1
|
Ghimire S, Subedi K, Zhang X, Wu C. Efficacy of Bacillus subtilis probiotic in preventing necrotic enteritis in broilers: a systematic review and meta-analysis. Avian Pathol 2024; 53:451-466. [PMID: 38776185 DOI: 10.1080/03079457.2024.2359596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 05/24/2024]
Abstract
Probiotics can enhance broiler chicken health by improving intestinal microbiota, potentially replacing antibiotics. They protect against bacterial diseases like necrotic enteritis (NE) in poultry. Understanding their role is crucial for managing bacterial diseases, including NE. This study conducted a meta-analysis to assess the effects of Bacillus subtilis probiotic supplementation on feed conversion ratio (FCR), NE lesion score, and mortality. Additionally, a systematic review analysed gut microbiota changes in broilers challenged with Clostridium perfringens with or without the probiotic supplementation. Effect sizes from the studies were estimated in terms of standardized mean difference (SMD). Random effect models were fitted to estimate the pooled effect size and 95% confidence interval (CI) of the pooled effect size between the control [probiotic-free + C. perfringens] and the treatment [Bacillus subtilis supplemented + C. perfringens] groups. Overall variance was computed by heterogeneity (Q). The meta-analysis showed that Bacillus subtilis probiotic supplementation significantly improved FCR and reduced NE lesion score but had no effect on mortality rates. The estimated overall effects of probiotic supplementation on FCR, NE lesion score and mortality percentage in terms of SMD were -0.91 (CI = -1.34, -0.49; P < 0.001*); -0.67 (CI = -1.11, -0.22; P = 0.006*), and -0.32 (CI = -0.70, 0.06; P = 0.08), respectively. Heterogeneity analysis indicated significant variations across studies for FCR (Q = 69.66; P < 0.001*) and NE lesion score (Q = 42.35; P < 0.001*) while heterogeneity was not significant for mortality (Q = 2.72; P = 0.74). Bacillus subtilis probiotic supplementation enriched specific gut microbiota including Streptococcus, Butyricicoccus, Faecalibacterium, and Ruminococcus. These microbiotas were found to upregulate expression of various genes such as TJ proteins occluding, ZO-1, junctional adhesion 2 (JAM2), interferon gamma, IL12-β and transforming growth factor-β4. Moreover, downregulated mucin-2 expression was involved in restoring the intestinal physical barrier, reducing intestinal inflammation, and recovering the physiological functions of damaged intestines. These findings highlight the potential benefits of probiotic supplementation in poultry management, particularly in combating bacterial diseases and promoting intestinal health.
Collapse
Affiliation(s)
- Shweta Ghimire
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE, USA
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Keshab Subedi
- Christiana Care Health Systems, Institute for Research on Equity and Community Health (iREACH), Wilmington, DE, USA
| | - Xinwen Zhang
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
2
|
Nicoletti MM, Anatriello A, Liguori V, Cantone A, di Mauro G, Izzo I, Lettera N, Della Ragione JM, Campitiello MR, Cosenza V, Scavone C. Skin Toxicities Associated with Botulin Toxin Injection for Aesthetic Procedures: Data from the European Spontaneous Reporting System. Pharmaceuticals (Basel) 2023; 16:1611. [PMID: 38004476 PMCID: PMC10675122 DOI: 10.3390/ph16111611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Botulinum toxin is a protein deriving from the bacteria Clostridium botulinum and it is widely used for the treatment of a variety of muscle hyperactivity syndromes and for cosmetic indications. Having a long-lasting effect, Botulinum toxin type A (BTA) is one of the most botulin toxin products used. Even if BTA has shown benefits in reducing the vertical lines between the eyebrows, Adverse Drug Reactions (ADRs) have been experienced as well, of which the most common ones are headache and drooping eyelids. In addition, since other local and systemic risks have been identified, a non-interventional post-authorization safety study (PASS) has been started. The aim of the present study was to report cases of skin toxicity associated with this drug, considering Individual Case Safety Reports (ICSRs) existing on the Eudravigilance website. Among 1464 ICSRs sent to the EV database, 718 ICSRs, including 5154 PTs, reported BTA as a suspected drug associated with cutaneous toxicity. The majority of patients experiencing BTA-induced skin toxicity were female (92.1%) belonging mostly to the age group of 18-64 years. The most serious criteria, when reported, were "Other Medically Important Condition" and "Caused/prolonged hospitalization", although the outcome was mainly reported as "Unknown". The most reported PTs, related to skin disorders, were: "Erythema", "Rash", "Pruritus", "Urticaria", "Swelling face", "Brow ptosis", "Eyelid ptosis", "Injection site pain", and "Angioedema". Considering that in most ICSRs, ADRs related to skin disorders were symptoms of hypersensitivity reactions which in some conditions could be life-threatening, further studies are required to better define the safety profile of BTA used for aesthetic procedures.
Collapse
Affiliation(s)
| | - Antonietta Anatriello
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.A.); (V.L.); (A.C.)
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, 80138 Naples, Italy; (G.d.M.); (I.I.); (N.L.); (J.M.D.R.)
| | - Valerio Liguori
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.A.); (V.L.); (A.C.)
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, 80138 Naples, Italy; (G.d.M.); (I.I.); (N.L.); (J.M.D.R.)
| | - Andrea Cantone
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.A.); (V.L.); (A.C.)
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, 80138 Naples, Italy; (G.d.M.); (I.I.); (N.L.); (J.M.D.R.)
| | - Gabriella di Mauro
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, 80138 Naples, Italy; (G.d.M.); (I.I.); (N.L.); (J.M.D.R.)
- UOC Pharmacy, AORN Santobono Pausilipon Children’s Hospital, 80129 Naples, Italy
| | - Imma Izzo
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, 80138 Naples, Italy; (G.d.M.); (I.I.); (N.L.); (J.M.D.R.)
| | - Nicoletta Lettera
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, 80138 Naples, Italy; (G.d.M.); (I.I.); (N.L.); (J.M.D.R.)
| | - Joao Marcos Della Ragione
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, 80138 Naples, Italy; (G.d.M.); (I.I.); (N.L.); (J.M.D.R.)
| | - Maria Rosaria Campitiello
- Department of Obstetrics and Gynaecology and Physiopathology of Human Reproduction, ASL Salerno, 84124 Salerno, Italy;
| | - Vincenzo Cosenza
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Cristina Scavone
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (A.A.); (V.L.); (A.C.)
- Regional Center of Pharmacovigilance and Pharmacoepidemiology of Campania Region, 80138 Naples, Italy; (G.d.M.); (I.I.); (N.L.); (J.M.D.R.)
| |
Collapse
|
3
|
Chauhan R, Chauhan Kushwah V, Agnihotri S, Vimal M, Saxena N, Dhaked RK. Designing, synthesis and evaluation of derived analogues of selected small molecule non-peptidic inhibitors against serotype BoNT/ F. Toxicon 2023; 222:106981. [PMID: 36503896 DOI: 10.1016/j.toxicon.2022.106981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/04/2022] [Accepted: 11/18/2022] [Indexed: 11/27/2022]
Abstract
Botulinum neurotoxins are lethal Biowarfare categorized in group A of selected agents, by CDC USA. The unavailability of counter-measures against these neurotoxins has been a matter of extensive research. The 8-hydroxyquinoline (8-HQ) scaffold is established privileged compound and its potential as drug candidate against BoNTs is recently being explored. We have reported 8-HQ compounds NSC1014 and NSC1011 as potential small molecule inhibitors against BoNT/F. In the present study, analogues of NSC84087 and NSC1014 were designed, synthesized and studied for their inhibitory role against BoNT/F intoxication through in silico study, in vitro and in-vivo assays. ∼25 in-house synthesized small molecule inhibitors were evaluated against rBoNT/F light chain through fluorescence thermal shift (FTS) assay and then further assessed through endopeptidase assay. The binding affinity analysis was done through surface plasmon resonance (SPR) based Proteon™ XPR 36 system. Finally, the in-vivo efficacy of these compounds was evaluated in mice model. Analogues C87.9, C87.10 and C87.12 of compound NSC84087 and C14.10, C14.11 and C14.13 of NSC1014 showed promising results through FTS assay and endopeptidase assay. SPR based protein-small molecule interaction studies showed KD values in sub-micromolar range signifying high affinity interaction. The IC50 of C14.10 was found to be the lowest of 3.016 ± 0.798 μM as determined through endopeptidase assay. Finally, efficacy of selected molecules was evaluated in mice, C14.10 and C14.13 protected 40% animals against 4X LD50 and extended survival time up to 200% at 10X LD50. The present study thus proposes the emergence of NSC84087 and NSC1014 analogues as lead compound against BoNT/F.
Collapse
Affiliation(s)
- Ritika Chauhan
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior, 474002, MP, India
| | - Vinita Chauhan Kushwah
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior, 474002, MP, India
| | - Surabhi Agnihotri
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior, 474002, MP, India
| | - Manorama Vimal
- Synthetic Chemistry Division, Defence Research & Development Establishment, Jhansi Road, Gwalior, 474002, MP, India
| | - Nandita Saxena
- Pharmacology and Toxicology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior, 474002, MP, India
| | - Ram Kumar Dhaked
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior, 474002, MP, India.
| |
Collapse
|
4
|
Potential Risk of Botulinum Neurotoxin -producing Clostridia Occurrence in Canned Fish. J Vet Res 2022; 66:605-611. [PMID: 36846039 PMCID: PMC9945006 DOI: 10.2478/jvetres-2022-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/21/2022] [Indexed: 11/11/2022] Open
Abstract
Introduction Heat treatment is indispensable in fish canning to provide an acceptable shelf life. Its optimisation reduces the risk of the presence of Clostridium botulinum spores, which could potentially cause botulism cases. This study evaluated canned fish samples for botulism neurotoxin (BoNT)-producing clostridia contamination and can bulging through microbiological contaminant growth. A new analytical approach was developed for detection of such clostridia and phenotypically similar species. Material and Methods A total of 70 canned fish samples suspected of exhibiting bulging features were analysed. Culture methods were used to detect clostridia. The isolates obtained were evaluated on the basis of the exhibited phenotypic characteristics. Also, PCRs were used for the detection of genes determining BoNT production (non-toxic non-haemagglutinin (ntnh) genes) and the amplification of conservative 16S rDNA genes, which were Sanger sequenced. The obtained sequences were analysed using the Basic Local Alignment Search Tool. Results Clostridium genus species were isolated from 17 (24%) bulging and organoleptically changed samples. No ntnh genes were present in these isolates; however, sequencing confirmed the presence of C. sporogenes, a species with close affinity to C. botulinum. Conclusion To eliminate the threat of foodborne botulism, laboratory diagnostic techniques must detect species of the Clostridium genus and elucidate their ability to produce BoNTs. Although Clostridium botulinum is the most common cause of botulism, the possibility may not be ignored that non-pathogenic Clostridium species may acquire botulinum toxigenicity. The similarity between the isolated strains of C. sporogenes and C. botulinum should be incorporated in the optimisation of heat treatment to guarantee a sterilised, microbiologically safe product.
Collapse
|
5
|
Near-Infrared Transflectance Spectroscopy Discriminates Solutions Containing Two Commercial Formulations of Botulinum Toxin Type A Diluted at Recommended Volumes for Clinical Reconstitution. BIOSENSORS 2022; 12:bios12040216. [PMID: 35448275 PMCID: PMC9032888 DOI: 10.3390/bios12040216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022]
Abstract
Botulinum neurotoxin type A (BoNT-A) is the active substance in pharmaceutical preparations widely used worldwide for the highly effective treatment of various disorders. Among the three commercial formulations of BoNT-A currently available in Italy for neurological indications, abobotulinum A toxin (Dysport®, Ipsen SpA, Milano, Italy) and incobotulinum A toxin (Xeomin®, Merz Pharma Italia srl, Milano, Italy) differ in the content of neurotoxin, non-toxic protein, and excipients. Clinical applications of BoNT-A adopt extremely diluted solutions (10−6 mg/mL) for injection in the target body district. Near-infrared spectroscopy (NIRS) and chemometrics allow rapid, non-invasive, and non-destructive methods for qualitative and quantitative analysis. No data are available to date on the chemometric analysis of the spectral fingerprints acquired from the diluted commercial formulations of BoNT-A. In this proof-of-concept study, we tested whether NIRS can categorize solutions of incobotulinum A toxin (lacking non-toxic proteins) and abobotulinum A toxin (containing non-toxic proteins). Distinct excipients in the two formulations were also analyzed. We acquired transmittance spectra in the visible and short-wave infrared regions (350–2500 nm) by an ASD FieldSpec 4™ Standard-Res Spectrophotoradiometer, using a submerged dip probe designed to read spectra in transflectance mode from liquid samples. After preliminary spectra pre-processing, principal component analysis was applied to characterize the spectral features of the two BoNT-A solutions and those of the various excipients diluted according to clinical standards. Partial least squares-discriminant analysis was used to implement a classification model able to discriminate the BoNT-A solutions and excipients. NIRS distinguished solutions containing distinct BoNT-A commercial formulations (abobotulinum A toxin vs. incobotulinum A toxin) diluted at recommended volumes for clinical reconstitution, distinct proteins (HSA vs. incobotulinum A toxin), very diluted solutions of simple sugars (lactose vs. sucrose), and saline or water. Predictive models of botulinum toxin formulations were also performed with the highest precision and accuracy.
Collapse
|
6
|
Abstract
Botulinum toxin treatment is the most common non-surgical cosmetic treatment. Although there are many available treatments using botulinum toxin, their effects are temporary and repeated injections are required. These frequent injections can trigger an immunological response. In addition, botulinum toxin acts as an antigen in the body; thus, its effect disappears progressively due to this immunological reaction, which may cause treatment failure. Active botulinum toxin consists of a core neurotoxin and complexing proteins, the exact effects of which remain unclear. However, the complexing proteins are closely related to the immune response and the formation of neutralizing antibodies. Since neutralizing antibodies can lead to treatment failure, their formation should be prevented. Furthermore, various methods of detecting neutralizing antibodies have been used to predict treatment failure.
Collapse
|
7
|
Gardner A, Tepp WH, Bradshaw M, Barbieri JT, Pellett S. Resolution of Two Steps in Botulinum Neurotoxin Serotype A1 Light Chain Localization to the Intracellular Plasma Membrane. Int J Mol Sci 2021; 22:11115. [PMID: 34681775 PMCID: PMC8539409 DOI: 10.3390/ijms222011115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/27/2022] Open
Abstract
Botulinum neurotoxin serotype A (BoNT/A) is the most potent protein toxin to humans. BoNT/A light chain (LC/A) cleavage of the membrane-bound SNAP-25 has been well-characterized, but how LC/A traffics to the plasma membrane to target SNAP-25 is unknown. Of the eight BoNT/A subtypes (A1-A8), LC/A3 has a unique short duration of action and low potency that correlate to the intracellular steady state of LC/A, where LC/A1 is associated with the plasma membrane and LC/A3 is present in the cytosol. Steady-state and live imaging of LC/A3-A1 chimeras identified a two-step process where the LC/A N terminus bound intracellular vesicles, which facilitated an internal α-helical-rich domain to mediate LC/A plasma membrane association. The propensity of LC/A variants for membrane association correlated with enhanced BoNT/A potency. Understanding the basis for light chain intracellular localization provides insight to mechanisms underlying BoNT/A potency, which can be extended to applications as a human therapy.
Collapse
Affiliation(s)
- Alexander Gardner
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA;
| | - William H. Tepp
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA; (W.H.T.); (M.B.)
| | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA; (W.H.T.); (M.B.)
| | - Joseph T. Barbieri
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA;
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA; (W.H.T.); (M.B.)
| |
Collapse
|
8
|
Application of pan genomics towards the druggability of Clostridium botulinum. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02005-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Characterization of immune response induced against catalytic domain of botulinum neurotoxin type E. Sci Rep 2020; 10:13932. [PMID: 32811892 PMCID: PMC7434876 DOI: 10.1038/s41598-020-70929-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/21/2020] [Indexed: 11/08/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) represent a family of bacterial toxins responsible for neuroparalytic disease 'botulism' in human and animals. Their potential use as biological weapon led to their classification in category 'A' biowarfare agent by Centers for Disease Control and Prevention (CDC), USA. In present study, gene encoding full length catalytic domain of BoNT/E-LC was cloned, expressed and protein was purified using Ni-NTA chromatography. Humoral immune response was confirmed by Ig isotyping and cell-mediated immunity by cytokine profiling and intracellular staining for enumeration of IFN-γ secreting CD4+ and CD8+ T cells. Increased antibody titer with the predominance of IgG subtype was observed. An interaction between antibodies produced against rBoNT/E-LC was established that showed the specificity against BoNT/E in SPR assay. Animal protection with rBoNT/E-LC was conferred through both humoral and cellular immune responses. These findings were supported by cytokine profiling and flow cytometric analysis. Splenocytes stimulated with rBoNT/E-LC showed a 3.27 and 2.8 times increase in the IFN-γ secreting CD4+ and CD8+ T cells, respectively; in immunized group (P < 0.05). Protection against BoNT/E challenge tended to relate with increase in the percentage of rBoNT/E-LC specific IL-2 in the splenocytes supernatant (P = 0.034) and with IFN-γ-producing CD4+ T cell responses (P = 0.045). We have immunologically evaluated catalytically active rBoNT/E-LC. Our results provide valuable investigational report for immunoprophylactic role of catalytic domain of BoNT/E.
Collapse
|
10
|
Aminianfar M, Parvardeh S, Soleimani M. In vitro and in vivo Assessment of Silver Nanoparticles Against Clostridium botulinum Type A Botulinum. Curr Drug Discov Technol 2020; 16:113-119. [PMID: 29623844 DOI: 10.2174/1570163815666180403163946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Clostridium botulinum causes botulism, a serious paralytic illness that results from the ingestion of a botulinum toxin. Because silver nanoparticle products exhibit strong antimicrobial activity, applications for silver nanoparticles in healthcare have expanded. Therefore, the objective of the current study was to assess a therapeutic strategy for the treatment of botulism toxicity using silver nanoparticles. METHODS A preliminary test was conducted using doses that produce illness in laboratory animals to determine the absolute lethal dose (LD100) of botulinum toxin type A (BoNT/A) in mice. Next, the test animals were divided into six groups containing six mice each. Groups I, II and III were the negative control (botulinum toxin only), positive control-1 (nano-silver only) and positive control-2 (no treatment), respectively. The remaining groups were allocated to the toxin that was supplemented with three nano-silver treatments. RESULTS The mortality rates of mice caused by BoNT/A significantly reduced in the treatment groups with different doses and injection intervals of nano-silver when compared to the negative control group. BoNT/A toxicity induced by intraperitoneal injection of the toxin of Clostridium botulinum causes rapid death while when coupled with nano-osilver results in delayed death in mice. CONCLUSION These results, while open to future improvement, represent a preliminary step towards the satisfactory control of BoNT/A with the use of silver nanoparticles for human protection against this bioterrorism threat. Further study in this area can elucidate the underlying mechanism for detoxifying BoNT/A by silver nanoparticles.
Collapse
Affiliation(s)
- Mohammad Aminianfar
- Department of Infectious Diseases, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Siavash Parvardeh
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Soleimani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Chauhan R, Chauhan V, Sonkar P, Vimal M, Dhaked RK. Targeted 8-hydroxyquinoline fragment based small molecule drug discovery against neglected botulinum neurotoxin type F. Bioorg Chem 2019; 92:103297. [PMID: 31557621 DOI: 10.1016/j.bioorg.2019.103297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Botulinum neurotoxins are highly potent biological warfare agents. The unavailability of countermeasures against these neurotoxins has been a matter of extensive research. However, no clinical therapeutics has come to existence till date. The 8-hydroxyquinoline (8-HQ) scaffold is established privileged compound and its potential as drug candidate against BoNTs is recently being explored. METHODS In present work, three course studies were performed involving in silico, in vitro and in vivo cascade to screen 8-HQ small molecule inhibitors against BoNT/F intoxication. ~800 molecules obtained from open repositories were screened in silico and commercially obtained twenty-four 8-HQ derived small molecule inhibitors were evaluated against rBoNT/F light chain through fluorescence thermal shift (FTS) assay. Selected compounds were further evaluated through endopeptidase assay. Further binding affinity analysis was done through surface plasmon resonance (SPR) based Proteon™ XPR 36 system. Finally, the in vivo efficacy of these compounds was evaluated in mice model. RESULTS Three compounds NSC1011, NSC1014 and NSC84094 were found to be highly inhibitory after screening of 8-HQ compounds through FTS assay and endopeptidase assay. SPR based protein-small molecule interaction studies showed highest affinity binding of NSC1014 (KD: 5.58E-06) with BoNT/F-LC. NSC1011, NSC1014, and NSC84094 displayed IC50 of 30.47 ± 6.24, 14.91 ± 2.49 and 17.39 ± 2.74 μM, respectively, in endopeptidase assay. NSC1011 and NSC1014 displayed marked extension of survival time in mice model. CONCLUSION NSC1011 and NSC1014 have emerged as promising drug candidate against BoNT/F intoxication displaying higher potential than previously reported compounds.
Collapse
Affiliation(s)
- Ritika Chauhan
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, MP, India
| | - Vinita Chauhan
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, MP, India
| | - Priyanka Sonkar
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, MP, India
| | - Manorama Vimal
- Synthetic Chemistry Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, MP, India
| | - Ram Kumar Dhaked
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, MP, India.
| |
Collapse
|
12
|
Chauhan R, Chauhan V, Sonkar P, Dhaked RK. Identification of Inhibitors against Botulinum Neurotoxins: 8-Hydroxyquinolines Hold Promise. Mini Rev Med Chem 2019; 19:1694-1706. [PMID: 31490749 DOI: 10.2174/1389557519666190906120228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/13/2018] [Accepted: 08/20/2019] [Indexed: 11/22/2022]
Abstract
Botulinum neurotoxins (BoNTs) are the most toxic category A biological warfare agents. There is no therapeutics available for BoNT intoxication yet, necessitating the development of a medical countermeasure against these neurotoxins. The discovery of small molecule-based drugs has revolutionized in the last two decades resulting in the identification of several small molecule inhibitors of BoNTs. However, none progressed to clinical trials. 8-Hydroxyquinolines scaffold-based molecules are important 'privileged structures' that can be exploited as inhibitors of a diverse range of targets. In this review, our study of recent reports suggests the development of 8-hydroxyquinoline derived molecules as a potential drug may be on the horizon.
Collapse
Affiliation(s)
- Ritika Chauhan
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior-474002, MP, India
| | - Vinita Chauhan
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior-474002, MP, India
| | - Priyanka Sonkar
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior-474002, MP, India
| | - Ram Kumar Dhaked
- Biotechnology Division, Defence Research & Development Establishment, Jhansi Road, Gwalior-474002, MP, India
| |
Collapse
|
13
|
Do complexing proteins provide mechanical protection for botulinum neurotoxins? J Neural Transm (Vienna) 2019; 126:1047-1050. [PMID: 31168666 DOI: 10.1007/s00702-019-02023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/25/2019] [Indexed: 10/26/2022]
Abstract
Botulinum toxin (BT) consists of botulinum neurotoxin and complexing proteins (CPs). CPs might provide mechanical protection for botulinum neurotoxin. As incobotulinumtoxinA (INCO, Xeomin®) does not contain CPs, we wanted to compare its mechanical stability to that of onabotulinumtoxinA (ONA, Botox®) containing CPs. For this, ONA and INCO were reconstituted without mechanical stress (NS) and with mechanical stress (WS) generated by a recently introduced stress test. Potencies were then measured by the paralysis times (PTs) in the mouse diaphragm assay. ONA-PT was 75.8 ± 10.3 min (n = 6) under NS and 116.7 ± 29.8 min (n = 6) under WS (two-tailed t test, p = 0.002). Mechanical stress increased the ONA-PT by 35.0% on the Growth Percentage Index. INCO-PT was 66.0 ± 7.0 min for NS and 76.0 ± 1.0 min for WS (t test, p = 0.129). Mechanical stress increased the INCO-PT by 13.2% on the Growth Percentage Index. Our data show that mechanical stress inactivates a CP-containing BT drug, but not a CP-free BT drug. We conclude that CPs do not provide protection against mechanical stress, supporting the view that CPs are not necessary for therapeutic purposes.
Collapse
|
14
|
|
15
|
McCombe PA, Henderson RD, Lee A, Lee JD, Woodruff TM, Restuadi R, McRae A, Wray NR, Ngo S, Steyn FJ. Gut microbiota in ALS: possible role in pathogenesis? Expert Rev Neurother 2019; 19:785-805. [PMID: 31122082 DOI: 10.1080/14737175.2019.1623026] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: The gut microbiota has important roles in maintaining human health. The microbiota and its metabolic byproducts could play a role in the pathogenesis of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Areas covered: The authors evaluate the methods of assessing the gut microbiota, and also review how the gut microbiota affects the various physiological functions of the gut. The authors then consider how gut dysbiosis could theoretically affect the pathogenesis of ALS. They present the current evidence regarding the composition of the gut microbiota in ALS and in rodent models of ALS. Finally, the authors review therapies that could improve gut dysbiosis in the context of ALS. Expert opinion: Currently reported studies suggest some instances of gut dysbiosis in ALS patients and mouse models; however, these studies are limited, and more information with well-controlled larger datasets is required to make a definitive judgment about the role of the gut microbiota in ALS pathogenesis. Overall this is an emerging field that is worthy of further investigation. The authors advocate for larger studies using modern metagenomic techniques to address the current knowledge gaps.
Collapse
Affiliation(s)
- Pamela A McCombe
- Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital , Brisbane , Australia.,Department of Neurology, Royal Brisbane & Women's Hospital , Brisbane , Australia.,School of Medicine, The University of Queensland , Brisbane , Australia
| | - Robert D Henderson
- Wesley Medical Research, Level 8 East Wing, The Wesley Hospital , Brisbane , Australia.,Department of Neurology, Royal Brisbane & Women's Hospital , Brisbane , Australia.,School of Medicine, The University of Queensland , Brisbane , Australia.,Queensland Brain Institute, The University of Queensland , Brisbane , Australia
| | - Aven Lee
- Centre for Clinical Research, The University of Queensland , Brisbane , Australia
| | - John D Lee
- School of Biomedical Sciences, The University of Queensland , Brisbane , Australia
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland , Brisbane , Australia
| | - Restuadi Restuadi
- Institute for Molecular Bioscience, The University of Queensland , Brisbane , Australia
| | - Allan McRae
- Institute for Molecular Bioscience, The University of Queensland , Brisbane , Australia
| | - Naomi R Wray
- Queensland Brain Institute, The University of Queensland , Brisbane , Australia.,Institute for Molecular Bioscience, The University of Queensland , Brisbane , Australia
| | - Shyuan Ngo
- Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital , Brisbane , Australia.,Department of Neurology, Royal Brisbane & Women's Hospital , Brisbane , Australia.,Queensland Brain Institute, The University of Queensland , Brisbane , Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Brisbane , Australia
| | - Frederik J Steyn
- Centre for Clinical Research, The University of Queensland , Brisbane , Australia.,Wesley Medical Research, Level 8 East Wing, The Wesley Hospital , Brisbane , Australia.,Department of Neurology, Royal Brisbane & Women's Hospital , Brisbane , Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , Brisbane , Australia
| |
Collapse
|
16
|
Ferrari A, Manca M, Tugnoli V, Alberto L. Pharmacological differences and clinical implications of various botulinum toxin preparations: a critical appraisal. FUNCTIONAL NEUROLOGY 2019; 33:7-18. [PMID: 29633692 DOI: 10.11138/fneur/2018.33.1.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three different type A botulinum neurotoxins (BoNTAs) - onabotulinumtoxinA, abobotulinumtoxinA and incobotulinumtoxinA) - are currently marketed in Europe to treat several conditions. Differences between BoNTA preparations, which depend on their specific biotypes and manufacturing processes, lead to clinically relevant pharmacotherapeutic dissimilarities. All three available products are separately recognized and reviewed in American Academy of Neurology guidelines. The neurotoxin load/100U is likewise different among the different BoNTAs, with the result that the specific potency of the 150kD BoNTA neurotoxin is calculated as 137 units/ng for onabotulinumtoxinA, 154 units/ng for abobotulinumtoxinA, and 227 units/ng for incobotulinumtoxinA. It is important for clinicians to have all three BoNTAs available in order to choose the most suitable preparation for the specific indication in the single patient. Commercially available BoNTAs must be recognized as different from one another, and therefore as non-interchangeable. The essential experience of the clinician is of the utmost importance in choosing the most appropriate treatment.
Collapse
|
17
|
Light Chain Diversity among the Botulinum Neurotoxins. Toxins (Basel) 2018; 10:toxins10070268. [PMID: 30004421 PMCID: PMC6070880 DOI: 10.3390/toxins10070268] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/30/2022] Open
Abstract
Botulinum neurotoxins (BoNT) are produced by several species of clostridium. There are seven immunologically unique BoNT serotypes (A⁻G). The Centers for Disease Control classifies BoNTs as 'Category A' select agents and are the most lethal protein toxins for humans. Recently, BoNT-like proteins have also been identified in several non-clostridia. BoNTs are di-chain proteins comprised of an N-terminal zinc metalloprotease Light Chain (LC) and a C-terminal Heavy Chain (HC) which includes the translocation and receptor binding domains. The two chains are held together by a disulfide bond. The LC cleaves Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). The cleavage of SNAREs inhibits the fusion of synaptic vesicles to the cell membrane and the subsequent release of acetylcholine, which results in flaccid paralysis. The LC controls the catalytic properties and the duration of BoNT action. This review discusses the mechanism for LC catalysis, LC translocation, and the basis for the duration of LC action. Understanding these properties of the LC may expand the applications of BoNT as human therapies.
Collapse
|
18
|
Closed Genome Sequence of Clostridium botulinum Strain CFSAN064329 (62A). GENOME ANNOUNCEMENTS 2018; 6:6/26/e00528-18. [PMID: 29954889 PMCID: PMC6025949 DOI: 10.1128/genomea.00528-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Clostridium botulinum is a strictly anaerobic, Gram-positive, spore-forming bacterium that produces botulinum neurotoxin, a potent and deadly proteinaceous exotoxin. Clostridium botulinum strain CFSAN064329 (62A) produces an A1 serotype/subtype botulinum neurotoxin and is frequently utilized in food challenge and detection studies. Clostridium botulinum is a strictly anaerobic, Gram-positive, spore-forming bacterium that produces botulinum neurotoxin, a potent and deadly proteinaceous exotoxin. Clostridium botulinum strain CFSAN064329 (62A) produces an A1 serotype/subtype botulinum neurotoxin and is frequently utilized in food challenge and detection studies. We report here the closed genome sequence of Clostridium botulinum strain CFSAN064329 (62A).
Collapse
|
19
|
Abstract
Several formulations of Botulinum toxin serotype A (BoNT-A) for aesthetic indications are available, with numbers likely to increase. Preparations are not interchangeable, based on dose unit comparisons.
Collapse
|
20
|
Nawrocki EM, Bradshaw M, Johnson EA. Botulinum neurotoxin-encoding plasmids can be conjugatively transferred to diverse clostridial strains. Sci Rep 2018; 8:3100. [PMID: 29449580 PMCID: PMC5814558 DOI: 10.1038/s41598-018-21342-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 02/02/2018] [Indexed: 02/07/2023] Open
Abstract
Most Group I Clostridium botulinum strains harbor botulinum neurotoxin (bont) genes on their chromosome, while some carry these genes (including bont/a, bont/b, and bont/f) on large plasmids. Prior work in our laboratory demonstrated that Group I BoNT plasmids were mobilized to C. botulinum recipient strains containing the Tn916 transposon. Here, we show that Tn916 is nonessential for plasmid transfer. Relying on an auxotrophic donor phenotype and a plasmid-borne selectable marker, we observed the transfer of pCLJ, a 270 kb plasmid harboring two bont genes, from its host strain to various clostridia. Transfer frequency was greatest to other Group I C. botulinum strains, but the plasmid was also transferred into traditionally nontoxigenic species, namely C. sporogenes and C. butyricum. Expression and toxicity of BoNT/A4 was confirmed in transconjugants by immunoblot and mouse bioassay. These data indicate that conjugation within the genus Clostridium can occur across physiological Groups of C. botulinum, supporting horizontal gene transfer via bont-bearing plasmids. The transfer of plasmids possessing bont genes to resistant Clostridium spp. such as C. sporogenes could impact biological safety for animals and humans. These plasmids may play an environmental role in initiating death in vertebrates, leading to decomposition and nutrient recycling of animal biomass.
Collapse
Affiliation(s)
- Erin M Nawrocki
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
21
|
Chauhan R, Chauhan V, Rao MK, Chaudhary D, Bhagyawant S, Dhaked RK. High level expression and immunochemical characterization of botulinum neurotoxin type F light chain. Protein Expr Purif 2018; 146:51-60. [PMID: 29407166 DOI: 10.1016/j.pep.2018.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/16/2018] [Accepted: 01/27/2018] [Indexed: 11/15/2022]
Abstract
Botulinum neurotoxins (BoNTs) are the most toxic biological substances known. Their potential use as biological warfare agent results in their classification as category A biowarfare agent by Centers for Disease Control and Prevention (CDC), USA. Presently, there are no approved detection system and pharmacological treatments for BoNT intoxication. Although a toxoid vaccine is available for immuno-prophylaxis, vaccines cannot reverse the effect of pre-translocated toxin. Direct handling of the live BoNTs for developing detection and therapeutics may pose fatal danger. This concern was addressed by purifying the recombinant catalytically active light chain of BoNT/F. BoNT/F-LC gene was amplified from the genomic DNA using specifically designed primers and expressed in Escherichia coli. Expression and purification profile were optimized under different conditions for biologically active light chain production. Specific polyclonal antibodies generated against type F illustrates in vivo neutralization in mice and rabbit. These antibodies play key role in conceiving the development of high throughput SPR based detection system which is a highly precise label free technique for protein interaction analysis. The presented work is first of its kind, signifying the production of highly stable and active rBoNT/F-LC and its immunochemical characterization. The study aids in paving the path towards developing a persistent detection system as well as in presenting comprehended scheme for in vitro small molecule therapeutics analysis.
Collapse
Affiliation(s)
| | | | - Mula Kameshwar Rao
- Division of Pharmacology and Toxicology, Defence Research & Development Establishment, Jhansi Road, Gwalior 474002, India
| | | | - Sameer Bhagyawant
- School of Studies in Biotechnology, Jiwaji University, Gwalior 474001, India
| | | |
Collapse
|
22
|
Gustafsson R, Berntsson RPA, Martínez-Carranza M, El Tekle G, Odegrip R, Johnson EA, Stenmark P. Crystal structures of OrfX2 and P47 from a Botulinum neurotoxin OrfX-type gene cluster. FEBS Lett 2017; 591:3781-3792. [PMID: 29067689 DOI: 10.1002/1873-3468.12889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 11/08/2022]
Abstract
Botulinum neurotoxins are highly toxic substances and are all encoded together with one of two alternative gene clusters, the HA or the OrfX gene cluster. Very little is known about the function and structure of the proteins encoded in the OrfX gene cluster, which in addition to the toxin contains five proteins (OrfX1, OrfX2, OrfX3, P47, and NTNH). We here present the structures of OrfX2 and P47, solved to 2.1 and 1.8 Å, respectively. We show that they belong to the TULIP protein superfamily, which are often involved in lipid binding. OrfX1 and OrfX2 were both found to bind phosphatidylinositol lipids.
Collapse
Affiliation(s)
- Robert Gustafsson
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Ronnie P-A Berntsson
- Department of Biochemistry and Biophysics, Stockholm University, Sweden.,Department of Medical Biochemistry and Biophysics, Umeå University, Sweden
| | | | - Geniver El Tekle
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Richard Odegrip
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin, Madison, WI, USA
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| |
Collapse
|
23
|
A Novel Surface Plasmon Resonance Biosensor for the Rapid Detection of Botulinum Neurotoxins. BIOSENSORS-BASEL 2017; 7:bios7030032. [PMID: 28783115 PMCID: PMC5618038 DOI: 10.3390/bios7030032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 07/28/2017] [Accepted: 08/01/2017] [Indexed: 11/16/2022]
Abstract
Botulinum neurotoxins (BoNTs) are Category A agents on the NIAID (National Institute of Allergy and Infectious Diseases) priority pathogen list owing to their extreme toxicity and the relative ease of production. These deadly toxins, in minute quantities (estimated human i.v. lethal dose LD50 of 1-2 ng/kg body weight), cause fatal flaccid paralysis by blocking neurotransmitter release. The current gold standard detection method, the mouse-bioassay, often takes days to confirm botulism. Furthermore, there are no effective antidotes known to reverse the symptoms of botulism, and as a result, patients with severe botulism often require meticulous care during the prolonged paralytic illness. To combat potential bio-terrorism incidents of botulinum neurotoxins, their rapid detection is paramount. Surface plasmon resonance (SPR) is a very sensitive technique to examine bio-molecular interactions. The label-free, real-time analysis, with high sensitivity and low sample consumption makes this technology particularly suitable for detection of the toxin. In this study, we demonstrated the feasibility in an assay with a newly designed SPR instrument for the rapid detection of botulinum neurotoxins. The LOD (limit of detection) of the Newton Photonics (NP) SPR based assay is 6.76 pg/mL for Botulinum Neurotoxin type A Light Chain (BoNT/A LC). We established that the detection sensitivity of the system is comparable to the traditional mouse LD50 bioassay in BoNT/A using this SPR technology.
Collapse
|
24
|
Saffarian P, Peerayeh SN, Amani J, Ebrahimi F, Sedighianrad H, Halabian R, Imani Fooladi AA. Expression and purification of recombinant TAT-BoNT/A (1-448) under denaturing and native conditions. Bioengineered 2016; 7:478-483. [PMID: 27566060 PMCID: PMC5241812 DOI: 10.1080/21655979.2016.1201252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/08/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022] Open
Abstract
Botulinum toxin type A can temporarily inhibit muscle contraction. Currently, physicians administer this toxin as a bio-drug in treatment of some muscle contraction disorders. TAT-BoNT/A(1-448) is a functional recombinant protein derived from botulinum toxin light chain. Unlike the full length botulinum toxin, TAT-BoNT/A(1-448) is a self-permeable molecule which can pass through bio-surfaces so can be used as a topical therapeutic agent without injection. To maintain the functionality of TAT-BoNT/A(1-448), it is necessary to restore its normal folding upon expression and purification. In this study, we have investigated and optimized expression conditions for this novel recombinant protein. Under denaturing condition (1 mM IPTG, at 37°C), the chimeric protein was produced as inclusion body and required to be purified using denaturing agents (e.g. urea). Yet, lower incubation temperature (18°C) and less IPTG concentration (0.5 mM) induce a protein under native condition. In such condition, about 60% of the chimeric protein was expressed in soluble form.
Collapse
Affiliation(s)
- Parvaneh Saffarian
- Department of Microbiology, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Najar Peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jafar Amani
- Department of Biology, Faculty of Basic Sciences, Imam Hussein University, Tehran, Iran
| | - Firooz Ebrahimi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Sedighianrad
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
|
26
|
Zeiller M, Rothballer M, Iwobi AN, Böhnel H, Gessler F, Hartmann A, Schmid M. Systemic colonization of clover (Trifolium repens) by Clostridium botulinum strain 2301. Front Microbiol 2015; 6:1207. [PMID: 26583010 PMCID: PMC4628109 DOI: 10.3389/fmicb.2015.01207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022] Open
Abstract
In recent years, cases of botulism in cattle and other farm animals and also in farmers increased dramatically. It was proposed, that these cases could be affiliated with the spreading of compost or other organic manures contaminated with Clostridium botulinum spores on farm land. Thus, soils and fodder plants and finally farm animals could be contaminated. Therefore, the colonization behavior and interaction of the botulinum neurotoxin (BoNT D) producing C. botulinum strain 2301 and the non-toxin producing Clostridium sporogenes strain 1739 were investigated on clover (Trifolium repens) in a field experiment as well as in phytochamber experiments applying axenic and additionally soil based systems under controlled conditions. Plants were harvested and divided into root and shoot parts for further DNA isolation and polymerase chain reaction (PCR) assays; subsamples were fixed for fluorescence in situ hybridization analysis in combination with confocal laser scanning microscopy. In addition, we observed significant differences in the growth behavior of clover plants when inoculated with clostridial spores, indicating a plant growth promoting effect. Inoculated plants showed an increased growth index (shoot size, wet and dry weight) and an enlarged root system induced by the systemic colonization of clover by C. botulinum strain 2301. To target C. botulinum and C. sporogenes, 16S rDNA directed primers were used and to specifically detect C. botulinum, BoNT D toxin genes targeted primers, using a multiplex PCR approach, were applied. Our results demonstrate an effective colonization of roots and shoots of clover by C. botulinum strain 2301 and C. sporogenes strain 1739. Detailed analysis of colonization behavior showed that C. botulinum can occur as individual cells, in cell clusters and in microcolonies within the rhizosphere, lateral roots and within the roots tissue of clover.
Collapse
Affiliation(s)
- Matthias Zeiller
- Research Unit Microbe-Plant Interactions, Department for Environmental Sciences, German Research Center for Environmental Health - Helmholtz Zentrum München Neuherberg, Germany
| | - Michael Rothballer
- Research Unit Microbe-Plant Interactions, Department for Environmental Sciences, German Research Center for Environmental Health - Helmholtz Zentrum München Neuherberg, Germany
| | - Azuka N Iwobi
- Bavarian Health and Food Safety Authority Oberschleißheim, Germany
| | - Helge Böhnel
- Institute for Applied Biotechnology in the Tropics at the Georg-August University Goettingen Goettingen, Germany
| | - Frank Gessler
- Institute for Applied Biotechnology in the Tropics at the Georg-August University Goettingen Goettingen, Germany ; miprolab GmbH Goettingen, Germany
| | - Anton Hartmann
- Research Unit Microbe-Plant Interactions, Department for Environmental Sciences, German Research Center for Environmental Health - Helmholtz Zentrum München Neuherberg, Germany
| | - Michael Schmid
- Research Unit Microbe-Plant Interactions, Department for Environmental Sciences, German Research Center for Environmental Health - Helmholtz Zentrum München Neuherberg, Germany
| |
Collapse
|
27
|
Moawad EMI, Abdallah EAA. Botulinum Toxin in Pediatric Neurology: Switching Lanes From Death to Life. Glob Pediatr Health 2015; 2:2333794X15590149. [PMID: 27335961 PMCID: PMC4784590 DOI: 10.1177/2333794x15590149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Botulinum neurotoxins are natural molecules produced by anaerobic spore-forming bacteria called Clostradium boltulinum. The toxin has a peculiar mechanism of action by preventing the release of acetylcholine from the presynaptic membrane. Consequently, it has been used in the treatment of various neurological conditions related to muscle hyperactivity and/or spasticity. Also, it has an impact on the autonomic nervous system by acting on smooth muscle, leading to its use in the management of pain syndromes. The use of botulinum toxin in children separate from adults has received very little attention in the literature. This review presents the current data on the use of botulinum neurotoxin to treat various neurological disorders in children.
Collapse
|
28
|
Positive regulation of botulinum neurotoxin gene expression by CodY in Clostridium botulinum ATCC 3502. Appl Environ Microbiol 2014; 80:7651-8. [PMID: 25281376 DOI: 10.1128/aem.02838-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Botulinum neurotoxin, produced mainly by the spore-forming bacterium Clostridium botulinum, is the most poisonous biological substance known. Here, we show that CodY, a global regulator conserved in low-G+C Gram-positive bacteria, positively regulates the botulinum neurotoxin gene expression. Inactivation of codY resulted in decreased expression of botA, encoding the neurotoxin, as well as in reduced neurotoxin synthesis. Complementation of the codY mutation in trans rescued neurotoxin synthesis, and overexpression of codY in trans caused elevated neurotoxin production. Recombinant CodY was found to bind to a 30-bp region containing the botA transcription start site, suggesting regulation of the neurotoxin gene transcription through direct interaction. GTP enhanced the binding affinity of CodY to the botA promoter, suggesting that CodY-dependent neurotoxin regulation is associated with nutritional status.
Collapse
|
29
|
Holotoxin Activity of Botulinum Neurotoxin Subtype A4 Originating from a Nontoxigenic Clostridium botulinum Expression System. Appl Environ Microbiol 2014; 80:7415-22. [PMID: 25239905 DOI: 10.1128/aem.01795-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/17/2014] [Indexed: 12/14/2022] Open
Abstract
Clostridium botulinum subtype A4 neurotoxin (BoNT/A4) is naturally expressed in the dual-toxin-producing C. botulinum strain 657Ba at 100× lower titers than BoNT/B. In this study, we describe purification of recombinant BoNT/A4 (rBoNT/A4) expressed in a nonsporulating and nontoxigenic C. botulinum expression host strain. The rBoNT/A4 copurified with nontoxic toxin complex components provided in trans by the expression host and was proteolytically cleaved to the active dichain form. Activity of the recombinant BoNT/A4 in mice and in human neuronal cells was about 1,000-fold lower than that of BoNT/A1, and the recombinant BoNT/A4 was effectively neutralized by botulism heptavalent antitoxin. A previous report using recombinant truncated BoNT/A4 light chain (LC) expressed in Escherichia coli has indicated reduced stability and activity of BoNT/A4 LC compared to BoNT/A1 LC, which was surmounted by introduction of a single-amino-acid substitution, I264R. In order to determine whether this mutation would also affect the holotoxin activity of BoNT/A4, a recombinant full-length BoNT/A4 carrying this mutation as well as a second mutation predicted to increase solubility (L260F) was produced in the clostridial expression system. Comparative analyses of the in vitro, cellular, and in vivo activities of rBoNT/A4 and rBoNT/A4-L260F I264R showed 1,000-fold-lower activity than BoNT/A1 in both the mutated and nonmutated BoNT/A4. This indicates that these mutations do not alter the activity of BoNT/A4 holotoxin. In summary, a recombinant BoNT from a dual-toxin-producing strain was expressed and purified in an endogenous clostridial expression system, allowing analysis of this toxin.
Collapse
|
30
|
Harris TL, Lowery CA, Hixon MS, Janda KD. A platform stratifying a sequestering agent and a pharmacological antagonist as a means to negate botulinum neurotoxicity. ACS Chem Neurosci 2014; 5:632-6. [PMID: 25000171 DOI: 10.1021/cn500135h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Botulinum neurotoxicity is characterized by peripheral neuromuscular blockade/flaccid paralysis that can lead to respiratory failure and ultimately death. Current therapeutic options provide relief in a pre-exposure scenario, but there are no clinically approved postexposure medical countermeasures. Here, we introduce a platform that utilizes a combination of a toxin sequestering agent and a pharmacological antagonist to ablate botulinum neurotoxicity in a well-defined mouse lethality assay. The platform was constructed to allow for ready exchange of sequestering agent and/or pharmacological antagonist for therapeutic optimization. As such, we attempted to improve upon the pharmacological antagonist, a potassium channel blocker, 3,4-diaminopyridine, through a prodrug approach; thus, a complete kinetic decomposition pathway is described. These experiments provide the first proof-of-principle that a synergistic combination strategy can be used to reduce toxin burden in the peripheral using a sequestering antibody, while restoring muscle action via a pharmacological small molecule antagonist.
Collapse
Affiliation(s)
- Tyler L. Harris
- Departments
of Chemistry, Immunology and Microbial Sciences, and The Skaggs Institute
for Chemical Biology, The Scripps Research Institute, 10550 North
Torrey Pines Road, La Jolla, California 92037, United States
| | - Colin A. Lowery
- Departments
of Chemistry, Immunology and Microbial Sciences, and The Skaggs Institute
for Chemical Biology, The Scripps Research Institute, 10550 North
Torrey Pines Road, La Jolla, California 92037, United States
| | - Mark S. Hixon
- Department
of Discovery Biology, Takeda California, Inc., 10410 Science Center
Drive, San Diego, California 92121, United States
| | - Kim D. Janda
- Departments
of Chemistry, Immunology and Microbial Sciences, and The Skaggs Institute
for Chemical Biology, The Scripps Research Institute, 10550 North
Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
31
|
|
32
|
Sachdeva A, Singh AK, Sharma SK. An electrochemiluminescence assay for the detection of bio threat agents in selected food matrices and in the screening of Clostridium botulinum outbreak strains associated with type A botulism. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:707-712. [PMID: 23873138 DOI: 10.1002/jsfa.6310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/02/2013] [Accepted: 07/19/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Specific screening methods for complex food matrices are needed that enable unambiguous and sensitive detection of bio threat agents (BTAs) such as Bacillus anthracis spores and microbial toxins (e.g. staphylococcal enterotoxin B (SEB) and clostridial botulinum neurotoxins (BoNTs)). The present study describes an image-based 96-well Meso Scale Discovery (MSD) electrochemiluminescence (ECL) assay for simultaneous detection of BTAs in dairy milk products. RESULTS The limit of detection of this ECL assay is 40 pg mL⁻¹ for BoNT/A complex, 10 pg mL⁻¹ for SEB and 40000 CFU mL⁻¹ for Bacillus anthracis spores in dairy milk products. The ECL assay was successfully applied to screen type A Clostridium botulinum outbreak strains. CONCLUSION The results of the study indicate that this ECL assay is very sensitive, rapid (<6 h) and multiplex in nature. The ECL assay has potential for use as an in vitro screening method for BTAs over other comparable immunoassays.
Collapse
Affiliation(s)
- Amita Sachdeva
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, US Food and Drug Administration, 5100 Paint Branch Parkway, College Park, MD, 20740, USA
| | | | | |
Collapse
|
33
|
Park JB, Simpson LL. Progress toward development of an inhalation vaccine against botulinum toxin. Expert Rev Vaccines 2014; 3:477-87. [PMID: 15270652 DOI: 10.1586/14760584.3.4.477] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The looming threat of bioterrorism has enhanced interest in the development of vaccines against agents such as botulinum toxin. This in turn has stimulated efforts to create vaccines that are effective by the oral and inhalation routes. Recently, considerable progress has been made in creating an inhalation vaccine against botulism. This work stems from the discovery that a polypeptide that represents a third of the toxin molecule retains the ability to be adsorbed from the airway and to evoke an immune response but retains none of the adverse effects of the native toxin. Interestingly, this polypeptide can also serve as a carrier molecule in the creation of inhalation vaccines against other pathogens.
Collapse
Affiliation(s)
- Jong-Beak Park
- Division of Infectious Diseases and Environmental Medicine, Department of Medicine, Jefferson Medical College, 1020 Locust Street, Room 314, Philadelphia, PA 19107, USA
| | | |
Collapse
|
34
|
Comparison of assembled Clostridium botulinum A1 genomes revealed their evolutionary relationship. Genomics 2013; 103:94-106. [PMID: 24369123 DOI: 10.1016/j.ygeno.2013.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/08/2013] [Accepted: 12/14/2013] [Indexed: 11/24/2022]
Abstract
Clostridium botulinum encompasses bacteria that produce at least one of the seven serotypes of botulinum neurotoxin (BoNT/A-G). The availability of genome sequences of four closely related Type A1 or A1(B) strains, as well as the A1-specific microarray, allowed the analysis of their genomic organizations and evolutionary relationship. The four genomes share >90% core genes and >96% functional groups. Phylogenetic analysis based on COG shows closer relations of the A1(B) strain, NCTC 2916, to B1 and F1 than A1 strains. Alignment of the genomes of the three A1 strains revealed a highly similar chromosomal structure with three small gaps in the genome of ATCC 19397 and one additional gap in the genome of Hall A, suggesting ATCC 19379 as an evolutionary intermediate between Hall A and ATCC 3502. Analyses of the four gap regions indicated potential horizontal gene transfer and recombination events important for the evolution of A1 strains.
Collapse
|
35
|
Carter GP, Cheung JK, Larcombe S, Lyras D. Regulation of toxin production in the pathogenic clostridia. Mol Microbiol 2013; 91:221-31. [DOI: 10.1111/mmi.12469] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Glen P. Carter
- Department of Microbiology; Monash University; Clayton Vic. 3800 Australia
| | - Jackie K. Cheung
- Department of Microbiology; Monash University; Clayton Vic. 3800 Australia
| | - Sarah Larcombe
- Department of Microbiology; Monash University; Clayton Vic. 3800 Australia
| | - Dena Lyras
- Department of Microbiology; Monash University; Clayton Vic. 3800 Australia
| |
Collapse
|
36
|
Húngaro HM, Alvarenga VO, Peña WEL, Sant'Ana ADS. Hearts of palms preserves and botulism in Brazil: An overview of outbreaks, causes and risk management strategies. Trends Food Sci Technol 2013. [DOI: 10.1016/j.tifs.2013.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
37
|
Silhár P, Eubanks LM, Seki H, Pellett S, Javor S, Tepp WH, Johnson EA, Janda KD. Targeting botulinum A cellular toxicity: a prodrug approach. J Med Chem 2013; 56:7870-9. [PMID: 24127873 DOI: 10.1021/jm400873n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The botulinum neurotoxin light chain (LC) protease has become an important therapeutic target for postexposure treatment of botulism. Hydroxamic acid based small molecules have proven to be potent inhibitors of LC/A with nanomolar Ki values, yet they lack cellular activity conceivably due to low membrane permeability. To overcome this potential liability, we investigated two prodrug strategies, 1,4,2-dioxazole and carbamate, based on our 1-adamantylacetohydroxamic acid scaffold. The 1,4,2-dioxazole prodrug did not demonstrate cellular activity, however, carbamates exhibited cellular potency with the most active compound displaying an EC50 value of 20 μM. Cellular trafficking studies were conducted using a "fluorescently silent" prodrug that remained in this state until cellular uptake was complete, which allowed for visualization of the drug's release inside neuronal cells. In sum, this research sets the stage for future studies leveraging the specific targeting and delivery of these prodrugs, as well as other antibotulinum agents, into neuronal cells.
Collapse
Affiliation(s)
- Peter Silhár
- Departments of Chemistry and Immunology and Microbial Science, The Skaggs Institute for Chemical Biology, and The Worm Institute for Research and Medicine, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Li T, Tian R, Cai K, Wang Q, Chen F, Fang H, Luo S, Li Z, Wang D, Hou X, Wang H. The Effect of pH on Growth ofClostridium botulinumType A and Expression ofbontAandbotRDuring Different Growth Stages. Foodborne Pathog Dis 2013; 10:692-7. [DOI: 10.1089/fpd.2012.1457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Tao Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Renmao Tian
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Kun Cai
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Qin Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Fanghong Chen
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Huali Fang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Sen Luo
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhan Li
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dehui Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaojun Hou
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Hui Wang
- State Key Laboratory of Pathogens and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
39
|
Opsenica IM, Tot M, Gomba L, Nuss JE, Sciotti RJ, Bavari S, Burnett JC, Šolaja BA. 4-Amino-7-chloroquinolines: probing ligand efficiency provides botulinum neurotoxin serotype A light chain inhibitors with significant antiprotozoal activity. J Med Chem 2013; 56:5860-71. [PMID: 23815186 PMCID: PMC3880596 DOI: 10.1021/jm4006077] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structurally simplified analogues of dual antimalarial and botulinum neurotoxin serotype A light chain (BoNT/A LC) inhibitor bis-aminoquinoline (1) were prepared. New compounds were designed to improve ligand efficiency while maintaining or exceeding the inhibitory potency of 1. Three of the new compounds are more active than 1 against both indications. Metabolically, the new inhibitors are relatively stable and nontoxic. 12, 14, and 15 are more potent BoNT/A LC inhibitors than 1. Additionally, 15 has excellent in vitro antimalarial efficacy, with IC90 values ranging from 4.45 to 12.11 nM against five Plasmodium falciparum (P.f.) strains: W2, D6, C235, C2A, and C2B. The results indicate that the same level of inhibitory efficacy provided by 1 can be retained/exceeded with less structural complexity. 12, 14, and 15 provide new platforms for the development of more potent dual BoNT/A LC and P.f. inhibitors adhering to generally accepted chemical properties associated with the druggability of synthetic molecules.
Collapse
Affiliation(s)
- Igor M. Opsenica
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158, Belgrade, Serbia
| | - Mikloš Tot
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158, Belgrade, Serbia
| | - Laura Gomba
- United States Army Medical Research Institute of Infectious Diseases, Department of Bacteriology, 1425 Porter Street, Frederick, MD 21702, USA
| | - Jonathan E. Nuss
- United States Army Medical Research Institute of Infectious Diseases, Department of Bacteriology, 1425 Porter Street, Frederick, MD 21702, USA
| | - Richard J. Sciotti
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Sina Bavari
- Target Discovery and Experimental Microbiology, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD 21702, USA
| | - James C. Burnett
- Computational Drug Development Group, SAIC-Frederick, Inc., FNLCR at Frederick, P.O. Box B, Frederick, Maryland, United States
| | - Bogdan A. Šolaja
- Faculty of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158, Belgrade, Serbia
| |
Collapse
|
40
|
Singh AK, Sachdeva A, Degrasse JA, Croley TR, Stanker LH, Hodge D, Sharma SK. Purification and characterization of neurotoxin complex from a dual toxin gene containing Clostridium Botulinum Strain PS-5. Protein J 2013; 32:288-96. [PMID: 23625059 DOI: 10.1007/s10930-013-9486-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Botulinum neurotoxins are produced as a toxin complex (TC) which consists of neurotoxin (NT) and neurotoxin associated proteins. The characterization of NT in its native state is an essential step for developing diagnostics and therapeutic countermeasures against botulism. The presence of NT genes was validated by PCR amplification of toxin specific fragments from genomic DNA of Clostridium botulinum strain PS-5 which indicated the presence of both serotype A and B genes on PS-5 genome. Further, TC was purified and characterized by Western blotting, Digoxin-enzyme linked immunosorbent assay, endopeptidase activity assay, and Liquid chromatography-Mass spectrometry. The data showed the presence of serotype A specific neurotoxin. Based on the analysis of neurotoxin genes and characterization of TC, PS-5 strain appears as a serotype A (B) strain of C. botulinum which produces only serotype A specific TC in the cell culture medium.
Collapse
Affiliation(s)
- Ajay K Singh
- Divisions of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Cooper KK, Songer JG, Uzal FA. Diagnosing clostridial enteric disease in poultry. J Vet Diagn Invest 2013; 25:314-27. [DOI: 10.1177/1040638713483468] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The world’s poultry industry has grown into a multibillion-dollar business, the success of which hinges on healthy intestinal tracts, which result in effective feed conversion. Enteric disease in poultry can have devastating economic effects on producers, due to high mortality rates and poor feed efficiency. Clostridia are considered to be among the most important agents of enteric disease in poultry. Diagnosis of enteric diseases produced by clostridia is usually challenging, mainly because many clostridial species can be normal inhabitants of the gut, making it difficult to determine their role in virulence. The most common clostridial enteric disease in poultry is necrotic enteritis, caused by Clostridium perfringens, which typically occurs in broiler chickens but has also been diagnosed in various avian species including turkeys, waterfowl, and ostriches. Diagnosis is based on clinical and pathological findings. Negative culture and toxin detection results may be used to rule out this disease, but isolation of C. perfringens and/or detection of its alpha toxin are of little value to confirm the disease because both are often found in the intestine of healthy birds. Ulcerative enteritis, caused by Clostridium colinum, is the other major clostridial enteric disease of poultry. Diagnosis of ulcerative enteritis is by documentation of typical pathological findings, coupled with isolation of C. colinum from the intestine of affected birds. Other clostridial enteric diseases include infections produced by Clostridium difficile, Clostridium fallax, and Clostridium baratii.
Collapse
Affiliation(s)
- Kerry K. Cooper
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA (Cooper)
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Songer)
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, School of Veterinary Medicine, University of California–Davis, San Bernardino, CA (Uzal)
| | - J. Glenn Songer
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA (Cooper)
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Songer)
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, School of Veterinary Medicine, University of California–Davis, San Bernardino, CA (Uzal)
| | - Francisco A. Uzal
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA (Cooper)
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA (Songer)
- California Animal Health and Food Safety Laboratory System, San Bernardino Branch, School of Veterinary Medicine, University of California–Davis, San Bernardino, CA (Uzal)
| |
Collapse
|
42
|
Hypersensitive detection and quantitation of BoNT/A by IgY antibody against substrate linear-peptide. PLoS One 2013; 8:e58908. [PMID: 23555605 PMCID: PMC3605418 DOI: 10.1371/journal.pone.0058908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 02/08/2013] [Indexed: 11/19/2022] Open
Abstract
Botulinum neurotoxin A (BoNT/A), the most acutely poisonous substance to humans known, cleave its SNAP-25 substrate with high specificity. Based on the endopeptidase activity, different methods have been developed to detect BoNT/A, but most lack ideal reproducibility or sensitivity, or suffer from long-term or unwanted interferences. In this study, we developed a simple method to detect and quantitate trace amounts of botulinum neurotoxin A using the IgY antibody against a linear-peptide substrate. The effects of reaction buffer, time, and temperature were analyzed and optimized. When the optimized assay was used to detect BoNT/A, the limit of detection of the assay was 0.01 mouse LD50 (0.04 pg), and the limit of quantitation was 0.12 mouse LD50/ml (0.48 pg). The findings also showed favorable specificity of detecting BoNT/A. When used to detect BoNT/A in milk or human serum, the proposed assay exhibited good quantitative accuracy (88% < recovery < 111%; inter- and intra-assay CVs < 18%). This method of detection took less than 3 h to complete, indicating that it can be a valuable method of detecting BoNT/A in food or clinical diagnosis.
Collapse
|
43
|
Zhang Z, Korkeala H, Dahlsten E, Sahala E, Heap JT, Minton NP, Lindström M. Two-component signal transduction system CBO0787/CBO0786 represses transcription from botulinum neurotoxin promoters in Clostridium botulinum ATCC 3502. PLoS Pathog 2013; 9:e1003252. [PMID: 23555260 PMCID: PMC3610760 DOI: 10.1371/journal.ppat.1003252] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 02/04/2013] [Indexed: 12/19/2022] Open
Abstract
Blocking neurotransmission, botulinum neurotoxin is the most poisonous biological substance known to mankind. Despite its infamy as the scourge of the food industry, the neurotoxin is increasingly used as a pharmaceutical to treat an expanding range of muscle disorders. Whilst neurotoxin expression by the spore-forming bacterium Clostridium botulinum appears tightly regulated, to date only positive regulatory elements, such as the alternative sigma factor BotR, have been implicated in this control. The identification of negative regulators has proven to be elusive. Here, we show that the two-component signal transduction system CBO0787/CBO0786 negatively regulates botulinum neurotoxin expression. Single insertional inactivation of cbo0787 encoding a sensor histidine kinase, or of cbo0786 encoding a response regulator, resulted in significantly elevated neurotoxin gene expression levels and increased neurotoxin production. Recombinant CBO0786 regulator was shown to bind to the conserved −10 site of the core promoters of the ha and ntnh-botA operons, which encode the toxin structural and accessory proteins. Increasing concentration of CBO0786 inhibited BotR-directed transcription from the ha and ntnh-botA promoters, demonstrating direct transcriptional repression of the ha and ntnh-botA operons by CBO0786. Thus, we propose that CBO0786 represses neurotoxin gene expression by blocking BotR-directed transcription from the neurotoxin promoters. This is the first evidence of a negative regulator controlling botulinum neurotoxin production. Understanding the neurotoxin regulatory mechanisms is a major target of the food and pharmaceutical industries alike. Botulinum neurotoxin produced by the spore-forming bacterium Clostridium botulinum is the most poisonous biological substance known to mankind. By blocking neurotransmission, the neurotoxin causes a flaccid paralysis called botulism which may to lead to death upon respiratory muscle collapse. Despite its infamy as the scourge of the food industry, the neurotoxin is attracting increasing interest as a pharmaceutical to treat an expanding range of muscle disorders. Whilst neurotoxin production by C. botulinum appears tightly regulated, to date only positive regulatory elements, thus enhancing the neurotoxin production, have been implicated in this control. The identification of negative regulators, responsible for down-tuning the neurotoxin synthesis, has proven to be elusive, but would offer novel approaches both for the production of safe foods and for the development of therapeutic neurotoxins. Here, we report a two-component signal transduction system that negatively regulates botulinum neurotoxin production. Understanding the neurotoxin regulatory mechanisms is a major target of the food and pharmaceutical industries alike.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Elias Dahlsten
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Elina Sahala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - John T. Heap
- Clostridia Research Group, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Nigel P. Minton
- Clostridia Research Group, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
44
|
Šilhár P, Lardy MA, Hixon MS, Shoemaker CB, Barbieri JT, Struss AK, Lively JM, Javor S, Janda KD. The C-terminus of Botulinum A Protease Has Profound and Unanticipated Kinetic Consequences Upon the Catalytic Cleft. ACS Med Chem Lett 2013; 4:283-287. [PMID: 23565325 DOI: 10.1021/ml300428s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are among the most deadly poisons known though ironically, they also are of great therapeutic utility. A number of research programs have been initiated to discover small molecule inhibitors of BoNTs metalloprotease activity. Many, though not all of these programs have screened against a truncated and more stable form of the enzyme, that possess comparable catalytic properties to the full length enzyme. Interestingly, several classes of inhibitors notably the hydroxamates, display a large shift in potency between the two enzyme forms. In this report we compare the kinetics of active-site, alpha-exosite and beta-exosite inhibitors versus truncated and full length enzyme. Molecular dynamics simulations conducted with the truncated and homology models of the fully length BoNT LC/A indicate the flexibility of the C-terminus of the full length enzyme is responsible for the potency shifts of active-site proximally binding inhibitors while distal binding (alpha-exosite) inhibitors remain equipotent.
Collapse
Affiliation(s)
- Peter Šilhár
- Departments of Chemistry and
Immunology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
| | - Matthew A. Lardy
- Takeda California Inc., 10410 Science Center Drive, San Diego, California
92121, United States
| | - Mark S. Hixon
- Takeda California Inc., 10410 Science Center Drive, San Diego, California
92121, United States
| | - Charles B. Shoemaker
- Department
of Biomedical Sciences, Tufts Cummings School of Veterinary Medicine, 200 Westboro
Road, North Grafton, Massachusetts 01536, United States
| | - Joseph T. Barbieri
- Department of Microbiology and
Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Anjali K. Struss
- Departments of Chemistry and
Immunology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
| | - Jenny M. Lively
- Departments of Chemistry and
Immunology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
| | - Sacha Javor
- Departments of Chemistry and
Immunology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
| | - Kim D. Janda
- Departments of Chemistry and
Immunology, and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
- Worm Institute for Research
and Medicine (WIRM), The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United
States
| |
Collapse
|
45
|
Ravva SV, Sarreal CZ, Mandrell RE. Altered protozoan and bacterial communities and survival of Escherichia coli O157:H7 in monensin-treated wastewater from a dairy lagoon. PLoS One 2013; 8:e54782. [PMID: 23349969 PMCID: PMC3551901 DOI: 10.1371/journal.pone.0054782] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 12/18/2012] [Indexed: 02/03/2023] Open
Abstract
Surviving predation is a fitness trait of Escherichia coli O157:H7 (EcO157) that provides ample time for the pathogen to be transported from reservoirs (e.g. dairies and feedlots) to farm produce grown in proximity. Ionophore dietary supplements that inhibit rumen protozoa may provide such a selective advantage for EcO157 to proliferate in lagoons as the pathogen is released along with the undigested supplement as manure washings. This study evaluated the fate of an outbreak strain of EcO157, protozoan and bacterial communities in wastewater treated with monensin. Although total protozoa and native bacteria were unaffected by monensin, the time for 90% decrease in EcO157 increased from 0.8 to 5.1 days. 18S and 16S rRNA gene sequencing of wastewater samples revealed that monensin eliminated almost all colpodean and oligohymenophorean ciliates, probably facilitating the extended survival of EcO157. Total protozoan numbers remained high in treated wastewater as monensin enriched 94% of protozoan sequences undetected with untreated wastewater. Monensin stimulated 30-fold increases in Cyrtohymena citrina, a spirotrichean ciliate, and also biflagellate bicosoecids and cercozoans. Sequences of gram-negative Proteobacteria increased from 1% to 46% with monensin, but gram-positive Firmicutes decreased from 93% to 46%. It is noteworthy that EcO157 numbers increased significantly (P<0.01) in Sonneborn medium containing monensin, probably due to monensin-inhibited growth of Vorticella microstoma (P<0.05), a ciliate isolated from wastewater. We conclude that dietary monensin inhibits ciliate protozoa that feed on EcO157. Feed supplements or other methods that enrich these protozoa in cattle manure could be a novel strategy to control the environmental dissemination of EcO157 from dairies to produce production environments.
Collapse
Affiliation(s)
- Subbarao V Ravva
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agriculture Research Service, Western Regional Research Center, Albany, California, USA.
| | | | | |
Collapse
|
46
|
|
47
|
Abstract
Background: Two decades ago, botulinum neurotoxin (BoNT) type A was introduced to the commercial market. Subsequently, the toxin was approved by the FDA to address several neurological syndromes, involving muscle, nerve, and gland hyperactivity. These syndromes have typically been associated with abnormalities in cholinergic transmission. Despite the multiplicity of botulinal serotypes (designated as types A through G), therapeutic preparations are currently only available for BoNT types A and B. However, other BoNT serotypes are under study for possible clinical use and new clinical indications; Objective: To review the current research on botulinum neurotoxin serotypes A-G, and to analyze potential applications within basic science and clinical settings; Conclusions: The increasing understanding of botulinal neurotoxin pathophysiology, including the neurotoxin’s effects on specific neuronal populations, will help us in tailoring treatments for specific diagnoses, symptoms and patients. Scientists and clinicians should be aware of the full range of available data involving neurotoxin subtypes A-G.
Collapse
|
48
|
Chen C, Wang S, Wang H, Mao X, Zhang T, Ji G, Shi X, Xia T, Lu W, Zhang D, Dai J, Guo Y. Potent neutralization of botulinum neurotoxin/B by synergistic action of antibodies recognizing protein and ganglioside receptor binding domain. PLoS One 2012; 7:e43845. [PMID: 22952786 PMCID: PMC3430616 DOI: 10.1371/journal.pone.0043845] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 07/26/2012] [Indexed: 11/27/2022] Open
Abstract
Background Botulinum neurotoxins (BoNTs), the causative agents for life-threatening human disease botulism, have been recognized as biological warfare agents. Monoclonal antibody (mAb) therapeutics hold considerable promise as BoNT therapeutics, but the potencies of mAbs against BoNTs are usually less than that of polyclonal antibodies (or oligoclonal antibodies). The confirmation of key epitopes with development of effective mAb is urgently needed. Methods and Findings We selected 3 neutralizing mAbs which recognize different non-overlapping epitopes of BoNT/B from a panel of neutralizing antibodies against BoNT/B. By comparing the neutralizing effects among different combination groups, we found that 8E10, response to ganglioside receptor binding site, could synergy with 5G10 and 2F4, recognizing non-overlapping epitopes within Syt II binding sites. However, the combination of 5G10 with 2F4 blocking protein receptor binding sites did not achieve synergistical effects. Moreover, we found that the binding epitope of 8E10 was conserved among BoNT A, B, E, and F, which might cross-protect the challenge of different serotypes of BoNTs in vivo. Conclusions The combination of two mAbs recognizing different receptors' binding domain in BoNTs has a synergistic effect. 8E10 is a potential universal partner for the synergistical combination with other mAb against protein receptor binding domain in BoNTs of other serotypes.
Collapse
Affiliation(s)
- Changchun Chen
- School of Pharmacy, The Center for Antibody Medicine of Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shuhui Wang
- School of Pharmacy, The Center for Antibody Medicine of Ministry of Education, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Huajing Wang
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
- National Engineering Research Center for Antibody Medicine, State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering, Shanghai, People's Republic of China
| | - Xiaoyan Mao
- Lanzhou Institute of Biological Products, Lanzhou, Gansu, People's Republic of China
| | - Tiancheng Zhang
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
- National Engineering Research Center for Antibody Medicine, State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering, Shanghai, People's Republic of China
| | - Guanghui Ji
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
- National Engineering Research Center for Antibody Medicine, State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering, Shanghai, People's Republic of China
| | - Xin Shi
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
- National Engineering Research Center for Antibody Medicine, State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering, Shanghai, People's Republic of China
| | - Tian Xia
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
- National Engineering Research Center for Antibody Medicine, State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering, Shanghai, People's Republic of China
| | - Weijia Lu
- Lanzhou Institute of Biological Products, Lanzhou, Gansu, People's Republic of China
| | - Dapeng Zhang
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
- National Engineering Research Center for Antibody Medicine, State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering, Shanghai, People's Republic of China
| | - Jianxin Dai
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
- National Engineering Research Center for Antibody Medicine, State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering, Shanghai, People's Republic of China
- PLA General Hospital Cancer Center, Beijing, People's Republic of China
- * E-mail: (JXD); (YJG)
| | - Yajun Guo
- International Joint Cancer Institute, The Second Military Medical University, Shanghai, People's Republic of China
- National Engineering Research Center for Antibody Medicine, State Key Laboratory of Antibody Medicine and Targeting Therapy and Shanghai Key Laboratory of Cell Engineering, Shanghai, People's Republic of China
- PLA General Hospital Cancer Center, Beijing, People's Republic of China
- * E-mail: (JXD); (YJG)
| |
Collapse
|
49
|
Zhao Y, Kang L, Gao S, Gao X, Xin W, Wang J. PEG precipitation coupled with chromatography is a new and sufficient method for the purification of botulinum neurotoxin type B [corrected]. PLoS One 2012; 7:e39670. [PMID: 22761863 PMCID: PMC3386254 DOI: 10.1371/journal.pone.0039670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 05/25/2012] [Indexed: 11/18/2022] Open
Abstract
Clostridium botulinum neurotoxins are used to treat a variety of neuro-muscular disorders, as well as in cosmetology. The increased demand requires efficient methods for the production and purification of these toxins. In this study, a new purification process was developed for purifying type B neurotoxin. The kinetics of C.botulinum strain growth and neurotoxin production were determined for maximum yield of toxin. The neurotoxin was purified by polyethylene glycol (PEG) precipitation and chromatography. Based on design of full factorial experiment, 20% (w/v) PEG-6000, 4 °C, pH 5.0 and 0.3 M NaCl were optimal conditions to obtain a high recovery rate of 87% for the type B neurotoxin complex, as indicated by a purification factor of 61.5 fold. Furthermore, residual bacterial cells, impurity proteins and some nucleic acids were removed by PEG precipitation. The following purification of neurotoxin was accomplished by two chromatography techniques using Sephacryl™ S-100 and phenyl HP columns. The neurotoxin was recovered with an overall yield of 21.5% and the purification factor increased to 216.7 fold. In addition, a mouse bioassay determined the purified neurotoxin complex possessed a specific toxicity (LD(50)) of 4.095 ng/kg.
Collapse
Affiliation(s)
- Yao Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Fengtai District, Beijing, People’s Republic of China
| | - Lin Kang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Fengtai District, Beijing, People’s Republic of China
| | - Shan Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Fengtai District, Beijing, People’s Republic of China
| | - Xing Gao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Fengtai District, Beijing, People’s Republic of China
| | - Wenwen Xin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Fengtai District, Beijing, People’s Republic of China
| | - Jinglin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Fengtai District, Beijing, People’s Republic of China
- * E-mail:
| |
Collapse
|
50
|
Whitemarsh RCM, Strathman MJ, Chase LG, Stankewicz C, Tepp WH, Johnson EA, Pellett S. Novel application of human neurons derived from induced pluripotent stem cells for highly sensitive botulinum neurotoxin detection. Toxicol Sci 2012; 126:426-35. [PMID: 22223483 DOI: 10.1093/toxsci/kfr354] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSC) hold great promise for providing various differentiated cell models for in vitro toxigenicity testing. For Clostridium botulinum neurotoxin (BoNT) detection and mechanistic studies, several cell models currently exist, but none examine toxin function with species-specific relevance while exhibiting high sensitivity. The most sensitive cell models to date are mouse or rat primary cells and neurons derived from mouse embryonic stem cells, both of which require significant technical expertise for culture preparation. This study describes for the first time the use of hiPSC-derived neurons for BoNT detection. The neurons used in this study were differentiated and cryopreserved by Cellular Dynamics International (Madison, WI) and consist of an almost pure pan-neuronal population of predominantly gamma aminoisobutyric acidergic and glutamatergic neurons. Western blot and quantitative PCR data show that these neurons express all the necessary receptors and substrates for BoNT intoxication. BoNT/A intoxication studies demonstrate that the hiPSC-derived neurons reproducibly and quantitatively detect biologically active BoNT/A with high sensitivity (EC(50) ∼0.3 U). Additionally, the quantitative detection of BoNT serotypes B, C, E, and BoNT/A complex was demonstrated, and BoNT/A specificity was confirmed through antibody protection studies. A direct comparison of BoNT detection using primary rat spinal cord cells and hiPSC-derived neurons showed equal or increased sensitivity, a steeper dose-response curve and a more complete SNARE protein target cleavage for hiPSC-derived neurons. In summary, these data suggest that neurons derived from hiPSCs provide an ideal and highly sensitive platform for BoNT potency determination, neutralizing antibody detection and for mechanistic studies.
Collapse
Affiliation(s)
- Regina C M Whitemarsh
- Department of Bacteriology, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|