1
|
A simple and economic three-step process for producing highly purified Fab’ fragments directly from the egg yolk water-soluble fraction. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1211:123486. [DOI: 10.1016/j.jchromb.2022.123486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/28/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022]
|
2
|
Korah MC, Hima SP, V SR, Anil A, Harikrishnan VS, Krishnan LK. Pharmacokinetics and pharmacodynamics of avian egg-yolk derived pure anti-snake venom in healthy and disease animal-model. J Pharm Sci 2022; 111:1565-1576. [DOI: 10.1016/j.xphs.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
|
3
|
Devi A, Doley R. Neutralization of Daboxin P activities by rationally designed aptamers. Toxicon 2021; 203:93-103. [PMID: 34619285 DOI: 10.1016/j.toxicon.2021.09.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Inefficacy and associated risks of current antivenom has raised the need for alternative approaches of snakebite management. Aptamers are one such alternative which is being pursued for therapeutic interventions as well as for design of diagnostic kits due to its high specificity. Present study focussed on designing and validating nucleic acid aptamers against snake venom PLA2, a hydrolytic enzyme present in all venomous snakes. The aptamers were designed by adding nucleic acid chain on the surface of Daboxin P, a major PLA2 enzyme of Daboia russelii venom. Binding characteristics of the aptamers were confirmed by docking to Daboxin P as well as acidic and basic PLA2s from different snake species using in silico docking. The aptamers folded into different tertiary structures and bound to the active and Ca2+ binding site of PLA2 enzymes. Molecular dynamics simulation analysis of Daboxin P-aptamer complexes showed that the complexes were stable in an aqueous environment. The electrophoretic mobility shift assay further confirmed the binding of the synthetic aptamers to Daboxin P and other snake venom PLA2 enzymes. The aptamers inhibited the sPLA2 activity with an IC50 value ranging between 0.52 μM and 0.77 μM as well as the anticoagulant activity of Daboxin P. The aptamers could also inhibit the PLA2 activity of Echis carinatus crude venom and anti-coagulant activity of Bungarus caeruleus crude venom, members of big four snakes. However, the aptamers didn't inhibit fibrinogenolytic or proteolytic activity of big four venom as well as the coagulation and hemolytic activities. Thus, aptamers can be rationally designed to inhibit the biochemical and biological activities of snake venom proteins.
Collapse
Affiliation(s)
- Arpita Devi
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, Assam, India
| | - Robin Doley
- Molecular Toxinology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur, Assam, India.
| |
Collapse
|
4
|
Choraria A, Somasundaram R, Gautam M, Ramanathan M, Paray BA, Al-Sadoon MK, Michael A. Experimental antivenoms from chickens and rabbits and their comparison with commercially available equine antivenom against the venoms of Daboia russelii and Echis carinatus snakes. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1756858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ankit Choraria
- Department of Microbiology, PSG College of Arts and Science, Coimbatore, India
| | | | - Mrinmoy Gautam
- Department of Molecular Pharmacology, PSG College of Pharmacy, Coimbatore, India
| | - Muthiah Ramanathan
- Department of Molecular Pharmacology, PSG College of Pharmacy, Coimbatore, India
| | - Bilal Ahmad Paray
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad K. Al-Sadoon
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - A. Michael
- Department of Microbiology, PSG College of Arts and Science, Coimbatore, India
| |
Collapse
|
5
|
Navarro D, Vargas M, Herrera M, Segura Á, Gómez A, Villalta M, Ramírez N, Williams D, Gutiérrez JM, León G. Development of a chicken-derived antivenom against the taipan snake (Oxyuranus scutellatus) venom and comparison with an equine antivenom. Toxicon 2016; 120:1-8. [DOI: 10.1016/j.toxicon.2016.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/16/2016] [Accepted: 06/27/2016] [Indexed: 01/18/2023]
|
6
|
Zolfagharian H, Dounighi NM. Study on development of Vipera lebetina snake anti-venom in chicken egg yolk for passive immunization. Hum Vaccin Immunother 2015; 11:2734-9. [PMID: 25700656 PMCID: PMC4685695 DOI: 10.4161/21645515.2014.985492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 10/22/2014] [Accepted: 11/04/2014] [Indexed: 11/19/2022] Open
Abstract
Chicken egg yolk antibodies against Vipera lebetina venom were evaluated for their antivenom potential. White leghorn hens were immunized with detoxified V. lebetina venom (γ-irradiated venom). The detoxified venom (200 μg) was mixed with an equal volume of complete Freund's adjuvant and was injected intramuscularly into the hens. The antibodies showed high activity (1.6 LD50/mL) in egg yolks after 12 d of venom injection. The eggs were collected after 12 days, and the egg yolks were removed and washed with purified water to remove any contamination with egg whites. The purification was performed using a method described by Maya Devi et al., followed by gel filtration (Sephadex G-50). The purity and molecular weight of antivenom antibodies (IgY) were determined using electrophoresis, and the molecular weight was found to be approximately 185 kDa. The potency of IgY was 6 LD50/mL (mice), i.e., 1 mL of IgY could neutralize 43.8 μg of standard V. lebetina venom). Our results showed that chicken egg yolk antibodies were effective in neutralizing the lethality and several pharmacological effects of V. lebetina venom and could be used for developing effective antivenom.
Collapse
Affiliation(s)
- Hossein Zolfagharian
- Department of Human Vaccine and Serum; Razi Vaccine and Serum Research Institute; Karaj, Iran
| | | |
Collapse
|
7
|
Díaz P, Malavé C, Zerpa N, Vázquez H, D'Suze G, Montero Y, Castillo C, Alagón A, Sevcik C. IgY pharmacokinetics in rabbits: implications for IgY use as antivenoms. Toxicon 2014; 90:124-33. [PMID: 25111201 DOI: 10.1016/j.toxicon.2014.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/23/2014] [Accepted: 07/30/2014] [Indexed: 12/18/2022]
Abstract
This paper presents the first study of chicken IgY pharmacokinetics (PK) in rabbits. We measured IgY blood serum concentrations using a specific high sensitivity ELISA method. The fast initial component observed when studying horse Fab, F(ab')2 or IgG was absent from IgY PK. During the first 80 min of observation there was only a single slow exponential decay, which sped up afterward to the point that IgY became undetectable after 216 h of observation; due to this time course, PK parameters were determined with trapezoidal integration. The most significant IgY pharmacokinetic parameters determined were (all presented as medians and their 95% confidence interval): Area Under the Curve = 183.8 (135.2, 221.5) mg·h·L(-1); Distribution volume of the central compartment·[Body Weight (BW)](-1) = 46.0 (21.7, 70.3) mL·kg(-1); Distribution volume in steady state·BW(-1) = 56.8 (44.4, 68.5) mLkg(-1); Mean Residence Time = 40.1 (33.6, 48.5) h; Total plasma clearance·BW(-1) = 1.44 (1.15, 1.66) mL·h(-1)·kg(-1). Anti IgY IgG titers determined by ELISA increased steadily after 72 h, and reached 2560 (1920, 5760) dilution(-1) at 264 h; anti-chicken IgG concentrations rose up to 3.19 (2.31, 6.17) μg/mL in 264 h. Our results show that IgY PK lacks the fast initial decay observed in other PK studies using horse IgG, F(ab')2 or Fab, remains in the body 39.0 (28.7, 47.2) % much as IgG and is ≈3 times more immunogenic that horse IgG in rabbits.
Collapse
Affiliation(s)
- Patricia Díaz
- Laboratory on Cellular Neuropharmacology, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Caridad Malavé
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - Noraida Zerpa
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - Hilda Vázquez
- Instituto de Biotecnología (IBt), Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Gina D'Suze
- Laboratory on Cellular Neuropharmacology, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Yuyibeth Montero
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - Cecilia Castillo
- Unidad de Neurociencias, Instituto de Estudios Avanzados (IDEA), Caracas, Venezuela
| | - Alejandro Alagón
- Instituto de Biotecnología (IBt), Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Carlos Sevcik
- Laboratory on Cellular Neuropharmacology, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela.
| |
Collapse
|
8
|
León G, Herrera M, Segura Á, Villalta M, Vargas M, Gutiérrez JM. Pathogenic mechanisms underlying adverse reactions induced by intravenous administration of snake antivenoms. Toxicon 2013; 76:63-76. [PMID: 24055551 DOI: 10.1016/j.toxicon.2013.09.010] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 09/01/2013] [Accepted: 09/11/2013] [Indexed: 11/28/2022]
Abstract
Snake antivenoms are formulations of immunoglobulins, or immunoglobulin fragments, purified from the plasma of animals immunized with snake venoms. Their therapeutic success lies in their ability to mitigate the progress of toxic effects induced by snake venom components, when administered intravenously. However, due to diverse factors, such as deficient manufacturing practices, physicochemical characteristics of formulations, or inherent properties of heterologous immunoglobulins, antivenoms can induce undesirable adverse reactions. Based on the time lapse between antivenom administration and the onset of clinical manifestations, the World Health Organization has classified these adverse reactions as: 1 - Early reactions, if they occur within the first hours after antivenom infusion, or 2 - late reactions, when occurring between 5 and 20 days after treatment. While all late reactions are mediated by IgM or IgG antibodies raised in the patient against antivenom proteins, and the consequent formation of immune complexes, several mechanisms may be responsible for the early reactions, such as pyrogenic reactions, IgE-mediated reactions, or non IgE-mediated reactions. This work reviews the hypotheses that have been proposed to explain the mechanisms involved in these adverse reactions to antivenoms. The understanding of these pathogenic mechanisms is necessary for the development of safer products and for the improvement of snakebite envenomation treatment.
Collapse
Affiliation(s)
- Guillermo León
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| | | | | | | | | | | |
Collapse
|
9
|
Alvarez A, Montero Y, Jimenez E, Zerpa N, Parrilla P, Malavé C. IgY antibodies anti-Tityus caripitensis venom: purification and neutralization efficacy. Toxicon 2013; 74:208-14. [PMID: 23994592 DOI: 10.1016/j.toxicon.2013.08.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 08/10/2013] [Accepted: 08/15/2013] [Indexed: 12/27/2022]
Abstract
Tityus caripitensis is responsible for most of scorpion stings related to human incidents in Northeastern Venezuela. The only treatment for scorpion envenomation is immunotherapy based on administration of scorpion anti-venom produced in horses. Avian antibodies (IgY) isolated from chicken egg yolks represent a new alternative to be applied as anti-venom therapy. For this reason, we produced IgY antibodies against T. caripitensis scorpion venom and evaluated its neutralizing capacity. The anti-scorpion venom antibodies were purified by precipitation techniques with polyethylene glycol and evaluated by Multiple Antigen Blot Assay (MABA), an indirect ELISA, and Western blot assays. The lethality neutralization was evaluated by preincubating the venom together with the anti-venom prior to testing. The IgY immunoreactivity was demonstrated by a dose-dependent inhibition in Western blot assays where antibodies pre-absorbed with the venom did not recognize the venom proteins from T. caripitensis. The anti-venom was effective in neutralizing 2LD50 doses of T. caripitensis venom (97.8 mg of IgY neutralized 1 mg of T. caripitensis venom). Our results support the future use of avian anti-scorpion venom as an alternative to conventional equine anti-venom therapy in our country.
Collapse
Affiliation(s)
- Aurora Alvarez
- Centro de Biociencias y Medicina Molecular, Instituto de Estudios Avanzados-IDEA, Apartado 17606, Caracas 1015-A, Venezuela
| | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Trott DL, Yang M, Gonzalez J, Larson AE, Tepp WH, Johnson EA, Cook ME. Egg yolk antibodies for detection and neutralization of Clostridium botulinum type A neurotoxin. J Food Prot 2009; 72:1005-11. [PMID: 19517727 DOI: 10.4315/0362-028x-72.5.1005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The objective of this research project was to determine the usefulness of an egg antibody platform for producing materials for the detection and neutralization of botulinum type A neurotoxin. Yield estimates for detection and neutralizing antibodies produced using methods described were calculated. Antibody specific to botulinum toxoid A (aToxoid) and toxin A (aBoNT/A) was produced by immunizing hens with botulinum toxoid A (toxoid) followed by increasing amounts of botulinum neurotoxin A (BoNT/A) in Freund incomplete adjuvant. Egg yolks were extracted with polyethylene glycol (PEG) for antibody detection and neutralization experiments. A model aToxoid/toxoid immunoassay using only egg yolk antibody was developed and had a detection limit of 1 pg/ml of toxoid. In an indirect enzyme-linked immunosorbent assay of BoNT/A-specific antibody, the aBoNT/A contained more BoNT/A-specific antibody than did the aToxoid, and aBoNT/A was as effective as commercial rabbit antibody. The aToxoid provided no protection against BoNT/A in a standard mouse neutralization assay; however, 1 mg of PEG-extracted aBoNT/A neutralized 4,000 lethal doses of BoNT/A injected intraperitoneally. Based on these results, we calculated that in 1 month one hen could produce more than 100 liters of antibody detection reagents or enough antibody to neutralize approximately 11.6 million mouse lethal doses of botulinum toxin. Utilization of an egg antibody platform is potentially rapid (28 to 70 days) and scalable to kilogram quantities using current egg production facilities with as few as 1,000 hens.
Collapse
Affiliation(s)
- D L Trott
- Department of Nutritional Science, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Pauly D, Dorner M, Zhang X, Hlinak A, Dorner B, Schade R. Monitoring of laying capacity, immunoglobulin Y concentration, and antibody titer development in chickens immunized with ricin and botulinum toxins over a two-year period. Poult Sci 2009; 88:281-90. [PMID: 19151341 PMCID: PMC7107060 DOI: 10.3382/ps.2008-00323] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
One of the key benefits in using chickens for immunization is the high yield of antibodies obtainable. It is known that egg production decreases over time, while animal maintenance costs remain stable. It would, however, be desirable to keep hens as long as possible to obtain maximal amounts of antibodies. To identify a suitable length of time that animals can be kept and to optimize the cost:yield ratio, we monitored the number of eggs laid, the total amount of chicken IgY, and the specific antibody titer from individually prepared eggs over a 2-yr period. The plant toxin ricin and the Clostridium botulinum neurotoxins type A and B were used to immunize 4 chickens. The number of eggs laid in 2 yr was approximately 600 per hen (about 80% of the maximum egg number), yielding about 20 to 40 g of total IgY per hen. A stable antibody titer of 1:100,000 to 1:1,000,000, as measured by ELISA, was obtained following up to 11 injections of 10 to 20 microg of immobilized native toxin. Laying capacities were found to decrease, on average, from 7 eggs/wk at the point of first immunization to 2 eggs/wk after more than 2 yr. In parallel, the yield of total and specific IgY increased over time, so that the antibody recovery remained high, even after prolonged immunization times. Using purified IgY preparations, classical immunological assays such as ELISA and Western blotting were performed. Furthermore, the IgY showed neutralizing capacity when used to block the functional activity of the toxins both in vitro and in vivo. Analysis of the total IgY content over time demonstrated a complex biological oscillation (and the antigen-specific titer), with a shorter time period of around 7 d (circaseptan rhythm). In summary, we successfully immunized chickens with ricin and botulinum neurotoxins and monitored laying capacity, IgY concentration, and specific antibody titer over an extended period of 2 yr.
Collapse
Affiliation(s)
- D Pauly
- Robert Koch-Institut, Center for Biological Safety, Microbial Toxins, 13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
13
|
Ponnappa KC, Saviour P, Ramachandra NB, Kini RM, Gowda TV. INN-toxin, a highly lethal peptide from the venom of Indian cobra (Naja naja) venom-Isolation, characterization and pharmacological actions. Peptides 2008; 29:1893-900. [PMID: 18760317 DOI: 10.1016/j.peptides.2008.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2008] [Revised: 07/30/2008] [Accepted: 07/30/2008] [Indexed: 11/20/2022]
Abstract
A novel toxic polypeptide, INN-toxin, is purified from the venom of Naja naja using combination of gel-permeation and ion-exchange chromatography. It has a molecular mass of 6951.6Da as determined by MALDI-TOF/MS and the N-terminal sequence of LKXNKLVPLF. It showed both neurotoxic as well as cytotoxic activities. INN-toxin is lethal to mice with a LD(50) of 1.2mg/kg body weight. IgY raised in chicks against basic peptide pool neutralized the toxicity of INN-toxin. INN-toxin did not inhibit cholinesterase activity. It is toxic to Ehrlich ascites tumor (EAT) cells, but it is not toxic to leukocyte culture. The toxin appears to be specific in its mode of action. Interaction of N-bromosuccinamide (NBS) with the peptide resulted in the modification of tryptophan residues and loss of lethal toxicity of INN-toxin.
Collapse
Affiliation(s)
- K C Ponnappa
- Department of Studies in Biochemistry, Manasagangotri, University of Mysore, Mysore 570 006, India
| | | | | | | | | |
Collapse
|
14
|
Chiou VYN. The development of IgY(DeltaFc) antibody based neuro toxin antivenoms and the study on their neutralization efficacies. Clin Toxicol (Phila) 2008; 46:539-44. [PMID: 18584367 DOI: 10.1080/15563650701771973] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION Immunotherapy for treatment of snake bites has been based on mammalian IgG. Recently, polyvalent ovine Fab has become available. However, papain, used in the Fab fragmentation process, is a human allergen. Avian eggs are a source of antibodies and a truncated version of IgY, IgY(DeltaFc), is found in ducks. In this study, we induced duck antibodies by using detoxified cobra and krait venoms and then purified IgY(DeltaFc) antibodies from the hyperimmune duck egg yolk. METHODS Ducks were used for immunization and their eggs were collected for antibody production. ICR strain female mice were used in the in vivo neutralization test. Monovalent antivenoms to Formosan cobra venom and Formosan multi-banded krait venom were raised and purified from hyper-immune duck egg yolk individually. The LD(50) of venoms were determined by subcutaneous injection of different venom doses into the mice. The survival/death ratios were recorded after 24 hours. RESULTS The antibody purified from egg yolk showed high titer response to its immunogen (cobra or krait venom) by an ELISA. Overall, the antibodies from duck eggs efficiently protected mice from envenomations. DISCUSSION The antivenoms purified from the egg yolk of ducks immunized with cobra venom and krait venom neutralized the lethal effects of these venoms with good efficacy in a mouse model. The antivenoms were effective in neutralizing lethality in mice injected at 4xLD(50) of venoms. CONCLUSIONS These results indicate that antibodies derived from ducks can serve as a new source for the generation of antivenoms.
Collapse
|
15
|
Paul K, Manjula J, Deepa EP, Selvanayagam ZE, Ganesh KA, Subba Rao PV. Anti-Echis carinatus venom antibodies from chicken egg yolk: Isolation, purification and neutralization efficacy. Toxicon 2007; 50:893-900. [PMID: 17681579 DOI: 10.1016/j.toxicon.2007.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2006] [Revised: 07/26/2006] [Accepted: 06/21/2007] [Indexed: 11/26/2022]
Abstract
High titer antibodies (IgY) were raised in egg yolk of white leghorn chicken (Gallus gallus domesticus) by immunizing with the venom of Echis carinatus (Saw scaled viper or carpet viper), an Indian venomous snake belonging to the family Viperidae. The anti-snake venom antibodies (antivenom) were isolated from egg yolk by the water dilution method, enriched by 19% sodium sulfate precipitation and purified by immunoaffinity chromatography. A single, electrophoretically pure IgY band of 180-200 kDa was obtained on SDS-PAGE. Immunoblot analysis revealed not only the specific binding of the antivenom but also dose-dependent blocking of antivenom by venom proteins. In neutralization studies, a preincubated mixture of both affinity-purified (50 mg/kg body weight) as well as partially purified (210 mg/kg body weight) anti-E. carinatus IgY with 2 LD(50) dose of E. carinatus venom (2 x 6.65 mg/kg body weight) gave 100% protection in mice when administered subcutaneously.
Collapse
Affiliation(s)
- K Paul
- Vittal Mallya Scientific Research Foundation, PO Box 406, K.R. Road, Bangalore-560 004, India
| | | | | | | | | | | |
Collapse
|
16
|
Jintaridth P, Srisomsap C, Vichittumaros K, Kalpravidh RW, Winichagoon P, Fucharoen S, Jisnuson Svasti MR, Kasinrerk W. Chicken Egg Yolk Antibodies Specific for the γ Chain of Human Hemoglobin for Diagnosis of Thalassemia. Int J Hematol 2006; 83:408-414. [PMID: 16787871 DOI: 10.1532/ijh97.a20515] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 12/26/2005] [Accepted: 02/03/2006] [Indexed: 11/20/2022]
Abstract
Immunoglobulin Y (IgY) technology was used to generate anti-hemoglobin Bart's (Hb Bart's) IgY antibodies (Abs) for development into an enzyme-linked immunosorbent assay (ELISA) test for thalassemia diagnosis. Hb Bart's purified from the hemolysate of a patient with Hb Bart's hydrops fetalis (homozygous alpha-thalassemia) was used to immunize a chicken via the pectoralis muscle. After water dilution and sodium sulfate precipitation, 40 to 70 mg of IgY could be extracted from an egg. IgY, first detected in sera 2 weeks after immunization, reached the highest titer at week 4, and the titer remained stable for at least 2 weeks before declining. The pattern of Ab response in the yolk was the same as in the serum but was somewhat delayed. The IgY Abs produced reacted with gamma globin, Hb Bart's, Hb F, normal cord hemolysate (Hbs F plus A), and Hb Bart's hydrops fetalis (Hbs Bart's plus Portland) and to a lesser degree with beta globin, Hb A, Hb A2 and adult hemolysate (Hbs A plus A2), but the Abs did not react with alpha globin. Immunoaffinity purification with Hb A coupled to Sepharose was used to isolate an unbound IgY that reacted with Hb F, Hb Bart's, and gamma globin, and this IgY was used to develop an ELISA test for thalassemia diagnosis. The results of direct ELISA analyses of 336 hemolysate samples from individuals with various known thalassemia genotypes and phenotypes and from healthy individuals confirmed the specificity of the polyclonal Abs for Hbs containing Hb F and Hb Bart's. This specificity, which was due to the Abs' strong reactivity in cases of pathologic thalassemic diseases and weak reactivity in cases of nonpathologic thalassemic diseases, depended on the levels of Hb Bart's and Hb F.
Collapse
Affiliation(s)
- Pornrutsami Jintaridth
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kumar AVM, Gowda TV. Novel non-enzymatic toxic peptide of Daboia russelii (Eastern region) venom renders commercial polyvalent antivenom ineffective. Toxicon 2006; 47:398-408. [PMID: 16448679 DOI: 10.1016/j.toxicon.2005.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2005] [Revised: 11/23/2005] [Accepted: 12/06/2005] [Indexed: 11/17/2022]
Abstract
The snake venoms are typically complex mixtures of enzymes and non-enzymatic peptides. Regional variation in the non-enzymatic fraction of Russell's viper venom from three regions of India studied. The eastern, western and southern regional venom upon gel permeation chromatography on sephadex-G-75 column resolved into three peaks. All the three overlapping peaks differ in their lethality and enzymatic potency. Peak III of all the regional venom found to be non-enzymatic, Western and southern regional venom has trypsin inhibitory activity with varying potencies. Interestingly, the peak III of eastern region is devoid of trypsin inhibitory activity. But it is highly lethal with a LD50 0.7 mg/kg body weight and also it exhibited post-synaptic neurotoxicity. On the other hand southern and western regional venom's non-enzymatic peak is non-lethal and did not induce neurotoxic symptoms in experimental model. The antibodies developed against the eastern regional venom cross-reacted with the peaks I and II of other regional venom, but failed to cross-react with the peak III of western and southern regional Russell's viper venom. Commercial anti-venom prepared to neutralize the toxic effects of common poisonous snakes of India, showed positive cross-reaction against peaks I, II and III of all three regional venom tested, except peak III of eastern regional venom. Commercial anti-venom neutralized the lethal toxicity of both western and southern regional Russell's viper venom, and failed to neutralize the lethal effects of eastern regional Russell's viper venom.
Collapse
Affiliation(s)
- A V Madhu Kumar
- Department of Studies in Biochemistry, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka State, India
| | | |
Collapse
|
18
|
Schade R, Calzado EG, Sarmiento R, Chacana PA, Porankiewicz-Asplund J, Terzolo HR. Chicken egg yolk antibodies (IgY-technology): a review of progress in production and use in research and human and veterinary medicine. Altern Lab Anim 2005; 33:129-54. [PMID: 16180988 DOI: 10.1177/026119290503300208] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The production of antibodies (Abs) in chickens and the extraction of specific Abs from egg yolk (IgY Abs) are increasingly attracting the interest of the scientific community, as demonstrated by the significant growth of the IgY literature. This review offers detailed and comprehensive information about IgY-technology, including: a) possibilities for hen keeping in accordance with the Three Rs principles; b) new insights into the IgY transfer mechanism from blood to yolk as a biological basis for the technology; c) the comparative characteristics of IgY Abs and IgG Abs; d) the high efficacy of the technique, in view of the extraordinary amount of IgY Ab produced by one hen in one year (between 20 g and 40 g IgY in total); e) comparisons between the efficacies of IgY Abs and IgG Abs (rabbit, sheep, mouse) in several immunological assays; f) immunisation protocols, as well as the most commonly used IgY-extraction procedures; g) new possibilities for application in human and veterinary medicine, including strategies for the treatment of Helicobacter pylori infection or fatal intestinal diseases in children, particularly in poor countries, for reducing the use of antibiotics, and, in Asia and South America, for producing Abs against snake, spider and scorpion venoms; and h) the use of IgY Abs in various fields of research, also taking into consideration recent developments in South America (particularly Argentina and Cuba) and in Asia.
Collapse
Affiliation(s)
- Rüdiger Schade
- Institute of Pharmacology and Toxicology, Medical Faculty (Charité) of Humboldt University, Dorotheenstrasse 94, 10117 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Wang X, Ni B, Du X, Zhao G, Gao W, Shi X, Zhang S, Zhang L, Wang D, Luo D, Xing L, Jiang H, Li W, Jiang M, Mao L, He Y, Xiao Y, Wu Y. Protection of Mammalian Cells from Severe Acute Respiratory Syndrome Coronavirus Infection by Equine Neutralizing Antibody. Antivir Ther 2005. [DOI: 10.1177/135965350501000504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aetiological agent for severe acute respiratory syndrome (SARS) has been determined to be a new type of coronavirus (SARS-CoV) that infects a wide range of mammalian hosts. Up to now, there have been no specific drugs to protect against SARS-CoV infection, thus developing effective strategies against this newly emerged viral infection warrants urgent efforts. Adoptive immune therapy with pathogen-specific heterologous immunoglobulin has been successfully used to control the dissemination of many viral infections. To investigate whether a neutralizing antibody against SARS-CoV raised in an artiodactylous host can have a protective role on primate cells, we prepared serum IgGs and their pepsin-digested F(ab’)2 fragments from horses inoculated with purified SARS-CoV (BJ-01 strain). The protective effect of the F(ab’)2 fragments against SARS-CoV infection was determined in cultured Vero E6 cells by cytopathic effect (CPE), MTT and plaque-forming assays and in a Balb/c mouse model by CPE and quantitative RT-PCR. The results showed the neutralization titres of F(ab’)2 from three horses all reached at least 1:1600, and 50 μg of the F(ab’)2 fragments could completely neutralize 1x104 TCID50 SARS-CoV in vivo. Additionally, we observed that F(ab’)2 against BJ-01 strain could also protect cells from infection by the variant GZ-01 strain in vitro and in vivo. Our work has provided experimental support for testing the protective equine immunoglobulin in future large primate or human trials.
Collapse
Affiliation(s)
- Xiliang Wang
- Department of Immunology, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Bing Ni
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Xinan Du
- Department of Immunology, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Guangyu Zhao
- Department of Immunology, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Wenda Gao
- Beth Israel Deaconess Medical Centre, Harvard Medical School, Boston, MA, USA
| | - Xinfu Shi
- Department of Immunology, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Songle Zhang
- Department of Immunology, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Liangyan Zhang
- Department of Immunology, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Dong Wang
- Department of Immunology, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Deyan Luo
- Department of Immunology, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Li Xing
- Department of Immunology, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Haiyan Jiang
- Department of Immunology, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, Beijing, China
| | - Wanling Li
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Man Jiang
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Liwei Mao
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yangdong He
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yu Xiao
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
20
|
Berghman LR, Abi-Ghanem D, Waghela SD, Ricke SC. Antibodies: an alternative for antibiotics? Poult Sci 2005; 84:660-6. [PMID: 15844826 PMCID: PMC7107177 DOI: 10.1093/ps/84.4.660] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 12/30/2004] [Indexed: 01/24/2023] Open
Abstract
In 1967, the success of vaccination programs, combined with the seemingly unstoppable triumph of antibiotics, prompted the US Surgeon General to declare that "it was time to close the books on infectious diseases." We now know that the prediction was overly optimistic and that the fight against infectious diseases is here to stay. During the last 20 yr, infectious diseases have indeed made a staggering comeback for a variety of reasons, including resistance against existing antibiotics. As a consequence, several alternatives to antibiotics are currently being considered or reconsidered. Passive immunization (i.e., the administration of more or less pathogen-specific antibodies to the patient) prior to or after exposure to the disease-causing agent is one of those alternative strategies that was almost entirely abandoned with the introduction of chemical antibiotics but that is now gaining interest again. This review will discuss the early successes and limitations of passive immunization, formerly referred to as "serum therapy," the current use of antibody administration for prophylaxis or treatment of infectious diseases in agriculture, and, finally, recent developments in the field of antibody engineering and "molecular farming" of antibodies in various expression systems. Especially the potential of producing therapeutic antibodies in crops that are routine dietary components of farm animals, such as corn and soy beans, seems to hold promise for future application in the fight against infectious diseases.
Collapse
Affiliation(s)
- L R Berghman
- Department of Poultry Science, Texas A&M University, College Station, Texas 77843-2472, USA.
| | | | | | | |
Collapse
|
21
|
Hodek P, Koblas T, Rýdlová H, Kubíčková B, Šulc M, Hudeček J, Stiborová M. Chicken Egg Yolk as an Excellent Source of Highly Specific Antibodies Against Cytochromes P450. ACTA ACUST UNITED AC 2004. [DOI: 10.1135/cccc20040659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Using chicken antibodies IgY (purified from egg yolks) against mammalian cytochromes P450 and by means of cytochrome P450 marker substrates, we found for the first time the presence of hepatopancreatic cytochrome P450 in crayfishOrconectes limosus(an inducible cytochrome P450 2B-like enzyme) and we were able to detect and quantify cytochrome P450 1A1 in microsomes of human livers. Expression levels of cytochrome P450 1A1 in human livers constituted less than 0.6% of the total hepatic cytochrome P450 complement. The results obtained in our study are clear examples that chicken IgY are suitable for cytochrome P450 detection and quantification. Due to the evolutionary distance, chicken IgY reacts with more epitopes on a mammalian antigen, which gives an amplification of the signal. Moreover, this approach offers many advantages over common mammalian antibody production since chicken egg is an abundant source of antibodies (about 100 mg IgY/yolk) and the egg collection is a non-invasive technique. In the case of antibodies against cytochrome P450 2B4, we documented fast and steady production of highly specific immunoglobulins. Thus, chicken antibodies should be considered as a good alternative to and/or superior substitute for conventional polyclonal antibody produced in mammals.
Collapse
|
22
|
Abstract
1. Snake venoms consist of a multitude of pharmacologically active components used for the capture of prey. Neurotoxins are particularly important in this regard, producing paralysis of skeletal muscles. These neurotoxins can be classified according to their site of action (i.e. pre- or post-synaptic). 2. Presynaptic neurotoxins, which display varying phospholipase A2 activities, have been identified in the venoms of the four major families of venomous snakes (i.e. Crotalidae, Elapidae, Hydrophiidae and Viperidae). The blockade of transmission produced by these toxins is usually characterized by a triphasic effect on acetylcholine release. Considerable work has been directed at identifying the binding site(s) on the presynaptic nerve terminal for these toxins, although their mechanism of action remains unclear. 3. Post-synaptic neurotoxins are antagonists of the nicotinic receptor on the skeletal muscle. Depending on their sequence, post-synaptic toxins are subdivided into short- and long-chain toxins. These toxins display different binding kinetics and different affinity for subtypes of nicotinic receptors. Post-synaptic neurotoxins have only been identified in venoms from the families Elapidae and Hydrophiidae. 4. Due to the high cost of developing new antivenoms and the reluctance of many companies to engage in this area of research, new methodologies are required to test the efficacy of existing antivenoms to ensure their optimal use. While chicken eggs have proven useful for the examination of haemorrhagic venoms, this procedure is not suited to venoms that primarily display neurotoxic activity. The chick biventer cervicis muscle has proven useful for this procedure, enabling the rapid screening of antivenoms against a range of venoms. 5. Historically, the lethality of snake venoms has been based on murine LD50 studies. Due to ethical reasons, these studies are being superseded by in vitro studies. Instead, the time taken to produce 90% inhibition of nerve-mediated twitches (i.e. t90) in skeletal muscle preparations can be determined. However, these two procedures result in different rank orders because they are measuring two different parameters. While murine LD50 determinations are based on "quantity", t90 values are based on how "quick" a venom acts. Therefore, knowledge of both parameters is still desirable. 6. In vitro neuromuscular preparations have proven to be invaluable tools in the examination of snake venoms and isolated neurotoxins. They will continue to play a role in further elucidating the mechanism of action of these highly potent toxins. Further study of these toxins may provide more highly specific research tools or lead compounds for pharmaceutical agents.
Collapse
Affiliation(s)
- Wayne C Hodgson
- Department of Pharmacology, Monash Venom Group, PO Box 13E, Monash University, Melbourne, Victoria 3800, Australia.
| | | |
Collapse
|