1
|
Xing Y, Li J, Li SP, Xi J, Ma N, Liu L, Wang JS, Cai JZ. MiR-27a-5p regulates apoptosis of liver ischemia-reperfusion injury in mice by targeting Bach1. J Cell Biochem 2018; 119:10376-10383. [PMID: 30145824 DOI: 10.1002/jcb.27383] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 07/03/2018] [Indexed: 12/20/2022]
Abstract
Ischemia-reperfusion (I/R) injury causes cellular dysfunction and a series of immune or apoptotic reactions. Bach1 is a mammalian transcription factor that represses Hmox1, which encodes heme oxygenase-1 (HO-1) that can degrade heme into free iron, carbon monoxide, and biliverdin, to play an important role in antioxidant, anti-inflammatory, and antiapoptotic activities. MicroRNAs (miRNAs) can be found in a variety of eukaryotic cells and viruses, a class of noncoding small RNAs that are encoded by endogenous genes. The aims of this study were to determine whether miR-27a-5p targets Bach1 and regulates cellular death; the dual-luciferase reporter assay was used to detect this and the results showed that miR-27a-5p significantly decreased the luciferase activity of the Bach1 3'-untranslated region. MiR-27a-5p was increased in mice during hepatic I/R and Bach1 was decreased. By transfecting the AML12 cells with the mimic, inhibitor miR-27a-5p in hypoxia/reoxygenation (H/R) models showed that overexpression of miR-27a-5p decreased Bach1 messenger RNA, upregulated HO-1 expression, and promoted antiapoptotic Bcl-2 and downregulated proapoptotic caspase-3 gene expression. In contrast, the miR-27a-5p inhibitor yielded the opposite results. Meanwhile, transfection with Bach1 small interference RNA obviously upregulated the protein levels of HO-1 and resulted in an increase in Bcl-2 and a decrease in caspase-3 protein levels. Thus, we can conclude that miR-27a-5p is relevant to liver I/R injury and overexpression of miR-27a-5p may alleviate apoptosis in H/R injury by targeting Bach1 in vitro.
Collapse
Affiliation(s)
- Yu Xing
- Department of General Surgery, Tianjin Third Central Hospital, Tianjin, China
| | - Jing Li
- Department of Liver Disease and Digestive Interventional Radiology, National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Shi-Peng Li
- Department of General Surgery, Jiaozuo People's Hospital, Xinxiang Medical University, Jiaozuo, China
| | - Jiri Xi
- Department of Liver Transplantion, Oriental Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
| | - Ning Ma
- Department of Liver Transplantion, Oriental Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
| | - Lei Liu
- Department of Liver Transplantion, Oriental Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
| | - Jin-Shan Wang
- Department of Liver Transplantion, Oriental Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
| | - Jin-Zhen Cai
- Department of Liver Transplantion, Oriental Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
2
|
Hernandez AM, Colvin ES, Chen YC, Geiss SL, Eller LE, Fueger PT. Upregulation of p21 activates the intrinsic apoptotic pathway in β-cells. Am J Physiol Endocrinol Metab 2013; 304:E1281-90. [PMID: 23592481 PMCID: PMC3680698 DOI: 10.1152/ajpendo.00663.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Diabetes manifests from a loss in functional β-cell mass, which is regulated by a dynamic balance of various cellular processes, including β-cell growth, proliferation, and death as well as secretory function. The cell cycle machinery comprised of cyclins, kinases, and inhibitors regulates proliferation. However, their involvement during β-cell stress during the development of diabetes is not well understood. Interestingly, in a screen of multiple cell cycle inhibitors, p21 was dramatically upregulated in INS-1-derived 832/13 cells and rodent islets by two pharmacological inducers of β-cell stress, dexamethasone and thapsigargin. We hypothesized that β-cell stress upregulates p21 to activate the apoptotic pathway and suppress cell survival signaling. To this end, p21 was adenovirally overexpressed in pancreatic rat islets and 832/13 cells. As expected, p21 overexpression resulted in decreased [(3)H]thymidine incorporation. Flow cytometry analysis in p21-transduced 832/13 cells verified lower replication, as indicated by a decreased cell population in the S phase and a block in G2/M transition. The sub-G0 cell population was higher with p21 overexpression and was attributable to apoptosis, as demonstrated by increased annexin-positive stained cells and cleaved caspase-3 protein. p21-mediated caspase-3 cleavage was inhibited by either overexpression of the antiapoptotic mitochondrial protein Bcl-2 or siRNA-mediated suppression of the proapoptotic proteins Bax and Bak. Therefore, an intact intrinsic apoptotic pathway is central for p21-mediated cell death. In summary, our findings indicate that β-cell apoptosis can be triggered by p21 during stress and is thus a potential target to inhibit for protection of functional β-cell mass.
Collapse
|
3
|
Guedes RP, Rocha E, Mahiou J, Moll HP, Arvelo MB, Taube JM, Peterson CR, Kaczmarek E, Longo CR, da Silva CG, Ferran C. The C-terminal domain of A1/Bfl-1 regulates its anti-inflammatory function in human endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1553-61. [PMID: 23499873 DOI: 10.1016/j.bbamcr.2013.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 11/30/2022]
Abstract
A1/Bfl-1 is a NF-κB dependent, anti-apoptotic Bcl-2 family member that contains four Bcl-2 homology domains (BH) and an amphipathic C-terminal domain, and is expressed in endothelial cells (EC). Based on NF-κB reporter assays in bovine aortic EC, we have previously demonstrated that A1, like Bcl-2 and Bcl-xL, inhibits NF-κB activation. These results, however, do not fully translate when evaluating the cell's own NF-κB machinery in human EC overexpressing A1 by means of recombinant adenovirus (rAd.) mediated gene transfer. Indeed, overexpression of full-length A1 in human umbilical vein EC (HUVEC), and human dermal microvascular EC (HDMEC) failed to inhibit NF-κB activation. However, overexpression of a mutant lacking the C-terminal domain of A1 (A1ΔC) demonstrated a potent NF-κB inhibitory effect in these cells. Disparate effects of A1 and A1ΔC on NF-κB inhibition in human EC correlated with mitochondrial (A1) versus non-mitochondrial (A1ΔC) localization. In contrast, both full-length A1 and A1ΔC protected EC from staurosporine (STS)-induced cell death, indicating that mitochondrial localization was not necessary for A1's cytoprotective function in human EC. In conclusion, our data uncover a regulatory role for the C-terminal domain of A1 in human EC: anchoring A1 to the mitochondrion, which conserves but is not necessary for its cytoprotective function, or by its absence freeing A1 from the mitochondrion and uncovering an additional anti-inflammatory effect.
Collapse
Affiliation(s)
- Renata P Guedes
- Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ke B, Shen XD, Gao F, Qiao B, Ji H, Busuttil RW, Volk HD, Kupiec-Weglinski JW. Small interfering RNA targeting heme oxygenase-1 (HO-1) reinforces liver apoptosis induced by ischemia-reperfusion injury in mice: HO-1 is necessary for cytoprotection. Hum Gene Ther 2010; 20:1133-42. [PMID: 19534599 DOI: 10.1089/hum.2009.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have shown that overexpression of heme oxygenase-1 (HO-1) prevents the liver inflammation response leading to ischemia and reperfusion injury (IRI). This study was designed to explore the precise function and mechanism of HO-1 cytoprotection in liver IRI by employing a small interfering RNA (siRNA) that effectively suppresses HO-1 expression both in vitro and in vivo. Using a partial lobar liver warm ischemia model, mice were injected with HO-1 siRNA/nonspecific control siRNA or Ad-HO-1/Ad-beta-gal. Those treated with HO-1 siRNA showed increased serum glutamic-oxaloacetic transaminase levels, significant liver edema, sinusoidal congestion/cytoplasmic vacuolization, and severe hepatocellular necrosis. In contrast, Ad-HO-1-pretreated animals revealed only minimal sinusoidal congestion without edema/vacuolization or necrosis. Administration of HO-1 siRNA significantly increased local neutrophil accumulation and the frequency of apoptotic cells. Mice treated with HO-1 siRNA were characterized by increased caspase-3 activity and reduced HO-1 expression, whereas those given Ad-HO-1 showed decreased caspase-3 activity and increased HO-1/Bcl-2/Bcl-x(L), data confirmed by use of an in vitro cell culture system. Thus, by using an siRNA approach this study confirms that HO-1 provides potent cytoprotection against hepatic IRI and regulates liver apoptosis. Indeed, siRNA provides a powerful tool with which to study gene function in a wide range of liver diseases.
Collapse
Affiliation(s)
- Bibo Ke
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Li B, Desai SA, MacCorkle-Chosnek RA, Fan L, Spencer DM. A novel conditional Akt 'survival switch' reversibly protects cells from apoptosis. Gene Ther 2002; 9:233-44. [PMID: 11896462 DOI: 10.1038/sj.gt.3301641] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2001] [Accepted: 11/29/2001] [Indexed: 11/09/2022]
Abstract
The anti-apoptotic Akt kinase is commonly activated by survival factors following plasma membrane relocalization attributable to the interaction of its pleckstrin homology (PH) domain with phosphatidylinositol 3-kinase (PI3K)-generated PI3,4-P(2) and PI3,4,5-P(3). Once activated, Akt can prevent or delay apoptosis by phosphorylation-dependent inhibition or activation of multiple signaling molecules involved in apoptosis, such as BAD, caspase-9, GSK3, and NF-kappaB and forkhead family transcription factors. Here, we describe and characterize a novel, conditional Akt controlled by chemically induced dimerization (CID). In this approach, the Akt PH domain has been replaced with the rapamycin (and FK506)-binding domain, FKBP12, to make F3-DeltaPH.Akt. To effect membrane recruitment, a myristoylated rapamycin-binding domain from FRAP/mTOR, called M-FRB, binds to lipid permeable rapamycin (and non-bioactive synthetic 'rapalogs'), leading to reversible heterodimerization of M-FRB with FKBP-DeltaPH.Akt. Like endogenous c-Akt, we show that the kinase activity of membrane-localized F3-DeltaPH.Akt correlates strongly with phosphorylation at T308 and S473; however, unlike c-Akt, phosphorylation and activation of inducible Akt (iAkt) is largely PI3K independent. CID-mediated activation of iAkt results in phosphorylation of GSK3, and contributes to NF-kappaB activation in vivo in a dose-sensitive manner. Finally, in Jurkat T cells stably expressing iAkt, CID-induced Akt activation rescued cells from apoptosis triggered by multiple apoptotic stimuli, including staurosporine, anti-Fas antibodies, PI3K inhibitors and the DNA damaging agent, etoposide. This novel inducible Akt should be useful for identifying new Akt substrates and for reversibly protecting tissue from apoptosis due to ischemic injury or immunological attack.
Collapse
Affiliation(s)
- B Li
- Department of Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
6
|
Contreras JL, Bilbao G, Smyth CA, Eckhoff DE, Jiang XL, Jenkins S, Thomas FT, Curiel DT, Thomas JM. Cytoprotection of pancreatic islets before and early after transplantation using gene therapy. Kidney Int 2002; 61:S79-84. [PMID: 11841618 DOI: 10.1046/j.1523-1755.2002.0610s1079.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pancreatic islet transplantation (PIT) is an attractive alternative to insulin-dependent diabetes treatment but is not yet a clinical reality. The first few days after PIT are characterized by substantial pancreatic islet dysfunction and death. Apoptosis has been documented in PI after extracellular matrix removal, during culture time, after exposure to proinflammatory cytokines, hypoxic conditions before islet revascularization, and rejection. Targeting the apoptosis pathway by adenoviral-mediated gene transfer of the anti-apoptotic Bcl-2 gene exerts a major cytoprotective effect on isolated macaque pancreatic islets. Bcl-2 transfection ex vivo protects islets from apoptosis induced by disruption of the islet extracellular matrix during pancreatic digestion. Additionally, over-expression of Bcl-2 confers long-term, stable protection and maintenance of functional islet mass after transplantation into diabetic SCID mice. Genetic modification of PI also reduced the islet mass required to achieve stable euglycemia. Ex vivo gene transfer of anti-apoptotic genes has potential as a therapeutic approach to both minimize loss of functional islet mass post-transplant and reduce the high islet requirement currently needed for successful stable reversal of insulin-dependent diabetes [1, 2].
Collapse
Affiliation(s)
- Juan L Contreras
- Transplant Center and Division of Human Gene Therapy, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Thomas FT, Contreras JL, Bilbao G, Ricordi C, Curiel D, Thomas JM. Anoikis, extracellular matrix, and apoptosis factors in isolated cell transplantation. Surgery 1999. [PMID: 10455898 DOI: 10.1016/s0039-6060(99)70169-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Isolated cell transplantation (ICT) of pancreatic islets (PI), nerve tissue, hepatocytes, and other cells is an exciting new concept of transplantation. PI transplantation can be successful in reversing diabetes but, unlike whole pancreas, grafts have a unique and unexplained high failure rate, with over 60% loss by 3 to 6 months. We established that PI of rhesus monkeys have a high rate of death within 48 hours of isolation as a result of apoptosis, as measured with the Annexin V assay (Pharmingen, San Diego, Calif). In contrast, PI incompletely separated from the extracellular matrix (ECM) remained viable for prolonged periods in culture and performed superiorly in perifusion assays (insulin secretion of 4.6 +/- 0.8 times basal secretion). METHODS We studied the ability of the anti-AP Bcl-2 molecule, known to block anoikis (a mechanism of AP due to cell-ECM separation), to prevent apoptosis of isolated PI. RESULTS PI transduced with an adenovirus-Bcl-2 gene complex showed a high viability and a low AP rate in culture versus control rhesus PI. CONCLUSION In summary, PI protected from AP by a surrounding ECM mantle or by Adenovirol Vector (AdV) transduction of the Bcl-2 gene showed superior viability without AP in vitro and in vivo evidence of a preserved insulin secretion response to glucose.
Collapse
Affiliation(s)
- F T Thomas
- Department of Surgery, University of Alabama at Birmingham 35294-0012, USA
| | | | | | | | | | | |
Collapse
|
9
|
Badrichani AZ, Stroka DM, Bilbao G, Curiel DT, Bach FH, Ferran C. Bcl-2 and Bcl-XL serve an anti-inflammatory function in endothelial cells through inhibition of NF-kappaB. J Clin Invest 1999; 103:543-53. [PMID: 10021463 PMCID: PMC408093 DOI: 10.1172/jci2517] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To maintain the integrity of the vascular barrier, endothelial cells (EC) are resistant to cell death. The molecular basis of this resistance may be explained by the function of antiapoptotic genes such as bcl family members. Overexpression of Bcl-2 or Bcl-XL protects EC from tumor necrosis factor (TNF)-mediated apoptosis. In addition, Bcl-2 or Bcl-XL inhibits activation of NF-kappaB and thus upregulation of proinflammatory genes. Bcl-2-mediated inhibition of NF-kappaB in EC occurs upstream of IkappaBalpha degradation without affecting p65-mediated transactivation. Overexpression of bcl genes in EC does not affect other transcription factors. Using deletion mutants of Bcl-2, the NF-kappaB inhibitory function of Bcl-2 was mapped to bcl homology domains BH2 and BH4, whereas all BH domains were required for the antiapoptotic function. These data suggest that Bcl-2 and Bcl-XL belong to a cytoprotective response that counteracts proapoptotic and proinflammatory insults and restores the physiological anti-inflammatory phenotype to the EC. By inhibiting NF-kappaB without sensitizing the cells (as with IkappaBalpha) to TNF-mediated apoptosis, Bcl-2 and Bcl-XL are prime candidates for genetic engineering of EC in pathological conditions where EC loss and unfettered activation are undesirable.
Collapse
Affiliation(s)
- A Z Badrichani
- Immunobiology Research Center, Department of Surgery, Beth Israel-Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|