1
|
Lin CC, Wang CC, Ou Yang CH, Liu CC, Yu JS, Fann WC, Chen YC, Shih CP. The changes and the potential clinical applications of cytokines in Taiwan's major venomous snakebites patients. Toxicon 2024; 247:107843. [PMID: 38964621 DOI: 10.1016/j.toxicon.2024.107843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/13/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Taiwan habu (Protobothrops mucrosquamatus), green bamboo viper (Viridovipera stejnegeri), and Taiwan cobra (Naja atra) are the most venomous snakebites in Taiwan. Patients commonly present with limb swelling but misdiagnosis rates are high, and currently available diagnostic tools are limited. This study explores the immune responses in snakebite patients to aid in differential diagnosis. METHODS This prospective observational study investigated the changes in cytokines in snakebite patients and their potential for diagnosis. RESULTS Elevated pro-inflammatory cytokines IL-6 and TNF-α were observed in all snakebite patients compared to the healthy control group. While no significant disparities were observed in humoral immune response cytokines, there were significant differences in IFN-γ levels, with significantly higher IL-10 levels in patients bitten by cobras. Patients with TNF-α levels exceeding 3.02 pg/mL were more likely to have been bitten by a cobra. CONCLUSION This study sheds light on the immune responses triggered by various venomous snakebites, emphasizing the potential of cytokine patterns for snakebite-type differentiation. Larger studies are needed to validate these findings for clinical use, ultimately improving snakebite diagnosis and treatment.
Collapse
Affiliation(s)
- Chih-Chuan Lin
- Department of Emergency Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Cheng Wang
- Department of Traumatology and Emergency Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taiwan
| | - Chun-Hsiang Ou Yang
- Department of Traumatology and Emergency Surgery, Chang Gung Memorial Hospital, Chang Gung University, Taiwan
| | - Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan; Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan; Liver Research Center, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan; Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | - Wen-Chih Fann
- Department of Emergency Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Yen-Chia Chen
- Department of Emergency Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Emergency Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Pang Shih
- Department of Healthcare Management, Yuanpei University of Medical Technology, HsinChu, Taiwan.
| |
Collapse
|
2
|
M Morris N, A Blee J, Hauert S. Global parameter optimisation and sensitivity analysis of antivenom pharmacokinetics and pharmacodynamics. Toxicon 2023; 232:107206. [PMID: 37356552 DOI: 10.1016/j.toxicon.2023.107206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/05/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
In recent years it has become possible to design snakebite antivenoms with diverse pharmacokinetic properties. Owing to the pharmacokinetic variability of venoms, the choice of antivenom scaffold may influence a treatment's neutralisation coverage. Computation offers a useful medium through which to assess the pharmacokinetics and pharmacodynamics of envenomation-treatment systems, as antivenoms with identical neutralising capacities can be simulated. In this study, we simulate envenomation and treatment with a variety of antivenoms, to define the properties of effective antivenoms. Systemic envenomation and treatment were described using a two-compartment pharmacokinetic model. Treatment of Naja sumatrana and Cryptelytrops purpureomaculatus envenomation was simulated with a set of 200,000 theoretical antivenoms across 10 treatment time delays. These two venoms are well-characterised and have differing pharmacokinetic properties. The theoretical antivenom set varied across molecular weight, dose, kon, koff, and valency. The best and worst treatments were identified using an area under the curve metric, and a global sensitivity analysis was performed to quantify the influence of the input parameters on treatment outcome. The simulations show that scaffolds of diverse molecular formats can be effective. Molecular weight and valency have a negligible direct impact on treatment outcome, however low molecular weight scaffolds offer more flexibility across the other design parameters, particularly when treatment is delayed. The simulations show kon to primarily mediate treatment efficacy, with rates above 105 M-1s-1 required for the most effective treatments. koff has the greatest impact on the performance of less effective scaffolds. While the same scaffold preferences for improved treatment are seen for both model snakes, the parameter bounds for C. purpureomaculatus envenomation are more constrained. This paper establishes a computational framework for the optimisation of antivenom design.
Collapse
Affiliation(s)
- Natalie M Morris
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| | - Johanna A Blee
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| | - Sabine Hauert
- Department of Engineering Mathematics, Ada Lovelace Building, University of Bristol, University Walk, Bristol, BS8 1TW, UK.
| |
Collapse
|
3
|
Khourcha S, Hilal I, Elbejjaj I, Karkouri M, Safi A, Hmyene A, Oukkache N. Assessing the Efficacy of Monovalent and Commercialized Antivenoms for Neutralizing Moroccan Cobra Naja haje Venom: A Comparative Study. Trop Med Infect Dis 2023; 8:304. [PMID: 37368722 DOI: 10.3390/tropicalmed8060304] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
In Morocco, eight species of venomous snakes belonging to the Viperidae and Elapidae families are responsible for severe envenomation cases. The species from the Elapidae family is only represented by the medically relevant cobra Naja haje, which is widely distributed in North Africa. However, there is little information on the systemic effects of Moroccan cobra venom on vital organs due to regional variations. It has been demonstrated that the venom of Naja haje from Egypt causes hemorrhage, while the venom of the Moroccan cobra is neurotoxic and devoid of systemic bleeding. This variability is known to significantly influence treatment efficacy against Naja haje cobra bites in the Middle East. In this study, we examined the pathophysiological mechanisms responsible for the lethality induced by Naja haje venom, as well as the evaluation of the neutralizing capacity of two antivenoms; the monospecific antivenom made for Naja haje only and the antivenom marketed in the Middle East and North Africa. We first determined the toxicity of Naja haje venom by LD50 test, then compared the neutralizing capacity of the two antivenoms studied by determining the ED50. We also performed histological analysis on Swiss mice envenomed and treated with these antivenoms to observe signs of cobra venom envenomation and the degree of reduction of induced systemic alterations. The results showed significant differences between both antivenoms in terms of neutralization. The monospecific antivenom was four times more effective than the marketed antivenom. These results were confirmed by a histological study, which showed that monospecific antivenoms neutralized severe signs of mortality, such as congestion of blood vessels in the heart and kidneys, pulmonary and renal edema, cytoplasmic vacuolization of hepatocytes in the liver, and infiltration of inflammatory cells in the brain and spleen. However, the polyvalent antivenom failed to protect all severe lesions induced by Naja haje venom in mice. These findings highlight the negative impact of geographic variation on the effectiveness of conventional antivenom therapy and confirm the need for a specific Naja haje antivenom for the effective treatment of cobra envenomation in Morocco.
Collapse
Affiliation(s)
- Soukaina Khourcha
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca 20360, Morocco
- Laboratory of Biochemistry, Environment and Food Technology, Faculty of Sciences and Technologies of Mohammedia, Hassan II University, Mohammedia 20650, Morocco
| | - Ines Hilal
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca 20360, Morocco
- Laboratory of Biochemistry, Environment and Food Technology, Faculty of Sciences and Technologies of Mohammedia, Hassan II University, Mohammedia 20650, Morocco
| | - Iatimad Elbejjaj
- Laboratory of Pathological Anatomy, University Hospital Center Ibn Rochd, Casablanca 20250, Morocco
| | - Mehdi Karkouri
- Laboratory of Pathological Anatomy, University Hospital Center Ibn Rochd, Casablanca 20250, Morocco
| | - Amal Safi
- Laboratory of Biochemistry, Environment and Food Technology, Faculty of Sciences and Technologies of Mohammedia, Hassan II University, Mohammedia 20650, Morocco
| | - Abdelaziz Hmyene
- Laboratory of Biochemistry, Environment and Food Technology, Faculty of Sciences and Technologies of Mohammedia, Hassan II University, Mohammedia 20650, Morocco
| | - Naoual Oukkache
- Laboratory of Venoms and Toxins, Pasteur Institute of Morocco, Casablanca 20360, Morocco
| |
Collapse
|
4
|
Liu CC, Chou YS, Wu CJ, Hsieh CH, Hsiao YC, Chu LJ, Ouyang CH, Lin CC, Liaw GW, Chen CK. Detection of cytotoxins by sandwich-ELISA for discrimination of cobra envenomation and indication of necrotic severity. Int J Biol Macromol 2023; 242:124969. [PMID: 37210050 DOI: 10.1016/j.ijbiomac.2023.124969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Snake envenoming is both a healthcare and socioeconomic problem for developing countries and underserved communities. In Taiwan, clinical management of Naja atra envenomation is a major challenge, since cobra venom-induced symptoms are usually confused with hemorrhagic snakebites and current antivenom treatments do not effectively prevent venom-induced necrosis for which early surgical debridement should be administered. Identification and validation of biomarkers of cobra envenomation is critical for progress in setting a realistic goal for snakebite management in Taiwan. Previously, cytotoxin (CTX) was determined as one of potential biomarker candidates; however, its ability to discriminate cobra envenoming remains to be verified, especially in clinical practice. In this study, we selected a monoclonal single-chain variable fragment (scFv) and a polyclonal antibody to develop a sandwich enzyme-linked immunosorbent assay (ELISA) for CTX detection, which successfully recognized CTX from N. atra venom over that from other snake species. Using this specific assay, the CTX concentration in envenoming mice was shown to remain consistent in about 150 ng/mL during the 2-hour post-injection period. The measured concentration was highly correlated with the size of local necrosis in mouse dorsal skin, which the correlation coefficient is about 0.988. Furthermore, our ELISA method displayed 100 % of specificity and sensitivity in discriminating cobra envenoming among snakebite victims through CTX detection and the level of CTX in victim plasma was ranged from 5.8 to 253.9 ng/mL. Additionally, patients developed tissue necrosis at plasma CTX concentrations higher than 150 ng/mL. Thus, CTX not only serves as a verified biomarker for discrimination of cobra envenoming but also a potential indicator of severity of local necrosis. In this context, detection of CTX may facilitate reliable identification of envenoming species and improve snakebite management in Taiwan.
Collapse
Affiliation(s)
- Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Shao Chou
- Department of Emergency Medicine, En Chu Kong Hospital, New Taipei City 23741, Taiwan
| | - Cho-Ju Wu
- Department of Emergency Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Cheng-Hsien Hsieh
- Department of Emergency Medicine, En Chu Kong Hospital, New Taipei City 23741, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Yung-Chin Hsiao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan; Department of Otolaryngology Head and Neck Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chun-Hsiang Ouyang
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Chuan Lin
- Department of Emergency Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan
| | - Geng-Wang Liaw
- Department of Emergency Medicine, Yeezen General Hospital, Taoyuan 32645, Taiwan.
| | - Chun-Kuei Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan; College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
5
|
Yang J, Li JC, Huang Z, Huang DL, Wang F, Wei WX, Nong JF, Yang F, Lu XL, Zhu JR, Wang W. Effect of Several Naja atra Antivenom Injection Methods on the Rabbit Model of Naja naja atra Bite Poisoning. J Trop Med 2023; 2023:3253771. [PMID: 36860623 PMCID: PMC9970700 DOI: 10.1155/2023/3253771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/26/2022] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
Snakebite is a global public health concern, which often occurs in tropical and subtropical underdeveloped areas, but it is often neglected. In the southern China, Naja naja atra (Chinese cobra) is a common venomous snake that causes swelling and necrosis of local tissues, even amputation and death. Currently, the main therapy is the administration of Naja atra antivenom, which greatly reduces mortality. However, the antivenom is not particularly effective in the improvement of local tissue necrosis. Clinically, antivenom is mainly administered intravenously. We speculated that the method of injection influences the efficacy of antivenom. In this study, the rabbit model was used to explore the effects of different antivenom injection methods on systemic and local poisoning symptoms. If topical injection of antivenom contributes to ameliorate tissue necrosis, then we need to reconsider the use of Naja atra antivenom.
Collapse
Affiliation(s)
- Jie Yang
- Department of Emergency, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Jin-Cheng Li
- Department of Emergency, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhou Huang
- Department of Emergency, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Dong-Ling Huang
- Department of Emergency, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Fan Wang
- Department of Emergency, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Wan-Xia Wei
- Department of Emergency, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Ji-Fei Nong
- Department of Emergency, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Feng Yang
- Department of Emergency, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Xue-Ling Lu
- Department of Emergency, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Jun-Rong Zhu
- Department of Emergency, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Wei Wang
- Department of Emergency, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
6
|
Yeh H, Gao SY, Lin CC. Wound Infection of Snakebite from Venomous Protobothrops mucrosquamatus, Viridovipera stejnegeri and Naja atra in Taiwan: Validation of BITE and Cobra BITE Scoring Systems and their Bacteriological Differences in Wound Cultures. Toxins (Basel) 2023; 15:78. [PMID: 36668897 PMCID: PMC9861491 DOI: 10.3390/toxins15010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
Patients bitten by Protobothrops mucrosquamatus, Viridovipera stejnegeri, and Naja atra develop different degrees of wound infection. This study validated BITE and Cobra BITE scoring systems that we established previously. Bacteriological studies of patients with wound infection were conducted. The operating characteristic curves and area under the curve (AUC) and wound infection rates were compared between the derivation set (our previous study patient population) and the validation set (new patient cohorts enrolled between June 2017 and May 2021). No significant differences in the AUC for both the BITE (0.84 vs. 0.78, p = 0.27) and Cobra BITE (0.88 vs. 0.75, p = 0.21) scoring systems were observed between the derivation and validation sets. Morganella morganii and Enterococcus faecalis were the two most commonly detected bacteria in the microbiological study. More bacterial species were cultured from N. atra-infected wounds. Antibiotics such as amoxicillin with clavulanic acid, oxacillin, and ampicillin may not be suitable for treating patients with P. mucrosquamatus, V. stejnegeri, and N. atra bites in Taiwan. Carbapenem, third-generation cephalosporins, and fluoroquinolone may be superior alternatives.
Collapse
Affiliation(s)
- Heng Yeh
- Department of Emergency Medicine, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shi-Ying Gao
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chih-Chuan Lin
- Department of Emergency Medicine, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
7
|
Wang CC, Yang CHO, Hsu CP, Liu CC, Yu JS, Lo CH, Fann WC, Chen YC, Lin CC. Taiwan cobra envenoming: serum venom concentration before and after specific treatment and relationship with debridement of necrotic wound tissue. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20220027. [PMID: 36721427 PMCID: PMC9851669 DOI: 10.1590/1678-9199-jvatitd-2022-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/01/2022] [Indexed: 01/15/2023] Open
Abstract
Background Bivalent freeze-dried neurotoxic (FN) antivenom has been the primary treatment since the 1980s for Taiwan cobra (Naja atra) envenomation in Taiwan. However, envenomation-related wound necrosis is a significant problem after cobra snakebites. In the present study, we analyzed the changes in serum venom concentration before and after antivenom administration to discover their clinical implications and the surgical treatment options for wound necrosis. Methods The patients were divided into limb swelling and wound necrosis groups. The clinical outcome was that swelling started to subside 12 hours after antivenom treatment in the first group. Serum venom concentrations before and after using antivenoms were measured to assess the antivenom's ability to neutralize the circulating cobra venom. The venom levels in wound wet dressing gauzes, blister fluids, and debrided tissues were also investigated to determine their clinical significance. We also observed the evolutional changes of wound necrosis and chose a better wound debridement timing. Results We prospectively enrolled 15 Taiwan cobra snakebite patients. Males accounted for most of this study population (n = 11, 73%). The wound necrosis group received more antivenom doses than the limb swelling group (4; IQR:2-6 vs 1; IQR:1-2, p = 0.05), and less records of serum venom concentrations changed before/after antivenom use (p = 0.0079). The necrotic wound site may release venom into circulation and cause more severe envenomation symptoms. Antivenom can efficiently diminish limb swelling in cobra bite patients. However, antivenom cannot reduce wound necrosis. Patients with early debridement of wound necrosis had a better limb outcome, while late or without debridement may have long-term hospital stay and distal limb morbidity. Conclusions Antivenom can efficiently eliminate the circulating cobra venom in limb swelling patients without wound necrosis. Early debridement of the bite site wound and wet dressing management are suggestions for preventing extended tissue necrosis and hospital stay.
Collapse
Affiliation(s)
- Chia-Cheng Wang
- Department of Traumatology and Emergency Surgery, Chang Gung
Memorial Hospital, Chang Gung University, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chun-Hsiang Ou Yang
- Department of Traumatology and Emergency Surgery, Chang Gung
Memorial Hospital, Chang Gung University, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Po Hsu
- Department of Traumatology and Emergency Surgery, Chang Gung
Memorial Hospital, Chang Gung University, Taoyuan, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan,
Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan,
Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang
Gung University, Taoyuan, Taiwan.,Liver Research Center, Chang Gung Memorial Hospital, Linkou,
Taiwan.,Research Center for Food and Cosmetic Safety, Research Center for
Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science
and Technology, Taoyuan, Taiwan
| | - Chih-Hong Lo
- Department of General Surgery, Chang Gung Memorial Hospital,
Taoyuan, Taiwan
| | - Wen-Chih Fann
- Department of Emergency Medicine, Chiayi Chang Gung Memorial
Hospital, Chiayi, Taiwan
| | - Yen-Chia Chen
- Department of Emergency Medicine, Taipei Veterans General Hospital,
Taipei, Taiwan.,Department of Emergency Medicine, School of Medicine, National
Yang-Ming University, Taipei, Taiwan
| | - Chih Chuan Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Emergency Medicine, Linkou Chang Gung Memorial
Hospital, Taoyuan, Taiwan.,Correspondence:
| |
Collapse
|
8
|
Zeng L, Hou J, Ge C, Li Y, Gao J, Zhang C, Huang P, Du J, Mo Z, Liu Y, Zeng Z. Clinical study of anti-snake venom blockade in the treatment of local tissue necrosis caused by Chinese cobra (Naja atra) bites. PLoS Negl Trop Dis 2022; 16:e0010997. [PMID: 36525460 PMCID: PMC9803274 DOI: 10.1371/journal.pntd.0010997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 12/30/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE This study aimed to evaluate the clinical therapeutic efficacy of anti-snake venom serum blockade in treating local tissue necrosis caused by Chinese cobra (Naja atra) bites. METHODS Patients bitten by a Chinese cobra (Naja atra) (n = 50) that met the inclusion criteria were randomly divided into two groups: the experimental group (n = 25) and the control group (n = 25). The experimental group received regular as well as anti-snake venom serum blocking treatment, whereas regular treatment plus chymotrypsin blocking therapy was given to the control group. The necrotic volumes around snake wounds in these groups were detected on the first, third and seventh days. On the third day of treatment, some local tissues in the wounds were randomly selected for pathological biopsy, and the necrosis volume of the local tissue was observed. Furthermore, the amount of time required for wound healing was recorded. RESULTS On the third and seventh days post-treatment, the necrotic volume of the wound of the experimental group was much smaller than that of the control group, and the experimental group's wound healing time was shorter than that of the control group (all p < 0.05). Moreover, the pathological biopsies taken from the control group showed nuclear pyknosis, fragmentation, sparse nuclear density, and blurred edges, and the degree of necrosis was much higher than that of the experimental group. CONCLUSIONS Anti-snake venom blocking therapy is a new and improved therapy with good clinical effect on local tissue necrosis caused by Chinese cobra bites; moreover, it is superior to conventional chymotrypsin blocking therapy in the treatment of cobra bites. It can better neutralize and prevent the spread of the toxin, reduce tissue necrosis, and shorten the course of the disease by promoting healing of the wound. Furthermore, this treatment plan is also applicable to wound necrosis caused by other snake toxins, such as tissue necrosis caused by elapidae and viper families. CLINICAL TRIAL REGISTRATION This trial is registered in the Chinese Clinical Trial Registry, a primary registry of International Clinical Trial Registry Platform, World Health Organization (Registration No. ChiCTR2200059070; trial URL:http://www.chictr.org.cn/edit.aspx?pid=134353&htm=4).
Collapse
Affiliation(s)
- Linsheng Zeng
- Department of Emergency, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jingjing Hou
- Department of Emergency, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Cuihong Ge
- Guangzhou University of Chinese Medicine, Guangzhou Panyu Central Hospital,Guangzhou,China
| | - Yanjun Li
- Department of Emergency, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Jianhua Gao
- Department of Emergency, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Congcong Zhang
- Department of Emergency, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Peiying Huang
- The Second Clinical Medical School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiayu Du
- Department of Emergency, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Zhizhun Mo
- Department of Emergency, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Yuxiang Liu
- Department of Emergency, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- * E-mail: (YL); (ZZ)
| | - Zhongyi Zeng
- Department of Emergency, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- * E-mail: (YL); (ZZ)
| |
Collapse
|
9
|
Lai CS, Liu PY, Lee CH, Ho CH, Chen WL, Lai KL, Su HY, Lin WL, Chung KC, Yang YY, You CW, Chen KT, Mao YC. The development of surgical risk score and evaluation of necrotizing soft tissue infection in 161 Naja atra envenomed patients. PLoS Negl Trop Dis 2022; 16:e0010066. [PMID: 35143522 PMCID: PMC8830662 DOI: 10.1371/journal.pntd.0010066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 12/06/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Naja atra bites cause wound necrosis, secondary infection, and necrotizing soft tissue infection (NSTI) requiring repetitive surgeries. Little information is known about the predictors for surgery after these bites. MATERIALS AND METHODS We retrospectively evaluated 161 patients envenomed by N. atra, 80 of whom underwent surgery because of wound necrosis and infection. We compared the patients' variables between surgical and non-surgical groups. To construct a surgical risk score, we converted the regression coefficients of the significant factors in the multivariate logistic regression into integers. We also examined the deep tissue cultures and pathological findings of the debrided tissue. RESULTS A lower limb as the bite site, a ≥3 swelling grade, bullae or blister formation, gastrointestinal (GI) effects, and fever were significantly associated with surgery in the multivariate logistic regression analysis. The surgical risk scores for these variables were 1, 1, 2, 1, and 2, respectively. At a ≥3-point cutoff value, the model has 71.8% sensitivity and 88.5% specificity for predicting surgery, with an area under the receiver operating characteristic curve of 0.88. The histopathological examinations of the debrided tissues supported the diagnosis of snakebite-induced NSTI. Twelve bacterial species were isolated during the initial surgery and eleven during subsequent surgeries. DISCUSSION AND CONCLUSIONS From the clinical perspective, swelling, bullae or blister formation, GI effects, and fever appeared quickly after the bite and before surgery. The predictive value of these factors for surgery was acceptable, with a ≥3-point risk score. The common laboratory parameters did not always predict the outcomes of N. atra bites without proper wound examination. Our study supported the diagnosis of NSTI and demonstrated the changes in bacteriology during the surgeries, which can have therapeutic implications for N. atra bites.
Collapse
Affiliation(s)
- Chih-Sheng Lai
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Po-Yu Liu
- Division of Infection, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- Rong Hsing Research Center for Translational Medicine, National Chung Hsing University
| | - Chi-Hsin Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Hsuan Ho
- Department of Emergency Medicine, Tri-Service General Hospital, Taipei, Taiwan
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Ling Chen
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Psychiatry Department, Chiayi Branch, Taichung Veterans General Hospital, Chiayi, Taiwan
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Kuo-Lung Lai
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Hung-Yuan Su
- Department of Emergency Medicine, E-Da Hospital and I-Shou University, Kaohsiung, Taiwan
- The School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Wen-Loung Lin
- Taichung Wildlife Conservation Group, Taichung, Taiwan
| | - Kuo-Chen Chung
- Division of Traumatology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yi-Yuan Yang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- PhD Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Core Laboratory of Antibody Generation and Research, Taipei Medical University, Taipei, Taiwan
| | | | | | - Yan-Chiao Mao
- School of Medicine, National Defense Medical Center, Taipei, Taiwan
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
10
|
Lin JH, Sung WC, Mu HW, Hung DZ. Local Cytotoxic Effects in Cobra Envenoming: A Pilot Study. Toxins (Basel) 2022; 14:toxins14020122. [PMID: 35202149 PMCID: PMC8877591 DOI: 10.3390/toxins14020122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 02/05/2022] [Indexed: 01/31/2023] Open
Abstract
The cobra (genus Naja (N.)) is one of the most common venomous snakes. Due to its frequency and deadly complications of muscle paralysis, local necrosis, and chronic musculoskeletal disability, it should not be ignored. The pathology of devastating tissue destruction, even though specific antivenoms exist, is not fully clear. Here, we attempted to dig in envenomed tissues to study the clinical toxicology of cobra venom. Four cases of N. atra snake envenomation, in which the subjects developed advanced tissue injury, were involved in this study. We used enzyme-ligand sandwich immunoassay (ELISA) to assay the whole venom, cytotoxin A3 and short-chain neurotoxin (sNTX) in blood, bullae, wound discharge, and debrided tissue. We found that persistently high concentrations of venom and toxins, especially cytotoxin A3, were detected in bullae, wound discharge fluid and necrotic tissue of these patients even after large doses of specific antivenom treatment, and wide excision and advanced debridement could largely remove these toxins, lessen the size of necrosis, and promote wound healing. We also found that the point-of-care apparatus, ICT-Cobra kit, might be used to promptly monitor the wound condition and as one of the indicators of surgical intervention in cases of cobra envenomation in Taiwan.
Collapse
Affiliation(s)
- Jing-Hua Lin
- Division of Toxicology, China Medical University Hospital, Taichung 40447, Taiwan; (J.-H.L.); (H.-W.M.)
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Han-Wei Mu
- Division of Toxicology, China Medical University Hospital, Taichung 40447, Taiwan; (J.-H.L.); (H.-W.M.)
| | - Dong-Zong Hung
- Division of Toxicology, China Medical University Hospital, Taichung 40447, Taiwan; (J.-H.L.); (H.-W.M.)
- Correspondence: ; Tel.: +886-4-2205-2121
| |
Collapse
|
11
|
Manson EZ, Mutinda KC, Gikunju JK, Bocian A, Hus KK, Petrílla V, Legáth J, Kimotho JH. Development of an Inhibition Enzyme-Linked Immunosorbent Assay (ELISA) Prototype for Detecting Cytotoxic Three-Finger Toxins (3FTxs) in African Spitting Cobra Venoms. Molecules 2022; 27:molecules27030888. [PMID: 35164152 PMCID: PMC8838685 DOI: 10.3390/molecules27030888] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
The administration of toxin-specific therapy in snake envenoming is predicated on improved diagnostic techniques capable of detecting specific venom toxins. Various serological tests have been used in detecting snakebite envenoming. Comparatively, enzyme-linked immunosorbent assay (ELISA) has been shown to offer a wider practical application. We report an inhibition ELISA for detecting three-finger toxin (3FTx) proteins in venoms of African spitting cobras. The optimized assay detected 3FTxs in N. ashei (including other Naja sp.) venoms, spiked samples, and venom-challenged mice samples. In venoms of Naja sp., the assay showed inhibition, implying the detection of 3FTxs, but showed little or no inhibition in non-Naja sp. In mice-spiked samples, one-way ANOVA results showed that the observed inhibition was not statistically significant between spiked samples and negative control (p-value = 0.164). Similarly, the observed differences in inhibition between venom-challenged and negative control samples were not statistically significant (p-value = 0.9109). At an LOD of 0.01 µg/mL, the assay was able to confirm the presence of 3FTxs in the samples. Our results show a proof of concept for the use of an inhibition ELISA model as a tool for detecting 3FTxs in the venoms of African spitting cobra snakes.
Collapse
Affiliation(s)
- Ernest Z. Manson
- Institute for Basic Sciences, Technology & Innovation, Pan African University, Nairobi 00100, Kenya
- Correspondence:
| | - Kyama C. Mutinda
- Department of Medical Laboratory Science, College of Health Sciences, Jomo Kenyatta University of Agriculture & Technology, Nairobi 00100, Kenya; (K.C.M.); (J.K.G.)
| | - Joseph K. Gikunju
- Department of Medical Laboratory Science, College of Health Sciences, Jomo Kenyatta University of Agriculture & Technology, Nairobi 00100, Kenya; (K.C.M.); (J.K.G.)
| | - Aleksandra Bocian
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (A.B.); (K.K.H.); (J.L.)
| | - Konrad K. Hus
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (A.B.); (K.K.H.); (J.L.)
| | - Vladimír Petrílla
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia;
- Zoological Department, Zoological Garden Košice, Široká 31, 040 06 Košice-Kavečany, Slovakia
| | - Jaroslav Legáth
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (A.B.); (K.K.H.); (J.L.)
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | | |
Collapse
|
12
|
Influential Factors of Local Tissue Necrosis after Taiwan Cobra Bites: A Secondary Analysis of the Clinical Significance of Venom Detection in Patients of Cobra Snakebites. Toxins (Basel) 2021; 13:toxins13050338. [PMID: 34067062 PMCID: PMC8151269 DOI: 10.3390/toxins13050338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 12/04/2022] Open
Abstract
Local tissue swelling, inflammation, and wound necrosis are observed in Taiwan cobra bites. Knowledge of the factors influencing local tissue necrosis after cobra bites might improve the cobra bite treatment strategy. Therefore, we aimed to explore the factors influencing local tissue necrosis after cobra bites. This was a retrospective observational cohort study. All patients clinical presentations including serum venom levels for determining the influential factors in this study were obtained from Hung et al.’s previous study. Clinical features, such as bite information, initial swelling, patient presentation time, serum venom levels, and antivenom, use were extracted. The measurement outcome was the development of wound necrosis. The factors influencing wound necrosis were investigated using univariate and logistic regression analyses. The influential factors of local tissue necrosis and their areas under the curve were: initial limb swelling, 0.88; presentation time × serum level, 0.80; initial necrosis, 0.75; patient presentation time, 0.70. Serum venom level alone cannot be used as a predictive factor. The development of tissue necrosis might be associated with the venom factor, time factor, and their interaction. These influential factors can be used in future studies to evaluate antivenom efficacy.
Collapse
|
13
|
Yeh H, Gao SY, Lin CC. Wound Infections from Taiwan Cobra ( Naja atra) Bites: Determining Bacteriology, Antibiotic Susceptibility, and the Use of Antibiotics-A Cobra BITE Study. Toxins (Basel) 2021; 13:toxins13030183. [PMID: 33801318 PMCID: PMC7999477 DOI: 10.3390/toxins13030183] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 02/04/2023] Open
Abstract
Wound necrosis and secondary infection are common complications after Naja atra bites. Clinical tools to evaluate the infection risk after Taiwan cobra bites are lacking. In this Cobra BITE study, we investigated the prevalence of wound infection, bacteriology, and corresponding antibiotic usage in patients presenting with Taiwan cobra snakebites. Patients with wound infection lacking tissue necrosis were included in developing Cobra BITE score utilizing univariate and multiple logistic regression, as patients with wound necrosis require antibiotics for infection treatment. 8,295,497 emergency department visits occurred in the span of this study, with 195 of those patients being diagnosed as having cobra bites. Of these patients, 23 had wound necrosis, and 30 had wound infection, resulting in a wound infection rate of 27.2% (53/195). Enterococcus faecalis and Morganella morganii were the main bacteria identified in the culture report regardless of whether patients’ wounds had necrosis. As per our Cobra BITE score, the three factors predicting secondary wound infection after cobra bites are hospital admission, a white blood cell count (in 103/µL) × by neu-trophil-lymphocyte ratio value of ≥114.23, and the use of antivenin medication. The area under the receiver operating characteristic curve for the Cobra BITE score system was 0.88; ideal sensitivity and specificity were 0.89 and 0.76. This scoring system enables the assessment of wound infections after N. atra bites, and it could be modified and improved in the future for other Naja spp. bites.
Collapse
Affiliation(s)
- Heng Yeh
- Department of Emergency Medicine, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (H.Y.); (S.-Y.G.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Shi-Ying Gao
- Department of Emergency Medicine, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (H.Y.); (S.-Y.G.)
| | - Chih-Chuan Lin
- Department of Emergency Medicine, Lin-Kou Medical Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan; (H.Y.); (S.-Y.G.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence:
| |
Collapse
|
14
|
Liu CC, Yang YH, Hsiao YC, Wang PJ, Liu JC, Liu CH, Hsieh WC, Lin CC, Yu JS. Rapid and Efficient Enrichment of Snake Venoms from Human Plasma Using a Strong Cation Exchange Tip Column to Improve Snakebite Diagnosis. Toxins (Basel) 2021; 13:toxins13020140. [PMID: 33668416 PMCID: PMC7917991 DOI: 10.3390/toxins13020140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022] Open
Abstract
Snake envenomation is a serious public health issue in many tropical and subtropical countries. Accurate diagnosis and immediate antivenom treatment are critical for effective management. However, the venom concentration in the victims' plasma is usually low, representing one of the bottlenecks in developing clinically applicable assays for venom detection and snakebite diagnosis. In this study, we attempted to develop a simple method for rapid enrichment of venom proteins from human plasma to facilitate detection. Our experiments showed that several major protein components of both Naja atra (N. atra) and Bungarus multicinctus (B. multicinctus) venoms have higher isoelectric point (pI) values relative to high-abundance human plasma proteins and could be separated via strong cation exchange-high-performance liquid chromatography (SCX-HPLC). Based on this principle, we developed an SCX tip column-based protocol for rapid enrichment of N. atra and B. multicinctus venom proteins from human plasma. Application of liquid chromatography-tandem mass spectrometry (LC-MS/MS) led to the identification of cytotoxin and beta-bungarotoxin as the major proteins enriched by the SCX tip column in each venom sample. The entire process of venom enrichment could be completed within 10-15 min. Combination of this method with our previously developed lateral flow strip assays (rapid test) significantly enhanced the sensitivity of the rapid test, mainly via depletion of the plasma protein background, as well as increase in venom protein concentration. Notably, the SCX tip column-based enrichment method has the potential to efficiently enrich other Elapidae snake venoms containing proteins with higher pI values, thereby facilitating venom detection with other assays. This simple and rapid sample preparation method should aid in improving the clinical utility of diagnostic assays for snakebite.
Collapse
Affiliation(s)
- Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan; (C.-C.L.); (Y.-C.H.); (P.-J.W.)
| | - Ya-Han Yang
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Yung-Chin Hsiao
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan; (C.-C.L.); (Y.-C.H.); (P.-J.W.)
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Po-Jung Wang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan; (C.-C.L.); (Y.-C.H.); (P.-J.W.)
| | - Jo-Chuan Liu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chien-Hsin Liu
- Center for Research, Diagnostics and Vaccine Development of Centers for Disease Control, Ministry of Health and Welfare, Taipei 10050, Taiwan; (C.-H.L.); (W.-C.H.)
| | - Wen-Chin Hsieh
- Center for Research, Diagnostics and Vaccine Development of Centers for Disease Control, Ministry of Health and Welfare, Taipei 10050, Taiwan; (C.-H.L.); (W.-C.H.)
| | - Chih-Chuan Lin
- Department of Emergency Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan;
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan; (C.-C.L.); (Y.-C.H.); (P.-J.W.)
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Correspondence: ; Tel.: +886-3-211-8800 (ext. 5171); Fax: +886-3-2118891
| |
Collapse
|
15
|
Yan H, Xiang P, Zhang J, Xie L, Shen M. Dynamic changes of serum protein in rats with acute intoxication of Chinese cobra snake venom by proteomic analysis. Forensic Sci Res 2020; 5:309-321. [PMID: 33457049 PMCID: PMC7782176 DOI: 10.1080/20961790.2017.1405565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
To elucidate the toxic mechanism of snake venom at the protein level, proteomics technology was applied to investigate the effect of venom on circulation in the mammalian body. Temporal proteomic analysis was performed to profile the dynamic changes in the sera of Sprague–Dawley rats administered with Chinese cobra venom or saline. Using 8-plex iTRAQ analysis, 392 and 636 serum proteins were identified to be linearly upregulated or downregulated over time in the low-dose group and high-dose group, respectively. These proteins were mainly associated with the acute phase response pathway, complement system, and liver X receptor (LXR)/retinoid X receptor (RXR) and farnesoid X receptor (FXR)/RXR activation pathways. Compared with the low-dose group, the immune response and integrin pathways were inhibited in the high-dose group, although no obvious effect was observed. With consistently higher or lower expression in the high-dose group compared to the low-dose group throughout the whole process of venom poisoning, two proteins, Kininogen-1 (KNG1) and orosomucoid 1 (ORM1), which are involved in metabolism and immune response, occupied a core position in the pathway network and are considered venom dose-dependent biomarker candidates.
Collapse
Affiliation(s)
- Hui Yan
- Shanghai Key Laboratory of Forensic Science, Shanghai Forensic Platform, Department of Forensic Toxicology, Academy of Forensic Science, Shanghai, China
| | - Ping Xiang
- Shanghai Key Laboratory of Forensic Science, Shanghai Forensic Platform, Department of Forensic Toxicology, Academy of Forensic Science, Shanghai, China
| | - Jingshuo Zhang
- College of Pharmaceutical Sciences, Soochow Universtity, Suzhou, Jiangsu, China
| | - Liqi Xie
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Min Shen
- Shanghai Key Laboratory of Forensic Science, Shanghai Forensic Platform, Department of Forensic Toxicology, Academy of Forensic Science, Shanghai, China
| |
Collapse
|
16
|
Lin JH, Sung WC, Liao JW, Hung DZ. A Rapid and International Applicable Diagnostic Device for Cobra (Genus Naja) Snakebites. Toxins (Basel) 2020; 12:toxins12090572. [PMID: 32899472 PMCID: PMC7551368 DOI: 10.3390/toxins12090572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 11/16/2022] Open
Abstract
Cobra snakes (genus Naja) are some of the most dangerous snake species in Asia and Africa, as their bites cause severe life-threatening respiratory failure and local tissue destruction, especially in the case of late diagnosis. The differential diagnosis of snakebite envenomation still mainly relies upon symptomatology, the patient’s description, and the experience of physicians. We have designed a rapid test, immunochromatographic test of cobra (ICT-Cobra), which obtained fair results in improving the diagnosis and treatment of Naja (N.) atra snakebites in Taiwan. In this study, we further investigated the feasibility of applying the kit for the detection of other cobra venoms based on the potential interspecies similarity. We firstly demonstrated the cross-reactivity between eight venoms of medically important cobra species and the rabbit anti-N. atra IgG that was used in ICT-Cobra by Western blotting and sandwich enzyme-linked immunosorbent assay. Then, ICT-Cobra was used to detect various concentrations of the eight venoms to elucidate its performance. Noticeable correlations between the cross-reactivity of venoms from genus Naja snakes and existing geographical characteristics were found. ICT-Cobra could detect venoms from other Asian cobras with variable detection limits comparable to those observed for N. atra, but the kit was less successful in the detection of venom from African cobras. The similar but slightly different venom components and the interaction between venom and rabbit anti-N. atra IgG led to variations in the detection limits. The transcontinental usage of ICT-Cobra might be possible due to the cross-reactivity of antibodies and similarities among the larger-sized proteins. This study showed that the close immunological relationships in the genus Naja could be used to develop a venom detection kit for the diagnosis of cobra envenomation in both Asian and African regions. Additional clinical studies and technical adjustments are still needed to improve the efficacy and broadening the application of ICT-Cobra in the future.
Collapse
Affiliation(s)
- Jing-Hua Lin
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Wang-Chou Sung
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 40227, Taiwan;
- Correspondence: (J.-W.L.); (D.-Z.H.); Tel.: +886-4-2284-0894 (J.-W.L.); +886-4-2205-2121 (D.-Z.H.)
| | - Dong-Zong Hung
- Division of Toxicology, China Medical University Hospital, Taichung 40447, Taiwan
- Correspondence: (J.-W.L.); (D.-Z.H.); Tel.: +886-4-2284-0894 (J.-W.L.); +886-4-2205-2121 (D.-Z.H.)
| |
Collapse
|
17
|
Lin JH, Lo CM, Chuang SH, Chiang CH, Wang SD, Lin TY, Liao JW, Hung DZ. Collocation of avian and mammal antibodies to develop a rapid and sensitive diagnostic tool for Russell's Vipers Snakebite. PLoS Negl Trop Dis 2020; 14:e0008701. [PMID: 32956365 PMCID: PMC7529284 DOI: 10.1371/journal.pntd.0008701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 10/01/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Russell's vipers (RVs) envenoming is an important public health issue in South-East Asia. Disseminated intravascular coagulopathy, systemic bleeding, hemolysis, and acute renal injury are obvious problems that develop in most cases, and neuromuscular junction blocks are an additional problem caused by western RV snakebite. The complex presentations usually are an obstacle to early diagnosis and antivenom administration. Here, we tried to produce highly specific antibodies in goose yolks for use in a paper-based microfluidic diagnostic kit, immunochromatographic test of viper (ICT-Viper), to distinguish RVs from other vipers and even cobra snakebite in Asia. We used indirect ELISA to monitor specific goose IgY production and western blotting to illustrate the interaction of avian or mammal antibody with venom proteins. The ICT-Viper was tested not only in prepared samples but also in stored patient serum to demonstrate its preliminary efficacy. The results revealed that specific anti-Daboia russelii IgY could be raised in goose eggs effectively without inducing adverse effects. When it was collocated with horse anti-Daboia siamensis antibody, which broadly reacted with most of the venom proteins of both types of Russell's viper, the false cross-reactivity was reduced, and the test showed good performance. The limit of detection was reduced to 10 ng/ml in vitro, and the test showed good detection ability in clinical snake envenoming case samples. The ICT-Viper performed well and could be combined with a cobra venom detection kit (ICT-Cobra) to create a multiple detection strip (ICT-VC), which broadens its applications while maintaining its detection ability for snake envenomation identification. Nonetheless, the use of the ICT-Viper in the South-East Asia region is pending additional laboratory and field investigations and regional collaboration. We believe that the development of this practical diagnostic tool marks the beginning of positive efforts to face the global snakebite issue.
Collapse
Affiliation(s)
- Jing-Hua Lin
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan
- Division of Toxicology, China Medical University Hospital, Taichung, Taiwan
| | - Che-Min Lo
- Division of Toxicology, China Medical University Hospital, Taichung, Taiwan
| | - Ssu-Han Chuang
- Changhua Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Executive Yuan, Changhua, Taiwan
| | - Chao-Hung Chiang
- Changhua Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Executive Yuan, Changhua, Taiwan
| | - Sheng-Der Wang
- Changhua Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Executive Yuan, Changhua, Taiwan
| | - Tsung-Yi Lin
- Changhua Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Executive Yuan, Changhua, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung, Taiwan
| | - Dong-Zong Hung
- Division of Toxicology, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
18
|
Liu CC, Chou YS, Chen CY, Liu KL, Huang GJ, Yu JS, Wu CJ, Liaw GW, Hsieh CH, Chen CK. Pathogenesis of local necrosis induced by Naja atra venom: Assessment of the neutralization ability of Taiwanese freeze-dried neurotoxic antivenom in animal models. PLoS Negl Trop Dis 2020; 14:e0008054. [PMID: 32032357 PMCID: PMC7032728 DOI: 10.1371/journal.pntd.0008054] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/20/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
Naja atra envenomation is one of the most significant clinical snakebite concerns in Taiwan. Taiwanese freeze-dried neurotoxic antivenom (FNAV) is currently used clinically for the treatment of cobra snakebite, and has been shown to limit the mortality of cobra envenomation to less than 1%. However, more than half of victims (60%) require surgery because of local tissue necrosis, a major problem in patients with cobra envenomation. Although the importance of evaluating the neutralizing effect of FNAV on this pathology is recognized, whether FNAV is able to prevent the local necrosis extension induced by N. atra venom has not been investigated in detail. Cytotoxins (CTXs) are considered as the major components of N. atra venom that cause necrosis. In the current study, we isolated CTXs from whole cobra venom and used both whole venom and purified CTXs to develop animal models for assessing the neutralization potential of FNAV against venom necrotizing activity. Local necrotic lesions were successfully produced in mice using CTXs in place of whole N. atra venom. FNAV was able to rescue mice from a subcutaneously injected lethal dose of cobra venom; however, it was unable to prevent CTX-induced dermo-necrosis. Furthermore, using the minimal necrosis dose (MND) of CTXs and venom proteome data, we found a dose of whole N. atra venom suitable for FNAV and developed a workable protocol for inducing local necrosis in rodent models that successfully imitated the clinical circumstance of cobra envenoming. This information provides a more comprehensive understanding of the pathophysiology of N. atra envenomation, and serves as a guide for improving current antivenom strategies and advancing clinical snakebite management in Taiwan. Naja atra envenomation is an important public health issue in Taiwan. Although the mortality rate of cobra snakebite is controlled using antivenom, more than half of victims develop symptoms of local necrosis and require surgical intervention. Whether the Taiwanese freeze-dried neurotoxic antivenom (FNAV) currently in clinical use is able to prevent the local necrosis extension induced by N. atra venom is still unclear. In this study, we developed a dermo-necrosis animal model using purified cytotoxins (CTXs), the major necrosis-related proteins from N. atra venom. We found that FNAV was able to neutralize the lethality of whole cobra venom, but was unable to neutralize the necrosis induced by CTXs in vivo. This finding introduced an example that supplementary quality control assays may be necessary to determine the effectiveness of antivenoms in neutralizing specific pathology induced by the venom; only evaluating the rodent lethality prevention is insufficient. Our results provide insights that should help improve current antivenoms and advance cobra snakebite management in Taiwan.
Collapse
Affiliation(s)
- Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Shao Chou
- Department of Emergency Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Chun-Yu Chen
- Department of Emergency Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
| | - Kuei-Lin Liu
- Faculty of Biotechnology and Laboratory Science in Medicine, School of Medical Technology and Engineering, National Yang-Ming University, Taipei, Taiwan
| | - Guo-Jen Huang
- Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Cho-Ju Wu
- Department of Emergency Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Geng-Wang Liaw
- Department of Emergency Medicine, Yeezen General Hospital, Taoyuan, Taiwan
| | - Cheng-Hsien Hsieh
- Department of Emergency Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail: (CHH); (CKC)
| | - Chun-Kuei Chen
- Department of Emergency Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan
- * E-mail: (CHH); (CKC)
| |
Collapse
|
19
|
Deka A, Gogoi A, Das D, Purkayastha J, Doley R. Proteomics of Naja kaouthia venom from North East India and assessment of Indian polyvalent antivenom by third generation antivenomics. J Proteomics 2019; 207:103463. [DOI: 10.1016/j.jprot.2019.103463] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/15/2019] [Accepted: 07/21/2019] [Indexed: 11/25/2022]
|
20
|
Tan CH, Wong KY, Chong HP, Tan NH, Tan KY. Proteomic insights into short neurotoxin-driven, highly neurotoxic venom of Philippine cobra (Naja philippinensis) and toxicity correlation of cobra envenomation in Asia. J Proteomics 2019; 206:103418. [PMID: 31201947 DOI: 10.1016/j.jprot.2019.103418] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/19/2019] [Accepted: 06/11/2019] [Indexed: 01/07/2023]
Abstract
The Philippine cobra, Naja philippinensis, is a WHO Category 1 venomous snake of medical importance responsible for fatal envenomation in the northern Philippines. To elucidate the venom proteome and pathophysiology of envenomation, N. philippinensis venom proteins were decomplexed with reverse-phase high-performance liquid chromatography, and protein fractions were subsequently digested with trypsin, followed by nano-liquid chromatography-tandem mass spectrometry analysis and data mining. Three-finger toxins (3FTX, 66.64% of total venom proteins) and phospholipases A2 (PLA2, 22.88%) constitute the main bulk of venom proteome. Other proteins are present at low abundances (<4% each); these include metalloproteinase, serine protease, cobra venom factor, cysteine-rich secretory protein, vespryn, phosphodiesterase, 5' nucleotidase and nerve growth factor. In the three-finger toxin family, the alpha-neurotoxins comprise solely short neurotoxins (SNTX, 44.55%), supporting that SNTX is the principal toxin responsible for neuromuscular paralysis and lethality reported in clinical envenomation. Cytotoxins (CTX) are the second most abundant 3FTX proteins in the venom (21.31%). The presence of CTX correlates with the venom cytotoxic effect, which is more prominent in murine cells than in human cells. From the practical standpoint, SNTX-driven neuromuscular paralysis is significant in N. philippinensis envenomation. Antivenom production and treatment should be tailored accordingly to ensure effective neutralization of SNTX. BIOLOGICAL SIGNIFICANCE: The venom proteome of Naja philippinensis, the Philippine cobra, is unravelled for the first time. Approximately half the protein bulk of the venom is made up of short neurotoxins (44.55% of the total venom proteins). As the only alpha-neurotoxins present in the venom, short neurotoxins are the causative toxins of the post-synaptic blockade and fast-onset neuromuscular paralysis in N. philippinensis envenomation. A substantial amount of cytotoxins (21.31%) was also detected in N. philippinensis venom, supporting that the venom can be cytotoxic although the effect is much weaker in human cells compared to murine cells. The finding is consistent with the low incidence of local tissue necrosis in N. philippinensis envenomation, although this does not negate the need for monitoring and care of bite wound in the patients.
Collapse
Affiliation(s)
- Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kin Ying Wong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ho Phin Chong
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Kae Yi Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
21
|
Comparative analysis of Naja kaouthia venom from North-East India and Bangladesh and its cross reactivity with Indian polyvalent antivenoms. Toxicon 2019; 164:31-43. [DOI: 10.1016/j.toxicon.2019.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/26/2019] [Accepted: 03/31/2019] [Indexed: 01/01/2023]
|
22
|
Évaluation de l’efficacité et la tolérance de Inoserp® Panafricain au Sénégal. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2019. [DOI: 10.1016/j.toxac.2018.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Liu CC, Yu JS, Wang PJ, Hsiao YC, Liu CH, Chen YC, Lai PF, Hsu CP, Fann WC, Lin CC. Development of sandwich ELISA and lateral flow strip assays for diagnosing clinically significant snakebite in Taiwan. PLoS Negl Trop Dis 2018; 12:e0007014. [PMID: 30507945 PMCID: PMC6292642 DOI: 10.1371/journal.pntd.0007014] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/13/2018] [Accepted: 11/21/2018] [Indexed: 01/01/2023] Open
Abstract
Taiwan is an island located in the south Pacific, a subtropical region that is home to 61 species of snakes. Of these snakes, four species—Trimeresurus stejnegeri, Protobothrops mucrosquamatus, Bungarus multicinctus and Naja atra—account for more than 90% of clinical envenomation cases. Currently, there are two types of bivalent antivenom: hemorrhagic antivenom against the venom of T. stejnegeri and P. mucrosquamatus, and neurotoxic antivenom for treatment of envenomation by B. multicinctus and N. atra. However, no suitable detection kits are available to precisely guide physicians in the use of antivenoms. Here, we sought to develop diagnostic assays for improving the clinical management of snakebite in Taiwan. A two-step affinity purification procedure was used to generate neurotoxic species-specific antibodies (NSS-Abs) and hemorrhagic species-specific antibodies (HSS-Abs) from antivenoms. These two SSAbs were then used to develop a sandwich ELISA (enzyme-linked immunosorbent assay) and a lateral flow assay comprising two test lines. The resulting ELISAs and lateral flow strip assays could successfully discriminate between neurotoxic and hemorrhagic venoms. The limits of quantification (LOQ) of the ELISA for neurotoxic venoms and hemorrhagic venoms were determined to be 0.39 and 0.78 ng/ml, respectively, and the lateral flow strips were capable of detecting neurotoxic and hemorrhagic venoms at concentrations lower than 5 and 50 ng/ml, respectively, in 10–15 min. Tests of lateral flow strips in 21 clinical snakebite cases showed 100% specificity and 100% sensitivity for neurotoxic envenomation, whereas the sensitivity for detecting hemorrhagic envenomation samples was 36.4%. We herein presented a feasible strategy for developing a sensitive sandwich ELISA and lateral flow strip assay for detecting and differentiating venom proteins from hemorrhagic and neurotoxic snakes. A useful snakebite diagnostic guideline according to the lateral flow strip results and clinical symptoms was proposed to help physicians to use antivenoms appropriately. The two-test-line lateral flow strip assay could potentially be applied in an emergency room setting to help physicians diagnose and manage snakebite victims. Snakebite is a public health issue that causes life-threatening medical emergencies. Rapid diagnosis of snakebite in the clinic is a critical necessity in many tropical and subtropical countries, where various venomous snakes are common. Venoms from different snake species contain distinct protein components that require treatment with different antivenoms. However, given the similarity in clinical symptoms among some snake envenomations, it is often challenging for physicians to precisely define the snake species responsible for envenomation. Thus, a reliable method or assay for rapidly diagnosing envenoming species is urgently needed. Here, we present a two-step affinity purification procedure for generating species-specific antibodies (SSAbs) from antivenom, followed by the development of a sandwich ELISA (enzyme-linked immunosorbent assay) and lateral flow strip assay using these SSAbs. This feasible and cost-effective strategy allowed us to develop workable assays for distinguishing between venom proteins from hemorrhagic and neurotoxic snakes in Taiwan. The usefulness of this strategy was demonstrated in the clinic, where both diagnostic assays were shown capable of detecting venoms in blood samples from snakebite patients. Together with the observation of clinical symptoms, the two-test-line lateral flow strip assay is potentially applicable in an emergency room setting to improve snakebite diagnosis and management.
Collapse
Affiliation(s)
- Chien-Chun Liu
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
| | - Jau-Song Yu
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
- Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
- Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan
| | - Po-Jung Wang
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
| | - Yung-Chin Hsiao
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Tao-Yuan, Taiwan
| | - Chien-Hsin Liu
- Center for Research, Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Yen-Chia Chen
- Department of Emergency medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Emergency Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Fang Lai
- Department of Emergency, Buddihist Tzu Chi Hospital, Hualien, Taiwan
| | - Chih-Po Hsu
- Department of Trauma and Emergency Surgery, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan
| | - Wen-Chih Fann
- Department of Emergency Medicine, Chia-Yi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Chih-Chuan Lin
- Department of Emergency Medicine, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
24
|
Liu CC, Lin CC, Hsiao YC, Wang PJ, Yu JS. Proteomic characterization of six Taiwanese snake venoms: Identification of species-specific proteins and development of a SISCAPA-MRM assay for cobra venom factors. J Proteomics 2018; 187:59-68. [DOI: 10.1016/j.jprot.2018.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/28/2018] [Accepted: 06/13/2018] [Indexed: 01/07/2023]
|
25
|
de Faria RAD, Lins VDFC, Nappi GU, Matencio T, Heneine LGD. Development of an Impedimetric Immunosensor for Specific Detection of Snake Venom. BIONANOSCIENCE 2018. [DOI: 10.1007/s12668-018-0559-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
Pharmacokinetics of Snake Venom. Toxins (Basel) 2018; 10:toxins10020073. [PMID: 29414889 PMCID: PMC5848174 DOI: 10.3390/toxins10020073] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/31/2018] [Accepted: 02/03/2018] [Indexed: 12/01/2022] Open
Abstract
Understanding snake venom pharmacokinetics is essential for developing risk assessment strategies and determining the optimal dose and timing of antivenom required to bind all venom in snakebite patients. This review aims to explore the current knowledge of snake venom pharmacokinetics in animals and humans. Literature searches were conducted using EMBASE (1974–present) and Medline (1946–present). For animals, 12 out of 520 initially identified studies met the inclusion criteria. In general, the disposition of snake venom was described by a two-compartment model consisting of a rapid distribution phase and a slow elimination phase, with half-lives of 5 to 48 min and 0.8 to 28 h, respectively, following rapid intravenous injection of the venoms or toxins. When the venoms or toxins were administered intramuscularly or subcutaneously, an initial absorption phase and slow elimination phase were observed. The bioavailability of venoms or toxins ranged from 4 to 81.5% following intramuscular administration and 60% following subcutaneous administration. The volume of distribution and the clearance varied between snake species. For humans, 24 out of 666 initially identified publications contained sufficient information and timed venom concentrations in the absence of antivenom therapy for data extraction. The data were extracted and modelled in NONMEM. A one-compartment model provided the best fit, with an elimination half-life of 9.71 ± 1.29 h. It is intended that the quantitative information provided in this review will provide a useful basis for future studies that address the pharmacokinetics of snakebite in humans.
Collapse
|
27
|
Fung HT. Snakebites in Hong Kong: How to Face the Possible Changes? HONG KONG J EMERG ME 2017. [DOI: 10.1177/102490791101800405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction Over the past years, the environmental and scientific changes have shaped the snakebite scenarios and will continue to do so. Their effects ahead are discussed. Incidence Because of declining plant agricultural industry and rising urbanization, a falling incidence is reasonably expected in future. In order to maintain the knowledge and skills, training for clinicians will become more crucial. Venom detection kits Kits for Naja atra and Cryptelytrops albolabris have been available overseas. Local data should be gathered regarding their clinical application. Antivenoms The common local species covered by the haemotoxic and neurotoxic polyvalent antivenoms from Thailand is only Cryptelytrops albolabris. Introduction into Hong Kong is not recommended. Enzyme inhibitors With an aim to improve the control of local injury that is unsatisfactorily accomplished by antivenoms, therapy with venom enzyme inhibitors is under research. Conclusion A decreasing number of snakebite is anticipated. Venom detection kits should be explored for the use in appropriate cases. (Hong Kong j.emerg.med. 2011;18:217-220)
Collapse
|
28
|
Su H, Li Y, Tang C, Su C, Tsai M. Can Surgery in Patient with Protobothrops Mucrosquamatus Envenomation be Predicted in Emergency Department? HONG KONG J EMERG ME 2017. [DOI: 10.1177/102490791602300402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective Protobothrops mucrosquamatus, a Crotalinae snake with haemorrhagic venom, is responsible for the most common poisoning snakebites in Taiwan. Although a specific antivenin has been developed to treat this snakebite, surgical intervention is still needed in some patients because of the progression of tissue injury. Early risk stratification is important to identify the early signs of need for surgery. The purpose of this study was to investigate the early predictors for surgery in patients with P. mucrosquamatus envenomation. Methods The medical records of inpatients with P. mucrosquamatus envenomation between 2008 and 2013 were retrospectively reviewed. Clinical information was collected and analysed between surgical and nonsurgical patients. Results A total of 60 patients with P. mucrosquamatus envenomation, including 8 surgical patients (13.3%) and 52 non-surgical patients (86.7%), presented to the emergency department during the study period. Compartment syndrome (62.5%) and tissue necrosis (37.5%) were the main reasons for surgery. Comparison between surgical and non-surgical patients showed significantly higher white blood cell count (17.1 × 103/μL vs. 8.5 × 103/μL; p=0.002) and peak D-dimer level (1924.8 ng/mL vs. 730.0 ng/mL; p=0.006) in the surgical group. Ecchymosis (p=0.009), haemorrhagic bulla formation (p=0.002), leukocytosis (p=0.002), elevated peak D-dimer level (>1000 ng/mL) (p=0.005), and rhabdomyolysis (creatine kinase level >1000 IU/L) (p=0.007) were the significant signs relevant to surgery. On multivariate analysis, leukocytosis and ecchymosis were the most significant predictors of surgery in patients with P. mucrosquamatus envenomation. Conclusions Patients with P. mucrosquamatus envenomation presenting with leukocytosis and wound ecchymosis will have a high probability of requiring surgical therapy. (Hong Kong j.emerg.med. 2016;23:210-219)
Collapse
Affiliation(s)
- Hy Su
- E-Da Hospital and I-Shou University, Department of Emergency Medicine, Kaohsiung; and Buddhist Tzu Chi General Hospital, Department of Emergency Medicine, Hualien, Taiwan
| | - Yh Li
- Tzu Chi University, Department of Public Health, Hualien, Taiwan
| | - Cn Tang
- Buddhist Tzu Chi General Hospital, Department of Family Medicine, Hualien, Taiwan
| | - Ci Su
- National Cheng-Kung University, Department of Microbiology and Immunology, Tainan, Taiwan
| | | |
Collapse
|
29
|
Contributing Factors for Complications and Outcomes in Patients With Snakebite: Experience in a Medical Center in Southern Taiwan. Ann Plast Surg 2017; 78:S32-S36. [PMID: 28195896 DOI: 10.1097/sap.0000000000001002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Snakebite usually results in various complications, such as significant soft tissue damage, infection, hematological, and neurological deficit. Surgical intervention, usually, is indicated in patients with tissue necrosis, infection, and compartment syndrome. To identify the contributing factors for complications and outcomes in different patients with snakebite so that outcomes can be evaluated and treatment of such patients can be initiated at the earliest. METHODS Information was collected regarding age, sex, underlying disease, species of snake, and the course of treatment of the victims of snakebite who visited the emergency department of a medical center in southern Taiwan between 2004 and 2014. The data obtained were analyzed using SPSS 20.0. RESULTS The bites from Taiwan cobra (Naja naja atra) significantly resulted in more complications than those from other snakes and required surgical intervention. The use of antivenin and antibiotics, immediate presentation to the hospital, and the location of the bite also were significant contributing factors. CONCLUSIONS Taiwan cobra significantly results in higher possibility of prolonged hospitalization, operation, tissue necrosis, infection, and necrotizing fasciitis. Location of the bite, immediate presentation to the hospital, and use of antivenin and antibiotics affect the outcome of snakebite. Knowledge of these factors will help in a better management of patients with snakebite.
Collapse
|
30
|
Mao YC, Liu PY, Chiang LC, Lai CS, Lai KL, Ho CH, Wang TH, Yang CC. Naja atra snakebite in Taiwan. Clin Toxicol (Phila) 2017; 56:273-280. [PMID: 28830248 DOI: 10.1080/15563650.2017.1366502] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Naja atra snakebite is uncommon in Taiwan and causes distinct effects on its victims. Although the Taiwan government produces its own specific antivenom, little information on the management of N. atra snakebite is available. MATERIALS AND METHODS We retrospectively evaluated 183 patients admitted to two medical centers. Of these, 45 were identified as definite cases of N. atra snakebite, 86 as suspected cases, and 52 as clinical cases. Demographic data, symptomatology, and management were compared between these case groups. RESULTS Symptomatology and management were similar in the three groups. Among the 183 patients, 10 (5.5%) were asymptomatic and nine (4.9%) had transient and partial ptosis or body weakness. The principal effects were local tissue swelling and pain in 173 patients (94.5%), followed by clinically suspected wound infection in 148 (80.9%), skin necrosis in 120 (65.6%), necrotizing soft tissue infection in 77 (42.1%), fever in 59 (32.2%), and gastrointestinal effects in 53 (29%). The median total dose of specific antivenom needed to treat N. atra envenoming was 10 vials. In the envenomed patients, debridement was required in 74 patients (42.8%), fasciotomy/fasciectomy in 46 (26.6%), and finger or toe amputation in seven (4%). The first operation was performed at a median of 3.5 days after the bite. DISCUSSION AND CONCLUSIONS Based on these typical manifestations, clinical diagnosis of N. atra snakebites may be feasible and practical. In contrast to other snakes of Elapidae family, N. atra bite did not cause serious neurological effects. Early surgical consultation should be obtained because half of the patients underwent surgery due to infectious complications. Acute compartment syndrome was the surgical indication in rare cases; however, overestimation of the incidence may have occurred. This syndrome should be confirmed by serial intracompartmental pressure monitoring instead of only physical examination, and a sufficient dose of antivenom should be given prior to surgical decompression.
Collapse
Affiliation(s)
- Yan-Chiao Mao
- a Division of Clinical Toxicology, Department of Emergency Medicine , Taichung Veterans General Hospital , Taichung , Taiwan.,b Division of Clinical Toxicology and Occupational Medicine, Department of Medicine , Taipei Veterans General Hospital , Taipei , Taiwan.,c Institute of Environmental and Occupational Health Sciences , School of Medicine, National Yang-Ming University , Taipei , Taiwan.,d School of Medicine , National Defense Medical Center , Taipei , Taiwan
| | - Po-Yu Liu
- e Division of Infection, Department of Medicine , Taichung Veterans General Hospital , Taichung , Taiwan.,f Rong Hsing Research Center for Translational Medicine , National Chung Hsing University , Taichung , Taiwan
| | - Liao-Chun Chiang
- g College of Life Sciences , National Tsing Hua University , Hsinchu , Taiwan
| | - Chih-Sheng Lai
- h Division of Plastic and Reconstructive Surgery, Department of Surgery , Taichung Veterans General Hospital , Taichung , Taiwan
| | - Kuo-Lung Lai
- i Division of Allergy, Immunology and Rheumatology, Department of Medicine , Taichung Veterans General Hospital , Taichung , Taiwan
| | - Cheng-Hsuan Ho
- d School of Medicine , National Defense Medical Center , Taipei , Taiwan.,j Department of Emergency Medicine , Tri-Service General Hospital , Taipei , Taiwan
| | - Te-Huo Wang
- b Division of Clinical Toxicology and Occupational Medicine, Department of Medicine , Taipei Veterans General Hospital , Taipei , Taiwan.,k Department of Emergency Medicine , National Yang-Ming University Hospital , Yilan , Taiwan
| | - Chen-Chang Yang
- b Division of Clinical Toxicology and Occupational Medicine, Department of Medicine , Taipei Veterans General Hospital , Taipei , Taiwan.,c Institute of Environmental and Occupational Health Sciences , School of Medicine, National Yang-Ming University , Taipei , Taiwan
| |
Collapse
|
31
|
Faiz MA, Ahsan MF, Ghose A, Rahman MR, Amin R, Hossain M, Tareq MNU, Jalil MA, Kuch U, Theakston RDG, Warrell DA, Harris JB. Bites by the Monocled Cobra, Naja kaouthia, in Chittagong Division, Bangladesh: Epidemiology, Clinical Features of Envenoming and Management of 70 Identified Cases. Am J Trop Med Hyg 2017; 96:876-884. [PMID: 28138054 PMCID: PMC5392636 DOI: 10.4269/ajtmh.16-0842] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/12/2016] [Indexed: 11/29/2022] Open
Abstract
AbstractWe describe 70 cases of monocled cobra (Naja kaouthia) bite admitted to Chittagong Medical College Hospital, Bangladesh. The biting snakes were identified by examining the dead snake and/or detecting N. kaouthia venom antigens in patients' serum. Bites were most common in the early morning and evening during the monsoon (May-July). Ligatures were routinely applied to the bitten limb before admission. Thirty-seven patients consulted traditional healers, most of whom made incisions around the bite site. Fifty-eight patients experienced severe neurotoxicity and most suffered swelling and pain of the bitten limb. The use of an Indian polyvalent antivenom in patients exhibiting severe neurotoxicity resulted in clinical improvement but most patients experienced moderate-to-severe adverse reactions. Antivenom did not influence local blistering and necrosis appearing in 19 patients; 12 required debridement. Edrophonium significantly improved the ability of patients to open the eyes, endurance of upward gaze, and peak expiratory flow rate suggesting that a longer-acting anticholinesterase drug (neostigmine) could be recommended for first aid. The study suggested that regionally appropriate antivenom should be raised against the venoms of the major envenoming species of Bangladesh and highlighted the need to improve the training of staff of local medical centers and to invest in the basic health infrastructure in rural communities.
Collapse
Affiliation(s)
| | - M. F. Ahsan
- Department of Zoology, University of Chittagong, Chittagong, Bangladesh
| | - A. Ghose
- Chittagong Medical College and Hospital, Chittagong, Bangladesh
| | - M. R. Rahman
- Department of Medicine, Shaheed Suhrawardy Medical College, Dhaka, Bangladesh
| | - R. Amin
- Dhaka Medical College and Hospital, Dhaka, Bangladesh
| | - M. Hossain
- Dhaka Medical College and Hospital, Dhaka, Bangladesh
| | | | - M. A. Jalil
- Department of Statistics, University of Dhaka, Dhaka, Bangladesh
| | - U. Kuch
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
| | - R. D. G. Theakston
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - D. A. Warrell
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - J. B. Harris
- Medical Toxicology Centre and Institute of Neurosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
32
|
Shi YJ, Chen YJ, Hu WP, Chang LS. Detection of Naja atra Cardiotoxin Using Adenosine-Based Molecular Beacon. Toxins (Basel) 2017; 9:toxins9010024. [PMID: 28067855 PMCID: PMC5308256 DOI: 10.3390/toxins9010024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 01/02/2017] [Accepted: 01/04/2017] [Indexed: 02/07/2023] Open
Abstract
This study presents an adenosine (A)-based molecular beacon (MB) for selective detection of Naja atra cardiotoxin (CTX) that functions by utilizing the competitive binding between CTX and the poly(A) stem of MB to coralyne. The 5′- and 3′-end of MB were labeled with a reporter fluorophore and a non-fluorescent quencher, respectively. Coralyne induced formation of the stem-loop MB structure through A2-coralyne-A2 coordination, causing fluorescence signal turn-off due to fluorescence resonance energy transfer between the fluorophore and quencher. CTX3 could bind to coralyne. Moreover, CTX3 alone induced the folding of MB structure and quenching of MB fluorescence. Unlike that of snake venom α-neurotoxins, the fluorescence signal of coralyne-MB complexes produced a bell-shaped concentration-dependent curve in the presence of CTX3 and CTX isotoxins; a turn-on fluorescence signal was noted when CTX concentration was ≤80 nM, while a turn-off fluorescence signal was noted with a further increase in toxin concentrations. The fluorescence signal of coralyne-MB complexes yielded a bell-shaped curve in response to varying concentrations of N. atra crude venom but not those of Bungarus multicinctus and Protobothrops mucrosquamatus venoms. Moreover, N. nigricollis venom also functioned as N. atra venom to yield a bell-shaped concentration-dependent curve of MB fluorescence signal, again supporting that the hairpin-shaped MB could detect crude venoms containing CTXs. Taken together, our data validate that a platform composed of coralyne-induced stem-loop MB structure selectively detects CTXs.
Collapse
Affiliation(s)
- Yi-Jun Shi
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Ying-Jung Chen
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Wan-Ping Hu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
33
|
An investigation of snakebite antivenom usage in Taiwan. J Formos Med Assoc 2016; 115:672-7. [DOI: 10.1016/j.jfma.2015.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 11/19/2022] Open
|
34
|
Pawade BS, Salvi NC, Shaikh IK, Waghmare AB, Jadhav ND, Wagh VB, Pawade AS, Waykar IG, Potnis-Lele M. Rapid and selective detection of experimental snake envenomation - Use of gold nanoparticle based lateral flow assay. Toxicon 2016; 119:299-306. [PMID: 27377230 DOI: 10.1016/j.toxicon.2016.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/07/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
Abstract
In this study, we have developed a gold nanoparticle based simple, rapid lateral flow assay (LFA) for detection of Indian Cobra venom (CV) and Russell's viper venom (RV). Presently, there is no rapid, reliable, and field diagnostic test available in India, where snake bite cases are rampant. Therefore, this test has an immense potential from the public health point of view. The test is based on the principle of the paper immunochromatography assay for detection of two snake venom species using polyvalent antisnake venom antibodies (ASVA) raised in equines and species-specific antibodies (SSAbs) against venoms raised in rabbits for conjugation and impregnation respectively. The developed, snake envenomation detection immunoassay (SEDIA) was rapid, selective, and sensitive to detect venom concentrations up to 0.1 ng/ml. The functionality of SEDIA strips was confirmed by experimental envenomation in mice and the results obtained were specific for the corresponding venom. The SEDIA has a potential to be a field diagnostic test to detect snake envenomation and assist in saving lives of snakebite victims.
Collapse
Affiliation(s)
- Balasaheb S Pawade
- Department of Antitoxins & Sera, Haffkine Biopharmaceutical Corporation Ltd., Pune, India.
| | - Nitin C Salvi
- Department of Antitoxins & Sera, Haffkine Biopharmaceutical Corporation Ltd., Pune, India
| | - Innus K Shaikh
- Department of Antitoxins & Sera, Haffkine Biopharmaceutical Corporation Ltd., Pune, India
| | - Arun B Waghmare
- Department of Antitoxins & Sera, Haffkine Biopharmaceutical Corporation Ltd., Pune, India
| | - Nitin D Jadhav
- Department of Antitoxins & Sera, Haffkine Biopharmaceutical Corporation Ltd., Pune, India
| | - Vishal B Wagh
- Department of Microbiology, MGM Medical College, Navi Mumbai, India
| | - Abhilasha S Pawade
- Department of Pharmacognosy, Marathwada Mitra Mandal's College of Pharmacy, Pune, India
| | - Indrasen G Waykar
- Department of Antitoxins & Sera, Haffkine Biopharmaceutical Corporation Ltd., Pune, India
| | - Mugdha Potnis-Lele
- Entrepreneurship Development Centre, 100 NCL Innovation Park Campus, Pashan, Pune, India
| |
Collapse
|
35
|
Distal M domain of cobra ADAM-like metalloproteinase mediates the binding of positively charged cysteine-rich domain to αvβ3 integrin in the suppression of cell migration. Toxicon 2016; 118:1-12. [PMID: 27090013 DOI: 10.1016/j.toxicon.2016.04.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/04/2016] [Accepted: 04/14/2016] [Indexed: 11/20/2022]
Abstract
We have previously identified two new P-III type ADAM-like snake venom metalloproteinases (SVMPs), i.e., atragin and kaouthiagin-like, from Taiwan cobra venom and determined their 3D structures with a distinct C- and I-shaped metalloproteinase/disintegrin-like/cysteine-rich (MDC) modular architecture. Herein, we investigated their functional targets to elucidate the role of cobra SVMPs in perturbing wound healing in snakebite victims. We showed that the non-RGD (Arg-Gly-Asp) C-shaped SVMP atragin binds about ten-fold stronger than the RGD-containing I-shaped SVMP kaouthiagin-like to αvβ3 integrin in the surface-immobilized form. Atragin binds to αvβ3 integrin through a novel interaction mode involving distal M and C domains via the RRN sequence motif in the hyper variable loop. In a cell adhesion assay, the adhesion of fibroblasts to atragin was mediated by αvβ3 integrin. Furthermore, atragin inhibited wound healing and suppressed cell migration in a αvβ3 integrin-dependent manner. These results, together with our previous demonstration of non-cytotoxic cobra CTX A5 in targeting αvβ3 integrin, suggest that cobra venom consists of several non-RGD toxins with integrin-binding specificity that could perturb wound healing in snakebite victims.
Collapse
|
36
|
Mao YC, Liu PY, Hung DZ, Lai WC, Huang ST, Hung YM, Yang CC. Bacteriology of Naja atra Snakebite Wound and Its Implications for Antibiotic Therapy. Am J Trop Med Hyg 2016; 94:1129-35. [PMID: 26976881 DOI: 10.4269/ajtmh.15-0667] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 01/29/2016] [Indexed: 12/13/2022] Open
Abstract
A total of 112 cases of Naja atra envenomation were examined at two referring hospitals: Taichung Veterans General Hospital in central Taiwan and Taipei Veterans General Hospital (VGH-TP) in northern Taiwan. Overall, 77% (86/112) of cases developed clinically suspected wound infections and 54% (61/112) required surgery secondary to tissue necrosis, finger or toe gangrene, and/or necrotizing fasciitis. Morganella morganii was the most abundant gram-negative bacterial strain isolated from bite wounds, followed by Proteus spp., Aeromonas hydrophila, Pseudomonas aeruginosa, and Providencia spp. in descending order; Enterococcus spp. were the most common gram-positive bacteria and Bacteroides spp. were the only anaerobic bacteria. A few episodes of bacteremia were caused by Bacteroides and Shewanella spp. There were no significant variations in the distribution of bacterial species between these two hospitals except for a higher incidence of M. morganii, Enterococcus spp., and polymicrobial infection observed at VGH-TP, which may have been related to variations in the fecal flora of prey and oral flora of individual snakes in different geographic areas in Taiwan. According to the susceptibility test involving various pathogens, first-line drug options for the management of N. atra snakebite wound infections may include monotherapy with ureidopenicillin or combination therapy with aminopenicillin and a third-generation cephalosporin or fluoroquinolone. A prospective evaluation of empiric antibiotic therapy for the management of N. atra snakebite should be considered.
Collapse
Affiliation(s)
- Yan-Chiao Mao
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Division of Clinical Toxicology and Occupational Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Defense Medical Center, Taipei, Taiwan; Division of Infection, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Division of Toxicology, Trauma and Emergency Center, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Division of Nephrology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Yu Liu
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Division of Clinical Toxicology and Occupational Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Defense Medical Center, Taipei, Taiwan; Division of Infection, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Division of Toxicology, Trauma and Emergency Center, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Division of Nephrology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Dong-Zong Hung
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Division of Clinical Toxicology and Occupational Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Defense Medical Center, Taipei, Taiwan; Division of Infection, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Division of Toxicology, Trauma and Emergency Center, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Division of Nephrology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Cheng Lai
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Division of Clinical Toxicology and Occupational Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Defense Medical Center, Taipei, Taiwan; Division of Infection, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Division of Toxicology, Trauma and Emergency Center, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Division of Nephrology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Ting Huang
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Division of Clinical Toxicology and Occupational Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Defense Medical Center, Taipei, Taiwan; Division of Infection, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Division of Toxicology, Trauma and Emergency Center, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Division of Nephrology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yao-Min Hung
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Division of Clinical Toxicology and Occupational Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Defense Medical Center, Taipei, Taiwan; Division of Infection, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Division of Toxicology, Trauma and Emergency Center, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Division of Nephrology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chen-Chang Yang
- Division of Clinical Toxicology, Department of Emergency Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Division of Clinical Toxicology and Occupational Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang-Ming University, Taipei, Taiwan; School of Medicine, National Defense Medical Center, Taipei, Taiwan; Division of Infection, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Division of Toxicology, Trauma and Emergency Center, China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan; Division of Nephrology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Department of Emergency Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Institute of Public Health, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
37
|
Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. J Proteomics 2015. [PMID: 26196238 DOI: 10.1016/j.jprot.2015.07.015] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
UNLABELLED Recent progress in snake venomics has shed much light on the intra-species variation among the toxins from different geographical regions and has provided important information for better snakebite management. Most previous reports on snake venomics were based on venoms pooled from different snakes. In this study, we present the proteomic and glycomic profiles of venoms from individual Naja atra snakes. The results reveal wide dynamic range of three-finger toxins. Systematic classification based on cardiotoxin (CTX-) profiles of A2/A4 and A6, respectively, allowed the identification of two putative subspecies of Taiwan cobra from the eastern and western regions. We also identified four major N-glycan moieties on cobra snake venom metalloproteinase on the bi-antennary glycan core. ELISA showed that these glycoproteins (<3%) could elicit much higher antibody response in antiserum when compared to other high-abundance cobra venom toxins such as small molecular weight CTXs (~60%). By removing these high-molecular weight glycoproteins from the immunogen, we demonstrated better protection than that achieved with conventional crude venom immunization in mice challenged by crude venom. We conclude that both intra-species and inter-individual variations of proteomic and glycomic profiles of snake venomics should be considered to provide better antivenomic approach for snakebite management. BIOLOGICAL SIGNIFICANCE Based on the proteomic and glycomic profiles of venoms obtained from individual snakes, we demonstrated a surprisingly wide dynamic range and geographical variation of three-finger toxins in cobra venomics. This provides a reasonable explanation for the variable neutralization effects of antivenom treatment on victims suffering from cobra snakebite and suggests a simple and economic method to produce potent antivenom with better efficacy. Since two major venomic profiles with distinct dynamic ranges were observed for Taiwan cobra venoms isolated from the eastern and western regions, the current venomic profile should be used as a quality control for future production of antivenom in clinical applications.
Collapse
|
38
|
Yap MKK, Tan NH, Sim SM, Fung SY, Tan CH. Pharmacokinetics of Naja sumatrana (equatorial spitting cobra) venom and its major toxins in experimentally envenomed rabbits. PLoS Negl Trop Dis 2014; 8:e2890. [PMID: 24901441 PMCID: PMC4046969 DOI: 10.1371/journal.pntd.0002890] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/08/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The optimization of snakebite management and the use of antivenom depend greatly on the knowledge of the venom's composition as well as its pharmacokinetics. To date, however, pharmacokinetic reports on cobra venoms and their toxins are still relatively limited. In the present study, we investigated the pharmacokinetics of Naja sumatrana (Equatorial spitting cobra) venom and its major toxins (phospholipase A2, neurotoxin and cardiotoxin), following intravenous and intramuscular administration into rabbits. PRINCIPAL FINDINGS The serum antigen concentration-time profile of the N. sumatrana venom and its major toxins injected intravenously fitted a two-compartment model of pharmacokinetics. The systemic clearance (91.3 ml/h), terminal phase half-life (13.6 h) and systemic bioavailability (41.9%) of N. sumatrana venom injected intramuscularly were similar to those of N. sputatrix venom determined in an earlier study. The venom neurotoxin and cardiotoxin reached their peak concentrations within 30 min following intramuscular injection, relatively faster than the phospholipase A2 and whole venom (Tmax=2 h and 1 h, respectively). Rapid absorption of the neurotoxin and cardiotoxin from the injection site into systemic circulation indicates fast onsets of action of these principal toxins that are responsible for the early systemic manifestation of envenoming. The more prominent role of the neurotoxin in N. sumatrana systemic envenoming is further supported by its significantly higher intramuscular bioavailability (Fi.m.=81.5%) compared to that of the phospholipase A2 (Fi.m.=68.6%) or cardiotoxin (Fi.m.=45.6%). The incomplete absorption of the phospholipase A2 and cardiotoxin may infer the toxins' affinities for tissues at the injection site and their pathological roles in local tissue damages through synergistic interactions. CONCLUSION/SIGNIFICANCE Our results suggest that the venom neurotoxin is absorbed very rapidly and has the highest bioavailability following intramuscular injection, supporting its role as the principal toxin in systemic envenoming.
Collapse
Affiliation(s)
- Michelle Khai Khun Yap
- CENAR and Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nget Hong Tan
- CENAR and Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Si Mui Sim
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shin Yee Fung
- CENAR and Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
39
|
Hung DZ, Lin JH, Mo JF, Huang CF, Liau MY. Rapid diagnosis of Naja atra snakebites. Clin Toxicol (Phila) 2014; 52:187-91. [PMID: 24580058 DOI: 10.3109/15563650.2014.887725] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The clinical diagnosis of snakebites is critical and necessary in many parts of the world, especially in Southeastern Asia, where venomous snakebites are a burden on public health. It is difficult to define or recognize the species of venomous snake because of the overlapping clinical manifestations of envenomations. A quick and reliable method for identifying the snake species is necessary. We designed and tested a strip of lateral flow system for the diagnosis of cobra snake bites in Taiwan. METHODS We developed a kit based on an immunochromatographic method for rapid detection of cobra (Naja atra) venom in human serum. The test and control lines composed of 1 mg/ml polyclonal duck antivenom and 0.5 mg/ml goat anti-rabbit immunoglobulin antibody solutions, respectively, were coated on nitrocellulose strips. Colloidal gold was conjugated with rabbit polyclonal anti-cobra venom antibodies. From July 2007 to December 2012, we used the kit to test serum from snakebite patients and to examine the agreement between our rapid test and the currently used sandwich enzyme-linked immunosorbent assay (ELISA). RESULTS Our kit was able to detect cobra venom in serum samples in 20 minutes with a detection limit of 5 ng/ml. An absence of cross-reactivity with other non-cobra venoms from Taiwan was noted in vitro. A total of 88 snakebite patients (34 cobra and 54 other non-cobra) were tested. The sensitivity of the strips based on the ELISA results was 83.3% and the specificity was 100%. There was a strong agreement between the results of the ELISA and immunochromatographic strips (κ = 0.868). DISCUSSION AND CONCLUSIONS This data indicates that an immunochromatographic strip might be suitable for cobra venom detection and could be used as a quick diagnostic tool in cases of N. atra snakebite.
Collapse
Affiliation(s)
- D Z Hung
- Division of Toxicology, China Medical University Hospital , Taichung , Taiwan
| | | | | | | | | |
Collapse
|
40
|
Wang W, Chen QF, Yin RX, Zhu JJ, Li QB, Chang HH, Wu YB, Michelson E. Clinical features and treatment experience: a review of 292 Chinese cobra snakebites. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:648-655. [PMID: 24577231 DOI: 10.1016/j.etap.2013.12.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/20/2013] [Accepted: 12/30/2013] [Indexed: 06/03/2023]
Abstract
Although Chinese cobra snakebite is the most common type of snake venenation in China, it still lacks a comprehensive and systematic description. Hence, we aimed to study Chinese cobra bite cases with particular attention to demography, epidemiology and clinical profile. In this study, a total of 292 cases of Chinese cobra snakebite, presenting between January 1, 2008 and December 31, 2012, were retrospectively reviewed. To investigate the effect of treatment at different presentation times (time from snakebite to admission), the patients were divided into two groups: group A included 133 cases that presented <12 h after the bite; group B included 159 cases that presented ≥12 h after the bite. To assess the correlation between application of a tourniquet and skin grafting, the cases were re-divided into two groups according to whether or not a tourniquet was used after the snakebite: tourniquet group (n=220) and non-tourniquet group (n=72). The results showed that Chinese cobra snakebites were most commonly seen during the summer, in the upper limbs, and in males, young adults, and snake-hunters. Group A experienced milder intoxication than group B (P<0.001). The rate of skin grafting was significantly higher in the tourniquet group (20.0%, compared with 9.7% in the non-tourniquet group, P<0.05). The results of this study indicate that anti-cobra venom and swift admission (within 12 h of the snakebite) are recommended for Chinese cobra snakebite. Tourniquet use is not recommended.
Collapse
Affiliation(s)
- Wei Wang
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Quan-Fang Chen
- Department of Respiratory, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Rui-Xing Yin
- Department of Cardiology, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Ji-Jin Zhu
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Qi-Bin Li
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Hai-Hua Chang
- Department of Emergency, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Yan-Bi Wu
- Department of Respiratory, the First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi, China.
| | - Edward Michelson
- Department of Emergency, University Hospitals Case Medical Center, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, 44106 OH, USA.
| |
Collapse
|
41
|
Tan CH, Sim SM, Gnanathasan CA, Fung SY, Tan NH. Pharmacokinetics of the Sri Lankan hump-nosed pit viper (Hypnale hypnale) venom following intravenous and intramuscular injections of the venom into rabbits. Toxicon 2014; 79:37-44. [PMID: 24412778 DOI: 10.1016/j.toxicon.2013.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/26/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
Abstract
The knowledge of venom pharmacokinetics is essential to improve the understanding of envenomation pathophysiology. Using a double-sandwich ELISA, this study investigated the pharmacokinetics of the venom of hump-nosed pit viper (Hypnale hypnale) following intravenous and intramuscular injections into rabbits. The pharmacokinetics of the venom injected intravenously fitted a three-compartment model. There is a rapid (t1/2π = 0.4 h) and a slow (t1/2α = 0.8 h) distribution phase, followed by a long elimination phase (t1/2β = 19.3 h) with a systemic clearance of 6.8 mL h(-1) kg(-1), consistent with the prolonged abnormal hemostasis reported in H. hypnale envenomation. On intramuscular route, multiple peak concentrations observed in the beginning implied a more complex venom absorption and/or distribution pattern. The terminal half-life, volume of distribution by area and systemic clearance of the venom injected intramuscularly were nevertheless not significantly different (p > 0.05) from that of the venom injected intravenously. The intramuscular bioavailability was exceptionally low (Fi.m. = 4%), accountable for the highly varied median lethal doses between intravenous and intramuscular envenomations in animals. The findings indicate that the intramuscular route of administration does not significantly alter the pharmacokinetics of H. hypnale venom although it significantly reduces the systemic bioavailability of the venom.
Collapse
Affiliation(s)
- Choo Hock Tan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Si Mui Sim
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | | - Shin Yee Fung
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Nget Hong Tan
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
42
|
Harris JB, Scott-Davey T. Secreted phospholipases A2 of snake venoms: effects on the peripheral neuromuscular system with comments on the role of phospholipases A2 in disorders of the CNS and their uses in industry. Toxins (Basel) 2013; 5:2533-71. [PMID: 24351716 PMCID: PMC3873700 DOI: 10.3390/toxins5122533] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/02/2013] [Accepted: 12/10/2013] [Indexed: 01/02/2023] Open
Abstract
Neuro- and myotoxicological signs and symptoms are significant clinical features of envenoming snakebites in many parts of the world. The toxins primarily responsible for the neuro and myotoxicity fall into one of two categories--those that bind to and block the post-synaptic acetylcholine receptors (AChR) at the neuromuscular junction and neurotoxic phospholipases A2 (PLAs) that bind to and hydrolyse membrane phospholipids of the motor nerve terminal (and, in most cases, the plasma membrane of skeletal muscle) to cause degeneration of the nerve terminal and skeletal muscle. This review provides an introduction to the biochemical properties of secreted sPLA2s in the venoms of many dangerous snakes and a detailed discussion of their role in the initiation of the neurologically important consequences of snakebite. The rationale behind the experimental studies on the pharmacology and toxicology of the venoms and isolated PLAs in the venoms is discussed, with particular reference to the way these studies allow one to understand the biological basis of the clinical syndrome. The review also introduces the involvement of PLAs in inflammatory and degenerative disorders of the central nervous system (CNS) and their commercial use in the food industry. It concludes with an introduction to the problems associated with the use of antivenoms in the treatment of neuro-myotoxic snakebite and the search for alternative treatments.
Collapse
Affiliation(s)
- John B. Harris
- Medical Toxicology Centre and Institute of Neurosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Tracey Scott-Davey
- Experimental Scientific Officer, Electron Microscopy Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; E-Mail:
| |
Collapse
|
43
|
Gilliam LL, Ownby CL, McFarlane D, Canida A, Holbrook TC, Payton ME, Krehbiel CR. Development of a double sandwich fluorescent ELISA to detect rattlesnake venom in biological samples from horses with a clinical diagnosis of rattlesnake bite. Toxicon 2013; 73:63-8. [PMID: 23834918 DOI: 10.1016/j.toxicon.2013.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 06/17/2013] [Accepted: 06/27/2013] [Indexed: 11/26/2022]
Abstract
Rattlesnake bites in horses are not uncommon and the clinical outcomes are widely variable. Treatment of horses with anti-venom is often cost prohibitive and could have negative consequences; therefore, the development of a quantitative test to determine if anti-venom therapy is indicated would be valuable. The objective of this study was to develop an ELISA to detect rattlesnake venom in biological samples from clinically bitten horses. Nineteen horses were enrolled in the study. Urine was available from 19 horses and bite site samples were available from 9 horses. A double sandwich fluorescent ELISA was developed and venom was detected in 5 of 9 bite site samples and 12 of 19 urine samples. In order to determine if this assay is useful as a guide for treatment, a correlation between venom concentration and clinical outcome needs to be established. For this, first peak venom concentration needs to be determined. More frequent, consistent sample collection will be required to define a venom elimination pattern in horses and determine the ideal sample collection time to best estimate the maximum venom dose. This report describes development of an assay with the ability to detect rattlesnake venom in the urine and at the bite site of horses with a clinical diagnosis of rattlesnake bite.
Collapse
Affiliation(s)
- Lyndi L Gilliam
- 1 Farm Rd-OSU BVMTH, Department of Veterinary Clinical Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Liu PY, Shi ZY, Lin CF, Huang JA, Liu JW, Chan KW, Tung KC. Shewanella infection of snake bites: a twelve-year retrospective study. Clinics (Sao Paulo) 2012; 67:431-5. [PMID: 22666785 PMCID: PMC3351262 DOI: 10.6061/clinics/2012(05)05] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/11/2012] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Infections of snake bite wounds by Shewanella are rarely discussed in the medical literature. This study aims to characterize the presentation and management of Shewanella infections in snake bite wounds. METHOD We retrospectively investigated the microbiology, clinical features, and outcomes of patients with Shewanella infected snake bite wounds admitted to a tertiary medical center from January 1998 to December 2009. RESULTS Ten patients with Shewanella-infected snake bite wounds were identified. All of the snake bites were caused by cobras. The majority of patients had moderate to severe local envenomation and polymicrobial infections. Shewanella isolates are susceptible to ampicillin-sulbactam, piperacillin-tazobactam, third-and fourth-generation cephalosporins, carbapenems, aminoglycosides, and quinolones but are resistant to penicillin and cefazolin. All of the patients examined had favorable outcomes. CONCLUSION It is recommended that Shewanella infection be considered in snake bite patients, especially when patients present with moderate to severe local envenomation.
Collapse
Affiliation(s)
- Po-Yu Liu
- Taichung Veterans General Hospital, Department of Internal Medicine, Section of Infectious Diseases, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
45
|
Chen CM, Wu KG, Chen CJ, Wang CM. Bacterial infection in association with snakebite: a 10-year experience in a northern Taiwan medical center. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2011; 44:456-60. [PMID: 21700517 DOI: 10.1016/j.jmii.2011.04.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/25/2010] [Accepted: 08/31/2010] [Indexed: 10/18/2022]
Abstract
BACKGROUND Microbiological data of secondary wound infections following snakebites is rarely reported in Taiwan. The objective of this study was to assess the secondary wound infection after venomous snakebites. METHODS We conducted a 10-year retrospective survey on patients admitted for venomous snakebites and microbiological data of wound cultures at a medical center in northern Taiwan. RESULTS Between April 2001 and April 2010, 231 patients who experienced snakebites were included. Male predominated, accounting for 62.3% (144). The age range of patients was 4-95 years. Ninety-five (41.1%) people were bitten by Trimeresurus mucrosquamatus, followed by Tstejnegeri, and cobra. A total of 61 pathogens were obtained from 21 patients. Thirty-nine (63.9%) isolates were gram-negative bacteria, 14 (23%) gram-positive pathogens, and 8 (13.1%) anaerobic pathogens. There were 17 patients bitten by cobra in these 21 patients. Morganella morganii and Enterococcus species were the most common pathogens identified in the wound cultures. CONCLUSION Cobra bite causes more severe bacterial infection than other kinds of snakebites. Oral amoxicillin/clavulanate plus ciprofloxacin or parenteral piperacillin/tazobactam alone can be the choices for empirical or definitive treatment, and surgical intervention should be considered for established invasive soft tissue infections.
Collapse
Affiliation(s)
- Chun-Ming Chen
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | |
Collapse
|
46
|
Wang YL, Kuo JH, Lee SC, Liu JS, Hsieh YC, Shih YT, Chen CJ, Chiu JJ, Wu WG. Cobra CRISP functions as an inflammatory modulator via a novel Zn2+- and heparan sulfate-dependent transcriptional regulation of endothelial cell adhesion molecules. J Biol Chem 2010; 285:37872-83. [PMID: 20889969 DOI: 10.1074/jbc.m110.146290] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cysteine-rich secretory proteins (CRISPs) have been identified as a toxin family in most animal venoms with biological functions mainly associated with the ion channel activity of cysteine-rich domain (CRD). CRISPs also bind to Zn(2+) at their N-terminal pathogenesis-related (PR-1) domain, but their function remains unknown. Interestingly, similar the Zn(2+)-binding site exists in all CRISP family, including those identified in a wide range of organisms. Here, we report that the CRISP from Naja atra (natrin) could induce expression of vascular endothelial cell adhesion molecules, i.e. intercellular adhesion molecule-1, vascular adhesion molecule-1, and E-selectin, to promote monocytic cell adhesion in a heparan sulfate (HS)- and Zn(2+)-dependent manner. Using specific inhibitors and small interfering RNAs, the activation mechanisms are shown to involve both mitogen-activated protein kinases and nuclear factor-κB. Biophysical characterization of natrin by using fluorescence, circular dichroism, and x-ray crystallographic methods further reveals the presence of two Zn(2+)-binding sites for natrin. The strong binding site is located near the putative Ser-His-Glu catalytic triad of the N-terminal domain. The weak binding site remains to be characterized, but it may modulate HS binding by enhancing its interaction with long chain HS. Our results strongly suggest that natrin may serve as an inflammatory modulator that could perturb the wound-healing process of the bitten victim by regulating adhesion molecule expression in endothelial cells. Our finding uncovers a new aspect of the biological role of CRISP family in immune response and is expected to facilitate future development of new therapeutic strategy for the envenomed victims.
Collapse
Affiliation(s)
- Yu-Ling Wang
- From the Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30013, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Methodology of clinical studies dealing with the treatment of envenomation. Toxicon 2010; 55:1195-212. [DOI: 10.1016/j.toxicon.2010.02.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 02/05/2010] [Accepted: 02/18/2010] [Indexed: 01/22/2023]
|
48
|
Wu PL, Lee SC, Chuang CC, Mori S, Akakura N, Wu WG, Takada Y. Non-cytotoxic cobra cardiotoxin A5 binds to alpha(v)beta3 integrin and inhibits bone resorption. Identification of cardiotoxins as non-RGD integrin-binding proteins of the Ly-6 family. J Biol Chem 2006; 281:7937-45. [PMID: 16407244 DOI: 10.1074/jbc.m513035200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Severe tissue necrosis with a retarded wound healing process is a major symptom of a cobra snakebite. Cardiotoxins (CTXs) are major components of cobra venoms that belong to the Ly-6 protein family and are implicated in tissue damage. The interaction of the major CTX from Taiwan cobra, i.e. CTX A3, with sulfatides in the cell membrane has recently been shown to induce pore formation and cell internalization and to be responsible for cytotoxicity in cardiomyocytes (Wang, C.-H., Liu, J.-H., Lee, S.-C., Hsiao, C.-D., and Wu, W.-g. (2006) J. Biol. Chem. 281, 656-667). We show here that one of the non-cytotoxic CTXs, i.e. CTX A5 or cardiotoxin-like basic polypeptide, from Taiwan cobra specifically bound to alpha(v)beta3 integrin and inhibited bone resorption activity. We found that both membrane-bound and recombinant soluble alpha(v)beta3 integrins bound specifically to CTX A5 in a dose-dependent manner. Surface plasmon resonance analysis showed that human soluble alpha(v)beta3 bound to CTX A5 with an apparent affinity of approximately 0.3 microM. Calf pulmonary artery endothelial cells, which constitutively express alpha(v)beta3, showed a CTX A5 binding profile similar to that of membrane-bound and soluble alpha(v)beta3 integrins, suggesting that endothelial cells are a potential target for CTX action. We tested whether CTX A5 inhibits osteoclast differentiation and bone resorption, a process known to be involved in alpha(v)beta3 binding and inhibited by RGD-containing peptides. We demonstrate that CTX A5 inhibited both activities at a micromolar range by binding to murine alpha(v)beta3 integrin in osteoclasts and that CTX A5 co-localized with beta3 integrin. Finally, after comparing the integrin binding affinity among CTX homologs, we propose that the amino acid residues near the two loops of CTX A5 are involved in integrin binding. These results identify CTX A5 as a non-RGD integrin-binding protein with therapeutic potential as an integrin antagonist.
Collapse
Affiliation(s)
- Po-Long Wu
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu 30043, Taiwan
| | | | | | | | | | | | | |
Collapse
|
49
|
Hung DZ. Taiwan’s venomous snakebite: epidemiological, evolution and geographic differences. Trans R Soc Trop Med Hyg 2004; 98:96-101. [PMID: 14964809 DOI: 10.1016/s0035-9203(03)00013-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Located at the juncture of tropical and subtropical regions, Taiwan has a warm and humid climate with abundant precipitation and food, which coupled with the island's diverse vegetation and landscape, makes it a suitable environment for many snake species. Among these, Naja atra, Bungarus multicinctus, Deinagkistrodon acutus, Trimeresurus mucrosquamatus, Trimeresurus stejnegeri, Daboia russelii siamensis are the 6 principal venomous species, and have caused significant injuries and death over the years. The natural environment of Taiwan has changed tremendously in the last 20-30 years, which is likely to have affected the number and distribution of venomous snakes, thus indirectly affecting incidence of snakebite. A retrospective analysis of 286 snakebite cases at a medical center in central Taiwan analyzed the snakebite-related epidemiological data in the past 30 years. The results showed that the bite rates of various venomous snakes vary geographically, which is related to the overlapping of the human living environment and snakes' habitat. In Taiwan, T. mucrosquamatus and T. stejnegeri bites are most common. Bites by Deinagkistrodon acutus and Daboia russelii siamensis generally occur in the south and east parts of the island and attacks by Naja atra are most common in central Taiwan. Aggressive antivenom treatment can reduce snakebite mortality rate, but for Bungarus multicinctus bites, maintaining the patient's airway and supporting their ventilation is vital to reducing mortality rate in addition to antivenom treatment.
Collapse
Affiliation(s)
- Dong-Zong Hung
- Division of Toxicology, Emergency Department, Taichung Veterans General Hospital, 160, Sec. 3, Taichung Harbor Road, Taichung 407, Taiwan.
| |
Collapse
|