier Lacadena
- Departamento de Bioquímica y Biología Molecular I, Facultades de Química y Biología, Universidad Complutense, 28040 Madrid
| | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular I, Facultades de Química y Biología, Universidad Complutense, 28040 Madrid.
| | - Álvaro Martínez-Del-Pozo
- Departamento de Bioquímica y Biología Molecular I, Facultades de Química y Biología, Universidad Complutense, 28040 Madrid.
| |
Collapse
|
24
|
Pore-forming toxins: Properties, diversity, and uses as tools to image sphingomyelin and ceramide phosphoethanolamine. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:576-92. [PMID: 26498396 DOI: 10.1016/j.bbamem.2015.10.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/30/2015] [Accepted: 10/14/2015] [Indexed: 12/27/2022]
Abstract
Pore-forming toxins (PFTs) represent a unique class of highly specific lipid-binding proteins. The cytotoxicity of these compounds has been overcome through crystallographic structure and mutation studies, facilitating the development of non-toxic lipid probes. As a consequence, non-toxic PFTs have been utilized as highly specific probes to visualize the diversity and dynamics of lipid nanostructures in living and fixed cells. This review is focused on the application of PFTs and their non-toxic analogs as tools to visualize sphingomyelin and ceramide phosphoethanolamine, two major phosphosphingolipids in mammalian and insect cells, respectively. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Mauro Dalla Serra and Franco Gambale.
Collapse
|
25
|
Pedrera L, Gomide AB, Sánchez RE, Ros U, Wilke N, Pazos F, Lanio ME, Itri R, Fanani ML, Alvarez C. The Presence of Sterols Favors Sticholysin I-Membrane Association and Pore Formation Regardless of Their Ability to Form Laterally Segregated Domains. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9911-9923. [PMID: 26273899 DOI: 10.1021/acs.langmuir.5b01687] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Sticholysin I (St I) is a pore-forming toxin (PFT) produced by the Caribbean Sea anemone Stichodactyla helianthus belonging to the actinoporin protein family, a unique class of eukaryotic PFT. As for actinoporins, it has been proposed that the presence of cholesterol (Chol) and the coexistence of lipid phases increase binding to the target membrane and pore-forming ability. However, little is known about the role of membrane structure and dynamics (phase state, fluidity, and the presence of lipid domains) on the activity of actinoporins or which regions of the membrane are the most favorable for protein insertion, oligomerization, and eventually pore formation. To gain insight into the role of membrane properties on the functional activity of St I, we studied its binding to monolayers and vesicles of phosphatidylcholine (PC), sphingomyelin (SM), and sterols inducing (ergosterol -Erg and cholesterol -Chol) or not (cholestenone - Cln) membrane phase segregation in liquid ordered (Lo) and liquid disordered (Ld) domains. This study revealed that St I binds and permeabilizes with higher efficiency sterol-containing membranes independently of their ability to form domains. We discuss the results in terms of the relevance of different membrane properties for the actinoporins mechanism of action, namely, molecular heterogeneity, specially potentiated in membranes with sterols inducers of phase separation (Chol or Erg) or Cln, a sterol noninducer of phase separation but with a high propensity to induce nonlamellar phase. The role of the Ld phase is pointed out as the most suitable platform for pore formation. In this regard, such regions in Chol-containing membranes seem to be the most favored due to its increased fluidity; this property promotes toxin insertion, diffusion, and oligomerization leading to pore formation.
Collapse
Affiliation(s)
- Lohans Pedrera
- Centro de Estudio de Proteínas (CEP), Facultad de Biología, Universidad de la Habana , CP 10400, La Habana, Cuba
| | - Andreza B Gomide
- Departamento de Física Aplicada, Instituto de Física, Universidade de São Paulo , 05508090, São Paulo, Brasil
- Centro Universitário Padre Anchieta, Jundiaí , 13207270, São Paulo, Brasil
| | - Rafael E Sánchez
- Centro de Estudio de Proteínas (CEP), Facultad de Biología, Universidad de la Habana , CP 10400, La Habana, Cuba
| | - Uris Ros
- Centro de Estudio de Proteínas (CEP), Facultad de Biología, Universidad de la Habana , CP 10400, La Habana, Cuba
| | - Natalia Wilke
- Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Facultad de Ciencias Químicas-CONICET, Universidad Nacional de Córdoba , X5000HUA Córdoba, Argentina
| | - Fabiola Pazos
- Centro de Estudio de Proteínas (CEP), Facultad de Biología, Universidad de la Habana , CP 10400, La Habana, Cuba
| | - María E Lanio
- Centro de Estudio de Proteínas (CEP), Facultad de Biología, Universidad de la Habana , CP 10400, La Habana, Cuba
| | - Rosangela Itri
- Departamento de Física Aplicada, Instituto de Física, Universidade de São Paulo , 05508090, São Paulo, Brasil
| | - María Laura Fanani
- Departamento de Química Biológica, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Facultad de Ciencias Químicas-CONICET, Universidad Nacional de Córdoba , X5000HUA Córdoba, Argentina
| | - Carlos Alvarez
- Centro de Estudio de Proteínas (CEP), Facultad de Biología, Universidad de la Habana , CP 10400, La Habana, Cuba
| |
Collapse
|
26
|
Ros U, Rodríguez-Vera W, Pedrera L, Valiente PA, Cabezas S, Lanio ME, García-Sáez AJ, Alvarez C. Differences in activity of actinoporins are related with the hydrophobicity of their N-terminus. Biochimie 2015; 116:70-8. [DOI: 10.1016/j.biochi.2015.06.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/25/2015] [Indexed: 10/23/2022]
|
27
|
Mutagenesis and functional analysis of the pore-forming toxin HALT-1 from Hydra magnipapillata. Toxins (Basel) 2015; 7:407-22. [PMID: 25654788 PMCID: PMC4344632 DOI: 10.3390/toxins7020407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 01/27/2015] [Indexed: 12/02/2022] Open
Abstract
Actinoporins are small 18.5 kDa pore-forming toxins. A family of six actinoporin genes has been identified in the genome of Hydra magnipapillata, and HALT-1 (Hydra actinoporin-like toxin-1) has been shown to have haemolytic activity. In this study, we have used site-directed mutagenesis to investigate the role of amino acids in the pore-forming N-terminal region and the conserved aromatic cluster required for cell membrane binding. A total of 10 mutants of HALT-1 were constructed and tested for their haemolytic and cytolytic activity on human erythrocytes and HeLa cells, respectively. Insertion of 1–4 negatively charged residues in the N-terminal region of HALT-1 strongly reduced haemolytic and cytolytic activity, suggesting that the length or charge of the N-terminal region is critical for pore-forming activity. Moreover, substitution of amino acids in the conserved aromatic cluster reduced haemolytic and cytolytic activity by more than 80%, suggesting that these aromatic amino acids are important for attachment to the lipid membrane as shown for other actinoporins. The results suggest that HALT-1 and other actinoporins share similar mechanisms of pore formation and that it is critical for HALT-1 to maintain an amphipathic helix at the N-terminus and an aromatic amino acid-rich segment at the site of membrane binding.
Collapse
|
28
|
Fauth EVF, Cilli EM, Ligabue-Braun R, Verli H. Differential effect of solution conditions on the conformation of the actinoporins Sticholysin II and Equinatoxin II. AN ACAD BRAS CIENC 2015; 86:1949-62. [PMID: 25590731 DOI: 10.1590/0001-3765201420140270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/11/2014] [Indexed: 11/22/2022] Open
Abstract
Actinoporins are a family of pore-forming proteins with hemolytic activity. The structural basis for such activity appears to depend on their correct folding. Such folding encompasses a phosphocholine binding site, a tryptophan-rich region and the activity-related N-terminus segment. Additionally, different solution conditions are known to be able to influence the pore formation by actinoporins, as for Sticholysin II (StnII) and Equinatoxin II (EqtxII). In this context, the current work intends to characterize the influence of distinct solution conditions in the conformational behavior of these proteins through molecular dynamics (MD) simulations. The obtained data offer structural insights into actinoporins dynamics in solution, characterizing its conformational behavior at the atomic level, in accordance with previous experimental data on StnII and EqtxII hemolytic activities.
Collapse
Affiliation(s)
| | - Eduardo M Cilli
- Departamento de Bioquímica e Tecnologia Química, UNESP, Instituto de Química, Universidade Estadual Paulista, Araraquara, SP, Brasil
| | | | - Hugo Verli
- Centro de Biotecnologia, UFRGS, Porto Alegre, RS, Brasil
| |
Collapse
|
29
|
León L, Lissi EA, Celedón G, Gonzalez G, Pazos F, Alvarez C, Lanio ME. Inactivation of the pore-forming toxin Sticholysin I by peroxynitrite: protection by cys groups incorporated in the toxin. Protein J 2014; 33:493-501. [PMID: 25218252 DOI: 10.1007/s10930-014-9582-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Sea anemones synthesize a variety of toxic peptides and proteins of biological interest. The Caribbean Sea anemone Stichodactyla helianthus, produces two pore-forming toxins, Sticholysin I (St I) and Stichloysin II (St II), with the ability to form oligomeric pores in cell and lipid bilayers characteristically lacking cysteine in their amino acid sequences. Recently, two mutants of a recombinant variant of Sticholysin I (rSt I) have been obtained with a Cys residue in functionally relevant regions for the pore-forming activity of the toxin: r St I F15C (in the amino terminal sequence) and r St I R52C (in the binding site). Aiming at characterizing the effects of oxidants in toxins devoid (r St I) or containing -SH moieties (r St I F15C and r St I R52C), we measured their hemolytic activity and pore forming capacity prior and after their incubation with peroxynitrite (ONOO(-)). At low ONOO(-)/Toxin ratios, nearly 0.8 Trp groups are modified by each added peroxynitrite molecule, and the toxin activity is reduced in ca. 20 %. On the other hand, in -SH bearing mutants only 0.5 Trp groups are modified by each peroxynitrite molecule and the toxin activity is only reduced in 10 %. The results indicated that Cys is the initial target of the oxidative damage and that Trp residues in Cys-containing toxins were less damaged than those in r St I. This relative protection of Trp groups correlates with a smaller loss of hemolytic activity and permeabilization ability in liposomes and emphasizes the relevance of Trp groups in the pore forming capacity of the toxins.
Collapse
Affiliation(s)
- L León
- Department of Chemistry, Chemistry and Biology Faculty, Universidad de Santiago de Chile (USACH), Santiago, Chile,
| | | | | | | | | | | | | |
Collapse
|
30
|
Sticholysin I–membrane interaction: An interplay between the presence of sphingomyelin and membrane fluidity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1752-9. [DOI: 10.1016/j.bbamem.2014.03.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 03/06/2014] [Accepted: 03/18/2014] [Indexed: 11/19/2022]
|
31
|
Glasser E, Rachamim T, Aharonovich D, Sher D. Hydra actinoporin-like toxin-1, an unusual hemolysin from the nematocyst venom of Hydra magnipapillata which belongs to an extended gene family. Toxicon 2014; 91:103-13. [PMID: 24768765 DOI: 10.1016/j.toxicon.2014.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/23/2014] [Accepted: 04/08/2014] [Indexed: 01/09/2023]
Abstract
Cnidarians rely on their nematocysts and the venom injected through these unique weaponry systems to catch prey and protect themselves from predators. The development and physiology of the nematocysts of Hydra magnipapillata, a classic model organism, have been intensively studied, yet the composition and biochemical activity of their venom components are mostly unknown. Here, we show that hydra actinoporin-like toxins (HALTs), which have previously been associated with Hydra nematocysts, belong to a multigene family comprising six genes, which have diverged from a single common ancestor. All six genes are expressed in a population of Hydra magnipapillata. When expressed recombinantly, HALT-1 (Δ-HYTX-Hma1a), an actinoporin-like protein found in the stenoteles (the main penetrating nematocysts used in prey capture), reveals hemolytic activity, albeit about two-thirds lower than that of the anemone actinoporin equinatoxin II (EqTII, Δ-AITX-Aeq1a). HALT-1 also differs from EqTII in the size of its pores, and likely does not utilize sphingomyelin as a membrane receptor. We describe features of the HALT-1 sequence which may contribute to this difference in activity, and speculate on the role of this unusual family of pore-forming toxins in the ecology of Hydra.
Collapse
Affiliation(s)
- Eliezra Glasser
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 31905 Haifa, Israel
| | - Tamar Rachamim
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 31905 Haifa, Israel
| | - Dikla Aharonovich
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 31905 Haifa, Israel
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, 31905 Haifa, Israel.
| |
Collapse
|
32
|
Celedón G, González G, Gulppi F, Pazos F, Lanio ME, Alvarez C, Calderón C, Montecinos R, Lissi E. Effect of human serum albumin upon the permeabilizing activity of sticholysin II, a pore forming toxin from Stichodactyla heliantus. Protein J 2013; 32:593-600. [PMID: 24197505 DOI: 10.1007/s10930-013-9521-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sticholysin II (St II) is a haemolytic toxin isolated from the sea anemone Stichodactyla helianthus. The high haemolytic activity of this toxin is strongly dependent on the red cell status and the macromolecule conformation. In the present communication we evaluate the effect of human serum albumin on St II haemolytic activity and its capacity to form pores in the bilayer of synthetic liposomes. St II retains its pore forming capacity in the presence of large concentrations (up to 500 μM) of human serum albumin. This effect is observed both in its capacity to produce red blood cells haemolysis and to generate functional pores in liposomes. In particular, the capacity of the toxin to lyse red blood cells increases in the presence of human serum albumin (HSA). Regarding the rate of the pore forming process, it is moderately decreased in liposomes and in red blood cells, in spite of an almost total coverage of the interface by albumin. All the data obtained in red cells and model membranes show that St II remains lytically active even in the presence of high HSA concentrations. This stubbornness can explain why the toxin is able to exert its haemolytic activity on membranes immersed in complex plasma matrixes such as those present in living organisms.
Collapse
Affiliation(s)
- Gloria Celedón
- Departamento de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ros U, Souto ALCF, de Oliveira FJ, Crusca E, Pazos F, Cilli EM, Lanio ME, Schreier S, Alvarez C. Functional and topological studies with Trp-containing analogs of the peptide StII1-30derived from the N-terminus of the pore forming toxin sticholysin II: contribution to understand its orientation in membrane. Biopolymers 2013; 100:337-46. [DOI: 10.1002/bip.22211] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/14/2012] [Accepted: 01/14/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Uris Ros
- Center for Protein Studies; Biology Faculty; University of Havana (UH); Havana; Cuba
| | - Ana Lucia C. F. Souto
- Department of Biochemistry; Institute of Chemistry; University of São Paulo (USP); São Paulo; Brazil
| | - Felipe J. de Oliveira
- Department of Biochemistry; Institute of Chemistry; University of São Paulo (USP); São Paulo; Brazil
| | - Edson Crusca
- Department of Biochemistry and Chemical Technology; Institute of Chemistry; São Paulo State University (UNESP); Araraquara; São Paulo; Brazil
| | - Fabiola Pazos
- Center for Protein Studies; Biology Faculty; University of Havana (UH); Havana; Cuba
| | - Eduardo M. Cilli
- Department of Biochemistry and Chemical Technology; Institute of Chemistry; São Paulo State University (UNESP); Araraquara; São Paulo; Brazil
| | - Maria E. Lanio
- Center for Protein Studies; Biology Faculty; University of Havana (UH); Havana; Cuba
| | - Shirley Schreier
- Department of Biochemistry; Institute of Chemistry; University of São Paulo (USP); São Paulo; Brazil
| | - Carlos Alvarez
- Center for Protein Studies; Biology Faculty; University of Havana (UH); Havana; Cuba
| |
Collapse
|
34
|
The membranotropic activity of N-terminal peptides from the pore-forming proteins sticholysin I and II is modulated by hydrophobic and electrostatic interactions as well as lipid composition. J Biosci 2011; 36:781-91. [DOI: 10.1007/s12038-011-9156-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
35
|
Valle A, López-Castilla A, Pedrera L, Martínez D, Tejuca M, Campos J, Fando R, Lissi E, Álvarez C, Lanio M, Pazos F, Schreier S. Cys mutants in functional regions of Sticholysin I clarify the participation of these residues in pore formation. Toxicon 2011; 58:8-17. [DOI: 10.1016/j.toxicon.2011.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/01/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022]
|
36
|
Celedón G, González G, Lissi E, Cerda T, Bascuñant D, Lepeley M, Pazos F, Lanio ME, Alvarez C. Effect of pre-exposure of human erythrocytes to oxidants on the haemolytic activity of Sticholysin II. A comparison between peroxynitrite and hypochlorous acid. Free Radic Res 2010; 45:400-8. [DOI: 10.3109/10715762.2010.536838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Pharmacological effects of two cytolysins isolated from the sea anemone Stichodactyla helianthus. J Biosci 2009; 34:891-8. [DOI: 10.1007/s12038-009-0103-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
38
|
Álvarez C, Mancheño JM, Martínez D, Tejuca M, Pazos F, Lanio ME. Sticholysins, two pore-forming toxins produced by the Caribbean Sea anemone Stichodactyla helianthus: Their interaction with membranes. Toxicon 2009; 54:1135-47. [DOI: 10.1016/j.toxicon.2009.02.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Effect of calcium on the hemolytic activity of Stichodactyla helianthus toxin sticholysin II on human erythrocytes. Toxicon 2009; 54:845-50. [DOI: 10.1016/j.toxicon.2009.06.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 06/12/2009] [Accepted: 06/16/2009] [Indexed: 01/11/2023]
|
40
|
Celedón G, González G, Barrientos D, Pino J, Venegas F, Lissi EA, Soto C, Martinez D, Alvarez C, Lanio ME. Stycholysin II, a cytolysin from the sea anemone Stichodactyla helianthus promotes higher hemolysis in aged red blood cells. Toxicon 2008; 51:1383-90. [PMID: 18423792 DOI: 10.1016/j.toxicon.2008.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 12/20/2007] [Accepted: 03/04/2008] [Indexed: 01/09/2023]
Abstract
We have investigated the relationship between the status of red blood cells (RBCs) and their susceptibility to toxin sticholysin II (StII) hemolytic activity; we have evaluated this effect in different RBC ensembles, comprising young and old cells, and in cells partially damaged by their pre-exposition to a free radical source. Upon action of StII, young cell populations are less prone to hemolysis than the whole population, while old cell populations and peroxyl-oxidized red cells are lysed faster than the whole population. Cell K(+) content was higher in young cells and lower in both senescent cells and in peroxyl-damaged cells relative to whole cell population. The relevance of cell K(+) content in St II-induced lysis was shown when external Na(+) was partially replaced by K(+); under this condition, RBC lysed faster in the presence of St II but no difference was observed among young cells, whole cells population and peroxyl-damaged cells; only old cells lysed faster that the whole population, response that can be due to an enhanced St II-induced pore formation as supported by evaluation of St II irreversible binding to RBC. It is concluded that this factor and the amount of intracellular K(+) are the dominant parameters that modulate the resistance of RBC to St II-induced lysis.
Collapse
Affiliation(s)
- Gloria Celedón
- Departamento de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Chile
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Cilli EM, Pigossi FT, Crusca E, Ros U, Martinez D, Lanio ME, Alvarez C, Schreier S. Correlations between differences in amino-terminal sequences and different hemolytic activity of sticholysins. Toxicon 2007; 50:1201-4. [PMID: 17826814 DOI: 10.1016/j.toxicon.2007.07.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 07/24/2007] [Accepted: 07/25/2007] [Indexed: 10/23/2022]
Abstract
Sticholysins I and II (St I and St II) are cytolysins produced by the sea anemone Stichodactyla helianthus. In spite of their 93% sequence homology, St II is more hemolytic against human erythrocytes than St I. In order to establish the possible causes of this difference, we studied the hemolytic activity of synthetic peptides containing sequences from the N-termini of both proteins. The results demonstrated that the differences in hemolytic activity of the toxins could be ascribed at least partly to differences in their N-termini.
Collapse
Affiliation(s)
- Eduardo M Cilli
- Department of Biochemistry and Technological Chemistry, Institute of Chemistry, UNESP--São Paulo State University, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Lanio ME, Alvarez C, Ochoa C, Ros U, Pazos F, Martínez D, Tejuca M, Eugenio LM, Casallanovo F, Dyszy FH, Schreier S, Lissi E. Sticholysins I and II interaction with cationic micelles promotes toxins’ conformational changes and enhanced hemolytic activity. Toxicon 2007; 50:731-9. [PMID: 17681582 DOI: 10.1016/j.toxicon.2007.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 05/31/2007] [Accepted: 06/01/2007] [Indexed: 10/23/2022]
Abstract
The effect of three cationic surfactants bearing the same polar head group and different chain length (cetyltrimethyl ammonium bromide (CTAB); tetradecyltrimethylammonium bromide (TTAB); dodecyltrimethylammonium bromide (DTAB)) on the conformation and function of the sea anemone pore-forming toxins sticholysins I and II (St I and St II) was studied by fluorescence and circular dichroism spectroscopy and evaluation of hemolytic activity (HA). Preincubation of the toxins with the longer chain surfactants CTAB and TTAB at concentrations slightly above their critical micelle concentration (CMC) leads to an enhancement of their HA. Significant increases in the fluorescence intensity with a slightly red shift in lambda(max) were observed at concentrations close to the surfactants' CMC, suggesting changes in the environment of the tryptophan residues. The changes in the fluorescence intensity are more noticeable and take place at lower surfactant concentrations for St I, irrespective of the surfactant alkyl chain length, although the differences between St I and St II increase as the surfactant alkyl chain length increases. This is evinced not only by the higher fluorescence intensity values and the lower surfactant concentrations required to reach them, but also by the higher acrylamide-quenching constant values (Ksv) for St I. However, the surfactant's effects on the toxins' HA were not found to be directly related to the observed changes in fluorescence intensity, as well as near- and far-UV-CD spectra. In particular, the latter spectra indicate that changes in HA and in fluorescence behavior take place without noticeable modifications in St I and St II secondary and tertiary structures. The results suggest that the interaction with the surfactants induces only subtle conformational changes in the toxins that favor the formation of lytic competent structures.
Collapse
Affiliation(s)
- María E Lanio
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mirshafiey A. Venom therapy in multiple sclerosis. Neuropharmacology 2007; 53:353-61. [PMID: 17583756 DOI: 10.1016/j.neuropharm.2007.05.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 04/30/2007] [Accepted: 05/03/2007] [Indexed: 11/16/2022]
Abstract
To date many people with multiple sclerosis (MS) seek complementary and alternative medicines (CAM) to treat their symptoms as an adjunct to conventionally used therapies. Among the common CAM therapies, there is a renewed interest in the therapeutic potential of venoms in MS. The efficacy of this therapeutic method remains unclear. However, venom-based therapy using bee, snakes and scorpions venom and/or sea anemones toxin has been recently developed because current investigations have identified the various components and molecular mechanism of the effects of venoms under in vitro and in vivo conditions. The aim of this review is to describe the recent findings regarding the role of venoms and their components in treatment of MS disease and that whether venom therapy could be recommended as a complementary treatment or not.
Collapse
Affiliation(s)
- Abbas Mirshafiey
- Department of Immunology, School of Public Health, Medical Sciences, University of Tehran, Box 6446, Tehran 14155, Iran.
| |
Collapse
|
44
|
Martínez D, Otero A, Alvarez C, Pazos F, Tejuca M, Lanio ME, Gutiérrez-Aguirre I, Barlic A, Iloro I, Arrondo JL, González-Mañas JM, Lissi E. Effect of sphingomyelin and cholesterol on the interaction of St II with lipidic interfaces. Toxicon 2007; 49:68-81. [PMID: 17113118 DOI: 10.1016/j.toxicon.2006.09.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 09/13/2006] [Accepted: 09/15/2006] [Indexed: 11/17/2022]
Abstract
Sticholysin II (St II) is a cytolysin produced by the sea anemone Stichodactyla helianthus, characterized by forming oligomeric pores in natural and artificial membranes. In the present work the influence of the membrane lipidic components sphingomyelin (SM) and cholesterol (Cho) on binding and functional activity of St II, was evaluated using ELISA, lipid monolayers and liposomes. The aim of this work was to establish the promoting role of Cho and SM, both in St II binding and pore formation efficiency. In general the association (evaluated by ELISA and incorporation to phospholipid monolayers) of St II to lipids mixtures was better than to any one of the single components. Regarding the unique role of SM, it was found that, albeit inefficiently, St II binds to phosphatidylcholine (PC):Cho monolayers and liposomes, and is able to form active pores in these bilayers. The results in monolayers and liposomes show that the presence of SM and large amounts of Cho leads to the highest values of critical pressure and rate of association to monolayers, the most favorable interaction with liposomes, and the fastest rate of pore formation, in spite of the rigidity of the layers as suggested by the high generalized polarization (GP) of Laurdan incorporated to liposomes and FTIR data. Taken together, the present results show that the joint presence of SM and Cho, both in binary and ternary (PC containing) mixtures provide conditions particularly suitable for St II binding and function. We suggest that microdomains present in the bilayers could be important for toxin-membrane association.
Collapse
Affiliation(s)
- Diana Martínez
- Facultad de Biología, Universidad de la Habana, Centro de Estudio de Proteínas, Calle 25 no 455, CP 10400, Cuba.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Pazos F, Valle A, Martínez D, Ramírez A, Calderón L, Pupo A, Tejuca M, Morera V, Campos J, Fando R, Dyszy F, Schreier S, Horjales E, Alvarez C, Lanio ME, Lissi E. Structural and functional characterization of a recombinant sticholysin I (rSt I) from the sea anemone Stichodactyla helianthus. Toxicon 2006; 48:1083-94. [PMID: 17067649 DOI: 10.1016/j.toxicon.2006.09.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 08/31/2006] [Accepted: 09/01/2006] [Indexed: 11/29/2022]
Abstract
Sticholysins I and II (Sts I and II) are two potent cytolysins from the sea anemone Stichodactyla helianthus. These isoforms present 13 substitutions, with three non-conservative located at the N-terminus. St II is considerably more hemolytic than St I in human red blood cells, a result explained by the smaller number of negatively charged groups present at St II's N-terminus. In the present work, we have obtained a recombinant St I (rSt I), differing from the wild type in a single amino acid residue (E16Q). This pseudo-wild type is structurally similar to St I and shows a similar capacity to interact with and form pores in model membranes. This was assessed by the intrinsic fluorescence increase in the presence of liposomes, their adsorption to bilayers (measured by SPR), their concentration at the air-water interface, their interaction with lipid monolayers and their capacity to promote the release of carboxyfluorescein entrapped in liposomes. In spite of these similarities, rSt I presents a larger hemolytic activity in human red blood cells than St I, being intermediate in activity between Sts I and II. The results obtained in the present work emphasize that even the change of one single E by Q at the N-terminal segment may modify the toxin HA and show that this functional property is the most sensitive to subtle changes in the protein primary structure.
Collapse
Affiliation(s)
- F Pazos
- Center for Protein Studies, Faculty of Biology, University of Havana, Habana, Cuba
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Alegre-Cebollada J, Clementi G, Cunietti M, Porres C, Oñaderra M, Gavilanes JG, Pozo AMD. Silent mutations at the 5'-end of the cDNA of actinoporins from the sea anemone Stichodactyla helianthus allow their heterologous overproduction in Escherichia coli. J Biotechnol 2006; 127:211-21. [PMID: 16930756 DOI: 10.1016/j.jbiotec.2006.07.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 06/20/2006] [Accepted: 07/05/2006] [Indexed: 10/24/2022]
Abstract
Wild-type actinoporins StnI and StnII from the sea anemone Stichodactyla helianthus, as well as their NH(2)-terminal six-His tagged versions, have been overproduced in Escherichia coli. Overproduction of both wild-type proteins was only possible after introducing silent mutations within the 5'-end of their original cDNA sequences. These mutations would prevent the formation of RNA secondary structures blocking the ribosome-binding site and the initiation codon. The four recombinant proteins were purified to homogeneity in milligrams amount and characterized from spectroscopic and functional points of view. All the isolated proteins behaved as the corresponding natural ones although the six-His tagged variants exhibited a decreased lytic activity. The strategy described will be useful to allow the production of mutant variants of these proteins and probably of other actinoporins.
Collapse
Affiliation(s)
- Jorge Alegre-Cebollada
- Departamento de Bioquímica y Biología Molecular I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Casallanovo F, de Oliveira FJF, de Souza FC, Ros U, Martínez Y, Pentón D, Tejuca M, Martínez D, Pazos F, Pertinhez TA, Spisni A, Cilli EM, Lanio ME, Alvarez C, Schreier S. Model peptides mimic the structure and function of the N-terminus of the pore-forming toxin sticholysin II. Biopolymers 2006; 84:169-80. [PMID: 16170802 DOI: 10.1002/bip.20374] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To investigate the role of the N-terminal region in the lytic mechanism of the pore-forming toxin sticholysin II (St II), we studied the conformational and functional properties of peptides encompassing the first 30 residues of the protein. Peptides containing residues 1-30 (P1-30) and 11-30 (P11-30) were synthesized and their conformational properties were examined in aqueous solution as a function of peptide concentration, pH, ionic strength, and addition of the secondary structure-inducing solvent trifluoroethanol (TFE). CD spectra showed that increasing concentration, pH, and ionic strength led to aggregation of P1-30; as a consequence, the peptide acquired beta-sheet conformation. In contrast, P11-30 exhibited practically no conformational changes under the same conditions, remaining essentially structureless. Moreover, this peptide did not undergo aggregation. These differences clearly point to the modulating effect of the first 10 hydrophobic residues on the peptides aggregation and conformational properties. In TFE both the first ten hydrophobic peptides acquired alpha-helical conformation, albeit to a different extent, P11-30 displayed lower alpha-helical content. P1-30 presented a larger fraction of residues in alpha-helical conformation in TFE than that found in St II's crystal structure for that portion of the protein. Since TFE mimics the membrane environment, such increase in helical content could also occur upon toxin binding to membranes and represent a step in the mechanism of pore formation. The peptides conformational properties correlated well with their functional behavior. Thus, P1-30 exhibited much higher hemolytic activity than P11-30. In addition, P11-30 was able to block the toxin's hemolytic activity. The size of pores formed in red blood cells by P1-30 was estimated by measuring the permeability to PEGs of different molecular mass. The pore radius (0.95 +/- 0.01 nm) was very similar to that of the pore formed by the toxin. The results demonstrate that the synthetic peptide P1-30 is a good model of St II conformation and function and emphasize the contribution of the toxin's N-terminal region, and, in particular, the hydrophobic residues 1-10 to pore formation.
Collapse
Affiliation(s)
- Fábio Casallanovo
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Celedon G, Venegas F, Campos AM, Lanio ME, Martinez D, Soto C, Alvarez C, Lissi E. Role of endogenous channels in red blood cells response to their exposure to the pore forming toxin Sticholysin II. Toxicon 2005; 46:297-307. [PMID: 15990142 DOI: 10.1016/j.toxicon.2005.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Accepted: 04/15/2005] [Indexed: 10/25/2022]
Abstract
Sticholysin II (St II) is a highly hemolytic cytolysin isolated from the sea anemone Stichodactyla heliantus. The toxin hemolytic action takes place through the formation of channels that provoke an electrolyte unbalance leading to osmotic shock. The lytic event must involve the exchange of electrolytes and the entrance of water, leading to red blood cell disruption. These processes can occur through St II pores and/or the endogenous red blood cells transporters. In order to evaluate the contribution of these channels to water, anion and cation transport, we have measured the hemolysis and K+ efflux rates in the presence of several specific inhibitors. The results obtained in the presence of Hg, an AQP1 blocker, indicate that water transport through these channels is not essential for the occurrence of the lytic process induced by St II. The data also support a partial role of K+ and anion transporters. In particular, they are compatible with a preferential K+ efflux though the K(+)/Cl- co-transport as a response to the promoted swelling. Furthermore, they suggest that chloride influx, a process that can regulate both K+ efflux and lysis, is partially mediated by the endogenous cell transporters, in particular, band-3 anion exchange system being relevant at early stages of the lytic process.
Collapse
Affiliation(s)
- G Celedon
- Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Pazos IF, Martínez D, Tejuca M, Valle A, del Pozo A, Alvarez C, Lanio ME, Lissi EA. Comparison of pore-forming ability in membranes of a native and a recombinant variant of Sticholysin II from Stichodactyla helianthus. Toxicon 2003; 42:571-8. [PMID: 14602112 DOI: 10.1016/s0041-0101(03)00227-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sticholysin II (St II) a potent cytolysin from the sea anemone Stichodactyla helianthus was obtained by recombinant procedures exhibiting six histidine residues in its N-terminus (St IIn6H). The functional comparison between St II and St IIn6H showed a lesser pore-forming ability for the recombinant than for the native in human or rat red blood cells (RBC) and in large unilamellar vesicles (LUV) of different phospholipid composition. However, binding of St IIn6H to small unilamellar vesicles (SUV) was higher with regard to St II. The explanation to the different permeabilizing capacity of both protein variants is not clear, but a different anchoring of St IIn6H to the lipid bilayer could delay the organization of the competent pore into membrane.
Collapse
Affiliation(s)
- I F Pazos
- Departamento de Bioquímica y Centro de Estudio de Proteínas, Facultad de Biología, Universidad de La Habana, Cuba
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Alvarez C, Tejuca M, Pazos I, Lanio M, Garateix A, Aneiros A. Overview of Marine Toxin Research in Cuba. ACTA ACUST UNITED AC 2003. [DOI: 10.1080/08865140302430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|